blob: d5693bb3bc25c4a65d4547796d432d3bf7d24fd3 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: anuraag@google.com (Anuraag Agrawal)
// Author: tibell@google.com (Johan Tibell)
#include "google/protobuf/pyext/message.h"
#include <structmember.h> // A Python header file.
#include <cstdint>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <vector>
#include "absl/log/absl_check.h"
#include "absl/strings/match.h"
#ifndef PyVarObject_HEAD_INIT
#define PyVarObject_HEAD_INIT(type, size) PyObject_HEAD_INIT(type) size,
#endif
#ifndef Py_TYPE
#define Py_TYPE(ob) (((PyObject*)(ob))->ob_type)
#endif
#include "google/protobuf/stubs/common.h"
#include "google/protobuf/descriptor.pb.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "google/protobuf/unknown_field_set.h"
#include "google/protobuf/pyext/descriptor.h"
#include "google/protobuf/pyext/descriptor_pool.h"
#include "google/protobuf/pyext/extension_dict.h"
#include "google/protobuf/pyext/field.h"
#include "google/protobuf/pyext/map_container.h"
#include "google/protobuf/pyext/message_factory.h"
#include "google/protobuf/pyext/repeated_composite_container.h"
#include "google/protobuf/pyext/repeated_scalar_container.h"
#include "google/protobuf/pyext/safe_numerics.h"
#include "google/protobuf/pyext/scoped_pyobject_ptr.h"
#include "google/protobuf/pyext/unknown_field_set.h"
#include "google/protobuf/pyext/unknown_fields.h"
#include "google/protobuf/util/message_differencer.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/strtod.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
// clang-format off
#include "google/protobuf/port_def.inc"
// clang-format on
#define PyString_AsString(ob) \
(PyUnicode_Check(ob) ? PyUnicode_AsUTF8(ob) : PyBytes_AsString(ob))
#define PyString_AsStringAndSize(ob, charpp, sizep) \
(PyUnicode_Check(ob) \
? ((*(charpp) = const_cast<char*>( \
PyUnicode_AsUTF8AndSize(ob, (sizep)))) == nullptr \
? -1 \
: 0) \
: PyBytes_AsStringAndSize(ob, (charpp), (sizep)))
#define PROTOBUF_PYTHON_PUBLIC "google.protobuf"
#define PROTOBUF_PYTHON_INTERNAL "google.protobuf.internal"
namespace google {
namespace protobuf {
namespace python {
class MessageReflectionFriend {
public:
static void UnsafeShallowSwapFields(
Message* lhs, Message* rhs,
const std::vector<const FieldDescriptor*>& fields) {
lhs->GetReflection()->UnsafeShallowSwapFields(lhs, rhs, fields);
}
static bool IsLazyField(const Reflection* reflection, const Message& message,
const FieldDescriptor* field) {
return reflection->IsLazyField(field) ||
reflection->IsLazyExtension(message, field);
}
};
static PyObject* kDESCRIPTOR;
PyObject* EnumTypeWrapper_class;
static PyObject* PythonMessage_class;
static PyObject* kEmptyWeakref;
static PyObject* WKT_classes = nullptr;
namespace message_meta {
namespace {
// Copied over from internal 'google/protobuf/stubs/strutil.h'.
inline void LowerString(std::string* s) {
std::string::iterator end = s->end();
for (std::string::iterator i = s->begin(); i != end; ++i) {
// tolower() changes based on locale. We don't want this!
if ('A' <= *i && *i <= 'Z') *i += 'a' - 'A';
}
}
} // namespace
// Finalize the creation of the Message class.
static int AddDescriptors(PyObject* cls, const Descriptor* descriptor) {
// For each field set: cls.<field>_FIELD_NUMBER = <number>
for (int i = 0; i < descriptor->field_count(); ++i) {
const FieldDescriptor* field_descriptor = descriptor->field(i);
ScopedPyObjectPtr property(NewFieldProperty(field_descriptor));
if (property == nullptr) {
return -1;
}
if (PyObject_SetAttrString(cls, field_descriptor->name().c_str(),
property.get()) < 0) {
return -1;
}
}
// For each enum set cls.<enum name> = EnumTypeWrapper(<enum descriptor>).
for (int i = 0; i < descriptor->enum_type_count(); ++i) {
const EnumDescriptor* enum_descriptor = descriptor->enum_type(i);
ScopedPyObjectPtr enum_type(
PyEnumDescriptor_FromDescriptor(enum_descriptor));
if (enum_type == nullptr) {
return -1;
}
// Add wrapped enum type to message class.
ScopedPyObjectPtr wrapped(PyObject_CallFunctionObjArgs(
EnumTypeWrapper_class, enum_type.get(), nullptr));
if (wrapped == nullptr) {
return -1;
}
if (PyObject_SetAttrString(
cls, enum_descriptor->name().c_str(), wrapped.get()) == -1) {
return -1;
}
// For each enum value add cls.<name> = <number>
for (int j = 0; j < enum_descriptor->value_count(); ++j) {
const EnumValueDescriptor* enum_value_descriptor =
enum_descriptor->value(j);
ScopedPyObjectPtr value_number(
PyLong_FromLong(enum_value_descriptor->number()));
if (value_number == nullptr) {
return -1;
}
if (PyObject_SetAttrString(cls, enum_value_descriptor->name().c_str(),
value_number.get()) == -1) {
return -1;
}
}
}
// For each extension set cls.<extension name> = <extension descriptor>.
//
// Extension descriptors come from
// <message descriptor>.extensions_by_name[name]
// which was defined previously.
for (int i = 0; i < descriptor->extension_count(); ++i) {
const google::protobuf::FieldDescriptor* field = descriptor->extension(i);
ScopedPyObjectPtr extension_field(PyFieldDescriptor_FromDescriptor(field));
if (extension_field == nullptr) {
return -1;
}
// Add the extension field to the message class.
if (PyObject_SetAttrString(
cls, field->name().c_str(), extension_field.get()) == -1) {
return -1;
}
}
return 0;
}
static PyObject* New(PyTypeObject* type, PyObject* args, PyObject* kwargs) {
static const char* kwlist[] = {"name", "bases", "dict", nullptr};
PyObject *bases, *dict;
const char* name;
// Check arguments: (name, bases, dict)
if (!PyArg_ParseTupleAndKeywords(
args, kwargs, "sO!O!:type", const_cast<char**>(kwlist), &name,
&PyTuple_Type, &bases, &PyDict_Type, &dict)) {
return nullptr;
}
// Check bases: only (), or (message.Message,) are allowed
if (!(PyTuple_GET_SIZE(bases) == 0 ||
(PyTuple_GET_SIZE(bases) == 1 &&
PyTuple_GET_ITEM(bases, 0) == PythonMessage_class))) {
PyErr_SetString(PyExc_TypeError,
"A Message class can only inherit from Message");
return nullptr;
}
// Check dict['DESCRIPTOR']
PyObject* py_descriptor = PyDict_GetItem(dict, kDESCRIPTOR);
if (py_descriptor == nullptr) {
PyErr_SetString(PyExc_TypeError, "Message class has no DESCRIPTOR");
return nullptr;
}
if (!PyObject_TypeCheck(py_descriptor, &PyMessageDescriptor_Type)) {
PyErr_Format(PyExc_TypeError, "Expected a message Descriptor, got %s",
py_descriptor->ob_type->tp_name);
return nullptr;
}
const Descriptor* message_descriptor =
PyMessageDescriptor_AsDescriptor(py_descriptor);
if (message_descriptor == nullptr) {
return nullptr;
}
// Messages have no __dict__
ScopedPyObjectPtr slots(PyTuple_New(0));
if (PyDict_SetItemString(dict, "__slots__", slots.get()) < 0) {
return nullptr;
}
// Build the arguments to the base metaclass.
// We change the __bases__ classes.
ScopedPyObjectPtr new_args;
if (WKT_classes == nullptr) {
ScopedPyObjectPtr well_known_types(
PyImport_ImportModule(PROTOBUF_PYTHON_INTERNAL ".well_known_types"));
ABSL_DCHECK(well_known_types != nullptr);
WKT_classes = PyObject_GetAttrString(well_known_types.get(), "WKTBASES");
ABSL_DCHECK(WKT_classes != nullptr);
}
PyObject* well_known_class = PyDict_GetItemString(
WKT_classes, message_descriptor->full_name().c_str());
if (well_known_class == nullptr) {
new_args.reset(Py_BuildValue("s(OO)O", name, CMessage_Type,
PythonMessage_class, dict));
} else {
new_args.reset(Py_BuildValue("s(OOO)O", name, CMessage_Type,
PythonMessage_class, well_known_class, dict));
}
if (new_args == nullptr) {
return nullptr;
}
// Call the base metaclass.
ScopedPyObjectPtr result(PyType_Type.tp_new(type, new_args.get(), nullptr));
if (result == nullptr) {
return nullptr;
}
CMessageClass* newtype = reinterpret_cast<CMessageClass*>(result.get());
// Cache the descriptor, both as Python object and as C++ pointer.
const Descriptor* descriptor =
PyMessageDescriptor_AsDescriptor(py_descriptor);
if (descriptor == nullptr) {
return nullptr;
}
Py_INCREF(py_descriptor);
newtype->py_message_descriptor = py_descriptor;
newtype->message_descriptor = descriptor;
// TODO(amauryfa): Don't always use the canonical pool of the descriptor,
// use the MessageFactory optionally passed in the class dict.
PyDescriptorPool* py_descriptor_pool =
GetDescriptorPool_FromPool(descriptor->file()->pool());
if (py_descriptor_pool == nullptr) {
return nullptr;
}
newtype->py_message_factory = py_descriptor_pool->py_message_factory;
Py_INCREF(newtype->py_message_factory);
// Register the message in the MessageFactory.
// TODO(amauryfa): Move this call to MessageFactory.GetPrototype() when the
// MessageFactory is fully implemented in C++.
if (message_factory::RegisterMessageClass(newtype->py_message_factory,
descriptor, newtype) < 0) {
return nullptr;
}
// Continue with type initialization: add other descriptors, enum values...
if (AddDescriptors(result.get(), descriptor) < 0) {
return nullptr;
}
return result.release();
}
static void Dealloc(PyObject* pself) {
CMessageClass* self = reinterpret_cast<CMessageClass*>(pself);
Py_XDECREF(self->py_message_descriptor);
Py_XDECREF(self->py_message_factory);
return PyType_Type.tp_dealloc(pself);
}
static int GcTraverse(PyObject* pself, visitproc visit, void* arg) {
CMessageClass* self = reinterpret_cast<CMessageClass*>(pself);
Py_VISIT(self->py_message_descriptor);
Py_VISIT(self->py_message_factory);
return PyType_Type.tp_traverse(pself, visit, arg);
}
static int GcClear(PyObject* pself) {
// It's important to keep the descriptor and factory alive, until the
// C++ message is fully destructed.
return PyType_Type.tp_clear(pself);
}
// The _extensions_by_name dictionary is built on every access.
// TODO(amauryfa): Migrate all users to pool.FindAllExtensions()
static PyObject* GetExtensionsByName(CMessageClass *self, void *closure) {
if (self->message_descriptor == nullptr) {
// This is the base Message object, simply raise AttributeError.
PyErr_SetString(PyExc_AttributeError,
"Base Message class has no DESCRIPTOR");
return nullptr;
}
const PyDescriptorPool* pool = self->py_message_factory->pool;
std::vector<const FieldDescriptor*> extensions;
pool->pool->FindAllExtensions(self->message_descriptor, &extensions);
ScopedPyObjectPtr result(PyDict_New());
for (int i = 0; i < extensions.size(); i++) {
ScopedPyObjectPtr extension(
PyFieldDescriptor_FromDescriptor(extensions[i]));
if (extension == nullptr) {
return nullptr;
}
if (PyDict_SetItemString(result.get(), extensions[i]->full_name().c_str(),
extension.get()) < 0) {
return nullptr;
}
}
return result.release();
}
// The _extensions_by_number dictionary is built on every access.
// TODO(amauryfa): Migrate all users to pool.FindExtensionByNumber()
static PyObject* GetExtensionsByNumber(CMessageClass *self, void *closure) {
if (self->message_descriptor == nullptr) {
// This is the base Message object, simply raise AttributeError.
PyErr_SetString(PyExc_AttributeError,
"Base Message class has no DESCRIPTOR");
return nullptr;
}
const PyDescriptorPool* pool = self->py_message_factory->pool;
std::vector<const FieldDescriptor*> extensions;
pool->pool->FindAllExtensions(self->message_descriptor, &extensions);
ScopedPyObjectPtr result(PyDict_New());
for (int i = 0; i < extensions.size(); i++) {
ScopedPyObjectPtr extension(
PyFieldDescriptor_FromDescriptor(extensions[i]));
if (extension == nullptr) {
return nullptr;
}
ScopedPyObjectPtr number(PyLong_FromLong(extensions[i]->number()));
if (number == nullptr) {
return nullptr;
}
if (PyDict_SetItem(result.get(), number.get(), extension.get()) < 0) {
return nullptr;
}
}
return result.release();
}
static PyGetSetDef Getters[] = {
{"_extensions_by_name", (getter)GetExtensionsByName, nullptr},
{"_extensions_by_number", (getter)GetExtensionsByNumber, nullptr},
{nullptr},
};
// Compute some class attributes on the fly:
// - All the _FIELD_NUMBER attributes, for all fields and nested extensions.
// Returns a new reference, or NULL with an exception set.
static PyObject* GetClassAttribute(CMessageClass *self, PyObject* name) {
char* attr;
Py_ssize_t attr_size;
static const char kSuffix[] = "_FIELD_NUMBER";
if (PyString_AsStringAndSize(name, &attr, &attr_size) >= 0 &&
absl::EndsWith(absl::string_view(attr, attr_size), kSuffix)) {
std::string field_name(attr, attr_size - sizeof(kSuffix) + 1);
LowerString(&field_name);
// Try to find a field with the given name, without the suffix.
const FieldDescriptor* field =
self->message_descriptor->FindFieldByLowercaseName(field_name);
if (!field) {
// Search nested extensions as well.
field =
self->message_descriptor->FindExtensionByLowercaseName(field_name);
}
if (field) {
return PyLong_FromLong(field->number());
}
}
PyErr_SetObject(PyExc_AttributeError, name);
return nullptr;
}
static PyObject* GetAttr(CMessageClass* self, PyObject* name) {
PyObject* result = CMessageClass_Type->tp_base->tp_getattro(
reinterpret_cast<PyObject*>(self), name);
if (result != nullptr) {
return result;
}
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
return nullptr;
}
PyErr_Clear();
return GetClassAttribute(self, name);
}
} // namespace message_meta
// Protobuf has a 64MB limit built in, this variable will override this. Please
// do not enable this unless you fully understand the implications: protobufs
// must all be kept in memory at the same time, so if they grow too big you may
// get OOM errors. The protobuf APIs do not provide any tools for processing
// protobufs in chunks. If you have protos this big you should break them up if
// it is at all convenient to do so.
#ifdef PROTOBUF_PYTHON_ALLOW_OVERSIZE_PROTOS
static bool allow_oversize_protos = true;
#else
static bool allow_oversize_protos = false;
#endif
static PyTypeObject _CMessageClass_Type = {
PyVarObject_HEAD_INIT(&PyType_Type, 0) FULL_MODULE_NAME
".MessageMeta", // tp_name
sizeof(CMessageClass), // tp_basicsize
0, // tp_itemsize
message_meta::Dealloc, // tp_dealloc
#if PY_VERSION_HEX < 0x03080000
nullptr, /* tp_print */
#else
0, /* tp_vectorcall_offset */
#endif
nullptr, // tp_getattr
nullptr, // tp_setattr
nullptr, // tp_compare
nullptr, // tp_repr
nullptr, // tp_as_number
nullptr, // tp_as_sequence
nullptr, // tp_as_mapping
nullptr, // tp_hash
nullptr, // tp_call
nullptr, // tp_str
(getattrofunc)message_meta::GetAttr, // tp_getattro
nullptr, // tp_setattro
nullptr, // tp_as_buffer
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE | Py_TPFLAGS_HAVE_GC, // tp_flags
"The metaclass of ProtocolMessages", // tp_doc
message_meta::GcTraverse, // tp_traverse
message_meta::GcClear, // tp_clear
nullptr, // tp_richcompare
0, // tp_weaklistoffset
nullptr, // tp_iter
nullptr, // tp_iternext
nullptr, // tp_methods
nullptr, // tp_members
message_meta::Getters, // tp_getset
nullptr, // tp_base
nullptr, // tp_dict
nullptr, // tp_descr_get
nullptr, // tp_descr_set
0, // tp_dictoffset
nullptr, // tp_init
nullptr, // tp_alloc
message_meta::New, // tp_new
};
PyTypeObject* CMessageClass_Type = &_CMessageClass_Type;
static CMessageClass* CheckMessageClass(PyTypeObject* cls) {
if (!PyObject_TypeCheck(cls, CMessageClass_Type)) {
PyErr_Format(PyExc_TypeError, "Class %s is not a Message", cls->tp_name);
return nullptr;
}
return reinterpret_cast<CMessageClass*>(cls);
}
static const Descriptor* GetMessageDescriptor(PyTypeObject* cls) {
CMessageClass* type = CheckMessageClass(cls);
if (type == nullptr) {
return nullptr;
}
return type->message_descriptor;
}
// Forward declarations
namespace cmessage {
int InternalReleaseFieldByDescriptor(
CMessage* self,
const FieldDescriptor* field_descriptor);
} // namespace cmessage
// ---------------------------------------------------------------------
PyObject* EncodeError_class;
PyObject* DecodeError_class;
PyObject* PickleError_class;
// Format an error message for unexpected types.
// Always return with an exception set.
void FormatTypeError(PyObject* arg, const char* expected_types) {
// This function is often called with an exception set.
// Clear it to call PyObject_Repr() in good conditions.
PyErr_Clear();
PyObject* repr = PyObject_Repr(arg);
if (repr) {
PyErr_Format(PyExc_TypeError,
"%.100s has type %.100s, but expected one of: %s",
PyString_AsString(repr),
Py_TYPE(arg)->tp_name,
expected_types);
Py_DECREF(repr);
}
}
void OutOfRangeError(PyObject* arg) {
PyObject *s = PyObject_Str(arg);
if (s) {
PyErr_Format(PyExc_ValueError,
"Value out of range: %s",
PyString_AsString(s));
Py_DECREF(s);
}
}
template<class RangeType, class ValueType>
bool VerifyIntegerCastAndRange(PyObject* arg, ValueType value) {
if (PROTOBUF_PREDICT_FALSE(value == -1 && PyErr_Occurred())) {
if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
// Replace it with the same ValueError as pure python protos instead of
// the default one.
PyErr_Clear();
OutOfRangeError(arg);
} // Otherwise propagate existing error.
return false;
}
if (PROTOBUF_PREDICT_FALSE(!IsValidNumericCast<RangeType>(value))) {
OutOfRangeError(arg);
return false;
}
return true;
}
template <class T>
bool CheckAndGetInteger(PyObject* arg, T* value) {
// This effectively defines an integer as "an object that can be cast as
// an integer and can be used as an ordinal number".
// This definition includes everything with a valid __index__() implementation
// and shouldn't cast the net too wide.
if (!strcmp(Py_TYPE(arg)->tp_name, "numpy.ndarray") ||
PROTOBUF_PREDICT_FALSE(!PyIndex_Check(arg))) {
FormatTypeError(arg, "int");
return false;
}
PyObject* arg_py_int = PyNumber_Index(arg);
if (PyErr_Occurred()) {
// Propagate existing error.
return false;
}
if (std::numeric_limits<T>::min() == 0) {
// Unsigned case.
unsigned PY_LONG_LONG ulong_result = PyLong_AsUnsignedLongLong(arg_py_int);
Py_DECREF(arg_py_int);
if (VerifyIntegerCastAndRange<T, unsigned PY_LONG_LONG>(arg,
ulong_result)) {
*value = static_cast<T>(ulong_result);
} else {
return false;
}
} else {
// Signed case.
Py_DECREF(arg_py_int);
PY_LONG_LONG long_result = PyLong_AsLongLong(arg);
if (VerifyIntegerCastAndRange<T, PY_LONG_LONG>(arg, long_result)) {
*value = static_cast<T>(long_result);
} else {
return false;
}
}
return true;
}
// These are referenced by repeated_scalar_container, and must
// be explicitly instantiated.
template bool CheckAndGetInteger<int32>(PyObject*, int32*);
template bool CheckAndGetInteger<int64>(PyObject*, int64*);
template bool CheckAndGetInteger<uint32>(PyObject*, uint32*);
template bool CheckAndGetInteger<uint64>(PyObject*, uint64*);
bool CheckAndGetDouble(PyObject* arg, double* value) {
*value = PyFloat_AsDouble(arg);
if (!strcmp(Py_TYPE(arg)->tp_name, "numpy.ndarray") ||
PROTOBUF_PREDICT_FALSE(*value == -1 && PyErr_Occurred())) {
FormatTypeError(arg, "int, float");
return false;
}
return true;
}
bool CheckAndGetFloat(PyObject* arg, float* value) {
double double_value;
if (!CheckAndGetDouble(arg, &double_value)) {
return false;
}
*value = io::SafeDoubleToFloat(double_value);
return true;
}
bool CheckAndGetBool(PyObject* arg, bool* value) {
long long_value = PyLong_AsLong(arg); // NOLINT
if (!strcmp(Py_TYPE(arg)->tp_name, "numpy.ndarray") ||
(long_value == -1 && PyErr_Occurred())) {
FormatTypeError(arg, "int, bool");
return false;
}
*value = static_cast<bool>(long_value);
return true;
}
// Checks whether the given object (which must be "bytes" or "unicode") contains
// valid UTF-8.
bool IsValidUTF8(PyObject* obj) {
if (PyBytes_Check(obj)) {
PyObject* unicode = PyUnicode_FromEncodedObject(obj, "utf-8", nullptr);
// Clear the error indicator; we report our own error when desired.
PyErr_Clear();
if (unicode) {
Py_DECREF(unicode);
return true;
} else {
return false;
}
} else {
// Unicode object, known to be valid UTF-8.
return true;
}
}
bool AllowInvalidUTF8(const FieldDescriptor* field) { return false; }
PyObject* CheckString(PyObject* arg, const FieldDescriptor* descriptor) {
ABSL_DCHECK(descriptor->type() == FieldDescriptor::TYPE_STRING ||
descriptor->type() == FieldDescriptor::TYPE_BYTES);
if (descriptor->type() == FieldDescriptor::TYPE_STRING) {
if (!PyBytes_Check(arg) && !PyUnicode_Check(arg)) {
FormatTypeError(arg, "bytes, unicode");
return nullptr;
}
if (!IsValidUTF8(arg) && !AllowInvalidUTF8(descriptor)) {
PyObject* repr = PyObject_Repr(arg);
PyErr_Format(PyExc_ValueError,
"%s has type str, but isn't valid UTF-8 "
"encoding. Non-UTF-8 strings must be converted to "
"unicode objects before being added.",
PyString_AsString(repr));
Py_DECREF(repr);
return nullptr;
}
} else if (!PyBytes_Check(arg)) {
FormatTypeError(arg, "bytes");
return nullptr;
}
PyObject* encoded_string = nullptr;
if (descriptor->type() == FieldDescriptor::TYPE_STRING) {
if (PyBytes_Check(arg)) {
// The bytes were already validated as correctly encoded UTF-8 above.
encoded_string = arg; // Already encoded.
Py_INCREF(encoded_string);
} else {
encoded_string = PyUnicode_AsEncodedString(arg, "utf-8", nullptr);
}
} else {
// In this case field type is "bytes".
encoded_string = arg;
Py_INCREF(encoded_string);
}
return encoded_string;
}
bool CheckAndSetString(
PyObject* arg, Message* message,
const FieldDescriptor* descriptor,
const Reflection* reflection,
bool append,
int index) {
ScopedPyObjectPtr encoded_string(CheckString(arg, descriptor));
if (encoded_string.get() == nullptr) {
return false;
}
char* value;
Py_ssize_t value_len;
if (PyBytes_AsStringAndSize(encoded_string.get(), &value, &value_len) < 0) {
return false;
}
std::string value_string(value, value_len);
if (append) {
reflection->AddString(message, descriptor, std::move(value_string));
} else if (index < 0) {
reflection->SetString(message, descriptor, std::move(value_string));
} else {
reflection->SetRepeatedString(message, descriptor, index,
std::move(value_string));
}
return true;
}
PyObject* ToStringObject(const FieldDescriptor* descriptor,
const std::string& value) {
if (descriptor->type() != FieldDescriptor::TYPE_STRING) {
return PyBytes_FromStringAndSize(value.c_str(), value.length());
}
PyObject* result =
PyUnicode_DecodeUTF8(value.c_str(), value.length(), nullptr);
// If the string can't be decoded in UTF-8, just return a string object that
// contains the raw bytes. This can't happen if the value was assigned using
// the members of the Python message object, but can happen if the values were
// parsed from the wire (binary).
if (result == nullptr) {
PyErr_Clear();
result = PyBytes_FromStringAndSize(value.c_str(), value.length());
}
return result;
}
bool CheckFieldBelongsToMessage(const FieldDescriptor* field_descriptor,
const Message* message) {
if (message->GetDescriptor() == field_descriptor->containing_type()) {
return true;
}
PyErr_Format(PyExc_KeyError, "Field '%s' does not belong to message '%s'",
field_descriptor->full_name().c_str(),
message->GetDescriptor()->full_name().c_str());
return false;
}
namespace cmessage {
PyMessageFactory* GetFactoryForMessage(CMessage* message) {
ABSL_DCHECK(PyObject_TypeCheck(message, CMessage_Type));
return reinterpret_cast<CMessageClass*>(Py_TYPE(message))->py_message_factory;
}
static int MaybeReleaseOverlappingOneofField(
CMessage* cmessage,
const FieldDescriptor* field) {
Message* message = cmessage->message;
const Reflection* reflection = message->GetReflection();
if (!field->containing_oneof() ||
!reflection->HasOneof(*message, field->containing_oneof()) ||
reflection->HasField(*message, field)) {
// No other field in this oneof, no need to release.
return 0;
}
const OneofDescriptor* oneof = field->containing_oneof();
const FieldDescriptor* existing_field =
reflection->GetOneofFieldDescriptor(*message, oneof);
if (existing_field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
// Non-message fields don't need to be released.
return 0;
}
if (InternalReleaseFieldByDescriptor(cmessage, existing_field) < 0) {
return -1;
}
return 0;
}
// After a Merge, visit every sub-message that was read-only, and
// eventually update their pointer if the Merge operation modified them.
int FixupMessageAfterMerge(CMessage* self) {
if (!self->composite_fields) {
return 0;
}
PyMessageFactory* factory = GetFactoryForMessage(self);
for (const auto& item : *self->composite_fields) {
const FieldDescriptor* descriptor = item.first;
if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!descriptor->is_repeated()) {
CMessage* cmsg = reinterpret_cast<CMessage*>(item.second);
if (cmsg->read_only == false) {
return 0;
}
Message* message = self->message;
const Reflection* reflection = message->GetReflection();
if (reflection->HasField(*message, descriptor)) {
// Message used to be read_only, but is no longer. Get the new pointer
// and record it.
Message* mutable_message = reflection->MutableMessage(
message, descriptor, factory->message_factory);
cmsg->message = mutable_message;
cmsg->read_only = false;
if (FixupMessageAfterMerge(cmsg) < 0) {
return -1;
}
}
}
}
return 0;
}
// ---------------------------------------------------------------------
// Making a message writable
int AssureWritable(CMessage* self) {
if (self == nullptr || !self->read_only) {
return 0;
}
// Toplevel messages are always mutable.
ABSL_DCHECK(self->parent);
if (AssureWritable(self->parent) == -1) {
return -1;
}
// If this message is part of a oneof, there might be a field to release in
// the parent.
if (MaybeReleaseOverlappingOneofField(self->parent,
self->parent_field_descriptor) < 0) {
return -1;
}
// Make self->message writable.
Message* parent_message = self->parent->message;
const Reflection* reflection = parent_message->GetReflection();
Message* mutable_message = reflection->MutableMessage(
parent_message, self->parent_field_descriptor,
GetFactoryForMessage(self->parent)->message_factory);
if (mutable_message == nullptr) {
return -1;
}
self->message = mutable_message;
self->read_only = false;
return 0;
}
// --- Globals:
// Retrieve a C++ FieldDescriptor for an extension handle.
const FieldDescriptor* GetExtensionDescriptor(PyObject* extension) {
ScopedPyObjectPtr cdescriptor;
if (!PyObject_TypeCheck(extension, &PyFieldDescriptor_Type)) {
// Most callers consider extensions as a plain dictionary. We should
// allow input which is not a field descriptor, and simply pretend it does
// not exist.
PyErr_SetObject(PyExc_KeyError, extension);
return nullptr;
}
return PyFieldDescriptor_AsDescriptor(extension);
}
// If value is a string, convert it into an enum value based on the labels in
// descriptor, otherwise simply return value. Always returns a new reference.
static PyObject* GetIntegerEnumValue(const FieldDescriptor& descriptor,
PyObject* value) {
if (PyUnicode_Check(value)) {
const EnumDescriptor* enum_descriptor = descriptor.enum_type();
if (enum_descriptor == nullptr) {
PyErr_SetString(PyExc_TypeError, "not an enum field");
return nullptr;
}
char* enum_label;
Py_ssize_t size;
if (PyString_AsStringAndSize(value, &enum_label, &size) < 0) {
return nullptr;
}
const EnumValueDescriptor* enum_value_descriptor =
enum_descriptor->FindValueByName(absl::string_view(enum_label, size));
if (enum_value_descriptor == nullptr) {
PyErr_Format(PyExc_ValueError, "unknown enum label \"%s\"", enum_label);
return nullptr;
}
return PyLong_FromLong(enum_value_descriptor->number());
}
Py_INCREF(value);
return value;
}
// Delete a slice from a repeated field.
// The only way to remove items in C++ protos is to delete the last one,
// so we swap items to move the deleted ones at the end, and then strip the
// sequence.
int DeleteRepeatedField(
CMessage* self,
const FieldDescriptor* field_descriptor,
PyObject* slice) {
Py_ssize_t length, from, to, step, slice_length;
Message* message = self->message;
const Reflection* reflection = message->GetReflection();
int min, max;
length = reflection->FieldSize(*message, field_descriptor);
if (PySlice_Check(slice)) {
from = to = step = slice_length = 0;
PySlice_GetIndicesEx(slice, length, &from, &to, &step, &slice_length);
if (from < to) {
min = from;
max = to - 1;
} else {
min = to + 1;
max = from;
}
} else {
from = to = PyLong_AsLong(slice);
if (from == -1 && PyErr_Occurred()) {
PyErr_SetString(PyExc_TypeError, "list indices must be integers");
return -1;
}
if (from < 0) {
from = to = length + from;
}
step = 1;
min = max = from;
// Range check.
if (from < 0 || from >= length) {
PyErr_Format(PyExc_IndexError, "list assignment index out of range");
return -1;
}
}
Py_ssize_t i = from;
std::vector<bool> to_delete(length, false);
while (i >= min && i <= max) {
to_delete[i] = true;
i += step;
}
// Swap elements so that items to delete are at the end.
to = 0;
for (i = 0; i < length; ++i) {
if (!to_delete[i]) {
if (i != to) {
reflection->SwapElements(message, field_descriptor, i, to);
}
++to;
}
}
Arena* arena = Arena::InternalGetArenaForAllocation(message);
ABSL_DCHECK_EQ(arena, nullptr)
<< "python protobuf is expected to be allocated from heap";
// Remove items, starting from the end.
for (; length > to; length--) {
if (field_descriptor->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
reflection->RemoveLast(message, field_descriptor);
continue;
}
// It seems that RemoveLast() is less efficient for sub-messages, and
// the memory is not completely released. Prefer ReleaseLast().
//
// To work around a debug hardening (PROTOBUF_FORCE_COPY_IN_RELEASE),
// explicitly use UnsafeArenaReleaseLast. To not break rare use cases where
// arena is used, we fallback to ReleaseLast (but ABSL_DCHECK to find/fix
// it).
//
// Note that arena is likely null and ABSL_DCHECK and ReleaesLast might be
// redundant. The current approach takes extra cautious path not to disrupt
// production.
Message* sub_message =
(arena == nullptr)
? reflection->UnsafeArenaReleaseLast(message, field_descriptor)
: reflection->ReleaseLast(message, field_descriptor);
// If there is a live weak reference to an item being removed, we "Release"
// it, and it takes ownership of the message.
if (CMessage* released = self->MaybeReleaseSubMessage(sub_message)) {
released->message = sub_message;
} else {
// sub_message was not transferred, delete it.
delete sub_message;
}
}
return 0;
}
// Initializes fields of a message. Used in constructors.
int InitAttributes(CMessage* self, PyObject* args, PyObject* kwargs) {
if (args != nullptr && PyTuple_Size(args) != 0) {
PyErr_SetString(PyExc_TypeError, "No positional arguments allowed");
return -1;
}
if (kwargs == nullptr) {
return 0;
}
Py_ssize_t pos = 0;
PyObject* name;
PyObject* value;
while (PyDict_Next(kwargs, &pos, &name, &value)) {
if (!(PyUnicode_Check(name))) {
PyErr_SetString(PyExc_ValueError, "Field name must be a string");
return -1;
}
ScopedPyObjectPtr property(
PyObject_GetAttr(reinterpret_cast<PyObject*>(Py_TYPE(self)), name));
if (property == nullptr ||
!PyObject_TypeCheck(property.get(), CFieldProperty_Type)) {
PyErr_Format(PyExc_ValueError, "Protocol message %s has no \"%s\" field.",
self->message->GetDescriptor()->name().c_str(),
PyString_AsString(name));
return -1;
}
const FieldDescriptor* descriptor =
reinterpret_cast<PyMessageFieldProperty*>(property.get())
->field_descriptor;
if (value == Py_None) {
// field=None is the same as no field at all.
continue;
}
if (descriptor->is_map()) {
ScopedPyObjectPtr map(GetFieldValue(self, descriptor));
const FieldDescriptor* value_descriptor =
descriptor->message_type()->map_value();
if (value_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
ScopedPyObjectPtr iter(PyObject_GetIter(value));
if (iter == nullptr) {
PyErr_Format(PyExc_TypeError, "Argument %s is not iterable",
PyString_AsString(name));
return -1;
}
ScopedPyObjectPtr next;
while ((next.reset(PyIter_Next(iter.get()))) != nullptr) {
ScopedPyObjectPtr source_value(PyObject_GetItem(value, next.get()));
ScopedPyObjectPtr dest_value(PyObject_GetItem(map.get(), next.get()));
if (source_value.get() == nullptr || dest_value.get() == nullptr) {
return -1;
}
ScopedPyObjectPtr ok(PyObject_CallMethod(
dest_value.get(), "MergeFrom", "O", source_value.get()));
if (ok.get() == nullptr) {
return -1;
}
}
} else {
ScopedPyObjectPtr function_return;
function_return.reset(
PyObject_CallMethod(map.get(), "update", "O", value));
if (function_return.get() == nullptr) {
return -1;
}
}
} else if (descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
ScopedPyObjectPtr container(GetFieldValue(self, descriptor));
if (container == nullptr) {
return -1;
}
if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
RepeatedCompositeContainer* rc_container =
reinterpret_cast<RepeatedCompositeContainer*>(container.get());
ScopedPyObjectPtr iter(PyObject_GetIter(value));
if (iter == nullptr) {
PyErr_Format(PyExc_TypeError, "Value of field '%s' must be iterable",
descriptor->name().c_str());
return -1;
}
ScopedPyObjectPtr next;
while ((next.reset(PyIter_Next(iter.get()))) != nullptr) {
PyObject* kwargs = (PyDict_Check(next.get()) ? next.get() : nullptr);
ScopedPyObjectPtr new_msg(
repeated_composite_container::Add(rc_container, nullptr, kwargs));
if (new_msg == nullptr) {
return -1;
}
if (kwargs == nullptr) {
// next was not a dict, it's a message we need to merge
ScopedPyObjectPtr merged(MergeFrom(
reinterpret_cast<CMessage*>(new_msg.get()), next.get()));
if (merged.get() == nullptr) {
return -1;
}
}
}
if (PyErr_Occurred()) {
// Check to see how PyIter_Next() exited.
return -1;
}
} else if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
RepeatedScalarContainer* rs_container =
reinterpret_cast<RepeatedScalarContainer*>(container.get());
ScopedPyObjectPtr iter(PyObject_GetIter(value));
if (iter == nullptr) {
PyErr_Format(PyExc_TypeError, "Value of field '%s' must be iterable",
descriptor->name().c_str());
return -1;
}
ScopedPyObjectPtr next;
while ((next.reset(PyIter_Next(iter.get()))) != nullptr) {
ScopedPyObjectPtr enum_value(
GetIntegerEnumValue(*descriptor, next.get()));
if (enum_value == nullptr) {
return -1;
}
ScopedPyObjectPtr new_msg(repeated_scalar_container::Append(
rs_container, enum_value.get()));
if (new_msg == nullptr) {
return -1;
}
}
if (PyErr_Occurred()) {
// Check to see how PyIter_Next() exited.
return -1;
}
} else {
if (ScopedPyObjectPtr(repeated_scalar_container::Extend(
reinterpret_cast<RepeatedScalarContainer*>(container.get()),
value)) == nullptr) {
return -1;
}
}
} else if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
ScopedPyObjectPtr message(GetFieldValue(self, descriptor));
if (message == nullptr) {
return -1;
}
CMessage* cmessage = reinterpret_cast<CMessage*>(message.get());
if (PyDict_Check(value)) {
// Make the message exist even if the dict is empty.
AssureWritable(cmessage);
if (InitAttributes(cmessage, nullptr, value) < 0) {
return -1;
}
} else {
ScopedPyObjectPtr merged(MergeFrom(cmessage, value));
if (merged == nullptr) {
return -1;
}
}
} else {
ScopedPyObjectPtr new_val;
if (descriptor->cpp_type() == FieldDescriptor::CPPTYPE_ENUM) {
new_val.reset(GetIntegerEnumValue(*descriptor, value));
if (new_val == nullptr) {
return -1;
}
value = new_val.get();
}
if (SetFieldValue(self, descriptor, value) < 0) {
return -1;
}
}
}
return 0;
}
// Allocates an incomplete Python Message: the caller must fill self->message
// and eventually self->parent.
CMessage* NewEmptyMessage(CMessageClass* type) {
CMessage* self = reinterpret_cast<CMessage*>(
PyType_GenericAlloc(&type->super.ht_type, 0));
if (self == nullptr) {
return nullptr;
}
self->message = nullptr;
self->parent = nullptr;
self->parent_field_descriptor = nullptr;
self->read_only = false;
self->composite_fields = nullptr;
self->child_submessages = nullptr;
self->unknown_field_set = nullptr;
return self;
}
// The __new__ method of Message classes.
// Creates a new C++ message and takes ownership.
static CMessage* NewCMessage(CMessageClass* type) {
// Retrieve the message descriptor and the default instance (=prototype).
const Descriptor* message_descriptor = type->message_descriptor;
if (message_descriptor == nullptr) {
// This would be very unexpected since the CMessageClass has already
// been checked.
PyErr_Format(PyExc_TypeError,
"CMessageClass object '%s' has no descriptor.",
Py_TYPE(type)->tp_name);
return nullptr;
}
const Message* prototype =
type->py_message_factory->message_factory->GetPrototype(
message_descriptor);
if (prototype == nullptr) {
PyErr_SetString(PyExc_TypeError, message_descriptor->full_name().c_str());
return nullptr;
}
CMessage* self = NewEmptyMessage(type);
if (self == nullptr) {
return nullptr;
}
self->message = prototype->New(nullptr); // Ensures no arena is used.
self->parent = nullptr; // This message owns its data.
return self;
}
static PyObject* New(PyTypeObject* cls, PyObject* unused_args,
PyObject* unused_kwargs) {
CMessageClass* type = CheckMessageClass(cls);
if (type == nullptr) {
return nullptr;
}
return reinterpret_cast<PyObject*>(NewCMessage(type));
}
// The __init__ method of Message classes.
// It initializes fields from keywords passed to the constructor.
static int Init(CMessage* self, PyObject* args, PyObject* kwargs) {
return InitAttributes(self, args, kwargs);
}
// ---------------------------------------------------------------------
// Deallocating a CMessage
static void Dealloc(CMessage* self) {
if (self->weakreflist) {
PyObject_ClearWeakRefs(reinterpret_cast<PyObject*>(self));
}
// At this point all dependent objects have been removed.
ABSL_DCHECK(!self->child_submessages || self->child_submessages->empty());
ABSL_DCHECK(!self->composite_fields || self->composite_fields->empty());
delete self->child_submessages;
delete self->composite_fields;
if (self->unknown_field_set) {
unknown_fields::Clear(
reinterpret_cast<PyUnknownFields*>(self->unknown_field_set));
}
CMessage* parent = self->parent;
if (!parent) {
// No parent, we own the message.
delete self->message;
} else if (parent->AsPyObject() == Py_None) {
// Message owned externally: Nothing to dealloc
Py_CLEAR(self->parent);
} else {
// Clear this message from its parent's map.
if (self->parent_field_descriptor->is_repeated()) {
if (parent->child_submessages)
parent->child_submessages->erase(self->message);
} else {
if (parent->composite_fields)
parent->composite_fields->erase(self->parent_field_descriptor);
}
Py_CLEAR(self->parent);
}
Py_TYPE(self)->tp_free(reinterpret_cast<PyObject*>(self));
}
// ---------------------------------------------------------------------
PyObject* IsInitialized(CMessage* self, PyObject* args) {
PyObject* errors = nullptr;
if (!PyArg_ParseTuple(args, "|O", &errors)) {
return nullptr;
}
if (self->message->IsInitialized()) {
Py_RETURN_TRUE;
}
if (errors != nullptr) {
ScopedPyObjectPtr initialization_errors(
FindInitializationErrors(self));
if (initialization_errors == nullptr) {
return nullptr;
}
ScopedPyObjectPtr extend_name(PyUnicode_FromString("extend"));
if (extend_name == nullptr) {
return nullptr;
}
ScopedPyObjectPtr result(PyObject_CallMethodObjArgs(
errors, extend_name.get(), initialization_errors.get(), nullptr));
if (result == nullptr) {
return nullptr;
}
}
Py_RETURN_FALSE;
}
int HasFieldByDescriptor(CMessage* self,
const FieldDescriptor* field_descriptor) {
Message* message = self->message;
if (!CheckFieldBelongsToMessage(field_descriptor, message)) {
return -1;
}
if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
PyErr_SetString(PyExc_KeyError,
"Field is repeated. A singular method is required.");
return -1;
}
return message->GetReflection()->HasField(*message, field_descriptor);
}
const FieldDescriptor* FindFieldWithOneofs(const Message* message,
absl::string_view field_name,
bool* in_oneof) {
*in_oneof = false;
const Descriptor* descriptor = message->GetDescriptor();
const FieldDescriptor* field_descriptor =
descriptor->FindFieldByName(field_name);
if (field_descriptor != nullptr) {
return field_descriptor;
}
const OneofDescriptor* oneof_desc =
descriptor->FindOneofByName(field_name);
if (oneof_desc != nullptr) {
*in_oneof = true;
return message->GetReflection()->GetOneofFieldDescriptor(*message,
oneof_desc);
}
return nullptr;
}
bool CheckHasPresence(const FieldDescriptor* field_descriptor, bool in_oneof) {
auto message_name = field_descriptor->containing_type()->name();
if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
PyErr_Format(PyExc_ValueError,
"Protocol message %s has no singular \"%s\" field.",
message_name.c_str(), field_descriptor->name().c_str());
return false;
}
if (!field_descriptor->has_presence()) {
PyErr_Format(PyExc_ValueError,
"Can't test non-optional, non-submessage field \"%s.%s\" for "
"presence in proto3.",
message_name.c_str(), field_descriptor->name().c_str());
return false;
}
return true;
}
PyObject* HasField(CMessage* self, PyObject* arg) {
char* field_name;
Py_ssize_t size;
field_name = const_cast<char*>(PyUnicode_AsUTF8AndSize(arg, &size));
if (!field_name) {
return nullptr;
}
Message* message = self->message;
bool is_in_oneof;
const FieldDescriptor* field_descriptor = FindFieldWithOneofs(
message, absl::string_view(field_name, size), &is_in_oneof);
if (field_descriptor == nullptr) {
if (!is_in_oneof) {
PyErr_Format(PyExc_ValueError, "Protocol message %s has no field %s.",
message->GetDescriptor()->name().c_str(), field_name);
return nullptr;
} else {
Py_RETURN_FALSE;
}
}
if (!CheckHasPresence(field_descriptor, is_in_oneof)) {
return nullptr;
}
if (message->GetReflection()->HasField(*message, field_descriptor)) {
Py_RETURN_TRUE;
}
Py_RETURN_FALSE;
}
PyObject* ClearExtension(CMessage* self, PyObject* extension) {
const FieldDescriptor* descriptor = GetExtensionDescriptor(extension);
if (descriptor == nullptr) {
return nullptr;
}
if (ClearFieldByDescriptor(self, descriptor) < 0) {
return nullptr;
}
Py_RETURN_NONE;
}
PyObject* HasExtension(CMessage* self, PyObject* extension) {
const FieldDescriptor* descriptor = GetExtensionDescriptor(extension);
if (descriptor == nullptr) {
return nullptr;
}
int has_field = HasFieldByDescriptor(self, descriptor);
if (has_field < 0) {
return nullptr;
} else {
return PyBool_FromLong(has_field);
}
}
// ---------------------------------------------------------------------
// Releasing messages
//
// The Python API's ClearField() and Clear() methods behave
// differently than their C++ counterparts. While the C++ versions
// clears the children, the Python versions detaches the children,
// without touching their content. This impedance mismatch causes
// some complexity in the implementation, which is captured in this
// section.
//
// When one or multiple fields are cleared we need to:
//
// * Gather all child objects that need to be detached from the message.
// In composite_fields and child_submessages.
//
// * Create a new Python message of the same kind. Use SwapFields() to move
// data from the original message.
//
// * Change the parent of all child objects: update their strong reference
// to their parent, and move their presence in composite_fields and
// child_submessages.
// ---------------------------------------------------------------------
// Release a composite child of a CMessage
static int InternalReparentFields(
CMessage* self, const std::vector<CMessage*>& messages_to_release,
const std::vector<ContainerBase*>& containers_to_release) {
if (messages_to_release.empty() && containers_to_release.empty()) {
return 0;
}
// Move all the passed sub_messages to another message.
CMessage* new_message = cmessage::NewEmptyMessage(self->GetMessageClass());
if (new_message == nullptr) {
return -1;
}
new_message->message = self->message->New(nullptr);
ScopedPyObjectPtr holder(reinterpret_cast<PyObject*>(new_message));
new_message->child_submessages = new CMessage::SubMessagesMap();
new_message->composite_fields = new CMessage::CompositeFieldsMap();
std::set<const FieldDescriptor*> fields_to_swap;
// In case this the removed fields are the last reference to a message, keep
// a reference.
Py_INCREF(self);
for (const auto& to_release : messages_to_release) {
fields_to_swap.insert(to_release->parent_field_descriptor);
// Reparent
Py_INCREF(new_message);
Py_DECREF(to_release->parent);
to_release->parent = new_message;
self->child_submessages->erase(to_release->message);
new_message->child_submessages->emplace(to_release->message, to_release);
}
for (const auto& to_release : containers_to_release) {
fields_to_swap.insert(to_release->parent_field_descriptor);
Py_INCREF(new_message);
Py_DECREF(to_release->parent);
to_release->parent = new_message;
self->composite_fields->erase(to_release->parent_field_descriptor);
new_message->composite_fields->emplace(to_release->parent_field_descriptor,
to_release);
}
if (self->message->GetArena() == new_message->message->GetArena()) {
MessageReflectionFriend::UnsafeShallowSwapFields(
self->message, new_message->message,
std::vector<const FieldDescriptor*>(fields_to_swap.begin(),
fields_to_swap.end()));
} else {
self->message->GetReflection()->SwapFields(
self->message, new_message->message,
std::vector<const FieldDescriptor*>(fields_to_swap.begin(),
fields_to_swap.end()));
}
// This might delete the Python message completely if all children were moved.
Py_DECREF(self);
return 0;
}
int InternalReleaseFieldByDescriptor(
CMessage* self,
const FieldDescriptor* field_descriptor) {
if (!field_descriptor->is_repeated() &&
field_descriptor->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
// Single scalars are not in any cache.
return 0;
}
std::vector<CMessage*> messages_to_release;
std::vector<ContainerBase*> containers_to_release;
if (self->child_submessages && field_descriptor->is_repeated() &&
field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
for (const auto& child_item : *self->child_submessages) {
if (child_item.second->parent_field_descriptor == field_descriptor) {
messages_to_release.push_back(child_item.second);
}
}
}
if (self->composite_fields) {
CMessage::CompositeFieldsMap::iterator it =
self->composite_fields->find(field_descriptor);
if (it != self->composite_fields->end()) {
containers_to_release.push_back(it->second);
}
}
return InternalReparentFields(self, messages_to_release,
containers_to_release);
}
int ClearFieldByDescriptor(CMessage* self,
const FieldDescriptor* field_descriptor) {
if (!CheckFieldBelongsToMessage(field_descriptor, self->message)) {
return -1;
}
if (InternalReleaseFieldByDescriptor(self, field_descriptor) < 0) {
return -1;
}
AssureWritable(self);
Message* message = self->message;
message->GetReflection()->ClearField(message, field_descriptor);
return 0;
}
PyObject* ClearField(CMessage* self, PyObject* arg) {
char* field_name;
Py_ssize_t field_size;
if (PyString_AsStringAndSize(arg, &field_name, &field_size) < 0) {
return nullptr;
}
AssureWritable(self);
bool is_in_oneof;
const FieldDescriptor* field_descriptor = FindFieldWithOneofs(
self->message, absl::string_view(field_name, field_size), &is_in_oneof);
if (field_descriptor == nullptr) {
if (is_in_oneof) {
// We gave the name of a oneof, and none of its fields are set.
Py_RETURN_NONE;
} else {
PyErr_Format(PyExc_ValueError,
"Protocol message has no \"%s\" field.", field_name);
return nullptr;
}
}
if (ClearFieldByDescriptor(self, field_descriptor) < 0) {
return nullptr;
}
Py_RETURN_NONE;
}
PyObject* Clear(CMessage* self) {
AssureWritable(self);
// Detach all current fields of this message
std::vector<CMessage*> messages_to_release;
std::vector<ContainerBase*> containers_to_release;
if (self->child_submessages) {
for (const auto& item : *self->child_submessages) {
messages_to_release.push_back(item.second);
}
}
if (self->composite_fields) {
for (const auto& item : *self->composite_fields) {
containers_to_release.push_back(item.second);
}
}
if (InternalReparentFields(self, messages_to_release, containers_to_release) <
0) {
return nullptr;
}
if (self->unknown_field_set) {
unknown_fields::Clear(
reinterpret_cast<PyUnknownFields*>(self->unknown_field_set));
self->unknown_field_set = nullptr;
}
self->message->Clear();
Py_RETURN_NONE;
}
// ---------------------------------------------------------------------
static std::string GetMessageName(CMessage* self) {
if (self->parent_field_descriptor != nullptr) {
return self->parent_field_descriptor->full_name();
} else {
return self->message->GetDescriptor()->full_name();
}
}
static PyObject* InternalSerializeToString(
CMessage* self, PyObject* args, PyObject* kwargs,
bool require_initialized) {
// Parse the "deterministic" kwarg; defaults to False.
static const char* kwlist[] = {"deterministic", nullptr};
PyObject* deterministic_obj = Py_None;
if (!PyArg_ParseTupleAndKeywords(
args, kwargs, "|O", const_cast<char**>(kwlist), &deterministic_obj)) {
return nullptr;
}
// Preemptively convert to a bool first, so we don't need to back out of
// allocating memory if this raises an exception.
// NOTE: This is unused later if deterministic == Py_None, but that's fine.
int deterministic = PyObject_IsTrue(deterministic_obj);
if (deterministic < 0) {
return nullptr;
}
if (require_initialized && !self->message->IsInitialized()) {
ScopedPyObjectPtr errors(FindInitializationErrors(self));
if (errors == nullptr) {
return nullptr;
}
ScopedPyObjectPtr comma(PyUnicode_FromString(","));
if (comma == nullptr) {
return nullptr;
}
ScopedPyObjectPtr joined(
PyObject_CallMethod(comma.get(), "join", "O", errors.get()));
if (joined == nullptr) {
return nullptr;
}
// TODO(haberman): this is a (hopefully temporary) hack. The unit testing
// infrastructure reloads all pure-Python modules for every test, but not
// C++ modules (because that's generally impossible:
// http://bugs.python.org/issue1144263). But if we cache EncodeError, we'll
// return the EncodeError from a previous load of the module, which won't
// match a user's attempt to catch EncodeError. So we have to look it up
// again every time.
ScopedPyObjectPtr message_module(PyImport_ImportModule(
"google.protobuf.message"));
if (message_module.get() == nullptr) {
return nullptr;
}
ScopedPyObjectPtr encode_error(
PyObject_GetAttrString(message_module.get(), "EncodeError"));
if (encode_error.get() == nullptr) {
return nullptr;
}
PyErr_Format(encode_error.get(),
"Message %s is missing required fields: %s",
GetMessageName(self).c_str(), PyString_AsString(joined.get()));
return nullptr;
}
// Ok, arguments parsed and errors checked, now encode to a string
const size_t size = self->message->ByteSizeLong();
if (size == 0) {
return PyBytes_FromString("");
}
if (size > INT_MAX) {
PyErr_Format(PyExc_ValueError,
"Message %s exceeds maximum protobuf "
"size of 2GB: %zu",
GetMessageName(self).c_str(), size);
return nullptr;
}
PyObject* result = PyBytes_FromStringAndSize(nullptr, size);
if (result == nullptr) {
return nullptr;
}
io::ArrayOutputStream out(PyBytes_AS_STRING(result), size);
io::CodedOutputStream coded_out(&out);
if (deterministic_obj != Py_None) {
coded_out.SetSerializationDeterministic(deterministic);
}
self->message->SerializeWithCachedSizes(&coded_out);
ABSL_CHECK(!coded_out.HadError());
return result;
}
static PyObject* SerializeToString(
CMessage* self, PyObject* args, PyObject* kwargs) {
return InternalSerializeToString(self, args, kwargs,
/*require_initialized=*/true);
}
static PyObject* SerializePartialToString(
CMessage* self, PyObject* args, PyObject* kwargs) {
return InternalSerializeToString(self, args, kwargs,
/*require_initialized=*/false);
}
// Formats proto fields for ascii dumps using python formatting functions where
// appropriate.
class PythonFieldValuePrinter : public TextFormat::FastFieldValuePrinter {
public:
// Python has some differences from C++ when printing floating point numbers.
//
// 1) Trailing .0 is always printed.
// 2) (Python2) Output is rounded to 12 digits.
// 3) (Python3) The full precision of the double is preserved (and Python uses
// David M. Gay's dtoa(), when the C++ code uses SimpleDtoa. There are some
// differences, but they rarely happen)
//
// We override floating point printing with the C-API function for printing
// Python floats to ensure consistency.
void PrintFloat(float val,
TextFormat::BaseTextGenerator* generator) const override {
PrintDouble(val, generator);
}
void PrintDouble(double val,
TextFormat::BaseTextGenerator* generator) const override {
// This implementation is not highly optimized (it allocates two temporary
// Python objects) but it is simple and portable. If this is shown to be a
// performance bottleneck, we can optimize it, but the results will likely
// be more complicated to accommodate the differing behavior of double
// formatting between Python 2 and Python 3.
//
// (Though a valid question is: do we really want to make out output
// dependent on the Python version?)
ScopedPyObjectPtr py_value(PyFloat_FromDouble(val));
if (!py_value.get()) {
return;
}
ScopedPyObjectPtr py_str(PyObject_Str(py_value.get()));
if (!py_str.get()) {
return;
}
generator->PrintString(PyString_AsString(py_str.get()));
}
};
static PyObject* ToStr(CMessage* self) {
TextFormat::Printer printer;
// Passes ownership
printer.SetDefaultFieldValuePrinter(new PythonFieldValuePrinter());
printer.SetHideUnknownFields(true);
std::string output;
if (!printer.PrintToString(*self->message, &output)) {
PyErr_SetString(PyExc_ValueError, "Unable to convert message to str");
return nullptr;
}
return PyUnicode_FromString(output.c_str());
}
PyObject* MergeFrom(CMessage* self, PyObject* arg) {
CMessage* other_message;
if (!PyObject_TypeCheck(arg, CMessage_Type)) {
PyErr_Format(PyExc_TypeError,
"Parameter to MergeFrom() must be instance of same class: "
"expected %s got %s.",
self->message->GetDescriptor()->full_name().c_str(),
Py_TYPE(arg)->tp_name);
return nullptr;
}
other_message = reinterpret_cast<CMessage*>(arg);
if (other_message->message->GetDescriptor() !=
self->message->GetDescriptor()) {
PyErr_Format(PyExc_TypeError,
"Parameter to MergeFrom() must be instance of same class: "
"expected %s got %s.",
self->message->GetDescriptor()->full_name().c_str(),
other_message->message->GetDescriptor()->full_name().c_str());
return nullptr;
}
AssureWritable(self);
self->message->MergeFrom(*other_message->message);
// Child message might be lazily created before MergeFrom. Make sure they
// are mutable at this point if child messages are really created.
if (FixupMessageAfterMerge(self) < 0) {
return nullptr;
}
Py_RETURN_NONE;
}
static PyObject* CopyFrom(CMessage* self, PyObject* arg) {
CMessage* other_message;
if (!PyObject_TypeCheck(arg, CMessage_Type)) {
PyErr_Format(PyExc_TypeError,
"Parameter to CopyFrom() must be instance of same class: "
"expected %s got %s.",
self->message->GetDescriptor()->full_name().c_str(),
Py_TYPE(arg)->tp_name);
return nullptr;
}
other_message = reinterpret_cast<CMessage*>(arg);
if (self == other_message) {
Py_RETURN_NONE;
}
if (other_message->message->GetDescriptor() !=
self->message->GetDescriptor()) {
PyErr_Format(PyExc_TypeError,
"Parameter to CopyFrom() must be instance of same class: "
"expected %s got %s.",
self->message->GetDescriptor()->full_name().c_str(),
other_message->message->GetDescriptor()->full_name().c_str());
return nullptr;
}
AssureWritable(self);
// CopyFrom on the message will not clean up self->composite_fields,
// which can leave us in an inconsistent state, so clear it out here.
(void)ScopedPyObjectPtr(Clear(self));
self->message->CopyFrom(*other_message->message);
Py_RETURN_NONE;
}
// Provide a method in the module to set allow_oversize_protos to a boolean
// value. This method returns the newly value of allow_oversize_protos.
PyObject* SetAllowOversizeProtos(PyObject* m, PyObject* arg) {
if (!arg || !PyBool_Check(arg)) {
PyErr_SetString(PyExc_TypeError,
"Argument to SetAllowOversizeProtos must be boolean");
return nullptr;
}
allow_oversize_protos = PyObject_IsTrue(arg);
if (allow_oversize_protos) {
Py_RETURN_TRUE;
} else {
Py_RETURN_FALSE;
}
}
static PyObject* MergeFromString(CMessage* self, PyObject* arg) {
Py_buffer data;
if (PyObject_GetBuffer(arg, &data, PyBUF_SIMPLE) < 0) {
return nullptr;
}
AssureWritable(self);
PyMessageFactory* factory = GetFactoryForMessage(self);
int depth = allow_oversize_protos
? INT_MAX
: io::CodedInputStream::GetDefaultRecursionLimit();
const char* ptr;
internal::ParseContext ctx(
depth, false, &ptr,
absl::string_view(static_cast<const char*>(data.buf), data.len));
PyBuffer_Release(&data);
ctx.data().pool = factory->pool->pool;
ctx.data().factory = factory->message_factory;
ptr = self->message->_InternalParse(ptr, &ctx);
// Child message might be lazily created before MergeFrom. Make sure they
// are mutable at this point if child messages are really created.
if (FixupMessageAfterMerge(self) < 0) {
return nullptr;
}
// Python makes distinction in error message, between a general parse failure
// and in-correct ending on a terminating tag. Hence we need to be a bit more
// explicit in our correctness checks.
if (ptr == nullptr) {
// Parse error.
PyErr_Format(
DecodeError_class, "Error parsing message with type '%s'",
self->GetMessageClass()->message_descriptor->full_name().c_str());
return nullptr;
}
if (ctx.BytesUntilLimit(ptr) < 0) {
// The parser overshot the limit.
PyErr_Format(
DecodeError_class,
"Error parsing message as the message exceeded the protobuf limit "
"with type '%s'",
self->GetMessageClass()->message_descriptor->full_name().c_str());
return nullptr;
}
// ctx has an explicit limit set (length of string_view), so we have to
// check we ended at that limit.
if (!ctx.EndedAtLimit()) {
// TODO(jieluo): Raise error and return NULL instead.
// b/27494216
PyErr_Warn(nullptr, "Unexpected end-group tag: Not all data was converted");
return PyLong_FromLong(data.len - ctx.BytesUntilLimit(ptr));
}
return PyLong_FromLong(data.len);
}
static PyObject* ParseFromString(CMessage* self, PyObject* arg) {
if (ScopedPyObjectPtr(Clear(self)) == nullptr) {
return nullptr;
}
return MergeFromString(self, arg);
}
static PyObject* ByteSize(CMessage* self, PyObject* args) {
return PyLong_FromLong(self->message->ByteSizeLong());
}
PyObject* RegisterExtension(PyObject* cls, PyObject* extension_handle) {
const FieldDescriptor* descriptor =
GetExtensionDescriptor(extension_handle);
if (descriptor == nullptr) {
return nullptr;
}
if (!PyObject_TypeCheck(cls, CMessageClass_Type)) {
PyErr_Format(PyExc_TypeError, "Expected a message class, got %s",
cls->ob_type->tp_name);
return nullptr;
}
CMessageClass *message_class = reinterpret_cast<CMessageClass*>(cls);
if (message_class == nullptr) {
return nullptr;
}
// If the extension was already registered, check that it is the same.
const FieldDescriptor* existing_extension =
message_class->py_message_factory->pool->pool->FindExtensionByNumber(
descriptor->containing_type(), descriptor->number());
if (existing_extension != nullptr && existing_extension != descriptor) {
PyErr_SetString(PyExc_ValueError, "Double registration of Extensions");
return nullptr;
}
Py_RETURN_NONE;
}
static PyObject* SetInParent(CMessage* self, PyObject* args) {
AssureWritable(self);
Py_RETURN_NONE;
}
static PyObject* WhichOneof(CMessage* self, PyObject* arg) {
Py_ssize_t name_size;
char *name_data;
if (PyString_AsStringAndSize(arg, &name_data, &name_size) < 0) return nullptr;
const OneofDescriptor* oneof_desc =
self->message->GetDescriptor()->FindOneofByName(
absl::string_view(name_data, name_size));
if (oneof_desc == nullptr) {
PyErr_Format(PyExc_ValueError,
"Protocol message has no oneof \"%s\" field.", name_data);
return nullptr;
}
const FieldDescriptor* field_in_oneof =
self->message->GetReflection()->GetOneofFieldDescriptor(
*self->message, oneof_desc);
if (field_in_oneof == nullptr) {
Py_RETURN_NONE;
} else {
const std::string& name = field_in_oneof->name();
return PyUnicode_FromStringAndSize(name.c_str(), name.size());
}
}
static PyObject* GetExtensionDict(CMessage* self, void *closure);
static PyObject* ListFields(CMessage* self) {
std::vector<const FieldDescriptor*> fields;
self->message->GetReflection()->ListFields(*self->message, &fields);
// Normally, the list will be exactly the size of the fields.
ScopedPyObjectPtr all_fields(PyList_New(fields.size()));
if (all_fields == nullptr) {
return nullptr;
}
// When there are unknown extensions, the py list will *not* contain
// the field information. Thus the actual size of the py list will be
// smaller than the size of fields. Set the actual size at the end.
Py_ssize_t actual_size = 0;
for (size_t i = 0; i < fields.size(); ++i) {
ScopedPyObjectPtr t(PyTuple_New(2));
if (t == nullptr) {
return nullptr;
}
if (fields[i]->is_extension()) {
ScopedPyObjectPtr extension_field(
PyFieldDescriptor_FromDescriptor(fields[i]));
if (extension_field == nullptr) {
return nullptr;
}
// With C++ descriptors, the field can always be retrieved, but for
// unknown extensions which have not been imported in Python code, there
// is no message class and we cannot retrieve the value.
// TODO(amauryfa): consider building the class on the fly!
if (fields[i]->message_type() != nullptr &&
message_factory::GetMessageClass(GetFactoryForMessage(self),
fields[i]->message_type()) ==
nullptr) {
PyErr_Clear();
continue;
}
ScopedPyObjectPtr extensions(GetExtensionDict(self, nullptr));
if (extensions == nullptr) {
return nullptr;
}
// 'extension' reference later stolen by PyTuple_SET_ITEM.
PyObject* extension = PyObject_GetItem(
extensions.get(), extension_field.get());
if (extension == nullptr) {
return nullptr;
}
PyTuple_SET_ITEM(t.get(), 0, extension_field.release());
// Steals reference to 'extension'
PyTuple_SET_ITEM(t.get(), 1, extension);
} else {
// Normal field
ScopedPyObjectPtr field_descriptor(
PyFieldDescriptor_FromDescriptor(fields[i]));
if (field_descriptor == nullptr) {
return nullptr;
}
PyObject* field_value = GetFieldValue(self, fields[i]);
if (field_value == nullptr) {
PyErr_SetString(PyExc_ValueError, fields[i]->name().c_str());
return nullptr;
}
PyTuple_SET_ITEM(t.get(), 0, field_descriptor.release());
PyTuple_SET_ITEM(t.get(), 1, field_value);
}
PyList_SET_ITEM(all_fields.get(), actual_size, t.release());
++actual_size;
}
if (static_cast<size_t>(actual_size) != fields.size() &&
(PyList_SetSlice(all_fields.get(), actual_size, fields.size(), nullptr) <
0)) {
return nullptr;
}
return all_fields.release();
}
static PyObject* DiscardUnknownFields(CMessage* self) {
AssureWritable(self);
self->message->DiscardUnknownFields();
Py_RETURN_NONE;
}
PyObject* FindInitializationErrors(CMessage* self) {
Message* message = self->message;
std::vector<std::string> errors;
message->FindInitializationErrors(&errors);
PyObject* error_list = PyList_New(errors.size());
if (error_list == nullptr) {
return nullptr;
}
for (size_t i = 0; i < errors.size(); ++i) {
const std::string& error = errors[i];
PyObject* error_string =
PyUnicode_FromStringAndSize(error.c_str(), error.length());
if (error_string == nullptr) {
Py_DECREF(error_list);
return nullptr;
}
PyList_SET_ITEM(error_list, i, error_string);
}
return error_list;
}
static PyObject* RichCompare(CMessage* self, PyObject* other, int opid) {
// Only equality comparisons are implemented.
if (opid != Py_EQ && opid != Py_NE) {
Py_INCREF(Py_NotImplemented);
return Py_NotImplemented;
}
bool equals = true;
// If other is not a message, it cannot be equal.
if (!PyObject_TypeCheck(other, CMessage_Type)) {
equals = false;
} else {
// Otherwise, we have a CMessage whose message we can inspect.
const google::protobuf::Message* other_message =
reinterpret_cast<CMessage*>(other)->message;
// If messages don't have the same descriptors, they are not equal.
if (equals &&
self->message->GetDescriptor() != other_message->GetDescriptor()) {
equals = false;
}
// Check the message contents.
if (equals &&
!google::protobuf::util::MessageDifferencer::Equals(
*self->message, *reinterpret_cast<CMessage*>(other)->message)) {
equals = false;
}
}
if (equals ^ (opid == Py_EQ)) {
Py_RETURN_FALSE;
} else {
Py_RETURN_TRUE;
}
}
PyObject* InternalGetScalar(const Message* message,
const FieldDescriptor* field_descriptor) {
const Reflection* reflection = message->GetReflection();
if (!CheckFieldBelongsToMessage(field_descriptor, message)) {
return nullptr;
}
PyObject* result = nullptr;
switch (field_descriptor->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32: {
int32_t value = reflection->GetInt32(*message, field_descriptor);
result = PyLong_FromLong(value);
break;
}
case FieldDescriptor::CPPTYPE_INT64: {
int64_t value = reflection->GetInt64(*message, field_descriptor);
result = PyLong_FromLongLong(value);
break;
}
case FieldDescriptor::CPPTYPE_UINT32: {
uint32_t value = reflection->GetUInt32(*message, field_descriptor);
result = PyLong_FromSsize_t(value);
break;
}
case FieldDescriptor::CPPTYPE_UINT64: {
uint64_t value = reflection->GetUInt64(*message, field_descriptor);
result = PyLong_FromUnsignedLongLong(value);
break;
}
case FieldDescriptor::CPPTYPE_FLOAT: {
float value = reflection->GetFloat(*message, field_descriptor);
result = PyFloat_FromDouble(value);
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value = reflection->GetDouble(*message, field_descriptor);
result = PyFloat_FromDouble(value);
break;
}
case FieldDescriptor::CPPTYPE_BOOL: {
bool value = reflection->GetBool(*message, field_descriptor);
result = PyBool_FromLong(value);
break;
}
case FieldDescriptor::CPPTYPE_STRING: {
std::string scratch;
const std::string& value =
reflection->GetStringReference(*message, field_descriptor, &scratch);
result = ToStringObject(field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_ENUM: {
const EnumValueDescriptor* enum_value =
message->GetReflection()->GetEnum(*message, field_descriptor);
result = PyLong_FromLong(enum_value->number());
break;
}
default:
PyErr_Format(
PyExc_SystemError, "Getting a value from a field of unknown type %d",
field_descriptor->cpp_type());
}
return result;
}
CMessage* InternalGetSubMessage(
CMessage* self, const FieldDescriptor* field_descriptor) {
const Reflection* reflection = self->message->GetReflection();
PyMessageFactory* factory = GetFactoryForMessage(self);
CMessageClass* message_class = message_factory::GetOrCreateMessageClass(
factory, field_descriptor->message_type());
ScopedPyObjectPtr message_class_owner(
reinterpret_cast<PyObject*>(message_class));
if (message_class == nullptr) {
return nullptr;
}
CMessage* cmsg = cmessage::NewEmptyMessage(message_class);
if (cmsg == nullptr) {
return nullptr;
}
Py_INCREF(self);
cmsg->parent = self;
cmsg->parent_field_descriptor = field_descriptor;
if (reflection->HasField(*self->message, field_descriptor)) {
// Force triggering MutableMessage to set the lazy message 'Dirty'
if (MessageReflectionFriend::IsLazyField(reflection, *self->message,
field_descriptor)) {
Message* sub_message = reflection->MutableMessage(
self->message, field_descriptor, factory->message_factory);
cmsg->read_only = false;
cmsg->message = sub_message;
return cmsg;
}
} else {
cmsg->read_only = true;
}
const Message& sub_message = reflection->GetMessage(
*self->message, field_descriptor, factory->message_factory);
cmsg->message = const_cast<Message*>(&sub_message);
return cmsg;
}
int InternalSetNonOneofScalar(
Message* message,
const FieldDescriptor* field_descriptor,
PyObject* arg) {
const Reflection* reflection = message->GetReflection();
if (!CheckFieldBelongsToMessage(field_descriptor, message)) {
return -1;
}
switch (field_descriptor->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32: {
PROTOBUF_CHECK_GET_INT32(arg, value, -1);
reflection->SetInt32(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_INT64: {
PROTOBUF_CHECK_GET_INT64(arg, value, -1);
reflection->SetInt64(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_UINT32: {
PROTOBUF_CHECK_GET_UINT32(arg, value, -1);
reflection->SetUInt32(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_UINT64: {
PROTOBUF_CHECK_GET_UINT64(arg, value, -1);
reflection->SetUInt64(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_FLOAT: {
PROTOBUF_CHECK_GET_FLOAT(arg, value, -1);
reflection->SetFloat(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
PROTOBUF_CHECK_GET_DOUBLE(arg, value, -1);
reflection->SetDouble(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_BOOL: {
PROTOBUF_CHECK_GET_BOOL(arg, value, -1);
reflection->SetBool(message, field_descriptor, value);
break;
}
case FieldDescriptor::CPPTYPE_STRING: {
if (!CheckAndSetString(
arg, message, field_descriptor, reflection, false, -1)) {
return -1;
}
break;
}
case FieldDescriptor::CPPTYPE_ENUM: {
PROTOBUF_CHECK_GET_INT32(arg, value, -1);
if (!field_descriptor->legacy_enum_field_treated_as_closed()) {
reflection->SetEnumValue(message, field_descriptor, value);
} else {
const EnumDescriptor* enum_descriptor = field_descriptor->enum_type();
const EnumValueDescriptor* enum_value =
enum_descriptor->FindValueByNumber(value);
if (enum_value != nullptr) {
reflection->SetEnum(message, field_descriptor, enum_value);
} else {
PyErr_Format(PyExc_ValueError, "Unknown enum value: %d", value);
return -1;
}
}
break;
}
default:
PyErr_Format(
PyExc_SystemError, "Setting value to a field of unknown type %d",
field_descriptor->cpp_type());
return -1;
}
return 0;
}
int InternalSetScalar(
CMessage* self,
const FieldDescriptor* field_descriptor,
PyObject* arg) {
if (!CheckFieldBelongsToMessage(field_descriptor, self->message)) {
return -1;
}
if (MaybeReleaseOverlappingOneofField(self, field_descriptor) < 0) {
return -1;
}
return InternalSetNonOneofScalar(self->message, field_descriptor, arg);
}
PyObject* FromString(PyTypeObject* cls, PyObject* serialized) {
PyObject* py_cmsg =
PyObject_CallObject(reinterpret_cast<PyObject*>(cls), nullptr);
if (py_cmsg == nullptr) {
return nullptr;
}
CMessage* cmsg = reinterpret_cast<CMessage*>(py_cmsg);
ScopedPyObjectPtr py_length(MergeFromString(cmsg, serialized));
if (py_length == nullptr) {
Py_DECREF(py_cmsg);
return nullptr;
}
return py_cmsg;
}
PyObject* DeepCopy(CMessage* self, PyObject* arg) {
PyObject* clone =
PyObject_CallObject(reinterpret_cast<PyObject*>(Py_TYPE(self)), nullptr);
if (clone == nullptr) {
return nullptr;
}
if (!PyObject_TypeCheck(clone, CMessage_Type)) {
Py_DECREF(clone);
return nullptr;
}
if (ScopedPyObjectPtr(MergeFrom(reinterpret_cast<CMessage*>(clone),
reinterpret_cast<PyObject*>(self))) ==
nullptr) {
Py_DECREF(clone);
return nullptr;
}
return clone;
}
PyObject* ToUnicode(CMessage* self) {
// Lazy import to prevent circular dependencies
ScopedPyObjectPtr text_format(
PyImport_ImportModule(PROTOBUF_PYTHON_PUBLIC ".text_format"));
if (text_format == nullptr) {
return nullptr;
}
ScopedPyObjectPtr method_name(PyUnicode_FromString("MessageToString"));
if (method_name == nullptr) {
return nullptr;
}
Py_INCREF(Py_True);
ScopedPyObjectPtr encoded(PyObject_CallMethodObjArgs(
text_format.get(), method_name.get(), self, Py_True, nullptr));
Py_DECREF(Py_True);
if (encoded == nullptr) {
return nullptr;
}
PyObject* decoded =
PyUnicode_FromEncodedObject(encoded.get(), "utf-8", nullptr);
if (decoded == nullptr) {
return nullptr;
}
return decoded;
}
// CMessage static methods:
PyObject* _CheckCalledFromGeneratedFile(PyObject* unused,
PyObject* unused_arg) {
if (!_CalledFromGeneratedFile(1)) {
PyErr_SetString(PyExc_TypeError,
"Descriptors should not be created directly, "
"but only retrieved from their parent.");
return nullptr;
}
Py_RETURN_NONE;
}
static PyObject* GetExtensionDict(CMessage* self, void *closure) {
// If there are extension_ranges, the message is "extendable". Allocate a
// dictionary to store the extension fields.
const Descriptor* descriptor = GetMessageDescriptor(Py_TYPE(self));
if (!descriptor->extension_range_count()) {
PyErr_SetNone(PyExc_AttributeError);
return nullptr;
}
if (!self->composite_fields) {
self->composite_fields = new CMessage::CompositeFieldsMap();
}
if (!self->composite_fields) {
return nullptr;
}
ExtensionDict* extension_dict = extension_dict::NewExtensionDict(self);
return reinterpret_cast<PyObject*>(extension_dict);
}
static PyObject* GetUnknownFields(CMessage* self) {
if (self->unknown_field_set == nullptr) {
self->unknown_field_set = unknown_fields::NewPyUnknownFields(self);
} else {
Py_INCREF(self->unknown_field_set);
}
return self->unknown_field_set;
}
static PyObject* GetExtensionsByName(CMessage *self, void *closure) {
return message_meta::GetExtensionsByName(
reinterpret_cast<CMessageClass*>(Py_TYPE(self)), closure);
}
static PyObject* GetExtensionsByNumber(CMessage *self, void *closure) {
return message_meta::GetExtensionsByNumber(
reinterpret_cast<CMessageClass*>(Py_TYPE(self)), closure);
}
static PyGetSetDef Getters[] = {
{"Extensions", (getter)GetExtensionDict, nullptr, "Extension dict"},
{"_extensions_by_name", (getter)GetExtensionsByName, nullptr},
{"_extensions_by_number", (getter)GetExtensionsByNumber, nullptr},
{nullptr},
};
static PyMethodDef Methods[] = {
{"__deepcopy__", (PyCFunction)DeepCopy, METH_VARARGS,
"Makes a deep copy of the class."},
{"__unicode__", (PyCFunction)ToUnicode, METH_NOARGS,
"Outputs a unicode representation of the message."},
{"ByteSize", (PyCFunction)ByteSize, METH_NOARGS,
"Returns the size of the message in bytes."},
{"Clear", (PyCFunction)Clear, METH_NOARGS, "Clears the message."},
{"ClearExtension", (PyCFunction)ClearExtension, METH_O,
"Clears a message field."},
{"ClearField", (PyCFunction)ClearField, METH_O, "Clears a message field."},
{"CopyFrom", (PyCFunction)CopyFrom, METH_O,
"Copies a protocol message into the current message."},
{"DiscardUnknownFields", (PyCFunction)DiscardUnknownFields, METH_NOARGS,
"Discards the unknown fields."},
{"FindInitializationErrors", (PyCFunction)FindInitializationErrors,
METH_NOARGS, "Finds unset required fields."},
{"FromString", (PyCFunction)FromString, METH_O | METH_CLASS,
"Creates new method instance from given serialized data."},
{"HasExtension", (PyCFunction)HasExtension, METH_O,
"Checks if a message field is set."},
{"HasField", (PyCFunction)HasField, METH_O,
"Checks if a message field is set."},
{"IsInitialized", (PyCFunction)IsInitialized, METH_VARARGS,
"Checks if all required fields of a protocol message are set."},
{"ListFields", (PyCFunction)ListFields, METH_NOARGS,
"Lists all set fields of a message."},
{"MergeFrom", (PyCFunction)MergeFrom, METH_O,
"Merges a protocol message into the current message."},
{"MergeFromString", (PyCFunction)MergeFromString, METH_O,
"Merges a serialized message into the current message."},
{"ParseFromString", (PyCFunction)ParseFromString, METH_O,
"Parses a serialized message into the current message."},
{"RegisterExtension", (PyCFunction)RegisterExtension, METH_O | METH_CLASS,
"Registers an extension with the current message."},
{"SerializePartialToString", (PyCFunction)SerializePartialToString,
METH_VARARGS | METH_KEYWORDS,
"Serializes the message to a string, even if it isn't initialized."},
{"SerializeToString", (PyCFunction)SerializeToString,
METH_VARARGS | METH_KEYWORDS,
"Serializes the message to a string, only for initialized messages."},
{"SetInParent", (PyCFunction)SetInParent, METH_NOARGS,
"Sets the has bit of the given field in its parent message."},
{"UnknownFields", (PyCFunction)GetUnknownFields, METH_NOARGS,
"Parse unknown field set"},
{"WhichOneof", (PyCFunction)WhichOneof, METH_O,
"Returns the name of the field set inside a oneof, "
"or None if no field is set."},
// Static Methods.
{"_CheckCalledFromGeneratedFile",
(PyCFunction)_CheckCalledFromGeneratedFile, METH_NOARGS | METH_STATIC,
"Raises TypeError if the caller is not in a _pb2.py file."},
{nullptr, nullptr}};
bool SetCompositeField(CMessage* self, const FieldDescriptor* field,
ContainerBase* value) {
if (self->composite_fields == nullptr) {
self->composite_fields = new CMessage::CompositeFieldsMap();
}
(*self->composite_fields)[field] = value;
return true;
}
bool SetSubmessage(CMessage* self, CMessage* submessage) {
if (self->child_submessages == nullptr) {
self->child_submessages = new CMessage::SubMessagesMap();
}
(*self->child_submessages)[submessage->message] = submessage;
return true;
}
PyObject* GetAttr(PyObject* pself, PyObject* name) {
CMessage* self = reinterpret_cast<CMessage*>(pself);
PyObject* result = PyObject_GenericGetAttr(
reinterpret_cast<PyObject*>(self), name);
if (result != nullptr) {
return result;
}
if (!PyErr_ExceptionMatches(PyExc_AttributeError)) {
return nullptr;
}
PyErr_Clear();
return message_meta::GetClassAttribute(
CheckMessageClass(Py_TYPE(self)), name);
}
PyObject* GetFieldValue(CMessage* self,
const FieldDescriptor* field_descriptor) {
if (self->composite_fields) {
CMessage::CompositeFieldsMap::iterator it =
self->composite_fields->find(field_descriptor);
if (it != self->composite_fields->end()) {
ContainerBase* value = it->second;
Py_INCREF(value);
return value->AsPyObject();
}
}
if (self->message->GetDescriptor() != field_descriptor->containing_type()) {
PyErr_Format(PyExc_TypeError,
"descriptor to field '%s' doesn't apply to '%s' object",
field_descriptor->full_name().c_str(),
Py_TYPE(self)->tp_name);
return nullptr;
}
if (!field_descriptor->is_repeated() &&
field_descriptor->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
return InternalGetScalar(self->message, field_descriptor);
}
ContainerBase* py_container = nullptr;
if (field_descriptor->is_map()) {
const Descriptor* entry_type = field_descriptor->message_type();
const FieldDescriptor* value_type = entry_type->map_value();
if (value_type->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
CMessageClass* value_class = message_factory::GetMessageClass(
GetFactoryForMessage(self), value_type->message_type());
if (value_class == nullptr) {
return nullptr;
}
py_container =
NewMessageMapContainer(self, field_descriptor, value_class);
} else {
py_container = NewScalarMapContainer(self, field_descriptor);
}
} else if (field_descriptor->is_repeated()) {
if (field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
CMessageClass* message_class = message_factory::GetMessageClass(
GetFactoryForMessage(self), field_descriptor->message_type());
if (message_class == nullptr) {
return nullptr;
}
py_container = repeated_composite_container::NewContainer(
self, field_descriptor, message_class);
} else {
py_container =
repeated_scalar_container::NewContainer(self, field_descriptor);
}
} else if (field_descriptor->cpp_type() ==
FieldDescriptor::CPPTYPE_MESSAGE) {
py_container = InternalGetSubMessage(self, field_descriptor);
} else {
PyErr_SetString(PyExc_SystemError, "Should never happen");
}
if (py_container == nullptr) {
return nullptr;
}
if (!SetCompositeField(self, field_descriptor, py_container)) {
Py_DECREF(py_container);
return nullptr;
}
return py_container->AsPyObject();
}
int SetFieldValue(CMessage* self, const FieldDescriptor* field_descriptor,
PyObject* value) {
if (self->message->GetDescriptor() != field_descriptor->containing_type()) {
PyErr_Format(PyExc_TypeError,
"descriptor to field '%s' doesn't apply to '%s' object",
field_descriptor->full_name().c_str(),
Py_TYPE(self)->tp_name);
return -1;
} else if (field_descriptor->label() == FieldDescriptor::LABEL_REPEATED) {
PyErr_Format(PyExc_AttributeError,
"Assignment not allowed to repeated "
"field \"%s\" in protocol message object.",
field_descriptor->name().c_str());
return -1;
} else if (field_descriptor->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
PyErr_Format(PyExc_AttributeError,
"Assignment not allowed to "
"field \"%s\" in protocol message object.",
field_descriptor->name().c_str());
return -1;
} else {
AssureWritable(self);
return InternalSetScalar(self, field_descriptor, value);
}
}
} // namespace cmessage
// All containers which are not messages:
// - Make a new parent message
// - Copy the field
// - return the field.
PyObject* ContainerBase::DeepCopy() {
CMessage* new_parent =
cmessage::NewEmptyMessage(this->parent->GetMessageClass());
new_parent->message = this->parent->message->New(nullptr);
// Copy the map field into the new message.
this->parent->message->GetReflection()->SwapFields(
this->parent->message, new_parent->message,
{this->parent_field_descriptor});
this->parent->message->MergeFrom(*new_parent->message);
PyObject* result =
cmessage::GetFieldValue(new_parent, this->parent_field_descriptor);
Py_DECREF(new_parent);
return result;
}
void ContainerBase::RemoveFromParentCache() {
CMessage* parent = this->parent;
if (parent) {
if (parent->composite_fields)
parent->composite_fields->erase(this->parent_field_descriptor);
Py_CLEAR(parent);
}
}
CMessage* CMessage::BuildSubMessageFromPointer(
const FieldDescriptor* field_descriptor, Message* sub_message,
CMessageClass* message_class) {
if (!this->child_submessages) {
this->child_submessages = new CMessage::SubMessagesMap();
}
auto it = this->child_submessages->find(sub_message);
if (it != this->child_submessages->end()) {
Py_INCREF(it->second);
return it->second;
}
CMessage* cmsg = cmessage::NewEmptyMessage(message_class);
if (cmsg == nullptr) {
return nullptr;
}
cmsg->message = sub_message;
Py_INCREF(this);
cmsg->parent = this;
cmsg->parent_field_descriptor = field_descriptor;
cmessage::SetSubmessage(this, cmsg);
return cmsg;
}
CMessage* CMessage::MaybeReleaseSubMessage(Message* sub_message) {
if (!this->child_submessages) {
return nullptr;
}
auto it = this->child_submessages->find(sub_message);
if (it == this->child_submessages->end()) return nullptr;
CMessage* released = it->second;
// The target message will now own its content.
Py_CLEAR(released->parent);
released->parent_field_descriptor = nullptr;
released->read_only = false;
// Delete it from the cache.
this->child_submessages->erase(sub_message);
return released;
}
static CMessageClass _CMessage_Type = {{{
PyVarObject_HEAD_INIT(&_CMessageClass_Type, 0) FULL_MODULE_NAME
".CMessage", // tp_name
sizeof(CMessage), // tp_basicsize
0, // tp_itemsize
(destructor)cmessage::Dealloc, // tp_dealloc
#if PY_VERSION_HEX < 0x03080000
nullptr, // tp_print
#else
0, // tp_vectorcall_offset
#endif
nullptr, // tp_getattr
nullptr, // tp_setattr
nullptr, // tp_compare
(reprfunc)cmessage::ToStr, // tp_repr
nullptr, // tp_as_number
nullptr, // tp_as_sequence
nullptr, // tp_as_mapping
PyObject_HashNotImplemented, // tp_hash
nullptr, // tp_call
(reprfunc)cmessage::ToStr, // tp_str
cmessage::GetAttr, // tp_getattro
nullptr, // tp_setattro
nullptr, // tp_as_buffer
Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE |
Py_TPFLAGS_HAVE_VERSION_TAG, // tp_flags
"A ProtocolMessage", // tp_doc
nullptr, // tp_traverse
nullptr, // tp_clear
(richcmpfunc)cmessage::RichCompare, // tp_richcompare
offsetof(CMessage, weakreflist), // tp_weaklistoffset
nullptr, // tp_iter
nullptr, // tp_iternext
cmessage::Methods, // tp_methods
nullptr, // tp_members
cmessage::Getters, // tp_getset
nullptr, // tp_base
nullptr, // tp_dict
nullptr, // tp_descr_get
nullptr, // tp_descr_set
0, // tp_dictoffset
(initproc)cmessage::Init, // tp_init
nullptr, // tp_alloc
cmessage::New, // tp_new
}}};
PyTypeObject* CMessage_Type = &_CMessage_Type.super.ht_type;
// --- Exposing the C proto living inside Python proto to C code:
const Message* (*GetCProtoInsidePyProtoPtr)(PyObject* msg);
Message* (*MutableCProtoInsidePyProtoPtr)(PyObject* msg);
static const Message* GetCProtoInsidePyProtoImpl(PyObject* msg) {
const Message* message = PyMessage_GetMessagePointer(msg);
if (message == nullptr) {
PyErr_Clear();
return nullptr;
}
return message;
}
static Message* MutableCProtoInsidePyProtoImpl(PyObject* msg) {
Message* message = PyMessage_GetMutableMessagePointer(msg);
if (message == nullptr) {
PyErr_Clear();
return nullptr;
}
return message;
}
const Message* PyMessage_GetMessagePointer(PyObject* msg) {
if (!PyObject_TypeCheck(msg, CMessage_Type)) {
PyErr_SetString(PyExc_TypeError, "Not a Message instance");
return nullptr;
}
CMessage* cmsg = reinterpret_cast<CMessage*>(msg);
return cmsg->message;
}
Message* PyMessage_GetMutableMessagePointer(PyObject* msg) {
if (!PyObject_TypeCheck(msg, CMessage_Type)) {
PyErr_SetString(PyExc_TypeError, "Not a Message instance");
return nullptr;
}
CMessage* cmsg = reinterpret_cast<CMessage*>(msg);
if ((cmsg->composite_fields && !cmsg->composite_fields->empty()) ||
(cmsg->child_submessages && !cmsg->child_submessages->empty())) {
// There is currently no way of accurately syncing arbitrary changes to
// the underlying C++ message back to the CMessage (e.g. removed repeated
// composite containers). We only allow direct mutation of the underlying
// C++ message if there is no child data in the CMessage.
PyErr_SetString(PyExc_ValueError,
"Cannot reliably get a mutable pointer "
"to a message with extra references");
return nullptr;
}
cmessage::AssureWritable(cmsg);
return cmsg->message;
}
// Returns a new reference to the MessageClass to use for message creation.
// - if a PyMessageFactory is passed, use it.
// - Otherwise, if a PyDescriptorPool was created, use its factory.
static CMessageClass* GetMessageClassFromDescriptor(
const Descriptor* descriptor, PyObject* py_message_factory) {
PyMessageFactory* factory = nullptr;
if (py_message_factory == nullptr) {
PyDescriptorPool* pool =
GetDescriptorPool_FromPool(descriptor->file()->pool());
if (pool == nullptr) {
PyErr_SetString(PyExc_TypeError,
"Unknown descriptor pool; C++ users should call "
"DescriptorPool_FromPool and keep it alive");
return nullptr;
}
factory = pool->py_message_factory;
} else if (PyObject_TypeCheck(py_message_factory, &PyMessageFactory_Type)) {
factory = reinterpret_cast<PyMessageFactory*>(py_message_factory);
} else {
PyErr_SetString(PyExc_TypeError, "Expected a MessageFactory");
return nullptr;
}
return message_factory::GetOrCreateMessageClass(factory, descriptor);
}
PyObject* PyMessage_New(const Descriptor* descriptor,
PyObject* py_message_factory) {
CMessageClass* message_class =
GetMessageClassFromDescriptor(descriptor, py_message_factory);
if (message_class == nullptr) {
return nullptr;
}
CMessage* self = cmessage::NewCMessage(message_class);
Py_DECREF(message_class);
if (self == nullptr) {
return nullptr;
}
return self->AsPyObject();
}
PyObject* PyMessage_NewMessageOwnedExternally(Message* message,
PyObject* py_message_factory) {
CMessageClass* message_class = GetMessageClassFromDescriptor(
message->GetDescriptor(), py_message_factory);
if (message_class == nullptr) {
return nullptr;
}
CMessage* self = cmessage::NewEmptyMessage(message_class);
Py_DECREF(message_class);
if (self == nullptr) {
return nullptr;
}
self->message = message;
Py_INCREF(Py_None);
self->parent = reinterpret_cast<CMessage*>(Py_None);
return self->AsPyObject();
}
void InitGlobals() {
// TODO(gps): Check all return values in this function for NULL and propagate
// the error (MemoryError) on up to result in an import failure. These should
// also be freed and reset to NULL during finalization.
kDESCRIPTOR = PyUnicode_FromString("DESCRIPTOR");
PyObject* dummy_obj = PySet_New(nullptr);
kEmptyWeakref = PyWeakref_NewRef(dummy_obj, nullptr);
Py_DECREF(dummy_obj);
}
bool InitProto2MessageModule(PyObject *m) {
// Initialize types and globals in descriptor.cc
if (!InitDescriptor()) {
return false;
}
// Initialize types and globals in descriptor_pool.cc
if (!InitDescriptorPool()) {
return false;
}
// Initialize types and globals in message_factory.cc
if (!InitMessageFactory()) {
return false;
}
// Initialize constants defined in this file.
InitGlobals();
CMessageClass_Type->tp_base = &PyType_Type;
if (PyType_Ready(CMessageClass_Type) < 0) {
return false;
}
PyModule_AddObject(m, "MessageMeta",
reinterpret_cast<PyObject*>(CMessageClass_Type));
if (PyType_Ready(CMessage_Type) < 0) {
return false;
}
if (PyType_Ready(CFieldProperty_Type) < 0) {
return false;
}
// DESCRIPTOR is set on each protocol buffer message class elsewhere, but set
// it here as well to document that subclasses need to set it.
PyDict_SetItem(CMessage_Type->tp_dict, kDESCRIPTOR, Py_None);
// Invalidate any cached data for the CMessage type.
// This call is necessary to correctly support Py_TPFLAGS_HAVE_VERSION_TAG,
// after we have modified CMessage_Type.tp_dict.
PyType_Modified(CMessage_Type);
PyModule_AddObject(m, "Message", reinterpret_cast<PyObject*>(CMessage_Type));
// Initialize Repeated container types.
{
if (PyType_Ready(&RepeatedScalarContainer_Type) < 0) {
return false;
}
PyModule_AddObject(
m, "RepeatedScalarContainer",
reinterpret_cast<PyObject*>(&RepeatedScalarContainer_Type));
if (PyType_Ready(&RepeatedCompositeContainer_Type) < 0) {
return false;
}
PyModule_AddObject(
m, "RepeatedCompositeContainer",
reinterpret_cast<PyObject*>(&RepeatedCompositeContainer_Type));
// Register them as MutableSequence.
ScopedPyObjectPtr collections(PyImport_ImportModule("collections.abc"));
if (collections == nullptr) {
return false;
}
ScopedPyObjectPtr mutable_sequence(
PyObject_GetAttrString(collections.get(), "MutableSequence"));
if (mutable_sequence == nullptr) {
return false;
}
if (ScopedPyObjectPtr(
PyObject_CallMethod(mutable_sequence.get(), "register", "O",
&RepeatedScalarContainer_Type)) == nullptr) {
return false;
}
if (ScopedPyObjectPtr(
PyObject_CallMethod(mutable_sequence.get(), "register", "O",
&RepeatedCompositeContainer_Type)) == nullptr) {
return false;
}
}
if (PyType_Ready(&PyUnknownFields_Type) < 0) {
return false;
}
if (PyType_Ready(&PyUnknownFieldSet_Type) < 0) {
return false;
}
PyModule_AddObject(m, "UnknownFieldSet",
reinterpret_cast<PyObject*>(&PyUnknownFieldSet_Type));
if (PyType_Ready(&PyUnknownFieldRef_Type) < 0) {
return false;
}
if (PyType_Ready(&PyUnknownField_Type) < 0) {
return false;
}
// Initialize Map container types.
if (!InitMapContainers()) {
return false;
}
PyModule_AddObject(m, "ScalarMapContainer",
reinterpret_cast<PyObject*>(ScalarMapContainer_Type));
PyModule_AddObject(m, "MessageMapContainer",
reinterpret_cast<PyObject*>(MessageMapContainer_Type));
PyModule_AddObject(m, "MapIterator",
reinterpret_cast<PyObject*>(&MapIterator_Type));
if (PyType_Ready(&ExtensionDict_Type) < 0) {
return false;
}
PyModule_AddObject(m, "ExtensionDict",
reinterpret_cast<PyObject*>(&ExtensionDict_Type));
if (PyType_Ready(&ExtensionIterator_Type) < 0) {
return false;
}
PyModule_AddObject(m, "ExtensionIterator",
reinterpret_cast<PyObject*>(&ExtensionIterator_Type));
// Expose the DescriptorPool used to hold all descriptors added from generated
// pb2.py files.
// PyModule_AddObject steals a reference.
Py_INCREF(GetDefaultDescriptorPool());
PyModule_AddObject(m, "default_pool",
reinterpret_cast<PyObject*>(GetDefaultDescriptorPool()));
PyModule_AddObject(m, "DescriptorPool",
reinterpret_cast<PyObject*>(&PyDescriptorPool_Type));
PyModule_AddObject(m, "Descriptor",
reinterpret_cast<PyObject*>(&PyMessageDescriptor_Type));
PyModule_AddObject(m, "FieldDescriptor",
reinterpret_cast<PyObject*>(&PyFieldDescriptor_Type));
PyModule_AddObject(m, "EnumDescriptor",
reinterpret_cast<PyObject*>(&PyEnumDescriptor_Type));
PyModule_AddObject(m, "EnumValueDescriptor",
reinterpret_cast<PyObject*>(&PyEnumValueDescriptor_Type));
PyModule_AddObject(m, "FileDescriptor",
reinterpret_cast<PyObject*>(&PyFileDescriptor_Type));
PyModule_AddObject(m, "OneofDescriptor",
reinterpret_cast<PyObject*>(&PyOneofDescriptor_Type));
PyModule_AddObject(m, "ServiceDescriptor",
reinterpret_cast<PyObject*>(&PyServiceDescriptor_Type));
PyModule_AddObject(m, "MethodDescriptor",
reinterpret_cast<PyObject*>(&PyMethodDescriptor_Type));
PyObject* enum_type_wrapper =
PyImport_ImportModule(PROTOBUF_PYTHON_INTERNAL ".enum_type_wrapper");
if (enum_type_wrapper == nullptr) {
return false;
}
EnumTypeWrapper_class =
PyObject_GetAttrString(enum_type_wrapper, "EnumTypeWrapper");
Py_DECREF(enum_type_wrapper);
PyObject* message_module =
PyImport_ImportModule(PROTOBUF_PYTHON_PUBLIC ".message");
if (message_module == nullptr) {
return false;
}
EncodeError_class = PyObject_GetAttrString(message_module, "EncodeError");
DecodeError_class = PyObject_GetAttrString(message_module, "DecodeError");
PythonMessage_class = PyObject_GetAttrString(message_module, "Message");
Py_DECREF(message_module);
PyObject* pickle_module = PyImport_ImportModule("pickle");
if (pickle_module == nullptr) {
return false;
}
PickleError_class = PyObject_GetAttrString(pickle_module, "PickleError");
Py_DECREF(pickle_module);
// Override {Get,Mutable}CProtoInsidePyProto.
GetCProtoInsidePyProtoPtr = GetCProtoInsidePyProtoImpl;
MutableCProtoInsidePyProtoPtr = MutableCProtoInsidePyProtoImpl;
return true;
}
} // namespace python
} // namespace protobuf
} // namespace google