| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| #include <cstddef> |
| #include <memory> |
| #include <string> |
| #include <type_traits> |
| #include <vector> |
| |
| #include "google/protobuf/descriptor.pb.h" |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| #include "absl/log/absl_check.h" |
| #include "absl/memory/memory.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/string_view.h" |
| #include "google/protobuf/descriptor.h" |
| #include "google/protobuf/unittest.pb.h" |
| #include "google/protobuf/unittest_no_field_presence.pb.h" |
| |
| namespace google { |
| namespace protobuf { |
| namespace { |
| |
| using ::proto2_nofieldpresence_unittest::ExplicitForeignMessage; |
| using ::proto2_nofieldpresence_unittest::FOREIGN_BAZ; |
| using ::proto2_nofieldpresence_unittest::FOREIGN_FOO; |
| using ::proto2_nofieldpresence_unittest::ForeignMessage; |
| using ::proto2_nofieldpresence_unittest::TestAllTypes; |
| using ::testing::Eq; |
| using ::testing::Gt; |
| using ::testing::IsEmpty; |
| using ::testing::StrEq; |
| using ::testing::UnorderedPointwise; |
| |
| // Helper: checks that all fields have default (zero/empty) values. |
| void CheckDefaultValues(const TestAllTypes& m) { |
| EXPECT_EQ(0, m.optional_int32()); |
| EXPECT_EQ(0, m.optional_int64()); |
| EXPECT_EQ(0, m.optional_uint32()); |
| EXPECT_EQ(0, m.optional_uint64()); |
| EXPECT_EQ(0, m.optional_sint32()); |
| EXPECT_EQ(0, m.optional_sint64()); |
| EXPECT_EQ(0, m.optional_fixed32()); |
| EXPECT_EQ(0, m.optional_fixed64()); |
| EXPECT_EQ(0, m.optional_sfixed32()); |
| EXPECT_EQ(0, m.optional_sfixed64()); |
| EXPECT_EQ(0, m.optional_float()); |
| EXPECT_EQ(0, m.optional_double()); |
| EXPECT_EQ(false, m.optional_bool()); |
| EXPECT_EQ(0, m.optional_string().size()); |
| EXPECT_EQ(0, m.optional_bytes().size()); |
| |
| EXPECT_EQ(false, m.has_optional_nested_message()); |
| // accessor for message fields returns default instance when not present |
| EXPECT_EQ(0, m.optional_nested_message().bb()); |
| EXPECT_EQ(false, m.has_optional_proto2_message()); |
| // Embedded proto2 messages still have proto2 semantics, e.g. non-zero default |
| // values. Here the submessage is not present but its accessor returns the |
| // default instance. |
| EXPECT_EQ(41, m.optional_proto2_message().default_int32()); |
| EXPECT_EQ(false, m.has_optional_foreign_message()); |
| EXPECT_EQ(TestAllTypes::FOO, m.optional_nested_enum()); |
| EXPECT_EQ(FOREIGN_FOO, m.optional_foreign_enum()); |
| |
| EXPECT_EQ(0, m.optional_string_piece().size()); |
| |
| EXPECT_EQ(0, m.repeated_int32_size()); |
| EXPECT_EQ(0, m.repeated_int64_size()); |
| EXPECT_EQ(0, m.repeated_uint32_size()); |
| EXPECT_EQ(0, m.repeated_uint64_size()); |
| EXPECT_EQ(0, m.repeated_sint32_size()); |
| EXPECT_EQ(0, m.repeated_sint64_size()); |
| EXPECT_EQ(0, m.repeated_fixed32_size()); |
| EXPECT_EQ(0, m.repeated_fixed64_size()); |
| EXPECT_EQ(0, m.repeated_sfixed32_size()); |
| EXPECT_EQ(0, m.repeated_sfixed64_size()); |
| EXPECT_EQ(0, m.repeated_float_size()); |
| EXPECT_EQ(0, m.repeated_double_size()); |
| EXPECT_EQ(0, m.repeated_bool_size()); |
| EXPECT_EQ(0, m.repeated_string_size()); |
| EXPECT_EQ(0, m.repeated_bytes_size()); |
| EXPECT_EQ(0, m.repeated_nested_message_size()); |
| EXPECT_EQ(0, m.repeated_foreign_message_size()); |
| EXPECT_EQ(0, m.repeated_proto2_message_size()); |
| EXPECT_EQ(0, m.repeated_nested_enum_size()); |
| EXPECT_EQ(0, m.repeated_foreign_enum_size()); |
| EXPECT_EQ(0, m.repeated_string_piece_size()); |
| EXPECT_EQ(0, m.repeated_lazy_message_size()); |
| EXPECT_EQ(TestAllTypes::ONEOF_FIELD_NOT_SET, m.oneof_field_case()); |
| } |
| |
| void FillValues(TestAllTypes* m) { |
| m->set_optional_int32(100); |
| m->set_optional_int64(101); |
| m->set_optional_uint32(102); |
| m->set_optional_uint64(103); |
| m->set_optional_sint32(104); |
| m->set_optional_sint64(105); |
| m->set_optional_fixed32(106); |
| m->set_optional_fixed64(107); |
| m->set_optional_sfixed32(108); |
| m->set_optional_sfixed64(109); |
| m->set_optional_float(110.0); |
| m->set_optional_double(111.0); |
| m->set_optional_bool(true); |
| m->set_optional_string("asdf"); |
| m->set_optional_bytes("jkl;"); |
| m->mutable_optional_nested_message()->set_bb(42); |
| m->mutable_optional_foreign_message()->set_c(43); |
| m->mutable_optional_proto2_message()->set_optional_int32(44); |
| m->set_optional_nested_enum(TestAllTypes::BAZ); |
| m->set_optional_foreign_enum(FOREIGN_BAZ); |
| m->set_optional_string_piece("test"); |
| m->mutable_optional_lazy_message()->set_bb(45); |
| m->add_repeated_int32(100); |
| m->add_repeated_int64(101); |
| m->add_repeated_uint32(102); |
| m->add_repeated_uint64(103); |
| m->add_repeated_sint32(104); |
| m->add_repeated_sint64(105); |
| m->add_repeated_fixed32(106); |
| m->add_repeated_fixed64(107); |
| m->add_repeated_sfixed32(108); |
| m->add_repeated_sfixed64(109); |
| m->add_repeated_float(110.0); |
| m->add_repeated_double(111.0); |
| m->add_repeated_bool(true); |
| m->add_repeated_string("asdf"); |
| m->add_repeated_bytes("jkl;"); |
| m->add_repeated_nested_message()->set_bb(46); |
| m->add_repeated_foreign_message()->set_c(47); |
| m->add_repeated_proto2_message()->set_optional_int32(48); |
| m->add_repeated_nested_enum(TestAllTypes::BAZ); |
| m->add_repeated_foreign_enum(FOREIGN_BAZ); |
| m->add_repeated_string_piece("test"); |
| m->add_repeated_lazy_message()->set_bb(49); |
| |
| m->set_oneof_uint32(1); |
| m->mutable_oneof_nested_message()->set_bb(50); |
| m->set_oneof_string("test"); // only this one remains set |
| } |
| |
| void CheckNonDefaultValues(const TestAllTypes& m) { |
| EXPECT_EQ(100, m.optional_int32()); |
| EXPECT_EQ(101, m.optional_int64()); |
| EXPECT_EQ(102, m.optional_uint32()); |
| EXPECT_EQ(103, m.optional_uint64()); |
| EXPECT_EQ(104, m.optional_sint32()); |
| EXPECT_EQ(105, m.optional_sint64()); |
| EXPECT_EQ(106, m.optional_fixed32()); |
| EXPECT_EQ(107, m.optional_fixed64()); |
| EXPECT_EQ(108, m.optional_sfixed32()); |
| EXPECT_EQ(109, m.optional_sfixed64()); |
| EXPECT_EQ(110.0, m.optional_float()); |
| EXPECT_EQ(111.0, m.optional_double()); |
| EXPECT_EQ(true, m.optional_bool()); |
| EXPECT_EQ("asdf", m.optional_string()); |
| EXPECT_EQ("jkl;", m.optional_bytes()); |
| EXPECT_EQ(true, m.has_optional_nested_message()); |
| EXPECT_EQ(42, m.optional_nested_message().bb()); |
| EXPECT_EQ(true, m.has_optional_foreign_message()); |
| EXPECT_EQ(43, m.optional_foreign_message().c()); |
| EXPECT_EQ(true, m.has_optional_proto2_message()); |
| EXPECT_EQ(44, m.optional_proto2_message().optional_int32()); |
| EXPECT_EQ(TestAllTypes::BAZ, m.optional_nested_enum()); |
| EXPECT_EQ(FOREIGN_BAZ, m.optional_foreign_enum()); |
| EXPECT_EQ("test", m.optional_string_piece()); |
| EXPECT_EQ(true, m.has_optional_lazy_message()); |
| EXPECT_EQ(45, m.optional_lazy_message().bb()); |
| |
| EXPECT_EQ(1, m.repeated_int32_size()); |
| EXPECT_EQ(100, m.repeated_int32(0)); |
| EXPECT_EQ(1, m.repeated_int64_size()); |
| EXPECT_EQ(101, m.repeated_int64(0)); |
| EXPECT_EQ(1, m.repeated_uint32_size()); |
| EXPECT_EQ(102, m.repeated_uint32(0)); |
| EXPECT_EQ(1, m.repeated_uint64_size()); |
| EXPECT_EQ(103, m.repeated_uint64(0)); |
| EXPECT_EQ(1, m.repeated_sint32_size()); |
| EXPECT_EQ(104, m.repeated_sint32(0)); |
| EXPECT_EQ(1, m.repeated_sint64_size()); |
| EXPECT_EQ(105, m.repeated_sint64(0)); |
| EXPECT_EQ(1, m.repeated_fixed32_size()); |
| EXPECT_EQ(106, m.repeated_fixed32(0)); |
| EXPECT_EQ(1, m.repeated_fixed64_size()); |
| EXPECT_EQ(107, m.repeated_fixed64(0)); |
| EXPECT_EQ(1, m.repeated_sfixed32_size()); |
| EXPECT_EQ(108, m.repeated_sfixed32(0)); |
| EXPECT_EQ(1, m.repeated_sfixed64_size()); |
| EXPECT_EQ(109, m.repeated_sfixed64(0)); |
| EXPECT_EQ(1, m.repeated_float_size()); |
| EXPECT_EQ(110.0, m.repeated_float(0)); |
| EXPECT_EQ(1, m.repeated_double_size()); |
| EXPECT_EQ(111.0, m.repeated_double(0)); |
| EXPECT_EQ(1, m.repeated_bool_size()); |
| EXPECT_EQ(true, m.repeated_bool(0)); |
| EXPECT_EQ(1, m.repeated_string_size()); |
| EXPECT_EQ("asdf", m.repeated_string(0)); |
| EXPECT_EQ(1, m.repeated_bytes_size()); |
| EXPECT_EQ("jkl;", m.repeated_bytes(0)); |
| EXPECT_EQ(1, m.repeated_nested_message_size()); |
| EXPECT_EQ(46, m.repeated_nested_message(0).bb()); |
| EXPECT_EQ(1, m.repeated_foreign_message_size()); |
| EXPECT_EQ(47, m.repeated_foreign_message(0).c()); |
| EXPECT_EQ(1, m.repeated_proto2_message_size()); |
| EXPECT_EQ(48, m.repeated_proto2_message(0).optional_int32()); |
| EXPECT_EQ(1, m.repeated_nested_enum_size()); |
| EXPECT_EQ(TestAllTypes::BAZ, m.repeated_nested_enum(0)); |
| EXPECT_EQ(1, m.repeated_foreign_enum_size()); |
| EXPECT_EQ(FOREIGN_BAZ, m.repeated_foreign_enum(0)); |
| EXPECT_EQ(1, m.repeated_string_piece_size()); |
| EXPECT_EQ("test", m.repeated_string_piece(0)); |
| EXPECT_EQ(1, m.repeated_lazy_message_size()); |
| EXPECT_EQ(49, m.repeated_lazy_message(0).bb()); |
| |
| EXPECT_EQ(TestAllTypes::kOneofString, m.oneof_field_case()); |
| EXPECT_EQ("test", m.oneof_string()); |
| } |
| |
| TEST(NoFieldPresenceTest, BasicMessageTest) { |
| TestAllTypes message; |
| // Check default values, fill all fields, check values. We just want to |
| // exercise the basic getters/setter paths here to make sure no |
| // field-presence-related changes broke these. |
| CheckDefaultValues(message); |
| FillValues(&message); |
| CheckNonDefaultValues(message); |
| |
| // Clear() should be equivalent to getting a freshly-constructed message. |
| message.Clear(); |
| CheckDefaultValues(message); |
| } |
| |
| TEST(NoFieldPresenceTest, MessageFieldPresenceTest) { |
| // check that presence still works properly for message fields. |
| TestAllTypes message; |
| EXPECT_EQ(false, message.has_optional_nested_message()); |
| // Getter should fetch default instance, and not cause the field to become |
| // present. |
| EXPECT_EQ(0, message.optional_nested_message().bb()); |
| EXPECT_EQ(false, message.has_optional_nested_message()); |
| message.mutable_optional_nested_message()->set_bb(42); |
| EXPECT_EQ(true, message.has_optional_nested_message()); |
| message.clear_optional_nested_message(); |
| EXPECT_EQ(false, message.has_optional_nested_message()); |
| |
| // Likewise for a lazy message field. |
| EXPECT_EQ(false, message.has_optional_lazy_message()); |
| // Getter should fetch default instance, and not cause the field to become |
| // present. |
| EXPECT_EQ(0, message.optional_lazy_message().bb()); |
| EXPECT_EQ(false, message.has_optional_lazy_message()); |
| message.mutable_optional_lazy_message()->set_bb(42); |
| EXPECT_EQ(true, message.has_optional_lazy_message()); |
| message.clear_optional_lazy_message(); |
| EXPECT_EQ(false, message.has_optional_lazy_message()); |
| |
| // Test field presence of a message field on the default instance. |
| EXPECT_EQ(false, |
| TestAllTypes::default_instance().has_optional_nested_message()); |
| } |
| |
| TEST(NoFieldPresenceTest, MergeFromDefaultStringFieldTest) { |
| // As an optimization, we maintain a default string in memory and messages |
| // with uninitialized fields will be constructed with a pointer to this |
| // default string object. The destructor should clear the field only when it |
| // is "set" to a nondefault object. |
| TestAllTypes src, dst; |
| dst.MergeFrom(src); |
| |
| dst.Clear(); |
| } |
| |
| TEST(NoFieldPresenceTest, MergeFromAllocatedStringFieldTest) { |
| // As an optimization, we maintain a default string in memory and messages |
| // with uninitialized fields will be constructed with a pointer to this |
| // default string object. The destructor should clear the field only when it |
| // is "set" to a nondefault object. |
| TestAllTypes src, dst; |
| |
| src.mutable_optional_string(); // this causes a memory allocation. |
| dst.MergeFrom(src); |
| |
| dst.Clear(); |
| } |
| |
| TEST(NoFieldPresenceTest, MergeFromEmptyStringFieldTest) { |
| // As an optimization, we maintain a default string in memory and messages |
| // with uninitialized fields will be constructed with a pointer to this |
| // default string object. The destructor should clear the field only when it |
| // is "set" to a nondefault object. |
| TestAllTypes src, dst; |
| |
| // set one field to zero. |
| src.set_optional_string(""); |
| dst.MergeFrom(src); |
| |
| dst.Clear(); |
| } |
| |
| TEST(NoFieldPresenceTest, CopyTwiceDefaultStringFieldTest) { |
| // As an optimization, we maintain a default string in memory and messages |
| // with uninitialized fields will be constructed with a pointer to this |
| // default string object. The destructor should clear the field only when it |
| // is "set" to a nondefault object. |
| TestAllTypes src, dst; |
| |
| dst = src; |
| dst = src; |
| } |
| |
| TEST(NoFieldPresenceTest, CopyTwiceAllocatedStringFieldTest) { |
| // As an optimization, we maintain a default string in memory and messages |
| // with uninitialized fields will be constructed with a pointer to this |
| // default string object. The destructor should clear the field only when it |
| // is "set" to a nondefault object. |
| TestAllTypes src, dst; |
| |
| src.mutable_optional_string(); // this causes a memory allocation. |
| |
| dst = src; |
| dst = src; |
| } |
| |
| TEST(NoFieldPresenceTest, CopyTwiceEmptyStringFieldTest) { |
| // As an optimization, we maintain a default string in memory and messages |
| // with uninitialized fields will be constructed with a pointer to this |
| // default string object. The destructor should clear the field only when it |
| // is "set" to a nondefault object. |
| TestAllTypes src, dst; |
| |
| // set one field to zero. |
| src.set_optional_string(""); |
| |
| dst = src; |
| dst = src; |
| } |
| |
| class NoFieldPresenceSwapFieldTest : public testing::Test { |
| protected: |
| NoFieldPresenceSwapFieldTest() |
| : m1_(), |
| m2_(), |
| r1_(m1_.GetReflection()), |
| r2_(m2_.GetReflection()), |
| d1_(m1_.GetDescriptor()), |
| d2_(m2_.GetDescriptor()) {} |
| |
| // Returns a field descriptor that corresponds to the field name. |
| // Note that different messages would still return the same field descriptor. |
| const FieldDescriptor* FindFieldByName(absl::string_view field_name) { |
| const FieldDescriptor* f1 = d1_->FindFieldByName(field_name); |
| const FieldDescriptor* f2 = d2_->FindFieldByName(field_name); |
| |
| // We actually ensure uniqueness of *field descriptors* even if we try to |
| // obtain them from different *message descriptors*. |
| ABSL_CHECK_EQ(f1, f2); |
| return f1; |
| } |
| |
| TestAllTypes m1_; |
| TestAllTypes m2_; |
| const Reflection* r1_; |
| const Reflection* r2_; |
| const Descriptor* d1_; |
| const Descriptor* d2_; |
| }; |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldScalarNonZeroTest) { |
| m1_.set_optional_int32(1); |
| m2_.set_optional_int32(2); |
| |
| const FieldDescriptor* f = FindFieldByName("optional_int32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_TRUE(r1_->HasField(m1_, f)); |
| EXPECT_TRUE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(2, m1_.optional_int32()); |
| EXPECT_EQ(1, m2_.optional_int32()); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped again. |
| EXPECT_TRUE(r1_->HasField(m1_, f)); |
| EXPECT_TRUE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(1, m1_.optional_int32()); |
| EXPECT_EQ(2, m2_.optional_int32()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldScalarOneZeroTest) { |
| m1_.set_optional_int32(1); |
| |
| const FieldDescriptor* f = FindFieldByName("optional_int32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_FALSE(r1_->HasField(m1_, f)); |
| EXPECT_TRUE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(0, m1_.optional_int32()); |
| EXPECT_EQ(1, m2_.optional_int32()); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped again. |
| EXPECT_TRUE(r1_->HasField(m1_, f)); |
| EXPECT_FALSE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(1, m1_.optional_int32()); |
| EXPECT_EQ(0, m2_.optional_int32()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldScalarBothZeroTest) { |
| m1_.set_optional_int32(0); // setting an int field to zero should be noop |
| |
| const FieldDescriptor* f = FindFieldByName("optional_int32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_FALSE(r1_->HasField(m1_, f)); |
| EXPECT_FALSE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(0, m1_.optional_int32()); |
| EXPECT_EQ(0, m2_.optional_int32()); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped again. |
| EXPECT_FALSE(r1_->HasField(m1_, f)); |
| EXPECT_FALSE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(0, m1_.optional_int32()); |
| EXPECT_EQ(0, m2_.optional_int32()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldRepeatedNonZeroTest) { |
| m1_.add_repeated_int32(1); |
| m2_.add_repeated_int32(2); |
| m2_.add_repeated_int32(22); |
| |
| const FieldDescriptor* f = FindFieldByName("repeated_int32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_EQ(r1_->FieldSize(m1_, f), 2); |
| EXPECT_EQ(r2_->FieldSize(m2_, f), 1); |
| EXPECT_THAT(m1_.repeated_int32(), UnorderedPointwise(Eq(), {2, 22})); |
| EXPECT_THAT(m2_.repeated_int32(), UnorderedPointwise(Eq(), {1})); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped again. |
| EXPECT_EQ(r1_->FieldSize(m1_, f), 1); |
| EXPECT_EQ(r2_->FieldSize(m2_, f), 2); |
| EXPECT_THAT(m1_.repeated_int32(), UnorderedPointwise(Eq(), {1})); |
| EXPECT_THAT(m2_.repeated_int32(), UnorderedPointwise(Eq(), {2, 22})); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldRepeatedOneZeroTest) { |
| m1_.add_repeated_int32(1); |
| |
| const FieldDescriptor* f = FindFieldByName("repeated_int32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_EQ(r1_->FieldSize(m1_, f), 0); |
| EXPECT_EQ(r2_->FieldSize(m2_, f), 1); |
| EXPECT_THAT(m1_.repeated_int32(), IsEmpty()); |
| EXPECT_THAT(m2_.repeated_int32(), UnorderedPointwise(Eq(), {1})); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped again. |
| EXPECT_EQ(r1_->FieldSize(m1_, f), 1); |
| EXPECT_EQ(r2_->FieldSize(m2_, f), 0); |
| EXPECT_THAT(m1_.repeated_int32(), UnorderedPointwise(Eq(), {1})); |
| EXPECT_THAT(m2_.repeated_int32(), IsEmpty()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, |
| ReflectionSwapFieldRepeatedExplicitZeroTest) { |
| // For repeated fields, explicitly adding zero would cause it to be added into |
| // the repeated field. |
| m1_.add_repeated_int32(0); |
| |
| const FieldDescriptor* f = FindFieldByName("repeated_int32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_EQ(r1_->FieldSize(m1_, f), 0); |
| EXPECT_EQ(r2_->FieldSize(m2_, f), 1); |
| EXPECT_THAT(m1_.repeated_int32(), IsEmpty()); |
| EXPECT_THAT(m2_.repeated_int32(), UnorderedPointwise(Eq(), {0})); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped again. |
| EXPECT_EQ(r1_->FieldSize(m1_, f), 1); |
| EXPECT_EQ(r2_->FieldSize(m2_, f), 0); |
| EXPECT_THAT(m1_.repeated_int32(), UnorderedPointwise(Eq(), {0})); |
| EXPECT_THAT(m2_.repeated_int32(), IsEmpty()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, |
| ReflectionSwapFieldOneofFieldDescriptorTest) { |
| m1_.set_oneof_uint32(1); |
| m2_.set_oneof_string("test"); |
| |
| // NOTE: Calling swap on any field descriptor within the oneof works -- |
| // even a completely unrelated field. |
| const FieldDescriptor* never_set_field = d1_->FindFieldByName("oneof_enum"); |
| |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{never_set_field}); |
| |
| // Fields should be swapped. |
| EXPECT_FALSE(r1_->HasField(m1_, never_set_field)); |
| EXPECT_FALSE(r1_->HasField(m2_, never_set_field)); |
| EXPECT_TRUE(m1_.has_oneof_string()); |
| EXPECT_TRUE(m2_.has_oneof_uint32()); |
| EXPECT_EQ(m1_.oneof_string(), "test"); |
| EXPECT_EQ(m2_.oneof_uint32(), 1); |
| |
| // Calling oneof accessors on a swapped-out field will give the default value. |
| EXPECT_FALSE(m1_.has_oneof_uint32()); |
| EXPECT_FALSE(m2_.has_oneof_string()); |
| EXPECT_EQ(m1_.oneof_uint32(), 0); |
| EXPECT_THAT(m2_.oneof_string(), IsEmpty()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, |
| ReflectionSwapFieldOneofFieldMultipleIdenticalDescriptorTest) { |
| m1_.set_oneof_uint32(1); |
| m2_.set_oneof_string("test"); |
| |
| // NOTE: Calling swap on any field descriptor within the oneof works -- |
| // even a completely unrelated field. |
| const FieldDescriptor* never_set_field = d1_->FindFieldByName("oneof_enum"); |
| const FieldDescriptor* f1 = d1_->FindFieldByName("oneof_uint32"); |
| const FieldDescriptor* f2 = d2_->FindFieldByName("oneof_string"); |
| |
| // Multiple instances of the identical descriptor is ignored. |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{never_set_field, never_set_field}); |
| |
| // Fields should be swapped (just once). |
| EXPECT_EQ(m1_.oneof_string(), "test"); |
| EXPECT_EQ(m2_.oneof_uint32(), 1); |
| |
| // Multiple instances of the identical descriptor is ignored. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f1, f2, never_set_field}); |
| |
| // Fields should be swapped (just once). |
| EXPECT_TRUE(m1_.has_oneof_uint32()); |
| EXPECT_TRUE(m2_.has_oneof_string()); |
| EXPECT_TRUE(r1_->HasField(m1_, f1)); |
| EXPECT_TRUE(r2_->HasField(m2_, f2)); |
| EXPECT_EQ(m1_.oneof_uint32(), 1); |
| EXPECT_EQ(m2_.oneof_string(), "test"); |
| |
| // Calling oneof accessors on a swapped-out field will give the default value. |
| EXPECT_FALSE(m1_.has_oneof_string()); |
| EXPECT_FALSE(m2_.has_oneof_uint32()); |
| EXPECT_FALSE(r1_->HasField(m1_, d1_->FindFieldByName("oneof_string"))); |
| EXPECT_FALSE(r2_->HasField(m2_, d2_->FindFieldByName("oneof_uint32"))); |
| EXPECT_THAT(m1_.oneof_string(), IsEmpty()); |
| EXPECT_EQ(m2_.oneof_uint32(), 0); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldOneofNonZeroTest) { |
| m1_.set_oneof_uint32(1); |
| m2_.set_oneof_string("test"); |
| |
| const FieldDescriptor* f = FindFieldByName("oneof_uint32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_TRUE(m1_.has_oneof_string()); |
| EXPECT_TRUE(m2_.has_oneof_uint32()); |
| EXPECT_TRUE(r1_->HasField(m1_, d1_->FindFieldByName("oneof_string"))); |
| EXPECT_TRUE(r2_->HasField(m2_, f)); |
| EXPECT_EQ(m1_.oneof_string(), "test"); |
| EXPECT_EQ(m2_.oneof_uint32(), 1); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_TRUE(m1_.has_oneof_uint32()); |
| EXPECT_TRUE(m2_.has_oneof_string()); |
| EXPECT_TRUE(r1_->HasField(m1_, f)); |
| EXPECT_TRUE(r2_->HasField(m2_, d2_->FindFieldByName("oneof_string"))); |
| EXPECT_EQ(m1_.oneof_uint32(), 1); |
| EXPECT_EQ(m2_.oneof_string(), "test"); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldOneofDefaultTest) { |
| m1_.set_oneof_uint32(1); |
| |
| const FieldDescriptor* f = FindFieldByName("oneof_uint32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_FALSE(r1_->HasField(m1_, d1_->FindFieldByName("oneof_string"))); |
| EXPECT_TRUE(r2_->HasField(m2_, f)); |
| EXPECT_FALSE(m1_.has_oneof_string()); |
| EXPECT_EQ(m2_.oneof_uint32(), 1); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_TRUE(r1_->HasField(m1_, f)); |
| EXPECT_FALSE(r2_->HasField(m2_, d2_->FindFieldByName("oneof_string"))); |
| EXPECT_EQ(m1_.oneof_uint32(), 1); |
| EXPECT_FALSE(m2_.has_oneof_string()); |
| } |
| |
| TEST_F(NoFieldPresenceSwapFieldTest, ReflectionSwapFieldOneofExplicitZeroTest) { |
| // Oneof fields essentially have explicit presence -- if set to zero, they |
| // will still be considered present. |
| m1_.set_oneof_uint32(0); |
| |
| const FieldDescriptor* f = FindFieldByName("oneof_uint32"); |
| r1_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_FALSE(r1_->HasField(m1_, f)); |
| EXPECT_TRUE(r2_->HasField(m2_, f)); |
| EXPECT_FALSE(m1_.has_oneof_uint32()); |
| EXPECT_TRUE(m2_.has_oneof_uint32()); |
| EXPECT_EQ(m2_.oneof_uint32(), 0); |
| |
| // It doesn't matter which reflection or descriptor gets used; swapping should |
| // still work if m2_'s descriptor is provided. |
| r2_->SwapFields(&m1_, &m2_, /*fields=*/{f}); |
| |
| // Fields should be swapped. |
| EXPECT_TRUE(r1_->HasField(m1_, f)); |
| EXPECT_FALSE(r2_->HasField(m2_, f)); |
| EXPECT_TRUE(m1_.has_oneof_uint32()); |
| EXPECT_EQ(m1_.oneof_uint32(), 0); |
| EXPECT_FALSE(m2_.has_oneof_uint32()); |
| } |
| |
| class NoFieldPresenceListFieldsTest : public testing::Test { |
| protected: |
| NoFieldPresenceListFieldsTest() |
| : message_(), r_(message_.GetReflection()), fields_() { |
| // Check initial state: scalars not present (due to need to be consistent |
| // with MergeFrom()), message fields not present, oneofs not present. |
| r_->ListFields(message_, &fields_); |
| ABSL_CHECK(fields_.empty()); |
| } |
| |
| TestAllTypes message_; |
| const Reflection* r_; |
| std::vector<const FieldDescriptor*> fields_; |
| }; |
| |
| TEST_F(NoFieldPresenceListFieldsTest, ScalarTest) { |
| // Check zero/empty-means-not-present semantics. |
| message_.set_optional_int32(0); |
| r_->ListFields(message_, &fields_); |
| EXPECT_TRUE(fields_.empty()); |
| |
| message_.Clear(); |
| message_.set_optional_int32(42); |
| r_->ListFields(message_, &fields_); |
| EXPECT_EQ(1, fields_.size()); |
| } |
| |
| TEST_F(NoFieldPresenceListFieldsTest, MessageTest) { |
| // Message fields always have explicit presence. |
| message_.mutable_optional_nested_message(); |
| r_->ListFields(message_, &fields_); |
| EXPECT_EQ(1, fields_.size()); |
| |
| fields_.clear(); |
| message_.Clear(); |
| message_.mutable_optional_nested_message()->set_bb(123); |
| r_->ListFields(message_, &fields_); |
| EXPECT_EQ(1, fields_.size()); |
| } |
| |
| TEST_F(NoFieldPresenceListFieldsTest, OneOfTest) { |
| // Oneof fields behave essentially like an explicit presence field. |
| message_.set_oneof_uint32(0); |
| r_->ListFields(message_, &fields_); |
| EXPECT_EQ(1, fields_.size()); |
| |
| fields_.clear(); |
| // Note: |
| // we don't clear message_ -- oneof must only maintain one present field. |
| message_.set_oneof_uint32(42); |
| r_->ListFields(message_, &fields_); |
| EXPECT_EQ(1, fields_.size()); |
| } |
| |
| TEST(NoFieldPresenceTest, ReflectionHasFieldTest) { |
| // check that HasField reports true on all scalar fields. Check that it |
| // behaves properly for message fields. |
| |
| TestAllTypes message; |
| const Reflection* r = message.GetReflection(); |
| const Descriptor* desc = message.GetDescriptor(); |
| |
| // Check initial state: scalars not present (due to need to be consistent with |
| // MergeFrom()), message fields not present, oneofs not present. |
| for (int i = 0; i < desc->field_count(); i++) { |
| const FieldDescriptor* field = desc->field(i); |
| if (field->is_repeated()) continue; |
| EXPECT_EQ(false, r->HasField(message, field)); |
| } |
| |
| // Test field presence of a message field on the default instance. |
| const FieldDescriptor* msg_field = |
| desc->FindFieldByName("optional_nested_message"); |
| EXPECT_EQ(false, r->HasField(TestAllTypes::default_instance(), msg_field)); |
| |
| // Fill all fields, expect everything to report true (check oneofs below). |
| FillValues(&message); |
| for (int i = 0; i < desc->field_count(); i++) { |
| const FieldDescriptor* field = desc->field(i); |
| if (field->is_repeated() || field->containing_oneof()) { |
| continue; |
| } |
| if (internal::cpp::IsStringFieldWithPrivatizedAccessors(*field)) { |
| continue; |
| } |
| EXPECT_EQ(true, r->HasField(message, field)); |
| } |
| |
| message.Clear(); |
| |
| // Check zero/empty-means-not-present semantics. |
| const FieldDescriptor* field_int32 = desc->FindFieldByName("optional_int32"); |
| const FieldDescriptor* field_double = |
| desc->FindFieldByName("optional_double"); |
| const FieldDescriptor* field_string = |
| desc->FindFieldByName("optional_string"); |
| |
| EXPECT_EQ(false, r->HasField(message, field_int32)); |
| EXPECT_EQ(false, r->HasField(message, field_double)); |
| EXPECT_EQ(false, r->HasField(message, field_string)); |
| |
| message.set_optional_int32(42); |
| EXPECT_EQ(true, r->HasField(message, field_int32)); |
| message.set_optional_int32(0); |
| EXPECT_EQ(false, r->HasField(message, field_int32)); |
| |
| message.set_optional_double(42.0); |
| EXPECT_EQ(true, r->HasField(message, field_double)); |
| message.set_optional_double(0.0); |
| EXPECT_EQ(false, r->HasField(message, field_double)); |
| |
| message.set_optional_string("test"); |
| EXPECT_EQ(true, r->HasField(message, field_string)); |
| message.set_optional_string(""); |
| EXPECT_EQ(false, r->HasField(message, field_string)); |
| } |
| |
| TEST(NoFieldPresenceTest, ReflectionClearFieldTest) { |
| TestAllTypes message; |
| |
| const Reflection* r = message.GetReflection(); |
| const Descriptor* desc = message.GetDescriptor(); |
| |
| const FieldDescriptor* field_int32 = desc->FindFieldByName("optional_int32"); |
| const FieldDescriptor* field_double = |
| desc->FindFieldByName("optional_double"); |
| const FieldDescriptor* field_string = |
| desc->FindFieldByName("optional_string"); |
| const FieldDescriptor* field_message = |
| desc->FindFieldByName("optional_nested_message"); |
| const FieldDescriptor* field_lazy = |
| desc->FindFieldByName("optional_lazy_message"); |
| |
| message.set_optional_int32(42); |
| r->ClearField(&message, field_int32); |
| EXPECT_EQ(0, message.optional_int32()); |
| |
| message.set_optional_double(42.0); |
| r->ClearField(&message, field_double); |
| EXPECT_EQ(0.0, message.optional_double()); |
| |
| message.set_optional_string("test"); |
| r->ClearField(&message, field_string); |
| EXPECT_EQ("", message.optional_string()); |
| |
| message.mutable_optional_nested_message()->set_bb(1234); |
| r->ClearField(&message, field_message); |
| EXPECT_FALSE(message.has_optional_nested_message()); |
| EXPECT_EQ(0, message.optional_nested_message().bb()); |
| |
| message.mutable_optional_lazy_message()->set_bb(42); |
| r->ClearField(&message, field_lazy); |
| EXPECT_FALSE(message.has_optional_lazy_message()); |
| EXPECT_EQ(0, message.optional_lazy_message().bb()); |
| } |
| |
| TEST(NoFieldPresenceTest, HasFieldOneofsTest) { |
| // check that HasField behaves properly for oneofs. |
| TestAllTypes message; |
| |
| const Reflection* r = message.GetReflection(); |
| const Descriptor* desc = message.GetDescriptor(); |
| const FieldDescriptor* desc_oneof_uint32 = |
| desc->FindFieldByName("oneof_uint32"); |
| const FieldDescriptor* desc_oneof_nested_message = |
| desc->FindFieldByName("oneof_nested_message"); |
| const FieldDescriptor* desc_oneof_string = |
| desc->FindFieldByName("oneof_string"); |
| ABSL_CHECK(desc_oneof_uint32 != nullptr); |
| ABSL_CHECK(desc_oneof_nested_message != nullptr); |
| ABSL_CHECK(desc_oneof_string != nullptr); |
| |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_uint32)); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_nested_message)); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_string)); |
| |
| message.set_oneof_string("test"); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_uint32)); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_nested_message)); |
| EXPECT_EQ(true, r->HasField(message, desc_oneof_string)); |
| message.mutable_oneof_nested_message()->set_bb(42); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_uint32)); |
| EXPECT_EQ(true, r->HasField(message, desc_oneof_nested_message)); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_string)); |
| |
| message.Clear(); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_uint32)); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_nested_message)); |
| EXPECT_EQ(false, r->HasField(message, desc_oneof_string)); |
| } |
| |
| TEST(NoFieldPresenceTest, MergeFromIfNonzeroTest) { |
| // check that MergeFrom copies if nonzero/nondefault only. |
| TestAllTypes source, dest; |
| |
| dest.set_optional_int32(42); |
| dest.set_optional_string("test"); |
| source.set_optional_int32(0); |
| source.set_optional_string(""); |
| // MergeFrom() copies only if present in serialization, i.e., non-zero. |
| dest.MergeFrom(source); |
| EXPECT_EQ(42, dest.optional_int32()); |
| EXPECT_EQ("test", dest.optional_string()); |
| |
| source.set_optional_int32(84); |
| source.set_optional_string("test2"); |
| dest.MergeFrom(source); |
| EXPECT_EQ(84, dest.optional_int32()); |
| EXPECT_EQ("test2", dest.optional_string()); |
| } |
| |
| TEST(NoFieldPresenceTest, ParseEmptyStringFromWire) { |
| ASSERT_EQ(TestAllTypes::GetDescriptor()->FindFieldByNumber(15)->name(), |
| "optional_bytes"); |
| |
| // Input wire tag: 0172 (octal) which is 01 111 010 |
| // Field number 15 with wire type LEN |
| // Explicitly specify LEN to be zero, then it's basically an empty string |
| // encoded on the wire. |
| absl::string_view wire("\172\x00", // 3:LEN 0 |
| 2); |
| |
| TestAllTypes message; |
| message.MergeFromString(wire); |
| |
| // Implicit-presence fields don't have hazzers, so we can only verify that the |
| // empty bytes field is not overwritten. |
| EXPECT_THAT(message.optional_bytes(), IsEmpty()); |
| |
| std::string output_data; |
| EXPECT_TRUE(message.SerializeToString(&output_data)); |
| EXPECT_THAT(output_data, IsEmpty()); |
| } |
| |
| TEST(MessageTest, ParseEmptyStringFromWireOverwritesExistingField) { |
| TestAllTypes message; |
| ASSERT_EQ(TestAllTypes::GetDescriptor()->FindFieldByNumber(15)->name(), |
| "optional_bytes"); |
| message.set_optional_bytes("hello"); |
| |
| // Input wire tag: 0172 (octal) which is 01 111 010 |
| // Field number 15 with wire type LEN |
| // Explicitly specify LEN to be zero, then it's basically an empty string |
| // encoded on the wire. |
| absl::string_view wire("\172\x00", // 3:LEN 0 |
| 2); |
| message.MergeFromString(wire); |
| |
| // Implicit-presence fields don't have hazzers, so we can only verify that the |
| // empty bytes field is overwritten. |
| EXPECT_THAT(message.optional_bytes(), IsEmpty()); |
| |
| // Since string field is overwritten to be empty, this message will not |
| // serialize. |
| std::string output_data; |
| EXPECT_TRUE(message.SerializeToString(&output_data)); |
| EXPECT_THAT(output_data, IsEmpty()); |
| } |
| |
| TEST(MessageTest, MergeEmptyMessageFromWire) { |
| // Input wire tag: 9A 01 (hex) which is 10011010 00000001 |
| // Field number 19 with wire type LEN |
| // Explicitly specify LEN to be zero, then it's basically an empty message |
| // encoded on the wire. |
| absl::string_view wire("\x9A\x01\x00", 3); |
| |
| TestAllTypes message; |
| ASSERT_EQ(TestAllTypes::GetDescriptor()->FindFieldByNumber(19)->name(), |
| "optional_foreign_message"); |
| message.MergeFromString(wire); |
| |
| // Message fields always have explicit presence, so serializing the message |
| // will write the original bytes back out onto the wire. |
| std::string output_data; |
| EXPECT_TRUE(message.SerializeToString(&output_data)); |
| EXPECT_EQ(output_data, wire); |
| } |
| |
| TEST(MessageTest, MergeEmptyMessageFromWireDoesNotOverwiteExisting) { |
| // Input wire tag: 9A 01 (hex) which is 10011010 00000001 |
| // Field number 19 with wire type LEN |
| // Explicitly specify LEN to be zero, then it's basically an empty message |
| // encoded on the wire. |
| absl::string_view wire("\x9A\x01\x00", 3); |
| |
| TestAllTypes message; |
| ASSERT_EQ(TestAllTypes::GetDescriptor()->FindFieldByNumber(19)->name(), |
| "optional_foreign_message"); |
| |
| message.mutable_optional_foreign_message()->set_c(12); |
| std::string original_output_data; |
| EXPECT_TRUE(message.SerializeToString(&original_output_data)); |
| |
| message.MergeFromString(wire); |
| EXPECT_TRUE(message.has_optional_foreign_message()); |
| EXPECT_EQ(message.optional_foreign_message().c(), 12); |
| |
| std::string output_data; |
| EXPECT_TRUE(message.SerializeToString(&output_data)); |
| EXPECT_NE(output_data, wire); |
| EXPECT_EQ(output_data, original_output_data); |
| } |
| |
| TEST(NoFieldPresenceTest, ExtraZeroesInWireParseTest) { |
| // check extra serialized zeroes on the wire are parsed into the object. |
| ForeignMessage dest; |
| dest.set_c(42); |
| ASSERT_EQ(42, dest.c()); |
| |
| // ExplicitForeignMessage has the same fields as ForeignMessage, but with |
| // explicit presence instead of implicit presence. |
| ExplicitForeignMessage source; |
| source.set_c(0); |
| std::string wire = source.SerializeAsString(); |
| ASSERT_THAT(wire, StrEq(absl::string_view{"\x08\x00", 2})); |
| |
| // The "parse" operation clears all fields before merging from wire. |
| ASSERT_TRUE(dest.ParseFromString(wire)); |
| EXPECT_EQ(0, dest.c()); |
| std::string dest_data; |
| EXPECT_TRUE(dest.SerializeToString(&dest_data)); |
| EXPECT_TRUE(dest_data.empty()); |
| } |
| |
| TEST(NoFieldPresenceTest, ExtraZeroesInWireMergeTest) { |
| // check explicit zeros on the wire are merged into an implicit one. |
| ForeignMessage dest; |
| dest.set_c(42); |
| ASSERT_EQ(42, dest.c()); |
| |
| // ExplicitForeignMessage has the same fields as ForeignMessage, but with |
| // explicit presence instead of implicit presence. |
| ExplicitForeignMessage source; |
| source.set_c(0); |
| std::string wire = source.SerializeAsString(); |
| ASSERT_THAT(wire, StrEq(absl::string_view{"\x08\x00", 2})); |
| |
| // TODO: b/356132170 -- Add conformance tests to ensure this behaviour is |
| // well-defined. |
| // As implemented, the C++ "merge" operation does not distinguish between |
| // implicit and explicit fields when reading from the wire. |
| ASSERT_TRUE(dest.MergeFromString(wire)); |
| // If zero is present on the wire, the original value is overwritten, even |
| // though this is specified as an "implicit presence" field. |
| EXPECT_EQ(0, dest.c()); |
| std::string dest_data; |
| EXPECT_TRUE(dest.SerializeToString(&dest_data)); |
| EXPECT_TRUE(dest_data.empty()); |
| } |
| |
| TEST(NoFieldPresenceTest, ExtraZeroesInWireLastWins) { |
| // check that, when the same field is present multiple times on the wire, we |
| // always take the last one -- even if it is a zero. |
| |
| absl::string_view wire{"\x08\x01\x08\x00", /*len=*/4}; // note the null-byte. |
| ForeignMessage dest; |
| |
| // TODO: b/356132170 -- Add conformance tests to ensure this behaviour is |
| // well-defined. |
| // As implemented, the C++ "merge" operation does not distinguish between |
| // implicit and explicit fields when reading from the wire. |
| ASSERT_TRUE(dest.MergeFromString(wire)); |
| // If the same field is present multiple times on the wire, "last one wins". |
| // i.e. -- the last seen field content will always overwrite, even if it's |
| // zero and the field is implicit presence. |
| EXPECT_EQ(0, dest.c()); |
| std::string dest_data; |
| EXPECT_TRUE(dest.SerializeToString(&dest_data)); |
| EXPECT_TRUE(dest_data.empty()); |
| } |
| |
| TEST(NoFieldPresenceTest, IsInitializedTest) { |
| // Check that IsInitialized works properly. |
| proto2_nofieldpresence_unittest::TestProto2Required message; |
| |
| EXPECT_EQ(true, message.IsInitialized()); |
| message.mutable_proto2()->set_a(1); |
| EXPECT_EQ(false, message.IsInitialized()); |
| message.mutable_proto2()->set_b(1); |
| EXPECT_EQ(false, message.IsInitialized()); |
| message.mutable_proto2()->set_c(1); |
| EXPECT_EQ(true, message.IsInitialized()); |
| } |
| |
| // TODO: b/358616816 - `if constexpr` can be used here once C++17 is baseline. |
| template <typename T> |
| bool TestSerialize(const MessageLite& message, T* output); |
| |
| template <> |
| bool TestSerialize<std::string>(const MessageLite& message, |
| std::string* output) { |
| return message.SerializeToString(output); |
| } |
| |
| template <> |
| bool TestSerialize<absl::Cord>(const MessageLite& message, absl::Cord* output) { |
| return message.SerializeToString(output); |
| } |
| |
| template <typename T> |
| class NoFieldPresenceSerializeTest : public testing::Test { |
| public: |
| T& GetOutputSinkRef() { return value_; } |
| std::string GetOutput() { return std::string{value_}; } |
| |
| protected: |
| // Cargo-culted from: |
| // https://google.github.io/googletest/reference/testing.html#TYPED_TEST_SUITE |
| T value_; |
| }; |
| |
| using SerializableOutputTypes = ::testing::Types<std::string, absl::Cord>; |
| |
| // https://google.github.io/googletest/reference/testing.html#TYPED_TEST_SUITE |
| // Providing the NameGenerator produces slightly more readable output in the |
| // test invocation summary (type names are displayed instead of numbers). |
| class NameGenerator { |
| public: |
| template <typename T> |
| static std::string GetName(int) { |
| if constexpr (std::is_same_v<T, std::string>) { |
| return "string"; |
| } else if constexpr (std::is_same_v<T, absl::Cord>) { |
| return "Cord"; |
| } else { |
| static_assert( |
| std::is_same_v<T, std::string> || std::is_same_v<T, absl::Cord>, |
| "unsupported type"); |
| } |
| } |
| }; |
| |
| TYPED_TEST_SUITE(NoFieldPresenceSerializeTest, SerializableOutputTypes, |
| NameGenerator); |
| |
| TYPED_TEST(NoFieldPresenceSerializeTest, DontSerializeDefaultValuesTest) { |
| // check that serialized data contains only non-zero numeric fields/non-empty |
| // string/byte fields. |
| TestAllTypes message; |
| TypeParam& output_sink = this->GetOutputSinkRef(); |
| |
| // All default values -> no output. |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_EQ(0, this->GetOutput().size()); |
| |
| // Zero values -> still no output. |
| message.set_optional_int32(0); |
| message.set_optional_int64(0); |
| message.set_optional_uint32(0); |
| message.set_optional_uint64(0); |
| message.set_optional_sint32(0); |
| message.set_optional_sint64(0); |
| message.set_optional_fixed32(0); |
| message.set_optional_fixed64(0); |
| message.set_optional_sfixed32(0); |
| message.set_optional_sfixed64(0); |
| message.set_optional_float(0); |
| message.set_optional_double(0); |
| message.set_optional_bool(false); |
| message.set_optional_string(""); |
| message.set_optional_bytes(""); |
| message.set_optional_nested_enum(TestAllTypes::FOO); // first enum entry |
| message.set_optional_foreign_enum(FOREIGN_FOO); // first enum entry |
| message.set_optional_string_piece(""); |
| |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_EQ(0, this->GetOutput().size()); |
| |
| message.set_optional_int32(1); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_EQ(2, this->GetOutput().size()); |
| EXPECT_EQ("\x08\x01", this->GetOutput()); |
| |
| message.set_optional_int32(0); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_EQ(0, this->GetOutput().size()); |
| } |
| |
| TYPED_TEST(NoFieldPresenceSerializeTest, NullMutableSerializesEmpty) { |
| // Check that, if mutable_foo() was called, but fields were not modified, |
| // nothing is serialized on the wire. |
| TestAllTypes message; |
| TypeParam& output_sink = this->GetOutputSinkRef(); |
| |
| // All default values -> no output. |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_TRUE(this->GetOutput().empty()); |
| |
| // No-op mutable calls -> no output. |
| message.mutable_optional_string(); |
| message.mutable_optional_bytes(); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_TRUE(this->GetOutput().empty()); |
| |
| // Assign to nonempty string -> some output. |
| *message.mutable_optional_bytes() = "bar"; |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_THAT(this->GetOutput().size(), |
| Gt(3)); // 3-byte-long string + tag/value + len |
| } |
| |
| TYPED_TEST(NoFieldPresenceSerializeTest, SetAllocatedAndReleaseTest) { |
| // Check that setting an empty string via set_allocated_foo behaves properly; |
| // Check that serializing after release_foo does not generate output for foo. |
| TestAllTypes message; |
| TypeParam& output_sink = this->GetOutputSinkRef(); |
| |
| // All default values -> no output. |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_TRUE(this->GetOutput().empty()); |
| |
| auto allocated_bytes = std::make_unique<std::string>("test"); |
| message.set_allocated_optional_bytes(allocated_bytes.release()); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_THAT(this->GetOutput().size(), |
| Gt(4)); // 4-byte-long string + tag/value + len |
| |
| size_t former_output_size = this->GetOutput().size(); |
| |
| auto allocated_string = std::make_unique<std::string>(""); |
| message.set_allocated_optional_string(allocated_string.release()); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| // empty string not serialized. |
| EXPECT_EQ(former_output_size, this->GetOutput().size()); |
| |
| auto bytes_ptr = absl::WrapUnique(message.release_optional_bytes()); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_TRUE( |
| this->GetOutput().empty()); // released fields are not serialized. |
| } |
| |
| TYPED_TEST(NoFieldPresenceSerializeTest, LazyMessageFieldHasBit) { |
| // Check that has-bit interaction with lazy message works (has-bit before and |
| // after lazy decode). |
| TestAllTypes message; |
| const Reflection* r = message.GetReflection(); |
| const Descriptor* desc = message.GetDescriptor(); |
| const FieldDescriptor* field = desc->FindFieldByName("optional_lazy_message"); |
| ABSL_CHECK(field != nullptr); |
| |
| EXPECT_EQ(false, message.has_optional_lazy_message()); |
| EXPECT_EQ(false, r->HasField(message, field)); |
| |
| message.mutable_optional_lazy_message()->set_bb(42); |
| EXPECT_EQ(true, message.has_optional_lazy_message()); |
| EXPECT_EQ(true, r->HasField(message, field)); |
| |
| // Serialize and parse with a new message object so that lazy field on new |
| // object is in unparsed state. |
| TypeParam& output_sink = this->GetOutputSinkRef(); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| TestAllTypes message2; |
| message2.ParseFromString(this->GetOutput()); |
| |
| EXPECT_EQ(true, message2.has_optional_lazy_message()); |
| EXPECT_EQ(true, r->HasField(message2, field)); |
| |
| // Access field to force lazy parse. |
| EXPECT_EQ(42, message.optional_lazy_message().bb()); |
| EXPECT_EQ(true, message2.has_optional_lazy_message()); |
| EXPECT_EQ(true, r->HasField(message2, field)); |
| } |
| |
| TYPED_TEST(NoFieldPresenceSerializeTest, OneofPresence) { |
| TestAllTypes message; |
| // oneof fields still have field presence -- ensure that this goes on the wire |
| // even though its value is the empty string. |
| message.set_oneof_string(""); |
| TypeParam& output_sink = this->GetOutputSinkRef(); |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| // Tag: 113 --> tag is (113 << 3) | 2 (length delimited) = 906 |
| // varint: 0x8a 0x07 |
| // Length: 0x00 |
| EXPECT_EQ(3, this->GetOutput().size()); |
| EXPECT_EQ(static_cast<char>(0x8a), this->GetOutput().at(0)); |
| EXPECT_EQ(static_cast<char>(0x07), this->GetOutput().at(1)); |
| EXPECT_EQ(static_cast<char>(0x00), this->GetOutput().at(2)); |
| |
| message.Clear(); |
| EXPECT_TRUE(message.ParseFromString(this->GetOutput())); |
| EXPECT_EQ(TestAllTypes::kOneofString, message.oneof_field_case()); |
| |
| // Also test int32 and enum fields. |
| message.Clear(); |
| message.set_oneof_uint32(0); // would not go on wire if ordinary field. |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_EQ(3, this->GetOutput().size()); |
| EXPECT_TRUE(message.ParseFromString(this->GetOutput())); |
| EXPECT_EQ(TestAllTypes::kOneofUint32, message.oneof_field_case()); |
| |
| message.Clear(); |
| message.set_oneof_enum(TestAllTypes::FOO); // FOO is the default value. |
| ASSERT_TRUE(TestSerialize(message, &output_sink)); |
| EXPECT_EQ(3, this->GetOutput().size()); |
| EXPECT_TRUE(message.ParseFromString(this->GetOutput())); |
| EXPECT_EQ(TestAllTypes::kOneofEnum, message.oneof_field_case()); |
| |
| message.Clear(); |
| message.set_oneof_string("test"); |
| message.clear_oneof_string(); |
| EXPECT_EQ(0, message.ByteSizeLong()); |
| } |
| |
| } // namespace |
| } // namespace protobuf |
| } // namespace google |