blob: 08d6e86357df47505fea65e58069b90c648a6718 [file] [log] [blame] [edit]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef SRC_PROFILING_PERF_UNWINDING_H_
#define SRC_PROFILING_PERF_UNWINDING_H_
#include <condition_variable>
#include <map>
#include <thread>
#include <linux/perf_event.h>
#include <stdint.h>
#include <unwindstack/Error.h>
#include "perfetto/base/flat_set.h"
#include "perfetto/base/logging.h"
#include "perfetto/ext/base/optional.h"
#include "perfetto/ext/base/thread_checker.h"
#include "perfetto/ext/base/unix_task_runner.h"
#include "perfetto/ext/tracing/core/basic_types.h"
#include "src/kallsyms/kernel_symbol_map.h"
#include "src/kallsyms/lazy_kernel_symbolizer.h"
#include "src/profiling/common/unwind_support.h"
#include "src/profiling/perf/common_types.h"
#include "src/profiling/perf/unwind_queue.h"
namespace perfetto {
namespace profiling {
constexpr static uint32_t kUnwindQueueCapacity = 1024;
// Unwinds and symbolises callstacks. For userspace this uses the sampled stack
// and register state (see |ParsedSample|). For kernelspace, the kernel itself
// unwinds the stack (recording a list of instruction pointers), so only
// symbolisation using /proc/kallsyms is necessary. Has a single unwinding ring
// queue, shared across all data sources.
//
// Userspace samples cannot be unwound without having /proc/<pid>/{maps,mem}
// file descriptors for that process. This lookup can be asynchronous (e.g. on
// Android), so the unwinder might have to wait before it can process (or
// discard) some of the enqueued samples. To avoid blocking the entire queue,
// the unwinder is allowed to process the entries out of order.
//
// Besides the queue, all interactions between the unwinder and the rest of the
// producer logic are through posted tasks.
//
// As unwinding times are long-tailed (example measurements: median <1ms,
// worst-case ~1000ms), the unwinder runs on a dedicated thread to avoid
// starving the rest of the producer's work (including IPC and consumption of
// records from the kernel ring buffers).
//
// This class should not be instantiated directly, use the |UnwinderHandle|
// below instead.
//
// TODO(rsavitski): while the inputs to the unwinder are batched as a result of
// the reader posting a wakeup only after consuming a batch of kernel samples,
// the Unwinder might be staggering wakeups for the producer thread by posting a
// task every time a sample has been unwound. Evaluate how bad these wakeups are
// in practice, and consider also implementing a batching strategy for the
// unwinder->serialization handoff (which isn't very latency-sensitive).
class Unwinder {
public:
friend class UnwinderHandle;
// Callbacks from the unwinder to the primary producer thread.
class Delegate {
public:
virtual void PostEmitSample(DataSourceInstanceID ds_id,
CompletedSample sample) = 0;
virtual void PostEmitUnwinderSkippedSample(DataSourceInstanceID ds_id,
ParsedSample sample) = 0;
virtual void PostFinishDataSourceStop(DataSourceInstanceID ds_id) = 0;
virtual ~Delegate();
};
~Unwinder() { PERFETTO_DCHECK_THREAD(thread_checker_); }
void PostStartDataSource(DataSourceInstanceID ds_id, bool kernel_frames);
void PostAdoptProcDescriptors(DataSourceInstanceID ds_id,
pid_t pid,
base::ScopedFile maps_fd,
base::ScopedFile mem_fd);
void PostRecordTimedOutProcDescriptors(DataSourceInstanceID ds_id, pid_t pid);
void PostRecordNoUserspaceProcess(DataSourceInstanceID ds_id, pid_t pid);
void PostProcessQueue();
void PostInitiateDataSourceStop(DataSourceInstanceID ds_id);
void PostPurgeDataSource(DataSourceInstanceID ds_id);
void PostClearCachedStatePeriodic(DataSourceInstanceID ds_id,
uint32_t period_ms);
UnwindQueue<UnwindEntry, kUnwindQueueCapacity>& unwind_queue() {
return unwind_queue_;
}
uint64_t GetEnqueuedFootprint() {
uint64_t freed =
footprint_tracker_.stack_bytes_freed.load(std::memory_order_acquire);
uint64_t allocated = footprint_tracker_.stack_bytes_allocated.load(
std::memory_order_relaxed);
// overflow not a concern in practice
PERFETTO_DCHECK(allocated >= freed);
return allocated - freed;
}
void IncrementEnqueuedFootprint(uint64_t increment) {
footprint_tracker_.stack_bytes_allocated.fetch_add(
increment, std::memory_order_relaxed);
}
private:
struct ProcessState {
// kInitial: unwinder waiting for more info on the process (proc-fds, their
// lookup expiration, or that there is no need for them).
// kFdsResolved: proc-fds available, can unwind samples.
// kFdsTimedOut: proc-fd lookup timed out, will discard samples. Can still
// transition to kFdsResolved if the fds are received later.
// kNoUserspace: only handling kernel callchains (the sample might
// still be for a userspace process), can process samples.
enum class Status { kInitial, kFdsResolved, kFdsTimedOut, kNoUserspace };
Status status = Status::kInitial;
// Present iff status == kFdsResolved.
base::Optional<UnwindingMetadata> unwind_state;
// Used to distinguish first-time unwinding attempts for a process, for
// logging purposes.
bool attempted_unwinding = false;
};
struct DataSourceState {
enum class Status { kActive, kShuttingDown };
Status status = Status::kActive;
std::map<pid_t, ProcessState> process_states;
};
// Accounting for how much heap memory is attached to the enqueued samples at
// a given time. Read by the main thread, mutated by both threads.
// We track just the heap allocated for the sampled stacks, as it dominates
// the per-sample heap use.
struct QueueFootprintTracker {
std::atomic<uint64_t> stack_bytes_allocated;
std::atomic<uint64_t> stack_bytes_freed;
};
// Must be instantiated via the |UnwinderHandle|.
Unwinder(Delegate* delegate, base::UnixTaskRunner* task_runner);
// Marks the data source as valid and active at the unwinding stage.
// Initializes kernel address symbolization if needed.
void StartDataSource(DataSourceInstanceID ds_id, bool kernel_frames);
void AdoptProcDescriptors(DataSourceInstanceID ds_id,
pid_t pid,
base::ScopedFile maps_fd,
base::ScopedFile mem_fd);
void UpdateProcessStateStatus(DataSourceInstanceID ds_id,
pid_t pid,
ProcessState::Status new_status);
// Primary task. Processes the enqueued samples using
// |ConsumeAndUnwindReadySamples|, and re-evaluates data source state.
void ProcessQueue();
// Processes the enqueued samples for which all unwinding inputs are ready.
// Returns the set of data source instances which still have samples pending
// (i.e. waiting on the proc-fds).
base::FlatSet<DataSourceInstanceID> ConsumeAndUnwindReadySamples();
CompletedSample UnwindSample(const ParsedSample& sample,
UnwindingMetadata* opt_user_state,
bool pid_unwound_before);
// Returns a list of symbolized kernel frames in the sample (if any).
std::vector<unwindstack::FrameData> SymbolizeKernelCallchain(
const ParsedSample& sample);
// Marks the data source as shutting down at the unwinding stage. It is known
// that no new samples for this source will be pushed into the queue, but we
// need to delay the unwinder state teardown until all previously-enqueued
// samples for this source are processed.
void InitiateDataSourceStop(DataSourceInstanceID ds_id);
// Tears down unwinding state for the data source without any outstanding
// samples, and informs the service that it can continue the shutdown
// sequence.
void FinishDataSourceStop(DataSourceInstanceID ds_id);
// Immediately destroys the data source state, used for abrupt stops.
void PurgeDataSource(DataSourceInstanceID ds_id);
void DecrementEnqueuedFootprint(uint64_t decrement) {
footprint_tracker_.stack_bytes_freed.fetch_add(decrement,
std::memory_order_relaxed);
}
// Clears the parsed maps for all previously-sampled processes, and resets the
// libunwindstack cache. This has the effect of deallocating the cached Elf
// objects within libunwindstack, which take up non-trivial amounts of memory.
//
// There are two reasons for having this operation:
// * over a longer trace, it's desireable to drop heavy state for processes
// that haven't been sampled recently.
// * since libunwindstack's cache is not bounded, it'll tend towards having
// state for all processes that are targeted by the profiling config.
// Clearing the cache periodically helps keep its footprint closer to the
// actual working set (NB: which might still be arbitrarily big, depending
// on the profiling config).
//
// After this function completes, the next unwind for each process will
// therefore incur a guaranteed maps reparse.
//
// Unwinding for concurrent data sources will *not* be directly affected at
// the time of writing, as the non-cleared parsed maps will keep the cached
// Elf objects alive through shared_ptrs.
//
// Note that this operation is heavy in terms of cpu%, and should therefore
// be called only for profiling configs that require it.
//
// TODO(rsavitski): dropping the full parsed maps is somewhat excessive, could
// instead clear just the |MapInfo.elf| shared_ptr, but that's considered too
// brittle as it's an implementation detail of libunwindstack.
// TODO(rsavitski): improve libunwindstack cache's architecture (it is still
// worth having at the moment to speed up unwinds across map reparses).
void ClearCachedStatePeriodic(DataSourceInstanceID ds_id, uint32_t period_ms);
void ResetAndEnableUnwindstackCache();
base::UnixTaskRunner* const task_runner_;
Delegate* const delegate_;
UnwindQueue<UnwindEntry, kUnwindQueueCapacity> unwind_queue_;
QueueFootprintTracker footprint_tracker_;
std::map<DataSourceInstanceID, DataSourceState> data_sources_;
LazyKernelSymbolizer kernel_symbolizer_;
PERFETTO_THREAD_CHECKER(thread_checker_)
};
// Owning resource handle for an |Unwinder| with a dedicated task thread.
// Ensures that the |Unwinder| is constructed and destructed on the task thread.
// TODO(rsavitski): update base::ThreadTaskRunner to allow for this pattern of
// owned state, and consolidate.
class UnwinderHandle {
public:
explicit UnwinderHandle(Unwinder::Delegate* delegate) {
std::mutex init_lock;
std::condition_variable init_cv;
std::function<void(base::UnixTaskRunner*, Unwinder*)> initializer =
[this, &init_lock, &init_cv](base::UnixTaskRunner* task_runner,
Unwinder* unwinder) {
std::lock_guard<std::mutex> lock(init_lock);
task_runner_ = task_runner;
unwinder_ = unwinder;
// Notify while still holding the lock, as init_cv ceases to exist as
// soon as the main thread observes a non-null task_runner_, and it
// can wake up spuriously (i.e. before the notify if we had unlocked
// before notifying).
init_cv.notify_one();
};
thread_ = std::thread(&UnwinderHandle::RunTaskThread, this,
std::move(initializer), delegate);
std::unique_lock<std::mutex> lock(init_lock);
init_cv.wait(lock, [this] { return !!task_runner_ && !!unwinder_; });
}
~UnwinderHandle() {
if (task_runner_) {
PERFETTO_CHECK(!task_runner_->QuitCalled());
task_runner_->Quit();
PERFETTO_DCHECK(thread_.joinable());
}
if (thread_.joinable())
thread_.join();
}
Unwinder* operator->() { return unwinder_; }
private:
void RunTaskThread(
std::function<void(base::UnixTaskRunner*, Unwinder*)> initializer,
Unwinder::Delegate* delegate) {
base::UnixTaskRunner task_runner;
Unwinder unwinder(delegate, &task_runner);
task_runner.PostTask(
std::bind(std::move(initializer), &task_runner, &unwinder));
task_runner.Run();
}
std::thread thread_;
base::UnixTaskRunner* task_runner_ = nullptr;
Unwinder* unwinder_ = nullptr;
};
} // namespace profiling
} // namespace perfetto
#endif // SRC_PROFILING_PERF_UNWINDING_H_