| // Protocol Buffers - Google's data interchange format |
| // Copyright 2023 Google LLC. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| //! UPB FFI wrapper code for use by Rust Protobuf. |
| |
| use crate::__internal::{Private, PtrAndLen, RawArena, RawMessage, RawRepeatedField}; |
| use std::alloc; |
| use std::alloc::Layout; |
| use std::cell::UnsafeCell; |
| use std::fmt; |
| use std::marker::PhantomData; |
| use std::mem::MaybeUninit; |
| use std::ops::Deref; |
| use std::ptr::{self, NonNull}; |
| use std::slice; |
| use std::sync::Once; |
| |
| /// See `upb/port/def.inc`. |
| const UPB_MALLOC_ALIGN: usize = 8; |
| |
| /// A wrapper over a `upb_Arena`. |
| /// |
| /// This is not a safe wrapper per se, because the allocation functions still |
| /// have sharp edges (see their safety docs for more info). |
| /// |
| /// This is an owning type and will automatically free the arena when |
| /// dropped. |
| /// |
| /// Note that this type is neither `Sync` nor `Send`. |
| #[derive(Debug)] |
| pub struct Arena { |
| // Safety invariant: this must always be a valid arena |
| raw: RawArena, |
| _not_sync: PhantomData<UnsafeCell<()>>, |
| } |
| |
| extern "C" { |
| // `Option<NonNull<T: Sized>>` is ABI-compatible with `*mut T` |
| fn upb_Arena_New() -> Option<RawArena>; |
| fn upb_Arena_Free(arena: RawArena); |
| fn upb_Arena_Malloc(arena: RawArena, size: usize) -> *mut u8; |
| fn upb_Arena_Realloc(arena: RawArena, ptr: *mut u8, old: usize, new: usize) -> *mut u8; |
| } |
| |
| impl Arena { |
| /// Allocates a fresh arena. |
| #[inline] |
| pub fn new() -> Self { |
| #[inline(never)] |
| #[cold] |
| fn arena_new_failed() -> ! { |
| panic!("Could not create a new UPB arena"); |
| } |
| |
| // SAFETY: |
| // - `upb_Arena_New` is assumed to be implemented correctly and always sound to |
| // call; if it returned a non-null pointer, it is a valid arena. |
| unsafe { |
| let Some(raw) = upb_Arena_New() else { arena_new_failed() }; |
| Self { raw, _not_sync: PhantomData } |
| } |
| } |
| |
| /// Returns the raw, UPB-managed pointer to the arena. |
| #[inline] |
| pub fn raw(&self) -> RawArena { |
| self.raw |
| } |
| |
| /// Allocates some memory on the arena. |
| /// |
| /// # Safety |
| /// |
| /// - `layout`'s alignment must be less than `UPB_MALLOC_ALIGN`. |
| #[inline] |
| pub unsafe fn alloc(&self, layout: Layout) -> &mut [MaybeUninit<u8>] { |
| debug_assert!(layout.align() <= UPB_MALLOC_ALIGN); |
| // SAFETY: `self.raw` is a valid UPB arena |
| let ptr = unsafe { upb_Arena_Malloc(self.raw, layout.size()) }; |
| if ptr.is_null() { |
| alloc::handle_alloc_error(layout); |
| } |
| |
| // SAFETY: |
| // - `upb_Arena_Malloc` promises that if the return pointer is non-null, it is |
| // dereferencable for `size` bytes and has an alignment of `UPB_MALLOC_ALIGN` |
| // until the arena is destroyed. |
| // - `[MaybeUninit<u8>]` has no alignment requirement, and `ptr` is aligned to a |
| // `UPB_MALLOC_ALIGN` boundary. |
| unsafe { slice::from_raw_parts_mut(ptr.cast(), layout.size()) } |
| } |
| |
| /// Resizes some memory on the arena. |
| /// |
| /// # Safety |
| /// |
| /// - `ptr` must be the data pointer returned by a previous call to `alloc` |
| /// or `resize` on `self`. |
| /// - After calling this function, `ptr` is no longer dereferencable - it is |
| /// zapped. |
| /// - `old` must be the layout `ptr` was allocated with via `alloc` or |
| /// `realloc`. |
| /// - `new`'s alignment must be less than `UPB_MALLOC_ALIGN`. |
| #[inline] |
| pub unsafe fn resize(&self, ptr: *mut u8, old: Layout, new: Layout) -> &mut [MaybeUninit<u8>] { |
| debug_assert!(new.align() <= UPB_MALLOC_ALIGN); |
| // SAFETY: |
| // - `self.raw` is a valid UPB arena |
| // - `ptr` was allocated by a previous call to `alloc` or `realloc` as promised |
| // by the caller. |
| let ptr = unsafe { upb_Arena_Realloc(self.raw, ptr, old.size(), new.size()) }; |
| if ptr.is_null() { |
| alloc::handle_alloc_error(new); |
| } |
| |
| // SAFETY: |
| // - `upb_Arena_Realloc` promises that if the return pointer is non-null, it is |
| // dereferencable for the new `size` in bytes until the arena is destroyed. |
| // - `[MaybeUninit<u8>]` has no alignment requirement, and `ptr` is aligned to a |
| // `UPB_MALLOC_ALIGN` boundary. |
| unsafe { slice::from_raw_parts_mut(ptr.cast(), new.size()) } |
| } |
| } |
| |
| impl Drop for Arena { |
| #[inline] |
| fn drop(&mut self) { |
| unsafe { |
| upb_Arena_Free(self.raw); |
| } |
| } |
| } |
| |
| static mut INTERNAL_PTR: Option<RawMessage> = None; |
| static INIT: Once = Once::new(); |
| |
| // TODO:(b/304577017) |
| const ALIGN: usize = 32; |
| const UPB_SCRATCH_SPACE_BYTES: usize = 64_000; |
| |
| /// Holds a zero-initialized block of memory for use by upb. |
| /// By default, if a message is not set in cpp, a default message is created. |
| /// upb departs from this and returns a null ptr. However, since contiguous |
| /// chunks of memory filled with zeroes are legit messages from upb's point of |
| /// view, we can allocate a large block and refer to that when dealing |
| /// with readonly access. |
| pub struct ScratchSpace; |
| impl ScratchSpace { |
| pub fn zeroed_block(_private: Private) -> RawMessage { |
| unsafe { |
| INIT.call_once(|| { |
| let layout = |
| std::alloc::Layout::from_size_align(UPB_SCRATCH_SPACE_BYTES, ALIGN).unwrap(); |
| let Some(ptr) = |
| crate::__internal::RawMessage::new(std::alloc::alloc_zeroed(layout).cast()) |
| else { |
| std::alloc::handle_alloc_error(layout) |
| }; |
| INTERNAL_PTR = Some(ptr) |
| }); |
| INTERNAL_PTR.unwrap() |
| } |
| } |
| } |
| |
| /// Serialized Protobuf wire format data. |
| /// |
| /// It's typically produced by `<Message>::serialize()`. |
| pub struct SerializedData { |
| data: NonNull<u8>, |
| len: usize, |
| |
| // The arena that owns `data`. |
| _arena: Arena, |
| } |
| |
| impl SerializedData { |
| /// Construct `SerializedData` from raw pointers and its owning arena. |
| /// |
| /// # Safety |
| /// - `arena` must be have allocated `data` |
| /// - `data` must be readable for `len` bytes and not mutate while this |
| /// struct exists |
| pub unsafe fn from_raw_parts(arena: Arena, data: NonNull<u8>, len: usize) -> Self { |
| SerializedData { _arena: arena, data, len } |
| } |
| |
| /// Gets a raw slice pointer. |
| pub fn as_ptr(&self) -> *const [u8] { |
| ptr::slice_from_raw_parts(self.data.as_ptr(), self.len) |
| } |
| } |
| |
| impl Deref for SerializedData { |
| type Target = [u8]; |
| fn deref(&self) -> &Self::Target { |
| // SAFETY: `data` is valid for `len` bytes as promised by |
| // the caller of `SerializedData::from_raw_parts`. |
| unsafe { slice::from_raw_parts(self.data.as_ptr(), self.len) } |
| } |
| } |
| |
| impl fmt::Debug for SerializedData { |
| fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { |
| fmt::Debug::fmt(self.deref(), f) |
| } |
| } |
| |
| // TODO: Investigate replacing this with direct access to UPB bits. |
| pub type BytesPresentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; |
| pub type BytesAbsentMutData<'msg> = crate::vtable::RawVTableOptionalMutatorData<'msg, [u8]>; |
| pub type InnerBytesMut<'msg> = crate::vtable::RawVTableMutator<'msg, [u8]>; |
| pub type InnerPrimitiveMut<'a, T> = crate::vtable::RawVTableMutator<'a, T>; |
| |
| /// The raw contents of every generated message. |
| #[derive(Debug)] |
| pub struct MessageInner { |
| pub msg: RawMessage, |
| pub arena: Arena, |
| } |
| |
| /// Mutators that point to their original message use this to do so. |
| /// |
| /// Since UPB expects runtimes to manage their own arenas, this needs to have |
| /// access to an `Arena`. |
| /// |
| /// This has two possible designs: |
| /// - Store two pointers here, `RawMessage` and `&'msg Arena`. This doesn't |
| /// place any restriction on the layout of generated messages and their |
| /// mutators. This makes a vtable-based mutator three pointers, which can no |
| /// longer be returned in registers on most platforms. |
| /// - Store one pointer here, `&'msg MessageInner`, where `MessageInner` stores |
| /// a `RawMessage` and an `Arena`. This would require all generated messages |
| /// to store `MessageInner`, and since their mutators need to be able to |
| /// generate `BytesMut`, would also require `BytesMut` to store a `&'msg |
| /// MessageInner` since they can't store an owned `Arena`. |
| /// |
| /// Note: even though this type is `Copy`, it should only be copied by |
| /// protobuf internals that can maintain mutation invariants: |
| /// |
| /// - No concurrent mutation for any two fields in a message: this means |
| /// mutators cannot be `Send` but are `Sync`. |
| /// - If there are multiple accessible `Mut` to a single message at a time, they |
| /// must be different fields, and not be in the same oneof. As such, a `Mut` |
| /// cannot be `Clone` but *can* reborrow itself with `.as_mut()`, which |
| /// converts `&'b mut Mut<'a, T>` to `Mut<'b, T>`. |
| #[derive(Clone, Copy, Debug)] |
| pub struct MutatorMessageRef<'msg> { |
| msg: RawMessage, |
| arena: &'msg Arena, |
| } |
| |
| impl<'msg> MutatorMessageRef<'msg> { |
| #[doc(hidden)] |
| #[allow(clippy::needless_pass_by_ref_mut)] // Sound construction requires mutable access. |
| pub fn new(_private: Private, msg: &'msg mut MessageInner) -> Self { |
| MutatorMessageRef { msg: msg.msg, arena: &msg.arena } |
| } |
| |
| pub fn msg(&self) -> RawMessage { |
| self.msg |
| } |
| } |
| |
| pub fn copy_bytes_in_arena_if_needed_by_runtime<'a>( |
| msg_ref: MutatorMessageRef<'a>, |
| val: &'a [u8], |
| ) -> &'a [u8] { |
| // SAFETY: the alignment of `[u8]` is less than `UPB_MALLOC_ALIGN`. |
| let new_alloc = unsafe { msg_ref.arena.alloc(Layout::for_value(val)) }; |
| debug_assert_eq!(new_alloc.len(), val.len()); |
| |
| let start: *mut u8 = new_alloc.as_mut_ptr().cast(); |
| // SAFETY: |
| // - `new_alloc` is writeable for `val.len()` bytes. |
| // - After the copy, `new_alloc` is initialized for `val.len()` bytes. |
| unsafe { |
| val.as_ptr().copy_to_nonoverlapping(start, val.len()); |
| &*(new_alloc as *mut _ as *mut [u8]) |
| } |
| } |
| |
| /// RepeatedFieldInner contains a `upb_Array*` as well as a reference to an |
| /// `Arena`, most likely that of the containing `Message`. upb requires an Arena |
| /// to perform mutations on a repeated field. |
| #[derive(Clone, Copy, Debug)] |
| pub struct RepeatedFieldInner<'msg> { |
| pub raw: RawRepeatedField, |
| pub arena: &'msg Arena, |
| } |
| |
| #[derive(Debug)] |
| pub struct RepeatedField<'msg, T: ?Sized> { |
| inner: RepeatedFieldInner<'msg>, |
| _phantom: PhantomData<&'msg mut T>, |
| } |
| |
| // These use manual impls instead of derives to avoid unnecessary bounds on `T`. |
| // This problem is referred to as "perfect derive". |
| // https://smallcultfollowing.com/babysteps/blog/2022/04/12/implied-bounds-and-perfect-derive/ |
| impl<'msg, T: ?Sized> Copy for RepeatedField<'msg, T> {} |
| impl<'msg, T: ?Sized> Clone for RepeatedField<'msg, T> { |
| fn clone(&self) -> RepeatedField<'msg, T> { |
| *self |
| } |
| } |
| |
| impl<'msg, T: ?Sized> RepeatedField<'msg, T> { |
| pub fn len(&self) -> usize { |
| unsafe { upb_Array_Size(self.inner.raw) } |
| } |
| pub fn is_empty(&self) -> bool { |
| self.len() == 0 |
| } |
| pub fn from_inner(_private: Private, inner: RepeatedFieldInner<'msg>) -> Self { |
| Self { inner, _phantom: PhantomData } |
| } |
| } |
| |
| // Transcribed from google3/third_party/upb/upb/message/value.h |
| #[repr(C)] |
| #[derive(Clone, Copy)] |
| union upb_MessageValue { |
| bool_val: bool, |
| float_val: std::ffi::c_float, |
| double_val: std::ffi::c_double, |
| uint32_val: u32, |
| int32_val: i32, |
| uint64_val: u64, |
| int64_val: i64, |
| array_val: *const std::ffi::c_void, |
| map_val: *const std::ffi::c_void, |
| msg_val: *const std::ffi::c_void, |
| str_val: PtrAndLen, |
| } |
| |
| // Transcribed from google3/third_party/upb/upb/base/descriptor_constants.h |
| #[repr(C)] |
| #[allow(dead_code)] |
| enum UpbCType { |
| Bool = 1, |
| Float = 2, |
| Int32 = 3, |
| UInt32 = 4, |
| Enum = 5, |
| Message = 6, |
| Double = 7, |
| Int64 = 8, |
| UInt64 = 9, |
| String = 10, |
| Bytes = 11, |
| } |
| |
| extern "C" { |
| #[allow(dead_code)] |
| fn upb_Array_New(a: RawArena, r#type: std::ffi::c_int) -> RawRepeatedField; |
| fn upb_Array_Size(arr: RawRepeatedField) -> usize; |
| fn upb_Array_Set(arr: RawRepeatedField, i: usize, val: upb_MessageValue); |
| fn upb_Array_Get(arr: RawRepeatedField, i: usize) -> upb_MessageValue; |
| fn upb_Array_Append(arr: RawRepeatedField, val: upb_MessageValue, arena: RawArena); |
| fn upb_Array_Resize(arr: RawRepeatedField, size: usize, arena: RawArena); |
| } |
| |
| macro_rules! impl_repeated_primitives { |
| ($(($rs_type:ty, $union_field:ident, $upb_tag:expr)),*) => { |
| $( |
| impl<'msg> RepeatedField<'msg, $rs_type> { |
| #[allow(dead_code)] |
| fn new(arena: &'msg Arena) -> Self { |
| Self { |
| inner: RepeatedFieldInner { |
| raw: unsafe { upb_Array_New(arena.raw, $upb_tag as std::ffi::c_int) }, |
| arena, |
| }, |
| _phantom: PhantomData, |
| } |
| } |
| pub fn push(&mut self, val: $rs_type) { |
| unsafe { upb_Array_Append( |
| self.inner.raw, |
| upb_MessageValue { $union_field: val }, |
| self.inner.arena.raw(), |
| ) } |
| } |
| pub fn get(&self, i: usize) -> Option<$rs_type> { |
| if i >= self.len() { |
| None |
| } else { |
| unsafe { Some(upb_Array_Get(self.inner.raw, i).$union_field) } |
| } |
| } |
| pub fn set(&self, i: usize, val: $rs_type) { |
| if i >= self.len() { |
| return; |
| } |
| unsafe { upb_Array_Set( |
| self.inner.raw, |
| i, |
| upb_MessageValue { $union_field: val }, |
| ) } |
| } |
| pub fn copy_from(&mut self, src: &RepeatedField<'_, $rs_type>) { |
| // TODO: Optimize this copy_from implementation using memcopy. |
| // NOTE: `src` cannot be `self` because this would violate borrowing rules. |
| unsafe { upb_Array_Resize(self.inner.raw, 0, self.inner.arena.raw()) }; |
| // `upb_Array_DeepClone` is not used here because it returns |
| // a new `upb_Array*`. The contained `RawRepeatedField` must |
| // then be set to this new pointer, but other copies of this |
| // pointer may exist because of re-borrowed `RepeatedMut`s. |
| // Alternatively, a `clone_into` method could be exposed by upb. |
| for i in 0..src.len() { |
| self.push(src.get(i).unwrap()); |
| } |
| } |
| } |
| )* |
| } |
| } |
| |
| impl_repeated_primitives!( |
| (bool, bool_val, UpbCType::Bool), |
| (f32, float_val, UpbCType::Float), |
| (f64, double_val, UpbCType::Double), |
| (i32, int32_val, UpbCType::Int32), |
| (u32, uint32_val, UpbCType::UInt32), |
| (i64, int64_val, UpbCType::Int64), |
| (u64, uint64_val, UpbCType::UInt64) |
| ); |
| |
| /// Returns a static thread-local empty RepeatedFieldInner for use in a |
| /// RepeatedView. |
| /// |
| /// # Safety |
| /// TODO: Split RepeatedFieldInner into mut and const variants to |
| /// enforce safety. The returned array must never be mutated. |
| pub unsafe fn empty_array() -> RepeatedFieldInner<'static> { |
| // TODO: Consider creating empty array in C. |
| fn new_repeated_field_inner() -> RepeatedFieldInner<'static> { |
| let arena = Box::leak::<'static>(Box::new(Arena::new())); |
| // Provide `i32` as a placeholder type. |
| RepeatedField::<'static, i32>::new(arena).inner |
| } |
| thread_local! { |
| static REPEATED_FIELD: RepeatedFieldInner<'static> = new_repeated_field_inner(); |
| } |
| |
| REPEATED_FIELD.with(|inner| *inner) |
| } |
| |
| #[cfg(test)] |
| mod tests { |
| use super::*; |
| |
| #[test] |
| fn test_arena_new_and_free() { |
| let arena = Arena::new(); |
| drop(arena); |
| } |
| |
| #[test] |
| fn test_serialized_data_roundtrip() { |
| let arena = Arena::new(); |
| let original_data = b"Hello world"; |
| let len = original_data.len(); |
| |
| let serialized_data = unsafe { |
| SerializedData::from_raw_parts( |
| arena, |
| NonNull::new(original_data as *const _ as *mut _).unwrap(), |
| len, |
| ) |
| }; |
| assert_eq!(&*serialized_data, b"Hello world"); |
| } |
| |
| #[test] |
| fn i32_array() { |
| let arena = Arena::new(); |
| let mut arr = RepeatedField::<i32>::new(&arena); |
| assert_eq!(arr.len(), 0); |
| arr.push(1); |
| assert_eq!(arr.get(0), Some(1)); |
| assert_eq!(arr.len(), 1); |
| arr.set(0, 3); |
| assert_eq!(arr.get(0), Some(3)); |
| for i in 0..2048 { |
| arr.push(i); |
| assert_eq!(arr.get(arr.len() - 1), Some(i)); |
| } |
| } |
| #[test] |
| fn u32_array() { |
| let mut arena = Arena::new(); |
| let mut arr = RepeatedField::<u32>::new(&mut arena); |
| assert_eq!(arr.len(), 0); |
| arr.push(1); |
| assert_eq!(arr.get(0), Some(1)); |
| assert_eq!(arr.len(), 1); |
| arr.set(0, 3); |
| assert_eq!(arr.get(0), Some(3)); |
| for i in 0..2048 { |
| arr.push(i); |
| assert_eq!(arr.get(arr.len() - 1), Some(i)); |
| } |
| } |
| } |