| // Generated by the protocol buffer compiler. DO NOT EDIT! |
| // source: google/protobuf/timestamp.proto |
| |
| // This CPP symbol can be defined to use imports that match up to the framework |
| // imports needed when using CocoaPods. |
| #if !defined(GPB_USE_PROTOBUF_FRAMEWORK_IMPORTS) |
| #define GPB_USE_PROTOBUF_FRAMEWORK_IMPORTS 0 |
| #endif |
| |
| #if GPB_USE_PROTOBUF_FRAMEWORK_IMPORTS |
| #import <Protobuf/GPBDescriptor.h> |
| #import <Protobuf/GPBMessage.h> |
| #import <Protobuf/GPBRootObject.h> |
| #else |
| #import "GPBDescriptor.h" |
| #import "GPBMessage.h" |
| #import "GPBRootObject.h" |
| #endif |
| |
| #if GOOGLE_PROTOBUF_OBJC_VERSION < 30004 |
| #error This file was generated by a newer version of protoc which is incompatible with your Protocol Buffer library sources. |
| #endif |
| #if 30004 < GOOGLE_PROTOBUF_OBJC_MIN_SUPPORTED_VERSION |
| #error This file was generated by an older version of protoc which is incompatible with your Protocol Buffer library sources. |
| #endif |
| |
| // @@protoc_insertion_point(imports) |
| |
| #pragma clang diagnostic push |
| #pragma clang diagnostic ignored "-Wdeprecated-declarations" |
| |
| CF_EXTERN_C_BEGIN |
| |
| NS_ASSUME_NONNULL_BEGIN |
| |
| #pragma mark - GPBTimestampRoot |
| |
| /** |
| * Exposes the extension registry for this file. |
| * |
| * The base class provides: |
| * @code |
| * + (GPBExtensionRegistry *)extensionRegistry; |
| * @endcode |
| * which is a @c GPBExtensionRegistry that includes all the extensions defined by |
| * this file and all files that it depends on. |
| **/ |
| GPB_FINAL @interface GPBTimestampRoot : GPBRootObject |
| @end |
| |
| #pragma mark - GPBTimestamp |
| |
| typedef GPB_ENUM(GPBTimestamp_FieldNumber) { |
| GPBTimestamp_FieldNumber_Seconds = 1, |
| GPBTimestamp_FieldNumber_Nanos = 2, |
| }; |
| |
| /** |
| * A Timestamp represents a point in time independent of any time zone or local |
| * calendar, encoded as a count of seconds and fractions of seconds at |
| * nanosecond resolution. The count is relative to an epoch at UTC midnight on |
| * January 1, 1970, in the proleptic Gregorian calendar which extends the |
| * Gregorian calendar backwards to year one. |
| * |
| * All minutes are 60 seconds long. Leap seconds are "smeared" so that no leap |
| * second table is needed for interpretation, using a [24-hour linear |
| * smear](https://developers.google.com/time/smear). |
| * |
| * The range is from 0001-01-01T00:00:00Z to 9999-12-31T23:59:59.999999999Z. By |
| * restricting to that range, we ensure that we can convert to and from [RFC |
| * 3339](https://www.ietf.org/rfc/rfc3339.txt) date strings. |
| * |
| * # Examples |
| * |
| * Example 1: Compute Timestamp from POSIX `time()`. |
| * |
| * Timestamp timestamp; |
| * timestamp.set_seconds(time(NULL)); |
| * timestamp.set_nanos(0); |
| * |
| * Example 2: Compute Timestamp from POSIX `gettimeofday()`. |
| * |
| * struct timeval tv; |
| * gettimeofday(&tv, NULL); |
| * |
| * Timestamp timestamp; |
| * timestamp.set_seconds(tv.tv_sec); |
| * timestamp.set_nanos(tv.tv_usec * 1000); |
| * |
| * Example 3: Compute Timestamp from Win32 `GetSystemTimeAsFileTime()`. |
| * |
| * FILETIME ft; |
| * GetSystemTimeAsFileTime(&ft); |
| * UINT64 ticks = (((UINT64)ft.dwHighDateTime) << 32) | ft.dwLowDateTime; |
| * |
| * // A Windows tick is 100 nanoseconds. Windows epoch 1601-01-01T00:00:00Z |
| * // is 11644473600 seconds before Unix epoch 1970-01-01T00:00:00Z. |
| * Timestamp timestamp; |
| * timestamp.set_seconds((INT64) ((ticks / 10000000) - 11644473600LL)); |
| * timestamp.set_nanos((INT32) ((ticks % 10000000) * 100)); |
| * |
| * Example 4: Compute Timestamp from Java `System.currentTimeMillis()`. |
| * |
| * long millis = System.currentTimeMillis(); |
| * |
| * Timestamp timestamp = Timestamp.newBuilder().setSeconds(millis / 1000) |
| * .setNanos((int) ((millis % 1000) * 1000000)).build(); |
| * |
| * |
| * Example 5: Compute Timestamp from Java `Instant.now()`. |
| * |
| * Instant now = Instant.now(); |
| * |
| * Timestamp timestamp = |
| * Timestamp.newBuilder().setSeconds(now.getEpochSecond()) |
| * .setNanos(now.getNano()).build(); |
| * |
| * |
| * Example 6: Compute Timestamp from current time in Python. |
| * |
| * timestamp = Timestamp() |
| * timestamp.GetCurrentTime() |
| * |
| * # JSON Mapping |
| * |
| * In JSON format, the Timestamp type is encoded as a string in the |
| * [RFC 3339](https://www.ietf.org/rfc/rfc3339.txt) format. That is, the |
| * format is "{year}-{month}-{day}T{hour}:{min}:{sec}[.{frac_sec}]Z" |
| * where {year} is always expressed using four digits while {month}, {day}, |
| * {hour}, {min}, and {sec} are zero-padded to two digits each. The fractional |
| * seconds, which can go up to 9 digits (i.e. up to 1 nanosecond resolution), |
| * are optional. The "Z" suffix indicates the timezone ("UTC"); the timezone |
| * is required. A proto3 JSON serializer should always use UTC (as indicated by |
| * "Z") when printing the Timestamp type and a proto3 JSON parser should be |
| * able to accept both UTC and other timezones (as indicated by an offset). |
| * |
| * For example, "2017-01-15T01:30:15.01Z" encodes 15.01 seconds past |
| * 01:30 UTC on January 15, 2017. |
| * |
| * In JavaScript, one can convert a Date object to this format using the |
| * standard |
| * [toISOString()](https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date/toISOString) |
| * method. In Python, a standard `datetime.datetime` object can be converted |
| * to this format using |
| * [`strftime`](https://docs.python.org/2/library/time.html#time.strftime) with |
| * the time format spec '%Y-%m-%dT%H:%M:%S.%fZ'. Likewise, in Java, one can use |
| * the Joda Time's [`ISODateTimeFormat.dateTime()`]( |
| * http://www.joda.org/joda-time/apidocs/org/joda/time/format/ISODateTimeFormat.html#dateTime%2D%2D |
| * ) to obtain a formatter capable of generating timestamps in this format. |
| **/ |
| GPB_FINAL @interface GPBTimestamp : GPBMessage |
| |
| /** |
| * Represents seconds of UTC time since Unix epoch |
| * 1970-01-01T00:00:00Z. Must be from 0001-01-01T00:00:00Z to |
| * 9999-12-31T23:59:59Z inclusive. |
| **/ |
| @property(nonatomic, readwrite) int64_t seconds; |
| |
| /** |
| * Non-negative fractions of a second at nanosecond resolution. Negative |
| * second values with fractions must still have non-negative nanos values |
| * that count forward in time. Must be from 0 to 999,999,999 |
| * inclusive. |
| **/ |
| @property(nonatomic, readwrite) int32_t nanos; |
| |
| @end |
| |
| NS_ASSUME_NONNULL_END |
| |
| CF_EXTERN_C_END |
| |
| #pragma clang diagnostic pop |
| |
| // @@protoc_insertion_point(global_scope) |