| #region Copyright notice and license |
| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| #endregion |
| |
| using Google.Protobuf.Compatibility; |
| using System; |
| using System.Diagnostics.CodeAnalysis; |
| using System.Reflection; |
| |
| namespace Google.Protobuf.Reflection |
| { |
| /// <summary> |
| /// The methods in this class are somewhat evil, and should not be tampered with lightly. |
| /// Basically they allow the creation of relatively weakly typed delegates from MethodInfos |
| /// which are more strongly typed. They do this by creating an appropriate strongly typed |
| /// delegate from the MethodInfo, and then calling that within an anonymous method. |
| /// Mind-bending stuff (at least to your humble narrator) but the resulting delegates are |
| /// very fast compared with calling Invoke later on. |
| /// </summary> |
| internal static class ReflectionUtil |
| { |
| static ReflectionUtil() |
| { |
| ForceInitialize<string>(); // Handles all reference types |
| ForceInitialize<int>(); |
| ForceInitialize<long>(); |
| ForceInitialize<uint>(); |
| ForceInitialize<ulong>(); |
| ForceInitialize<float>(); |
| ForceInitialize<double>(); |
| ForceInitialize<bool>(); |
| ForceInitialize<int?>(); |
| ForceInitialize<long?>(); |
| ForceInitialize<uint?>(); |
| ForceInitialize<ulong?>(); |
| ForceInitialize<float?>(); |
| ForceInitialize<double?>(); |
| ForceInitialize<bool?>(); |
| ForceInitialize<SampleEnum>(); |
| SampleEnumMethod(); |
| } |
| |
| internal static void ForceInitialize<T>() => new ReflectionHelper<IMessage, T>(); |
| |
| /// <summary> |
| /// Empty Type[] used when calling GetProperty to force property instead of indexer fetching. |
| /// </summary> |
| internal static readonly Type[] EmptyTypes = new Type[0]; |
| |
| /// <summary> |
| /// Creates a delegate which will cast the argument to the type that declares the method, |
| /// call the method on it, then convert the result to object. |
| /// </summary> |
| /// <param name="method">The method to create a delegate for, which must be declared in an IMessage |
| /// implementation.</param> |
| internal static Func<IMessage, object> CreateFuncIMessageObject(MethodInfo method) => |
| GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageObject(method); |
| |
| /// <summary> |
| /// Creates a delegate which will cast the argument to the type that declares the method, |
| /// call the method on it, then convert the result to the specified type. The method is expected |
| /// to actually return an enum (because of where we're calling it - for oneof cases). Sometimes that |
| /// means we need some extra work to perform conversions. |
| /// </summary> |
| /// <param name="method">The method to create a delegate for, which must be declared in an IMessage |
| /// implementation.</param> |
| internal static Func<IMessage, int> CreateFuncIMessageInt32(MethodInfo method) => |
| GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageInt32(method); |
| |
| /// <summary> |
| /// Creates a delegate which will execute the given method after casting the first argument to |
| /// the type that declares the method, and the second argument to the first parameter type of the method. |
| /// </summary> |
| /// <param name="method">The method to create a delegate for, which must be declared in an IMessage |
| /// implementation.</param> |
| internal static Action<IMessage, object> CreateActionIMessageObject(MethodInfo method) => |
| GetReflectionHelper(method.DeclaringType, method.GetParameters()[0].ParameterType).CreateActionIMessageObject(method); |
| |
| /// <summary> |
| /// Creates a delegate which will execute the given method after casting the first argument to |
| /// type that declares the method. |
| /// </summary> |
| /// <param name="method">The method to create a delegate for, which must be declared in an IMessage |
| /// implementation.</param> |
| internal static Action<IMessage> CreateActionIMessage(MethodInfo method) => |
| GetReflectionHelper(method.DeclaringType, typeof(object)).CreateActionIMessage(method); |
| |
| internal static Func<IMessage, bool> CreateFuncIMessageBool(MethodInfo method) => |
| GetReflectionHelper(method.DeclaringType, method.ReturnType).CreateFuncIMessageBool(method); |
| |
| [UnconditionalSuppressMessage("Trimming", "IL2026", Justification = "Type parameter members are preserved with DynamicallyAccessedMembers on GeneratedClrTypeInfo.ctor clrType parameter.")] |
| internal static Func<IMessage, bool> CreateIsInitializedCaller([DynamicallyAccessedMembers(GeneratedClrTypeInfo.MessageAccessibility)]Type msg) => |
| ((IExtensionSetReflector)Activator.CreateInstance(typeof(ExtensionSetReflector<>).MakeGenericType(msg))).CreateIsInitializedCaller(); |
| |
| /// <summary> |
| /// Creates a delegate which will execute the given method after casting the first argument to |
| /// the type that declares the method, and the second argument to the first parameter type of the method. |
| /// </summary> |
| [UnconditionalSuppressMessage("Trimming", "IL2026", Justification = "Type parameter members are preserved with DynamicallyAccessedMembers on GeneratedClrTypeInfo.ctor clrType parameter.")] |
| internal static IExtensionReflectionHelper CreateExtensionHelper(Extension extension) => |
| (IExtensionReflectionHelper)Activator.CreateInstance(typeof(ExtensionReflectionHelper<,>).MakeGenericType(extension.TargetType, extension.GetType().GenericTypeArguments[1]), extension); |
| |
| /// <summary> |
| /// Creates a reflection helper for the given type arguments. Currently these are created on demand |
| /// rather than cached; this will be "busy" when initially loading a message's descriptor, but after that |
| /// they can be garbage collected. We could cache them by type if that proves to be important, but creating |
| /// an object is pretty cheap. |
| /// </summary> |
| [UnconditionalSuppressMessage("Trimming", "IL2026", Justification = "Type parameter members are preserved with DynamicallyAccessedMembers on GeneratedClrTypeInfo.ctor clrType parameter.")] |
| private static IReflectionHelper GetReflectionHelper(Type t1, Type t2) => |
| (IReflectionHelper) Activator.CreateInstance(typeof(ReflectionHelper<,>).MakeGenericType(t1, t2)); |
| |
| // Non-generic interface allowing us to use an instance of ReflectionHelper<T1, T2> without statically |
| // knowing the types involved. |
| private interface IReflectionHelper |
| { |
| Func<IMessage, int> CreateFuncIMessageInt32(MethodInfo method); |
| Action<IMessage> CreateActionIMessage(MethodInfo method); |
| Func<IMessage, object> CreateFuncIMessageObject(MethodInfo method); |
| Action<IMessage, object> CreateActionIMessageObject(MethodInfo method); |
| Func<IMessage, bool> CreateFuncIMessageBool(MethodInfo method); |
| } |
| |
| internal interface IExtensionReflectionHelper |
| { |
| object GetExtension(IMessage message); |
| void SetExtension(IMessage message, object value); |
| bool HasExtension(IMessage message); |
| void ClearExtension(IMessage message); |
| } |
| |
| private interface IExtensionSetReflector |
| { |
| Func<IMessage, bool> CreateIsInitializedCaller(); |
| } |
| |
| private class ReflectionHelper<T1, T2> : IReflectionHelper |
| { |
| |
| public Func<IMessage, int> CreateFuncIMessageInt32(MethodInfo method) |
| { |
| // On pleasant runtimes, we can create a Func<int> from a method returning |
| // an enum based on an int. That's the fast path. |
| if (CanConvertEnumFuncToInt32Func) |
| { |
| var del = (Func<T1, int>) method.CreateDelegate(typeof(Func<T1, int>)); |
| return message => del((T1) message); |
| } |
| else |
| { |
| // On some runtimes (e.g. old Mono) the return type has to be exactly correct, |
| // so we go via boxing. Reflection is already fairly inefficient, and this is |
| // only used for one-of case checking, fortunately. |
| var del = (Func<T1, T2>) method.CreateDelegate(typeof(Func<T1, T2>)); |
| return message => (int) (object) del((T1) message); |
| } |
| } |
| |
| public Action<IMessage> CreateActionIMessage(MethodInfo method) |
| { |
| var del = (Action<T1>) method.CreateDelegate(typeof(Action<T1>)); |
| return message => del((T1) message); |
| } |
| |
| public Func<IMessage, object> CreateFuncIMessageObject(MethodInfo method) |
| { |
| var del = (Func<T1, T2>) method.CreateDelegate(typeof(Func<T1, T2>)); |
| return message => del((T1) message); |
| } |
| |
| public Action<IMessage, object> CreateActionIMessageObject(MethodInfo method) |
| { |
| var del = (Action<T1, T2>) method.CreateDelegate(typeof(Action<T1, T2>)); |
| return (message, arg) => del((T1) message, (T2) arg); |
| } |
| |
| public Func<IMessage, bool> CreateFuncIMessageBool(MethodInfo method) |
| { |
| var del = (Func<T1, bool>)method.CreateDelegate(typeof(Func<T1, bool>)); |
| return message => del((T1)message); |
| } |
| } |
| |
| private class ExtensionReflectionHelper<T1, T3> : IExtensionReflectionHelper |
| where T1 : IExtendableMessage<T1> |
| { |
| private readonly Extension extension; |
| |
| public ExtensionReflectionHelper(Extension extension) |
| { |
| this.extension = extension; |
| } |
| |
| public object GetExtension(IMessage message) |
| { |
| if (message is not T1 extensionMessage) |
| { |
| throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage"); |
| } |
| |
| if (extension is Extension<T1, T3> ext13) |
| { |
| return extensionMessage.GetExtension(ext13); |
| } |
| else if (extension is RepeatedExtension<T1, T3> repeatedExt13) |
| { |
| return extensionMessage.GetOrInitializeExtension(repeatedExt13); |
| } |
| else |
| { |
| throw new InvalidCastException("The provided extension is not a valid extension identifier type"); |
| } |
| } |
| |
| public bool HasExtension(IMessage message) |
| { |
| if (message is not T1 extensionMessage) |
| { |
| throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage"); |
| } |
| |
| if (extension is Extension<T1, T3> ext13) |
| { |
| return extensionMessage.HasExtension(ext13); |
| } |
| else if (extension is RepeatedExtension<T1, T3>) |
| { |
| throw new InvalidOperationException("HasValue is not implemented for repeated extensions"); |
| } |
| else |
| { |
| throw new InvalidCastException("The provided extension is not a valid extension identifier type"); |
| } |
| } |
| |
| public void SetExtension(IMessage message, object value) |
| { |
| if (message is not T1 extensionMessage) |
| { |
| throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage"); |
| } |
| |
| if (extension is Extension<T1, T3> ext13) |
| { |
| extensionMessage.SetExtension(ext13, (T3)value); |
| } |
| else if (extension is RepeatedExtension<T1, T3>) |
| { |
| throw new InvalidOperationException("SetValue is not implemented for repeated extensions"); |
| } |
| else |
| { |
| throw new InvalidCastException("The provided extension is not a valid extension identifier type"); |
| } |
| } |
| |
| public void ClearExtension(IMessage message) |
| { |
| if (message is not T1 extensionMessage) |
| { |
| throw new InvalidCastException("Cannot access extension on message that isn't IExtensionMessage"); |
| } |
| |
| if (extension is Extension<T1, T3> ext13) |
| { |
| extensionMessage.ClearExtension(ext13); |
| } |
| else if (extension is RepeatedExtension<T1, T3> repeatedExt13) |
| { |
| extensionMessage.GetExtension(repeatedExt13).Clear(); |
| } |
| else |
| { |
| throw new InvalidCastException("The provided extension is not a valid extension identifier type"); |
| } |
| } |
| } |
| |
| private class ExtensionSetReflector< |
| [DynamicallyAccessedMembers(DynamicallyAccessedMemberTypes.PublicProperties | DynamicallyAccessedMemberTypes.NonPublicProperties)] |
| T1> : IExtensionSetReflector where T1 : IExtendableMessage<T1> |
| { |
| public Func<IMessage, bool> CreateIsInitializedCaller() |
| { |
| var prop = typeof(T1).GetTypeInfo().GetDeclaredProperty("_Extensions"); |
| var getFunc = (Func<T1, ExtensionSet<T1>>)prop.GetMethod.CreateDelegate(typeof(Func<T1, ExtensionSet<T1>>)); |
| var initializedFunc = (Func<ExtensionSet<T1>, bool>) |
| typeof(ExtensionSet<T1>) |
| .GetTypeInfo() |
| .GetDeclaredMethod("IsInitialized") |
| .CreateDelegate(typeof(Func<ExtensionSet<T1>, bool>)); |
| return (m) => { |
| var set = getFunc((T1)m); |
| return set == null || initializedFunc(set); |
| }; |
| } |
| } |
| |
| // Runtime compatibility checking code - see ReflectionHelper<T1, T2>.CreateFuncIMessageInt32 for |
| // details about why we're doing this. |
| |
| // Deliberately not inside the generic type. We only want to check this once. |
| private static bool CanConvertEnumFuncToInt32Func { get; } = CheckCanConvertEnumFuncToInt32Func(); |
| |
| private static bool CheckCanConvertEnumFuncToInt32Func() |
| { |
| try |
| { |
| // Try to do the conversion using reflection, so we can see whether it's supported. |
| MethodInfo method = typeof(ReflectionUtil).GetMethod(nameof(SampleEnumMethod)); |
| // If this passes, we're in a reasonable runtime. |
| method.CreateDelegate(typeof(Func<int>)); |
| return true; |
| } |
| catch (ArgumentException) |
| { |
| return false; |
| } |
| } |
| |
| public enum SampleEnum |
| { |
| X |
| } |
| |
| // Public to make the reflection simpler. |
| public static SampleEnum SampleEnumMethod() => SampleEnum.X; |
| } |
| } |