blob: def874c0ba0ebfa0202e1ae4547537afcdae31d4 [file] [log] [blame]
#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// http://github.com/jskeet/dotnet-protobufs/
// Original C++/Java/Python code:
// http://code.google.com/p/protobuf/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using System;
using System.IO;
using System.Text;
using Google.Protobuf.Collections;
namespace Google.Protobuf
{
/// <summary>
/// Encodes and writes protocol message fields.
/// </summary>
/// <remarks>
/// This class contains two kinds of methods: methods that write specific
/// protocol message constructs and field types (e.g. WriteTag and
/// WriteInt32) and methods that write low-level values (e.g.
/// WriteRawVarint32 and WriteRawBytes). If you are writing encoded protocol
/// messages, you should use the former methods, but if you are writing some
/// other format of your own design, use the latter. The names of the former
/// methods are taken from the protocol buffer type names, not .NET types.
/// (Hence WriteFloat instead of WriteSingle, and WriteBool instead of WriteBoolean.)
/// </remarks>
public sealed partial class CodedOutputStream
{
// "Local" copy of Encoding.UTF8, for efficiency. (Yes, it makes a difference.)
internal static readonly Encoding Utf8Encoding = Encoding.UTF8;
/// <summary>
/// The buffer size used by CreateInstance(Stream).
/// </summary>
public static readonly int DefaultBufferSize = 4096;
private readonly byte[] buffer;
private readonly int limit;
private int position;
private readonly Stream output;
#region Construction
private CodedOutputStream(byte[] buffer, int offset, int length)
{
this.output = null;
this.buffer = buffer;
this.position = offset;
this.limit = offset + length;
}
private CodedOutputStream(Stream output, byte[] buffer)
{
this.output = output;
this.buffer = buffer;
this.position = 0;
this.limit = buffer.Length;
}
/// <summary>
/// Creates a new CodedOutputStream which write to the given stream.
/// </summary>
public static CodedOutputStream CreateInstance(Stream output)
{
return CreateInstance(output, DefaultBufferSize);
}
/// <summary>
/// Creates a new CodedOutputStream which write to the given stream and uses
/// the specified buffer size.
/// </summary>
public static CodedOutputStream CreateInstance(Stream output, int bufferSize)
{
return new CodedOutputStream(output, new byte[bufferSize]);
}
/// <summary>
/// Creates a new CodedOutputStream that writes directly to the given
/// byte array. If more bytes are written than fit in the array,
/// OutOfSpaceException will be thrown.
/// </summary>
public static CodedOutputStream CreateInstance(byte[] flatArray)
{
return CreateInstance(flatArray, 0, flatArray.Length);
}
/// <summary>
/// Creates a new CodedOutputStream that writes directly to the given
/// byte array slice. If more bytes are written than fit in the array,
/// OutOfSpaceException will be thrown.
/// </summary>
public static CodedOutputStream CreateInstance(byte[] flatArray, int offset, int length)
{
return new CodedOutputStream(flatArray, offset, length);
}
#endregion
/// <summary>
/// Returns the current position in the stream, or the position in the output buffer
/// </summary>
public long Position
{
get
{
if (output != null)
{
return output.Position + position;
}
return position;
}
}
#region Writing of values without tags
/// <summary>
/// Writes a double field value, including tag, to the stream.
/// </summary>
public void WriteDouble(double value)
{
WriteRawLittleEndian64((ulong)BitConverter.DoubleToInt64Bits(value));
}
/// <summary>
/// Writes a float field value, without a tag, to the stream.
/// </summary>
public void WriteFloat(float value)
{
byte[] rawBytes = BitConverter.GetBytes(value);
if (!BitConverter.IsLittleEndian)
{
ByteArray.Reverse(rawBytes);
}
if (limit - position >= 4)
{
buffer[position++] = rawBytes[0];
buffer[position++] = rawBytes[1];
buffer[position++] = rawBytes[2];
buffer[position++] = rawBytes[3];
}
else
{
WriteRawBytes(rawBytes, 0, 4);
}
}
/// <summary>
/// Writes a uint64 field value, without a tag, to the stream.
/// </summary>
public void WriteUInt64(ulong value)
{
WriteRawVarint64(value);
}
/// <summary>
/// Writes an int64 field value, without a tag, to the stream.
/// </summary>
public void WriteInt64(long value)
{
WriteRawVarint64((ulong) value);
}
/// <summary>
/// Writes an int32 field value, without a tag, to the stream.
/// </summary>
public void WriteInt32(int value)
{
if (value >= 0)
{
WriteRawVarint32((uint) value);
}
else
{
// Must sign-extend.
WriteRawVarint64((ulong) value);
}
}
/// <summary>
/// Writes a fixed64 field value, without a tag, to the stream.
/// </summary>
public void WriteFixed64(ulong value)
{
WriteRawLittleEndian64(value);
}
/// <summary>
/// Writes a fixed32 field value, without a tag, to the stream.
/// </summary>
public void WriteFixed32(uint value)
{
WriteRawLittleEndian32(value);
}
/// <summary>
/// Writes a bool field value, without a tag, to the stream.
/// </summary>
public void WriteBool(bool value)
{
WriteRawByte(value ? (byte) 1 : (byte) 0);
}
/// <summary>
/// Writes a string field value, without a tag, to the stream.
/// </summary>
public void WriteString(string value)
{
// Optimise the case where we have enough space to write
// the string directly to the buffer, which should be common.
int length = Utf8Encoding.GetByteCount(value);
WriteRawVarint32((uint)length);
if (limit - position >= length)
{
if (length == value.Length) // Must be all ASCII...
{
for (int i = 0; i < length; i++)
{
buffer[position + i] = (byte)value[i];
}
}
else
{
Utf8Encoding.GetBytes(value, 0, value.Length, buffer, position);
}
position += length;
}
else
{
byte[] bytes = Utf8Encoding.GetBytes(value);
WriteRawBytes(bytes);
}
}
public void WriteMessage(IMessage value)
{
WriteRawVarint32((uint) value.CalculateSize());
value.WriteTo(this);
}
public void WriteBytes(ByteString value)
{
WriteRawVarint32((uint) value.Length);
value.WriteRawBytesTo(this);
}
public void WriteUInt32(uint value)
{
WriteRawVarint32(value);
}
public void WriteEnum(int value)
{
WriteInt32(value);
}
public void WriteSFixed32(int value)
{
WriteRawLittleEndian32((uint) value);
}
public void WriteSFixed64(long value)
{
WriteRawLittleEndian64((ulong) value);
}
public void WriteSInt32(int value)
{
WriteRawVarint32(EncodeZigZag32(value));
}
public void WriteSInt64(long value)
{
WriteRawVarint64(EncodeZigZag64(value));
}
#endregion
#region Write array members, with fields.
public void WriteMessageArray<T>(int fieldNumber, RepeatedField<T> list)
where T : IMessage
{
foreach (T value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteMessage(value);
}
}
public void WriteStringArray(int fieldNumber, RepeatedField<string> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteString(value);
}
}
public void WriteBytesArray(int fieldNumber, RepeatedField<ByteString> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.LengthDelimited);
WriteBytes(value);
}
}
public void WriteBoolArray(int fieldNumber, RepeatedField<bool> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteBool(value);
}
}
public void WriteInt32Array(int fieldNumber, RepeatedField<int> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteInt32(value);
}
}
public void WriteSInt32Array(int fieldNumber, RepeatedField<int> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteSInt32(value);
}
}
public void WriteUInt32Array(int fieldNumber, RepeatedField<uint> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteUInt32(value);
}
}
public void WriteFixed32Array(int fieldNumber, RepeatedField<uint> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
WriteFixed32(value);
}
}
public void WriteSFixed32Array(int fieldNumber, RepeatedField<int> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
WriteSFixed32(value);
}
}
public void WriteInt64Array(int fieldNumber, RepeatedField<long> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteInt64(value);
}
}
public void WriteSInt64Array(int fieldNumber, RepeatedField<long> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteSInt64(value);
}
}
public void WriteUInt64Array(int fieldNumber, RepeatedField<ulong> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteUInt64(value);
}
}
public void WriteFixed64Array(int fieldNumber, RepeatedField<ulong> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteFixed64(value);
}
}
public void WriteSFixed64Array(int fieldNumber, RepeatedField<long> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteSFixed64(value);
}
}
public void WriteDoubleArray(int fieldNumber, RepeatedField<double> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed64);
WriteDouble(value);
}
}
public void WriteFloatArray(int fieldNumber, RepeatedField<float> list)
{
foreach (var value in list)
{
WriteTag(fieldNumber, WireFormat.WireType.Fixed32);
WriteFloat(value);
}
}
public void WriteEnumArray<T>(int fieldNumber, RepeatedField<T> list)
where T : struct, IComparable, IFormattable
{
// Bit of a hack, to access the values as ints
var iterator = list.GetInt32Enumerator();
while (iterator.MoveNext())
{
WriteTag(fieldNumber, WireFormat.WireType.Varint);
WriteEnum(iterator.Current);
}
}
#endregion
#region Raw tag writing
/// <summary>
/// Encodes and writes a tag.
/// </summary>
public void WriteTag(int fieldNumber, WireFormat.WireType type)
{
WriteRawVarint32(WireFormat.MakeTag(fieldNumber, type));
}
/// <summary>
/// Writes an already-encoded tag.
/// </summary>
public void WriteTag(uint tag)
{
WriteRawVarint32(tag);
}
/// <summary>
/// Writes the given single-byte tag directly to the stream.
/// </summary>
public void WriteRawTag(byte b1)
{
WriteRawByte(b1);
}
/// <summary>
/// Writes the given two-byte tag directly to the stream.
/// </summary>
public void WriteRawTag(byte b1, byte b2)
{
WriteRawByte(b1);
WriteRawByte(b2);
}
/// <summary>
/// Writes the given three-byte tag directly to the stream.
/// </summary>
public void WriteRawTag(byte b1, byte b2, byte b3)
{
WriteRawByte(b1);
WriteRawByte(b2);
WriteRawByte(b3);
}
/// <summary>
/// Writes the given four-byte tag directly to the stream.
/// </summary>
public void WriteRawTag(byte b1, byte b2, byte b3, byte b4)
{
WriteRawByte(b1);
WriteRawByte(b2);
WriteRawByte(b3);
WriteRawByte(b4);
}
/// <summary>
/// Writes the given five-byte tag directly to the stream.
/// </summary>
public void WriteRawTag(byte b1, byte b2, byte b3, byte b4, byte b5)
{
WriteRawByte(b1);
WriteRawByte(b2);
WriteRawByte(b3);
WriteRawByte(b4);
WriteRawByte(b5);
}
#endregion
#region Write packed array members
// TODO(jonskeet): A lot of these are really inefficient, due to method group conversions. Fix!
// (Alternatively, add extension methods to RepeatedField, accepting the Write* methods via delegates too.)
public void WritePackedBoolArray(RepeatedField<bool> list)
{
uint size = (uint)list.Count;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteBool(value);
}
}
public void WritePackedInt32Array(RepeatedField<int> list)
{
uint size = list.CalculateSize(ComputeInt32Size);
WriteRawVarint32(size);
foreach (var value in list)
{
WriteInt32(value);
}
}
public void WritePackedSInt32Array(RepeatedField<int> list)
{
uint size = list.CalculateSize(ComputeSInt32Size);
WriteRawVarint32(size);
foreach (var value in list)
{
WriteSInt32(value);
}
}
public void WritePackedUInt32Array(RepeatedField<uint> list)
{
uint size = list.CalculateSize(ComputeUInt32Size);
WriteRawVarint32(size);
foreach (var value in list)
{
WriteUInt32(value);
}
}
public void WritePackedFixed32Array(RepeatedField<uint> list)
{
uint size = (uint) list.Count * 4;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteFixed32(value);
}
}
public void WritePackedSFixed32Array(RepeatedField<int> list)
{
uint size = (uint) list.Count * 4;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteSFixed32(value);
}
}
public void WritePackedInt64Array(RepeatedField<long> list)
{
uint size = list.CalculateSize(ComputeInt64Size);
WriteRawVarint32(size);
foreach (var value in list)
{
WriteInt64(value);
}
}
public void WritePackedSInt64Array(RepeatedField<long> list)
{
uint size = list.CalculateSize(ComputeSInt64Size);
WriteRawVarint32(size);
foreach (var value in list)
{
WriteSInt64(value);
}
}
public void WritePackedUInt64Array(RepeatedField<ulong> list)
{
if (list.Count == 0)
{
return;
}
uint size = list.CalculateSize(ComputeUInt64Size);
WriteRawVarint32(size);
foreach (var value in list)
{
WriteUInt64(value);
}
}
public void WritePackedFixed64Array(RepeatedField<ulong> list)
{
uint size = (uint) list.Count * 8;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteFixed64(value);
}
}
public void WritePackedSFixed64Array(RepeatedField<long> list)
{
uint size = (uint) list.Count * 8;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteSFixed64(value);
}
}
public void WritePackedDoubleArray(RepeatedField<double> list)
{
uint size = (uint) list.Count * 8;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteDouble(value);
}
}
public void WritePackedFloatArray(RepeatedField<float> list)
{
if (list.Count == 0)
{
return;
}
uint size = (uint) list.Count * 4;
WriteRawVarint32(size);
foreach (var value in list)
{
WriteFloat(value);
}
}
public void WritePackedEnumArray<T>(RepeatedField<T> list)
where T : struct, IComparable, IFormattable
{
if (list.Count == 0)
{
return;
}
// Bit of a hack, to access the values as ints
var iterator = list.GetInt32Enumerator();
uint size = 0;
while (iterator.MoveNext())
{
size += (uint) ComputeEnumSize(iterator.Current);
}
iterator.Reset();
WriteRawVarint32(size);
while (iterator.MoveNext())
{
WriteEnum(iterator.Current);
}
}
#endregion
#region Underlying writing primitives
/// <summary>
/// Writes a 32 bit value as a varint. The fast route is taken when
/// there's enough buffer space left to whizz through without checking
/// for each byte; otherwise, we resort to calling WriteRawByte each time.
/// </summary>
public void WriteRawVarint32(uint value)
{
// Optimize for the common case of a single byte value
if (value < 128 && position < limit)
{
buffer[position++] = (byte)value;
return;
}
while (value > 127 && position < limit)
{
buffer[position++] = (byte) ((value & 0x7F) | 0x80);
value >>= 7;
}
while (value > 127)
{
WriteRawByte((byte) ((value & 0x7F) | 0x80));
value >>= 7;
}
if (position < limit)
{
buffer[position++] = (byte) value;
}
else
{
WriteRawByte((byte) value);
}
}
public void WriteRawVarint64(ulong value)
{
while (value > 127 && position < limit)
{
buffer[position++] = (byte) ((value & 0x7F) | 0x80);
value >>= 7;
}
while (value > 127)
{
WriteRawByte((byte) ((value & 0x7F) | 0x80));
value >>= 7;
}
if (position < limit)
{
buffer[position++] = (byte) value;
}
else
{
WriteRawByte((byte) value);
}
}
public void WriteRawLittleEndian32(uint value)
{
if (position + 4 > limit)
{
WriteRawByte((byte) value);
WriteRawByte((byte) (value >> 8));
WriteRawByte((byte) (value >> 16));
WriteRawByte((byte) (value >> 24));
}
else
{
buffer[position++] = ((byte) value);
buffer[position++] = ((byte) (value >> 8));
buffer[position++] = ((byte) (value >> 16));
buffer[position++] = ((byte) (value >> 24));
}
}
public void WriteRawLittleEndian64(ulong value)
{
if (position + 8 > limit)
{
WriteRawByte((byte) value);
WriteRawByte((byte) (value >> 8));
WriteRawByte((byte) (value >> 16));
WriteRawByte((byte) (value >> 24));
WriteRawByte((byte) (value >> 32));
WriteRawByte((byte) (value >> 40));
WriteRawByte((byte) (value >> 48));
WriteRawByte((byte) (value >> 56));
}
else
{
buffer[position++] = ((byte) value);
buffer[position++] = ((byte) (value >> 8));
buffer[position++] = ((byte) (value >> 16));
buffer[position++] = ((byte) (value >> 24));
buffer[position++] = ((byte) (value >> 32));
buffer[position++] = ((byte) (value >> 40));
buffer[position++] = ((byte) (value >> 48));
buffer[position++] = ((byte) (value >> 56));
}
}
public void WriteRawByte(byte value)
{
if (position == limit)
{
RefreshBuffer();
}
buffer[position++] = value;
}
public void WriteRawByte(uint value)
{
WriteRawByte((byte) value);
}
/// <summary>
/// Writes out an array of bytes.
/// </summary>
public void WriteRawBytes(byte[] value)
{
WriteRawBytes(value, 0, value.Length);
}
/// <summary>
/// Writes out part of an array of bytes.
/// </summary>
public void WriteRawBytes(byte[] value, int offset, int length)
{
if (limit - position >= length)
{
ByteArray.Copy(value, offset, buffer, position, length);
// We have room in the current buffer.
position += length;
}
else
{
// Write extends past current buffer. Fill the rest of this buffer and
// flush.
int bytesWritten = limit - position;
ByteArray.Copy(value, offset, buffer, position, bytesWritten);
offset += bytesWritten;
length -= bytesWritten;
position = limit;
RefreshBuffer();
// Now deal with the rest.
// Since we have an output stream, this is our buffer
// and buffer offset == 0
if (length <= limit)
{
// Fits in new buffer.
ByteArray.Copy(value, offset, buffer, 0, length);
position = length;
}
else
{
// Write is very big. Let's do it all at once.
output.Write(value, offset, length);
}
}
}
#endregion
/// <summary>
/// Encode a 32-bit value with ZigZag encoding.
/// </summary>
/// <remarks>
/// ZigZag encodes signed integers into values that can be efficiently
/// encoded with varint. (Otherwise, negative values must be
/// sign-extended to 64 bits to be varint encoded, thus always taking
/// 10 bytes on the wire.)
/// </remarks>
public static uint EncodeZigZag32(int n)
{
// Note: the right-shift must be arithmetic
return (uint) ((n << 1) ^ (n >> 31));
}
/// <summary>
/// Encode a 64-bit value with ZigZag encoding.
/// </summary>
/// <remarks>
/// ZigZag encodes signed integers into values that can be efficiently
/// encoded with varint. (Otherwise, negative values must be
/// sign-extended to 64 bits to be varint encoded, thus always taking
/// 10 bytes on the wire.)
/// </remarks>
public static ulong EncodeZigZag64(long n)
{
return (ulong) ((n << 1) ^ (n >> 63));
}
private void RefreshBuffer()
{
if (output == null)
{
// We're writing to a single buffer.
throw new OutOfSpaceException();
}
// Since we have an output stream, this is our buffer
// and buffer offset == 0
output.Write(buffer, 0, position);
position = 0;
}
/// <summary>
/// Indicates that a CodedOutputStream wrapping a flat byte array
/// ran out of space.
/// </summary>
public sealed class OutOfSpaceException : IOException
{
internal OutOfSpaceException()
: base("CodedOutputStream was writing to a flat byte array and ran out of space.")
{
}
}
public void Flush()
{
if (output != null)
{
RefreshBuffer();
}
}
/// <summary>
/// Verifies that SpaceLeft returns zero. It's common to create a byte array
/// that is exactly big enough to hold a message, then write to it with
/// a CodedOutputStream. Calling CheckNoSpaceLeft after writing verifies that
/// the message was actually as big as expected, which can help bugs.
/// </summary>
public void CheckNoSpaceLeft()
{
if (SpaceLeft != 0)
{
throw new InvalidOperationException("Did not write as much data as expected.");
}
}
/// <summary>
/// If writing to a flat array, returns the space left in the array. Otherwise,
/// throws an InvalidOperationException.
/// </summary>
public int SpaceLeft
{
get
{
if (output == null)
{
return limit - position;
}
else
{
throw new InvalidOperationException(
"SpaceLeft can only be called on CodedOutputStreams that are " +
"writing to a flat array.");
}
}
}
}
}