blob: 6e1baae52c68ab8c8c9dfcce3599636c431c16c5 [file] [log] [blame]
// Copyright (C) 2023 The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
export class BigintMath {
static INT64_MAX: bigint = 2n ** 63n - 1n;
static INT64_MIN: bigint = -(2n ** 63n);
// Returns the smallest integral power of 2 that is not smaller than n.
// If n is less than or equal to 0, returns 1.
static bitCeil(n: bigint): bigint {
let result = 1n;
while (result < n) {
result <<= 1n;
}
return result;
}
// Returns the largest integral power of 2 which is not greater than n.
// If n is less than or equal to 0, returns 1.
static bitFloor(n: bigint): bigint {
let result = 1n;
while (result << 1n <= n) {
result <<= 1n;
}
return result;
}
// Returns the largest integral value x where 2^x is not greater than n.
static log2(n: bigint): number {
let result = 1n;
let log2 = 0;
while (result << 1n <= n) {
result <<= 1n;
++log2;
}
return log2;
}
// Returns the integral multiple of step which is closest to n.
// If step is less than or equal to 0, returns n.
static quant(n: bigint, step: bigint): bigint {
step = BigintMath.max(1n, step);
const halfStep = step / 2n;
return step * ((n + halfStep) / step);
}
// Returns the largest integral multiple of step which is not larger than n.
// If step is less than or equal to 0, returns n.
static quantFloor(n: bigint, step: bigint): bigint {
step = BigintMath.max(1n, step);
if (n >= 0) {
return n - (n % step);
} else {
// If we're negative, just subtract one more "step", unless we're already
// aligned to a step then do nothing.
return n - (n % step) - (n % step === 0n ? 0n : step);
}
}
// Returns the smallest integral multiple of step which is not smaller than n.
// If step is less than or equal to 0, returns n.
static quantCeil(n: bigint, step: bigint): bigint {
step = BigintMath.max(1n, step);
if (n >= 0) {
return n - (n % step) + (n % step === 0n ? 0n : step);
} else {
return n - (n % step);
}
}
// Returns the greater of a and b.
static max(a: bigint, b: bigint): bigint {
return a > b ? a : b;
}
// Returns the smaller of a and b.
static min(a: bigint, b: bigint): bigint {
return a < b ? a : b;
}
// Returns the number of 1 bits in n.
static popcount(n: bigint): number {
if (n < 0n) {
throw Error(`Can\'t get popcount of negative number ${n}`);
}
let count = 0;
while (n) {
if (n & 1n) {
++count;
}
n >>= 1n;
}
return count;
}
// Return the ratio between two bigints as a number.
static ratio(dividend: bigint, divisor: bigint): number {
return Number(dividend) / Number(divisor);
}
// Calculates the absolute value of a n.
static abs(n: bigint) {
return n < 0n ? -1n * n : n;
}
}