blob: b95098e94b01722580681cdc13804ea06b398cee [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
// atenasio@google.com (Chris Atenasio) (ZigZag transform)
// wink@google.com (Wink Saville) (refactored from wire_format.h)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
#define GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__
#include <limits>
#include <string>
#include "google/protobuf/stubs/common.h"
#include "google/protobuf/port.h"
#include "absl/base/casts.h"
#include "google/protobuf/stubs/logging.h"
#include "google/protobuf/arenastring.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/port.h"
#include "google/protobuf/repeated_field.h"
#ifndef NDEBUG
#define GOOGLE_PROTOBUF_UTF8_VALIDATION_ENABLED
#endif
// Avoid conflict with iOS where <ConditionalMacros.h> #defines TYPE_BOOL.
//
// If some one needs the macro TYPE_BOOL in a file that includes this header,
// it's possible to bring it back using push/pop_macro as follows.
//
// #pragma push_macro("TYPE_BOOL")
// #include this header and/or all headers that need the macro to be undefined.
// #pragma pop_macro("TYPE_BOOL")
#undef TYPE_BOOL
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
namespace internal {
// This class is for internal use by the protocol buffer library and by
// protocol-compiler-generated message classes. It must not be called
// directly by clients.
//
// This class contains helpers for implementing the binary protocol buffer
// wire format without the need for reflection. Use WireFormat when using
// reflection.
//
// This class is really a namespace that contains only static methods.
class PROTOBUF_EXPORT WireFormatLite {
public:
WireFormatLite() = delete;
// -----------------------------------------------------------------
// Helper constants and functions related to the format. These are
// mostly meant for internal and generated code to use.
// The wire format is composed of a sequence of tag/value pairs, each
// of which contains the value of one field (or one element of a repeated
// field). Each tag is encoded as a varint. The lower bits of the tag
// identify its wire type, which specifies the format of the data to follow.
// The rest of the bits contain the field number. Each type of field (as
// declared by FieldDescriptor::Type, in descriptor.h) maps to one of
// these wire types. Immediately following each tag is the field's value,
// encoded in the format specified by the wire type. Because the tag
// identifies the encoding of this data, it is possible to skip
// unrecognized fields for forwards compatibility.
enum WireType
#ifndef SWIG
: int
#endif // !SWIG
{
WIRETYPE_VARINT = 0,
WIRETYPE_FIXED64 = 1,
WIRETYPE_LENGTH_DELIMITED = 2,
WIRETYPE_START_GROUP = 3,
WIRETYPE_END_GROUP = 4,
WIRETYPE_FIXED32 = 5,
};
// Lite alternative to FieldDescriptor::Type. Must be kept in sync.
enum FieldType {
TYPE_DOUBLE = 1,
TYPE_FLOAT = 2,
TYPE_INT64 = 3,
TYPE_UINT64 = 4,
TYPE_INT32 = 5,
TYPE_FIXED64 = 6,
TYPE_FIXED32 = 7,
TYPE_BOOL = 8,
TYPE_STRING = 9,
TYPE_GROUP = 10,
TYPE_MESSAGE = 11,
TYPE_BYTES = 12,
TYPE_UINT32 = 13,
TYPE_ENUM = 14,
TYPE_SFIXED32 = 15,
TYPE_SFIXED64 = 16,
TYPE_SINT32 = 17,
TYPE_SINT64 = 18,
MAX_FIELD_TYPE = 18,
};
// Lite alternative to FieldDescriptor::CppType. Must be kept in sync.
enum CppType {
CPPTYPE_INT32 = 1,
CPPTYPE_INT64 = 2,
CPPTYPE_UINT32 = 3,
CPPTYPE_UINT64 = 4,
CPPTYPE_DOUBLE = 5,
CPPTYPE_FLOAT = 6,
CPPTYPE_BOOL = 7,
CPPTYPE_ENUM = 8,
CPPTYPE_STRING = 9,
CPPTYPE_MESSAGE = 10,
MAX_CPPTYPE = 10,
};
// Helper method to get the CppType for a particular Type.
static CppType FieldTypeToCppType(FieldType type);
// Given a FieldDescriptor::Type return its WireType
static inline WireFormatLite::WireType WireTypeForFieldType(
WireFormatLite::FieldType type) {
return kWireTypeForFieldType[type];
}
// Number of bits in a tag which identify the wire type.
static constexpr int kTagTypeBits = 3;
// Mask for those bits.
static constexpr uint32_t kTagTypeMask = (1 << kTagTypeBits) - 1;
// Helper functions for encoding and decoding tags. (Inlined below and in
// _inl.h)
//
// This is different from MakeTag(field->number(), field->type()) in the
// case of packed repeated fields.
constexpr static uint32_t MakeTag(int field_number, WireType type);
static WireType GetTagWireType(uint32_t tag);
static int GetTagFieldNumber(uint32_t tag);
// Compute the byte size of a tag. For groups, this includes both the start
// and end tags.
static inline size_t TagSize(int field_number,
WireFormatLite::FieldType type);
// Skips a field value with the given tag. The input should start
// positioned immediately after the tag. Skipped values are simply
// discarded, not recorded anywhere. See WireFormat::SkipField() for a
// version that records to an UnknownFieldSet.
static bool SkipField(io::CodedInputStream* input, uint32_t tag);
// Skips a field value with the given tag. The input should start
// positioned immediately after the tag. Skipped values are recorded to a
// CodedOutputStream.
static bool SkipField(io::CodedInputStream* input, uint32_t tag,
io::CodedOutputStream* output);
// Reads and ignores a message from the input. Skipped values are simply
// discarded, not recorded anywhere. See WireFormat::SkipMessage() for a
// version that records to an UnknownFieldSet.
static bool SkipMessage(io::CodedInputStream* input);
// Reads and ignores a message from the input. Skipped values are recorded
// to a CodedOutputStream.
static bool SkipMessage(io::CodedInputStream* input,
io::CodedOutputStream* output);
// This macro does the same thing as WireFormatLite::MakeTag(), but the
// result is usable as a compile-time constant, which makes it usable
// as a switch case or a template input. WireFormatLite::MakeTag() is more
// type-safe, though, so prefer it if possible.
#define GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(FIELD_NUMBER, TYPE) \
static_cast<uint32_t>((static_cast<uint32_t>(FIELD_NUMBER) << 3) | (TYPE))
// These are the tags for the old MessageSet format, which was defined as:
// message MessageSet {
// repeated group Item = 1 {
// required int32 type_id = 2;
// required string message = 3;
// }
// }
static constexpr int kMessageSetItemNumber = 1;
static constexpr int kMessageSetTypeIdNumber = 2;
static constexpr int kMessageSetMessageNumber = 3;
static const int kMessageSetItemStartTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
kMessageSetItemNumber, WireFormatLite::WIRETYPE_START_GROUP);
static const int kMessageSetItemEndTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
kMessageSetItemNumber, WireFormatLite::WIRETYPE_END_GROUP);
static const int kMessageSetTypeIdTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
kMessageSetTypeIdNumber, WireFormatLite::WIRETYPE_VARINT);
static const int kMessageSetMessageTag = GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(
kMessageSetMessageNumber, WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
// Byte size of all tags of a MessageSet::Item combined.
static const size_t kMessageSetItemTagsSize;
// Helper functions for converting between floats/doubles and IEEE-754
// uint32s/uint64s so that they can be written. (Assumes your platform
// uses IEEE-754 floats.)
static uint32_t EncodeFloat(float value);
static float DecodeFloat(uint32_t value);
static uint64_t EncodeDouble(double value);
static double DecodeDouble(uint64_t value);
// Helper functions for mapping signed integers to unsigned integers in
// such a way that numbers with small magnitudes will encode to smaller
// varints. If you simply static_cast a negative number to an unsigned
// number and varint-encode it, it will always take 10 bytes, defeating
// the purpose of varint. So, for the "sint32" and "sint64" field types,
// we ZigZag-encode the values.
static uint32_t ZigZagEncode32(int32_t n);
static int32_t ZigZagDecode32(uint32_t n);
static uint64_t ZigZagEncode64(int64_t n);
static int64_t ZigZagDecode64(uint64_t n);
// =================================================================
// Methods for reading/writing individual field.
// Read fields, not including tags. The assumption is that you already
// read the tag to determine what field to read.
// For primitive fields, we just use a templatized routine parameterized by
// the represented type and the FieldType. These are specialized with the
// appropriate definition for each declared type.
template <typename CType, enum FieldType DeclaredType>
PROTOBUF_NDEBUG_INLINE static bool ReadPrimitive(io::CodedInputStream* input,
CType* value);
// Reads repeated primitive values, with optimizations for repeats.
// tag_size and tag should both be compile-time constants provided by the
// protocol compiler.
template <typename CType, enum FieldType DeclaredType>
PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedPrimitive(
int tag_size, uint32_t tag, io::CodedInputStream* input,
RepeatedField<CType>* value);
// Identical to ReadRepeatedPrimitive, except will not inline the
// implementation.
template <typename CType, enum FieldType DeclaredType>
static bool ReadRepeatedPrimitiveNoInline(int tag_size, uint32_t tag,
io::CodedInputStream* input,
RepeatedField<CType>* value);
// Reads a primitive value directly from the provided buffer. It returns a
// pointer past the segment of data that was read.
//
// This is only implemented for the types with fixed wire size, e.g.
// float, double, and the (s)fixed* types.
template <typename CType, enum FieldType DeclaredType>
PROTOBUF_NDEBUG_INLINE static const uint8_t* ReadPrimitiveFromArray(
const uint8_t* buffer, CType* value);
// Reads a primitive packed field.
//
// This is only implemented for packable types.
template <typename CType, enum FieldType DeclaredType>
PROTOBUF_NDEBUG_INLINE static bool ReadPackedPrimitive(
io::CodedInputStream* input, RepeatedField<CType>* value);
// Identical to ReadPackedPrimitive, except will not inline the
// implementation.
template <typename CType, enum FieldType DeclaredType>
static bool ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
RepeatedField<CType>* value);
// Read a packed enum field. If the is_valid function is not nullptr, values
// for which is_valid(value) returns false are silently dropped.
static bool ReadPackedEnumNoInline(io::CodedInputStream* input,
bool (*is_valid)(int),
RepeatedField<int>* values);
// Read a packed enum field. If the is_valid function is not nullptr, values
// for which is_valid(value) returns false are appended to
// unknown_fields_stream.
static bool ReadPackedEnumPreserveUnknowns(
io::CodedInputStream* input, int field_number, bool (*is_valid)(int),
io::CodedOutputStream* unknown_fields_stream, RepeatedField<int>* values);
// Read a string. ReadString(..., std::string* value) requires an
// existing std::string.
static inline bool ReadString(io::CodedInputStream* input,
std::string* value);
// ReadString(..., std::string** p) is internal-only, and should only be
// called from generated code. It starts by setting *p to "new std::string" if
// *p == &GetEmptyStringAlreadyInited(). It then invokes
// ReadString(io::CodedInputStream* input, *p). This is useful for reducing
// code size.
static inline bool ReadString(io::CodedInputStream* input, std::string** p);
// Analogous to ReadString().
static bool ReadBytes(io::CodedInputStream* input, std::string* value);
static bool ReadBytes(io::CodedInputStream* input, std::string** p);
enum Operation {
PARSE = 0,
SERIALIZE = 1,
};
// Returns true if the data is valid UTF-8.
static bool VerifyUtf8String(const char* data, int size, Operation op,
const char* field_name);
template <typename MessageType>
static inline bool ReadGroup(int field_number, io::CodedInputStream* input,
MessageType* value);
template <typename MessageType>
static inline bool ReadMessage(io::CodedInputStream* input,
MessageType* value);
template <typename MessageType>
static inline bool ReadMessageNoVirtual(io::CodedInputStream* input,
MessageType* value) {
return ReadMessage(input, value);
}
// Write a tag. The Write*() functions typically include the tag, so
// normally there's no need to call this unless using the Write*NoTag()
// variants.
PROTOBUF_NDEBUG_INLINE static void WriteTag(int field_number, WireType type,
io::CodedOutputStream* output);
// Write fields, without tags.
PROTOBUF_NDEBUG_INLINE static void WriteInt32NoTag(
int32_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteInt64NoTag(
int64_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteUInt32NoTag(
uint32_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteUInt64NoTag(
uint64_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteSInt32NoTag(
int32_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteSInt64NoTag(
int64_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteFixed32NoTag(
uint32_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteFixed64NoTag(
uint64_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteSFixed32NoTag(
int32_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteSFixed64NoTag(
int64_t value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteFloatNoTag(
float value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteDoubleNoTag(
double value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteBoolNoTag(
bool value, io::CodedOutputStream* output);
PROTOBUF_NDEBUG_INLINE static void WriteEnumNoTag(
int value, io::CodedOutputStream* output);
// Write array of primitive fields, without tags
static void WriteFloatArray(const float* a, int n,
io::CodedOutputStream* output);
static void WriteDoubleArray(const double* a, int n,
io::CodedOutputStream* output);
static void WriteFixed32Array(const uint32_t* a, int n,
io::CodedOutputStream* output);
static void WriteFixed64Array(const uint64_t* a, int n,
io::CodedOutputStream* output);
static void WriteSFixed32Array(const int32_t* a, int n,
io::CodedOutputStream* output);
static void WriteSFixed64Array(const int64_t* a, int n,
io::CodedOutputStream* output);
static void WriteBoolArray(const bool* a, int n,
io::CodedOutputStream* output);
// Write fields, including tags.
static void WriteInt32(int field_number, int32_t value,
io::CodedOutputStream* output);
static void WriteInt64(int field_number, int64_t value,
io::CodedOutputStream* output);
static void WriteUInt32(int field_number, uint32_t value,
io::CodedOutputStream* output);
static void WriteUInt64(int field_number, uint64_t value,
io::CodedOutputStream* output);
static void WriteSInt32(int field_number, int32_t value,
io::CodedOutputStream* output);
static void WriteSInt64(int field_number, int64_t value,
io::CodedOutputStream* output);
static void WriteFixed32(int field_number, uint32_t value,
io::CodedOutputStream* output);
static void WriteFixed64(int field_number, uint64_t value,
io::CodedOutputStream* output);
static void WriteSFixed32(int field_number, int32_t value,
io::CodedOutputStream* output);
static void WriteSFixed64(int field_number, int64_t value,
io::CodedOutputStream* output);
static void WriteFloat(int field_number, float value,
io::CodedOutputStream* output);
static void WriteDouble(int field_number, double value,
io::CodedOutputStream* output);
static void WriteBool(int field_number, bool value,
io::CodedOutputStream* output);
static void WriteEnum(int field_number, int value,
io::CodedOutputStream* output);
static void WriteString(int field_number, const std::string& value,
io::CodedOutputStream* output);
static void WriteBytes(int field_number, const std::string& value,
io::CodedOutputStream* output);
static void WriteStringMaybeAliased(int field_number,
const std::string& value,
io::CodedOutputStream* output);
static void WriteBytesMaybeAliased(int field_number, const std::string& value,
io::CodedOutputStream* output);
static void WriteGroup(int field_number, const MessageLite& value,
io::CodedOutputStream* output);
static void WriteMessage(int field_number, const MessageLite& value,
io::CodedOutputStream* output);
// Like above, but these will check if the output stream has enough
// space to write directly to a flat array.
static void WriteGroupMaybeToArray(int field_number, const MessageLite& value,
io::CodedOutputStream* output);
static void WriteMessageMaybeToArray(int field_number,
const MessageLite& value,
io::CodedOutputStream* output);
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
// pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override SerializeWithCachedSizes()).
template <typename MessageType>
static inline void WriteGroupNoVirtual(int field_number,
const MessageType& value,
io::CodedOutputStream* output);
template <typename MessageType>
static inline void WriteMessageNoVirtual(int field_number,
const MessageType& value,
io::CodedOutputStream* output);
// Like above, but use only *ToArray methods of CodedOutputStream.
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteTagToArray(int field_number,
WireType type,
uint8_t* target);
// Write fields, without tags.
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray(
int32_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray(
int64_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray(
uint32_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray(
uint64_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray(
int32_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray(
int64_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray(
uint32_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray(
uint64_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray(
int32_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray(
int64_t value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray(
float value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray(
double value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(bool value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(int value,
uint8_t* target);
// Write fields, without tags. These require that value.size() > 0.
template <typename T>
PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveNoTagToArray(
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
uint8_t* target);
template <typename T>
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixedNoTagToArray(
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32NoTagToArray(
const RepeatedField<int32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64NoTagToArray(
const RepeatedField<int64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32NoTagToArray(
const RepeatedField<uint32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64NoTagToArray(
const RepeatedField<uint64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32NoTagToArray(
const RepeatedField<int32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64NoTagToArray(
const RepeatedField<int64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32NoTagToArray(
const RepeatedField<uint32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64NoTagToArray(
const RepeatedField<uint64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32NoTagToArray(
const RepeatedField<int32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64NoTagToArray(
const RepeatedField<int64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatNoTagToArray(
const RepeatedField<float>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleNoTagToArray(
const RepeatedField<double>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolNoTagToArray(
const RepeatedField<bool>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumNoTagToArray(
const RepeatedField<int>& value, uint8_t* output);
// Write fields, including tags.
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(int field_number,
int32_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(int field_number,
int64_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(int field_number,
uint32_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(int field_number,
uint64_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(int field_number,
int32_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(int field_number,
int64_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(int field_number,
uint32_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(int field_number,
uint64_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(int field_number,
int32_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(int field_number,
int64_t value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(int field_number,
float value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(int field_number,
double value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(int field_number,
bool value,
uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(int field_number,
int value,
uint8_t* target);
template <typename T>
PROTOBUF_NDEBUG_INLINE static uint8_t* WritePrimitiveToArray(
int field_number, const RepeatedField<T>& value,
uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt32ToArray(
int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteInt64ToArray(
int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt32ToArray(
int field_number, const RepeatedField<uint32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteUInt64ToArray(
int field_number, const RepeatedField<uint64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt32ToArray(
int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSInt64ToArray(
int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed32ToArray(
int field_number, const RepeatedField<uint32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFixed64ToArray(
int field_number, const RepeatedField<uint64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed32ToArray(
int field_number, const RepeatedField<int32_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteSFixed64ToArray(
int field_number, const RepeatedField<int64_t>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteFloatToArray(
int field_number, const RepeatedField<float>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteDoubleToArray(
int field_number, const RepeatedField<double>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBoolToArray(
int field_number, const RepeatedField<bool>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteEnumToArray(
int field_number, const RepeatedField<int>& value, uint8_t* output);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteStringToArray(
int field_number, const std::string& value, uint8_t* target);
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteBytesToArray(
int field_number, const std::string& value, uint8_t* target);
// Whether to serialize deterministically (e.g., map keys are
// sorted) is a property of a CodedOutputStream, and in the process
// of serialization, the "ToArray" variants may be invoked. But they don't
// have a CodedOutputStream available, so they get an additional parameter
// telling them whether to serialize deterministically.
static uint8_t* InternalWriteGroup(int field_number, const MessageLite& value,
uint8_t* target,
io::EpsCopyOutputStream* stream);
static uint8_t* InternalWriteMessage(int field_number,
const MessageLite& value,
int cached_size, uint8_t* target,
io::EpsCopyOutputStream* stream);
// Like above, but de-virtualize the call to SerializeWithCachedSizes(). The
// pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override SerializeWithCachedSizes()).
template <typename MessageType>
PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteGroupNoVirtualToArray(
int field_number, const MessageType& value, uint8_t* target);
template <typename MessageType>
PROTOBUF_NDEBUG_INLINE static uint8_t* InternalWriteMessageNoVirtualToArray(
int field_number, const MessageType& value, uint8_t* target);
// For backward-compatibility, the last four methods also have versions
// that are non-deterministic always.
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteGroupToArray(
int field_number, const MessageLite& value, uint8_t* target) {
io::EpsCopyOutputStream stream(
target,
value.GetCachedSize() +
static_cast<int>(2 * io::CodedOutputStream::VarintSize32(
static_cast<uint32_t>(field_number) << 3)),
io::CodedOutputStream::IsDefaultSerializationDeterministic());
return InternalWriteGroup(field_number, value, target, &stream);
}
PROTOBUF_NDEBUG_INLINE static uint8_t* WriteMessageToArray(
int field_number, const MessageLite& value, uint8_t* target) {
int size = value.GetCachedSize();
io::EpsCopyOutputStream stream(
target,
size + static_cast<int>(io::CodedOutputStream::VarintSize32(
static_cast<uint32_t>(field_number) << 3) +
io::CodedOutputStream::VarintSize32(size)),
io::CodedOutputStream::IsDefaultSerializationDeterministic());
return InternalWriteMessage(field_number, value, value.GetCachedSize(),
target, &stream);
}
// Compute the byte size of a field. The XxSize() functions do NOT include
// the tag, so you must also call TagSize(). (This is because, for repeated
// fields, you should only call TagSize() once and multiply it by the element
// count, but you may have to call XxSize() for each individual element.)
static inline size_t Int32Size(int32_t value);
static inline size_t Int64Size(int64_t value);
static inline size_t UInt32Size(uint32_t value);
static inline size_t UInt64Size(uint64_t value);
static inline size_t SInt32Size(int32_t value);
static inline size_t SInt64Size(int64_t value);
static inline size_t EnumSize(int value);
static inline size_t Int32SizePlusOne(int32_t value);
static inline size_t Int64SizePlusOne(int64_t value);
static inline size_t UInt32SizePlusOne(uint32_t value);
static inline size_t UInt64SizePlusOne(uint64_t value);
static inline size_t SInt32SizePlusOne(int32_t value);
static inline size_t SInt64SizePlusOne(int64_t value);
static inline size_t EnumSizePlusOne(int value);
static size_t Int32Size(const RepeatedField<int32_t>& value);
static size_t Int64Size(const RepeatedField<int64_t>& value);
static size_t UInt32Size(const RepeatedField<uint32_t>& value);
static size_t UInt64Size(const RepeatedField<uint64_t>& value);
static size_t SInt32Size(const RepeatedField<int32_t>& value);
static size_t SInt64Size(const RepeatedField<int64_t>& value);
static size_t EnumSize(const RepeatedField<int>& value);
// These types always have the same size.
static constexpr size_t kFixed32Size = 4;
static constexpr size_t kFixed64Size = 8;
static constexpr size_t kSFixed32Size = 4;
static constexpr size_t kSFixed64Size = 8;
static constexpr size_t kFloatSize = 4;
static constexpr size_t kDoubleSize = 8;
static constexpr size_t kBoolSize = 1;
static inline size_t StringSize(const std::string& value);
static inline size_t BytesSize(const std::string& value);
template <typename MessageType>
static inline size_t GroupSize(const MessageType& value);
template <typename MessageType>
static inline size_t MessageSize(const MessageType& value);
// Like above, but de-virtualize the call to ByteSize(). The
// pointer must point at an instance of MessageType, *not* a subclass (or
// the subclass must not override ByteSize()).
template <typename MessageType>
static inline size_t GroupSizeNoVirtual(const MessageType& value);
template <typename MessageType>
static inline size_t MessageSizeNoVirtual(const MessageType& value);
// Given the length of data, calculate the byte size of the data on the
// wire if we encode the data as a length delimited field.
static inline size_t LengthDelimitedSize(size_t length);
private:
// A helper method for the repeated primitive reader. This method has
// optimizations for primitive types that have fixed size on the wire, and
// can be read using potentially faster paths.
template <typename CType, enum FieldType DeclaredType>
PROTOBUF_NDEBUG_INLINE static bool ReadRepeatedFixedSizePrimitive(
int tag_size, uint32_t tag, io::CodedInputStream* input,
RepeatedField<CType>* value);
// Like ReadRepeatedFixedSizePrimitive but for packed primitive fields.
template <typename CType, enum FieldType DeclaredType>
PROTOBUF_NDEBUG_INLINE static bool ReadPackedFixedSizePrimitive(
io::CodedInputStream* input, RepeatedField<CType>* value);
static const CppType kFieldTypeToCppTypeMap[];
static const WireFormatLite::WireType kWireTypeForFieldType[];
static void WriteSubMessageMaybeToArray(int size, const MessageLite& value,
io::CodedOutputStream* output);
};
// A class which deals with unknown values. The default implementation just
// discards them. WireFormat defines a subclass which writes to an
// UnknownFieldSet. This class is used by ExtensionSet::ParseField(), since
// ExtensionSet is part of the lite library but UnknownFieldSet is not.
class PROTOBUF_EXPORT FieldSkipper {
public:
FieldSkipper() {}
virtual ~FieldSkipper() {}
// Skip a field whose tag has already been consumed.
virtual bool SkipField(io::CodedInputStream* input, uint32_t tag);
// Skip an entire message or group, up to an end-group tag (which is consumed)
// or end-of-stream.
virtual bool SkipMessage(io::CodedInputStream* input);
// Deal with an already-parsed unrecognized enum value. The default
// implementation does nothing, but the UnknownFieldSet-based implementation
// saves it as an unknown varint.
virtual void SkipUnknownEnum(int field_number, int value);
};
// Subclass of FieldSkipper which saves skipped fields to a CodedOutputStream.
class PROTOBUF_EXPORT CodedOutputStreamFieldSkipper : public FieldSkipper {
public:
explicit CodedOutputStreamFieldSkipper(io::CodedOutputStream* unknown_fields)
: unknown_fields_(unknown_fields) {}
~CodedOutputStreamFieldSkipper() override {}
// implements FieldSkipper -----------------------------------------
bool SkipField(io::CodedInputStream* input, uint32_t tag) override;
bool SkipMessage(io::CodedInputStream* input) override;
void SkipUnknownEnum(int field_number, int value) override;
protected:
io::CodedOutputStream* unknown_fields_;
};
// inline methods ====================================================
inline WireFormatLite::CppType WireFormatLite::FieldTypeToCppType(
FieldType type) {
return kFieldTypeToCppTypeMap[type];
}
constexpr inline uint32_t WireFormatLite::MakeTag(int field_number,
WireType type) {
return GOOGLE_PROTOBUF_WIRE_FORMAT_MAKE_TAG(field_number, type);
}
inline WireFormatLite::WireType WireFormatLite::GetTagWireType(uint32_t tag) {
return static_cast<WireType>(tag & kTagTypeMask);
}
inline int WireFormatLite::GetTagFieldNumber(uint32_t tag) {
return static_cast<int>(tag >> kTagTypeBits);
}
inline size_t WireFormatLite::TagSize(int field_number,
WireFormatLite::FieldType type) {
size_t result = io::CodedOutputStream::VarintSize32(
static_cast<uint32_t>(field_number << kTagTypeBits));
if (type == TYPE_GROUP) {
// Groups have both a start and an end tag.
return result * 2;
} else {
return result;
}
}
inline uint32_t WireFormatLite::EncodeFloat(float value) {
return absl::bit_cast<uint32_t>(value);
}
inline float WireFormatLite::DecodeFloat(uint32_t value) {
return absl::bit_cast<float>(value);
}
inline uint64_t WireFormatLite::EncodeDouble(double value) {
return absl::bit_cast<uint64_t>(value);
}
inline double WireFormatLite::DecodeDouble(uint64_t value) {
return absl::bit_cast<double>(value);
}
// ZigZag Transform: Encodes signed integers so that they can be
// effectively used with varint encoding.
//
// varint operates on unsigned integers, encoding smaller numbers into
// fewer bytes. If you try to use it on a signed integer, it will treat
// this number as a very large unsigned integer, which means that even
// small signed numbers like -1 will take the maximum number of bytes
// (10) to encode. ZigZagEncode() maps signed integers to unsigned
// in such a way that those with a small absolute value will have smaller
// encoded values, making them appropriate for encoding using varint.
//
// int32_t -> uint32_t
// -------------------------
// 0 -> 0
// -1 -> 1
// 1 -> 2
// -2 -> 3
// ... -> ...
// 2147483647 -> 4294967294
// -2147483648 -> 4294967295
//
// >> encode >>
// << decode <<
inline uint32_t WireFormatLite::ZigZagEncode32(int32_t n) {
// Note: the right-shift must be arithmetic
// Note: left shift must be unsigned because of overflow
return (static_cast<uint32_t>(n) << 1) ^ static_cast<uint32_t>(n >> 31);
}
inline int32_t WireFormatLite::ZigZagDecode32(uint32_t n) {
// Note: Using unsigned types prevent undefined behavior
return static_cast<int32_t>((n >> 1) ^ (~(n & 1) + 1));
}
inline uint64_t WireFormatLite::ZigZagEncode64(int64_t n) {
// Note: the right-shift must be arithmetic
// Note: left shift must be unsigned because of overflow
return (static_cast<uint64_t>(n) << 1) ^ static_cast<uint64_t>(n >> 63);
}
inline int64_t WireFormatLite::ZigZagDecode64(uint64_t n) {
// Note: Using unsigned types prevent undefined behavior
return static_cast<int64_t>((n >> 1) ^ (~(n & 1) + 1));
}
// String is for UTF-8 text only, but, even so, ReadString() can simply
// call ReadBytes().
inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
std::string* value) {
return ReadBytes(input, value);
}
inline bool WireFormatLite::ReadString(io::CodedInputStream* input,
std::string** p) {
return ReadBytes(input, p);
}
inline uint8_t* InternalSerializeUnknownMessageSetItemsToArray(
const std::string& unknown_fields, uint8_t* target,
io::EpsCopyOutputStream* stream) {
return stream->WriteRaw(unknown_fields.data(),
static_cast<int>(unknown_fields.size()), target);
}
inline size_t ComputeUnknownMessageSetItemsSize(
const std::string& unknown_fields) {
return unknown_fields.size();
}
// Implementation details of ReadPrimitive.
template <>
inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_INT32>(
io::CodedInputStream* input, int32_t* value) {
uint32_t temp;
if (!input->ReadVarint32(&temp)) return false;
*value = static_cast<int32_t>(temp);
return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_INT64>(
io::CodedInputStream* input, int64_t* value) {
uint64_t temp;
if (!input->ReadVarint64(&temp)) return false;
*value = static_cast<int64_t>(temp);
return true;
}
template <>
inline bool
WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_UINT32>(
io::CodedInputStream* input, uint32_t* value) {
return input->ReadVarint32(value);
}
template <>
inline bool
WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_UINT64>(
io::CodedInputStream* input, uint64_t* value) {
return input->ReadVarint64(value);
}
template <>
inline bool WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SINT32>(
io::CodedInputStream* input, int32_t* value) {
uint32_t temp;
if (!input->ReadVarint32(&temp)) return false;
*value = ZigZagDecode32(temp);
return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SINT64>(
io::CodedInputStream* input, int64_t* value) {
uint64_t temp;
if (!input->ReadVarint64(&temp)) return false;
*value = ZigZagDecode64(temp);
return true;
}
template <>
inline bool
WireFormatLite::ReadPrimitive<uint32_t, WireFormatLite::TYPE_FIXED32>(
io::CodedInputStream* input, uint32_t* value) {
return input->ReadLittleEndian32(value);
}
template <>
inline bool
WireFormatLite::ReadPrimitive<uint64_t, WireFormatLite::TYPE_FIXED64>(
io::CodedInputStream* input, uint64_t* value) {
return input->ReadLittleEndian64(value);
}
template <>
inline bool
WireFormatLite::ReadPrimitive<int32_t, WireFormatLite::TYPE_SFIXED32>(
io::CodedInputStream* input, int32_t* value) {
uint32_t temp;
if (!input->ReadLittleEndian32(&temp)) return false;
*value = static_cast<int32_t>(temp);
return true;
}
template <>
inline bool
WireFormatLite::ReadPrimitive<int64_t, WireFormatLite::TYPE_SFIXED64>(
io::CodedInputStream* input, int64_t* value) {
uint64_t temp;
if (!input->ReadLittleEndian64(&temp)) return false;
*value = static_cast<int64_t>(temp);
return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<float, WireFormatLite::TYPE_FLOAT>(
io::CodedInputStream* input, float* value) {
uint32_t temp;
if (!input->ReadLittleEndian32(&temp)) return false;
*value = DecodeFloat(temp);
return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<double, WireFormatLite::TYPE_DOUBLE>(
io::CodedInputStream* input, double* value) {
uint64_t temp;
if (!input->ReadLittleEndian64(&temp)) return false;
*value = DecodeDouble(temp);
return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<bool, WireFormatLite::TYPE_BOOL>(
io::CodedInputStream* input, bool* value) {
uint64_t temp;
if (!input->ReadVarint64(&temp)) return false;
*value = temp != 0;
return true;
}
template <>
inline bool WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
io::CodedInputStream* input, int* value) {
uint32_t temp;
if (!input->ReadVarint32(&temp)) return false;
*value = static_cast<int>(temp);
return true;
}
template <>
inline const uint8_t*
WireFormatLite::ReadPrimitiveFromArray<uint32_t, WireFormatLite::TYPE_FIXED32>(
const uint8_t* buffer, uint32_t* value) {
return io::CodedInputStream::ReadLittleEndian32FromArray(buffer, value);
}
template <>
inline const uint8_t*
WireFormatLite::ReadPrimitiveFromArray<uint64_t, WireFormatLite::TYPE_FIXED64>(
const uint8_t* buffer, uint64_t* value) {
return io::CodedInputStream::ReadLittleEndian64FromArray(buffer, value);
}
template <>
inline const uint8_t*
WireFormatLite::ReadPrimitiveFromArray<int32_t, WireFormatLite::TYPE_SFIXED32>(
const uint8_t* buffer, int32_t* value) {
uint32_t temp;
buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
*value = static_cast<int32_t>(temp);
return buffer;
}
template <>
inline const uint8_t*
WireFormatLite::ReadPrimitiveFromArray<int64_t, WireFormatLite::TYPE_SFIXED64>(
const uint8_t* buffer, int64_t* value) {
uint64_t temp;
buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
*value = static_cast<int64_t>(temp);
return buffer;
}
template <>
inline const uint8_t*
WireFormatLite::ReadPrimitiveFromArray<float, WireFormatLite::TYPE_FLOAT>(
const uint8_t* buffer, float* value) {
uint32_t temp;
buffer = io::CodedInputStream::ReadLittleEndian32FromArray(buffer, &temp);
*value = DecodeFloat(temp);
return buffer;
}
template <>
inline const uint8_t*
WireFormatLite::ReadPrimitiveFromArray<double, WireFormatLite::TYPE_DOUBLE>(
const uint8_t* buffer, double* value) {
uint64_t temp;
buffer = io::CodedInputStream::ReadLittleEndian64FromArray(buffer, &temp);
*value = DecodeDouble(temp);
return buffer;
}
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadRepeatedPrimitive(
int, // tag_size, unused.
uint32_t tag, io::CodedInputStream* input, RepeatedField<CType>* values) {
CType value;
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
values->Add(value);
int elements_already_reserved = values->Capacity() - values->size();
while (elements_already_reserved > 0 && input->ExpectTag(tag)) {
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
values->AddAlreadyReserved(value);
elements_already_reserved--;
}
return true;
}
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadRepeatedFixedSizePrimitive(
int tag_size, uint32_t tag, io::CodedInputStream* input,
RepeatedField<CType>* values) {
GOOGLE_ABSL_DCHECK_EQ(UInt32Size(tag), static_cast<size_t>(tag_size));
CType value;
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
values->Add(value);
// For fixed size values, repeated values can be read more quickly by
// reading directly from a raw array.
//
// We can get a tight loop by only reading as many elements as can be
// added to the RepeatedField without having to do any resizing. Additionally,
// we only try to read as many elements as are available from the current
// buffer space. Doing so avoids having to perform boundary checks when
// reading the value: the maximum number of elements that can be read is
// known outside of the loop.
const void* void_pointer;
int size;
input->GetDirectBufferPointerInline(&void_pointer, &size);
if (size > 0) {
const uint8_t* buffer = reinterpret_cast<const uint8_t*>(void_pointer);
// The number of bytes each type occupies on the wire.
const int per_value_size = tag_size + static_cast<int>(sizeof(value));
// parentheses around (std::min) prevents macro expansion of min(...)
int elements_available =
(std::min)(values->Capacity() - values->size(), size / per_value_size);
int num_read = 0;
while (num_read < elements_available &&
(buffer = io::CodedInputStream::ExpectTagFromArray(buffer, tag)) !=
nullptr) {
buffer = ReadPrimitiveFromArray<CType, DeclaredType>(buffer, &value);
values->AddAlreadyReserved(value);
++num_read;
}
const int read_bytes = num_read * per_value_size;
if (read_bytes > 0) {
input->Skip(read_bytes);
}
}
return true;
}
// Specializations of ReadRepeatedPrimitive for the fixed size types, which use
// the optimized code path.
#define READ_REPEATED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \
template <> \
inline bool WireFormatLite::ReadRepeatedPrimitive< \
CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
int tag_size, uint32_t tag, io::CodedInputStream* input, \
RepeatedField<CPPTYPE>* values) { \
return ReadRepeatedFixedSizePrimitive<CPPTYPE, \
WireFormatLite::DECLARED_TYPE>( \
tag_size, tag, input, values); \
}
READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
READ_REPEATED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)
#undef READ_REPEATED_FIXED_SIZE_PRIMITIVE
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
bool WireFormatLite::ReadRepeatedPrimitiveNoInline(
int tag_size, uint32_t tag, io::CodedInputStream* input,
RepeatedField<CType>* value) {
return ReadRepeatedPrimitive<CType, DeclaredType>(tag_size, tag, input,
value);
}
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadPackedPrimitive(io::CodedInputStream* input,
RepeatedField<CType>* values) {
int length;
if (!input->ReadVarintSizeAsInt(&length)) return false;
io::CodedInputStream::Limit limit = input->PushLimit(length);
while (input->BytesUntilLimit() > 0) {
CType value;
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
values->Add(value);
}
input->PopLimit(limit);
return true;
}
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
inline bool WireFormatLite::ReadPackedFixedSizePrimitive(
io::CodedInputStream* input, RepeatedField<CType>* values) {
int length;
if (!input->ReadVarintSizeAsInt(&length)) return false;
const int old_entries = values->size();
const int new_entries = length / static_cast<int>(sizeof(CType));
const int new_bytes = new_entries * static_cast<int>(sizeof(CType));
if (new_bytes != length) return false;
// We would *like* to pre-allocate the buffer to write into (for
// speed), but *must* avoid performing a very large allocation due
// to a malicious user-supplied "length" above. So we have a fast
// path that pre-allocates when the "length" is less than a bound.
// We determine the bound by calling BytesUntilTotalBytesLimit() and
// BytesUntilLimit(). These return -1 to mean "no limit set".
// There are four cases:
// TotalBytesLimit Limit
// -1 -1 Use slow path.
// -1 >= 0 Use fast path if length <= Limit.
// >= 0 -1 Use slow path.
// >= 0 >= 0 Use fast path if length <= min(both limits).
int64_t bytes_limit = input->BytesUntilTotalBytesLimit();
if (bytes_limit == -1) {
bytes_limit = input->BytesUntilLimit();
} else {
// parentheses around (std::min) prevents macro expansion of min(...)
bytes_limit =
(std::min)(bytes_limit, static_cast<int64_t>(input->BytesUntilLimit()));
}
if (bytes_limit >= new_bytes) {
// Fast-path that pre-allocates *values to the final size.
#if defined(PROTOBUF_LITTLE_ENDIAN)
values->Resize(old_entries + new_entries, 0);
// values->mutable_data() may change after Resize(), so do this after:
void* dest = reinterpret_cast<void*>(values->mutable_data() + old_entries);
if (!input->ReadRaw(dest, new_bytes)) {
values->Truncate(old_entries);
return false;
}
#else
values->Reserve(old_entries + new_entries);
CType value;
for (int i = 0; i < new_entries; ++i) {
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
values->AddAlreadyReserved(value);
}
#endif
} else {
// This is the slow-path case where "length" may be too large to
// safely allocate. We read as much as we can into *values
// without pre-allocating "length" bytes.
CType value;
for (int i = 0; i < new_entries; ++i) {
if (!ReadPrimitive<CType, DeclaredType>(input, &value)) return false;
values->Add(value);
}
}
return true;
}
// Specializations of ReadPackedPrimitive for the fixed size types, which use
// an optimized code path.
#define READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(CPPTYPE, DECLARED_TYPE) \
template <> \
inline bool \
WireFormatLite::ReadPackedPrimitive<CPPTYPE, WireFormatLite::DECLARED_TYPE>( \
io::CodedInputStream * input, RepeatedField<CPPTYPE> * values) { \
return ReadPackedFixedSizePrimitive<CPPTYPE, \
WireFormatLite::DECLARED_TYPE>( \
input, values); \
}
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint32_t, TYPE_FIXED32)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(uint64_t, TYPE_FIXED64)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int32_t, TYPE_SFIXED32)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(int64_t, TYPE_SFIXED64)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(float, TYPE_FLOAT)
READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE(double, TYPE_DOUBLE)
#undef READ_REPEATED_PACKED_FIXED_SIZE_PRIMITIVE
template <typename CType, enum WireFormatLite::FieldType DeclaredType>
bool WireFormatLite::ReadPackedPrimitiveNoInline(io::CodedInputStream* input,
RepeatedField<CType>* values) {
return ReadPackedPrimitive<CType, DeclaredType>(input, values);
}
template <typename MessageType>
inline bool WireFormatLite::ReadGroup(int field_number,
io::CodedInputStream* input,
MessageType* value) {
if (!input->IncrementRecursionDepth()) return false;
if (!value->MergePartialFromCodedStream(input)) return false;
input->UnsafeDecrementRecursionDepth();
// Make sure the last thing read was an end tag for this group.
if (!input->LastTagWas(MakeTag(field_number, WIRETYPE_END_GROUP))) {
return false;
}
return true;
}
template <typename MessageType>
inline bool WireFormatLite::ReadMessage(io::CodedInputStream* input,
MessageType* value) {
int length;
if (!input->ReadVarintSizeAsInt(&length)) return false;
std::pair<io::CodedInputStream::Limit, int> p =
input->IncrementRecursionDepthAndPushLimit(length);
if (p.second < 0 || !value->MergePartialFromCodedStream(input)) return false;
// Make sure that parsing stopped when the limit was hit, not at an endgroup
// tag.
return input->DecrementRecursionDepthAndPopLimit(p.first);
}
// ===================================================================
inline void WireFormatLite::WriteTag(int field_number, WireType type,
io::CodedOutputStream* output) {
output->WriteTag(MakeTag(field_number, type));
}
inline void WireFormatLite::WriteInt32NoTag(int32_t value,
io::CodedOutputStream* output) {
output->WriteVarint32SignExtended(value);
}
inline void WireFormatLite::WriteInt64NoTag(int64_t value,
io::CodedOutputStream* output) {
output->WriteVarint64(static_cast<uint64_t>(value));
}
inline void WireFormatLite::WriteUInt32NoTag(uint32_t value,
io::CodedOutputStream* output) {
output->WriteVarint32(value);
}
inline void WireFormatLite::WriteUInt64NoTag(uint64_t value,
io::CodedOutputStream* output) {
output->WriteVarint64(value);
}
inline void WireFormatLite::WriteSInt32NoTag(int32_t value,
io::CodedOutputStream* output) {
output->WriteVarint32(ZigZagEncode32(value));
}
inline void WireFormatLite::WriteSInt64NoTag(int64_t value,
io::CodedOutputStream* output) {
output->WriteVarint64(ZigZagEncode64(value));
}
inline void WireFormatLite::WriteFixed32NoTag(uint32_t value,
io::CodedOutputStream* output) {
output->WriteLittleEndian32(value);
}
inline void WireFormatLite::WriteFixed64NoTag(uint64_t value,
io::CodedOutputStream* output) {
output->WriteLittleEndian64(value);
}
inline void WireFormatLite::WriteSFixed32NoTag(int32_t value,
io::CodedOutputStream* output) {
output->WriteLittleEndian32(static_cast<uint32_t>(value));
}
inline void WireFormatLite::WriteSFixed64NoTag(int64_t value,
io::CodedOutputStream* output) {
output->WriteLittleEndian64(static_cast<uint64_t>(value));
}
inline void WireFormatLite::WriteFloatNoTag(float value,
io::CodedOutputStream* output) {
output->WriteLittleEndian32(EncodeFloat(value));
}
inline void WireFormatLite::WriteDoubleNoTag(double value,
io::CodedOutputStream* output) {
output->WriteLittleEndian64(EncodeDouble(value));
}
inline void WireFormatLite::WriteBoolNoTag(bool value,
io::CodedOutputStream* output) {
output->WriteVarint32(value ? 1 : 0);
}
inline void WireFormatLite::WriteEnumNoTag(int value,
io::CodedOutputStream* output) {
output->WriteVarint32SignExtended(value);
}
// See comment on ReadGroupNoVirtual to understand the need for this template
// parameter name.
template <typename MessageType_WorkAroundCppLookupDefect>
inline void WireFormatLite::WriteGroupNoVirtual(
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_START_GROUP, output);
value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
WriteTag(field_number, WIRETYPE_END_GROUP, output);
}
template <typename MessageType_WorkAroundCppLookupDefect>
inline void WireFormatLite::WriteMessageNoVirtual(
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
io::CodedOutputStream* output) {
WriteTag(field_number, WIRETYPE_LENGTH_DELIMITED, output);
output->WriteVarint32(
value.MessageType_WorkAroundCppLookupDefect::GetCachedSize());
value.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizes(output);
}
// ===================================================================
inline uint8_t* WireFormatLite::WriteTagToArray(int field_number, WireType type,
uint8_t* target) {
return io::CodedOutputStream::WriteTagToArray(MakeTag(field_number, type),
target);
}
inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(int32_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(int64_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint64ToArray(
static_cast<uint64_t>(value), target);
}
inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(uint32_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint32ToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(uint64_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint64ToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(int32_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint32ToArray(ZigZagEncode32(value),
target);
}
inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(int64_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint64ToArray(ZigZagEncode64(value),
target);
}
inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(uint32_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteLittleEndian32ToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(uint64_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteLittleEndian64ToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(int32_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteLittleEndian32ToArray(
static_cast<uint32_t>(value), target);
}
inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(int64_t value,
uint8_t* target) {
return io::CodedOutputStream::WriteLittleEndian64ToArray(
static_cast<uint64_t>(value), target);
}
inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(float value,
uint8_t* target) {
return io::CodedOutputStream::WriteLittleEndian32ToArray(EncodeFloat(value),
target);
}
inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(double value,
uint8_t* target) {
return io::CodedOutputStream::WriteLittleEndian64ToArray(EncodeDouble(value),
target);
}
inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(bool value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint32ToArray(value ? 1 : 0, target);
}
inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(int value,
uint8_t* target) {
return io::CodedOutputStream::WriteVarint32SignExtendedToArray(value, target);
}
template <typename T>
inline uint8_t* WireFormatLite::WritePrimitiveNoTagToArray(
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
uint8_t* target) {
const int n = value.size();
GOOGLE_ABSL_DCHECK_GT(n, 0);
const T* ii = value.data();
int i = 0;
do {
target = Writer(ii[i], target);
} while (++i < n);
return target;
}
template <typename T>
inline uint8_t* WireFormatLite::WriteFixedNoTagToArray(
const RepeatedField<T>& value, uint8_t* (*Writer)(T, uint8_t*),
uint8_t* target) {
#if defined(PROTOBUF_LITTLE_ENDIAN)
(void)Writer;
const int n = value.size();
GOOGLE_ABSL_DCHECK_GT(n, 0);
const T* ii = value.data();
const int bytes = n * static_cast<int>(sizeof(ii[0]));
memcpy(target, ii, static_cast<size_t>(bytes));
return target + bytes;
#else
return WritePrimitiveNoTagToArray(value, Writer, target);
#endif
}
inline uint8_t* WireFormatLite::WriteInt32NoTagToArray(
const RepeatedField<int32_t>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteInt32NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteInt64NoTagToArray(
const RepeatedField<int64_t>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteInt64NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteUInt32NoTagToArray(
const RepeatedField<uint32_t>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteUInt32NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteUInt64NoTagToArray(
const RepeatedField<uint64_t>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteUInt64NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteSInt32NoTagToArray(
const RepeatedField<int32_t>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteSInt32NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteSInt64NoTagToArray(
const RepeatedField<int64_t>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteSInt64NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteFixed32NoTagToArray(
const RepeatedField<uint32_t>& value, uint8_t* target) {
return WriteFixedNoTagToArray(value, WriteFixed32NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteFixed64NoTagToArray(
const RepeatedField<uint64_t>& value, uint8_t* target) {
return WriteFixedNoTagToArray(value, WriteFixed64NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteSFixed32NoTagToArray(
const RepeatedField<int32_t>& value, uint8_t* target) {
return WriteFixedNoTagToArray(value, WriteSFixed32NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteSFixed64NoTagToArray(
const RepeatedField<int64_t>& value, uint8_t* target) {
return WriteFixedNoTagToArray(value, WriteSFixed64NoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteFloatNoTagToArray(
const RepeatedField<float>& value, uint8_t* target) {
return WriteFixedNoTagToArray(value, WriteFloatNoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteDoubleNoTagToArray(
const RepeatedField<double>& value, uint8_t* target) {
return WriteFixedNoTagToArray(value, WriteDoubleNoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteBoolNoTagToArray(
const RepeatedField<bool>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteBoolNoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteEnumNoTagToArray(
const RepeatedField<int>& value, uint8_t* target) {
return WritePrimitiveNoTagToArray(value, WriteEnumNoTagToArray, target);
}
inline uint8_t* WireFormatLite::WriteInt32ToArray(int field_number,
int32_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteInt32NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteInt64ToArray(int field_number,
int64_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteInt64NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteUInt32ToArray(int field_number,
uint32_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteUInt32NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteUInt64ToArray(int field_number,
uint64_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteUInt64NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteSInt32ToArray(int field_number,
int32_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteSInt32NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteSInt64ToArray(int field_number,
int64_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteSInt64NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteFixed32ToArray(int field_number,
uint32_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
return WriteFixed32NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteFixed64ToArray(int field_number,
uint64_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
return WriteFixed64NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteSFixed32ToArray(int field_number,
int32_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
return WriteSFixed32NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteSFixed64ToArray(int field_number,
int64_t value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
return WriteSFixed64NoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteFloatToArray(int field_number, float value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_FIXED32, target);
return WriteFloatNoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteDoubleToArray(int field_number,
double value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_FIXED64, target);
return WriteDoubleNoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteBoolToArray(int field_number, bool value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteBoolNoTagToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteEnumToArray(int field_number, int value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_VARINT, target);
return WriteEnumNoTagToArray(value, target);
}
template <typename T>
inline uint8_t* WireFormatLite::WritePrimitiveToArray(
int field_number, const RepeatedField<T>& value,
uint8_t* (*Writer)(int, T, uint8_t*), uint8_t* target) {
const int n = value.size();
if (n == 0) {
return target;
}
const T* ii = value.data();
int i = 0;
do {
target = Writer(field_number, ii[i], target);
} while (++i < n);
return target;
}
inline uint8_t* WireFormatLite::WriteInt32ToArray(
int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteInt32ToArray, target);
}
inline uint8_t* WireFormatLite::WriteInt64ToArray(
int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteInt64ToArray, target);
}
inline uint8_t* WireFormatLite::WriteUInt32ToArray(
int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteUInt32ToArray, target);
}
inline uint8_t* WireFormatLite::WriteUInt64ToArray(
int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteUInt64ToArray, target);
}
inline uint8_t* WireFormatLite::WriteSInt32ToArray(
int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteSInt32ToArray, target);
}
inline uint8_t* WireFormatLite::WriteSInt64ToArray(
int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteSInt64ToArray, target);
}
inline uint8_t* WireFormatLite::WriteFixed32ToArray(
int field_number, const RepeatedField<uint32_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteFixed32ToArray,
target);
}
inline uint8_t* WireFormatLite::WriteFixed64ToArray(
int field_number, const RepeatedField<uint64_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteFixed64ToArray,
target);
}
inline uint8_t* WireFormatLite::WriteSFixed32ToArray(
int field_number, const RepeatedField<int32_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteSFixed32ToArray,
target);
}
inline uint8_t* WireFormatLite::WriteSFixed64ToArray(
int field_number, const RepeatedField<int64_t>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteSFixed64ToArray,
target);
}
inline uint8_t* WireFormatLite::WriteFloatToArray(
int field_number, const RepeatedField<float>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteFloatToArray, target);
}
inline uint8_t* WireFormatLite::WriteDoubleToArray(
int field_number, const RepeatedField<double>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteDoubleToArray, target);
}
inline uint8_t* WireFormatLite::WriteBoolToArray(
int field_number, const RepeatedField<bool>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteBoolToArray, target);
}
inline uint8_t* WireFormatLite::WriteEnumToArray(
int field_number, const RepeatedField<int>& value, uint8_t* target) {
return WritePrimitiveToArray(field_number, value, WriteEnumToArray, target);
}
inline uint8_t* WireFormatLite::WriteStringToArray(int field_number,
const std::string& value,
uint8_t* target) {
// String is for UTF-8 text only
// WARNING: In wire_format.cc, both strings and bytes are handled by
// WriteString() to avoid code duplication. If the implementations become
// different, you will need to update that usage.
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
}
inline uint8_t* WireFormatLite::WriteBytesToArray(int field_number,
const std::string& value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
return io::CodedOutputStream::WriteStringWithSizeToArray(value, target);
}
// See comment on ReadGroupNoVirtual to understand the need for this template
// parameter name.
template <typename MessageType_WorkAroundCppLookupDefect>
inline uint8_t* WireFormatLite::InternalWriteGroupNoVirtualToArray(
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_START_GROUP, target);
target = value.MessageType_WorkAroundCppLookupDefect::
SerializeWithCachedSizesToArray(target);
return WriteTagToArray(field_number, WIRETYPE_END_GROUP, target);
}
template <typename MessageType_WorkAroundCppLookupDefect>
inline uint8_t* WireFormatLite::InternalWriteMessageNoVirtualToArray(
int field_number, const MessageType_WorkAroundCppLookupDefect& value,
uint8_t* target) {
target = WriteTagToArray(field_number, WIRETYPE_LENGTH_DELIMITED, target);
target = io::CodedOutputStream::WriteVarint32ToArray(
static_cast<uint32_t>(
value.MessageType_WorkAroundCppLookupDefect::GetCachedSize()),
target);
return value
.MessageType_WorkAroundCppLookupDefect::SerializeWithCachedSizesToArray(
target);
}
// ===================================================================
inline size_t WireFormatLite::Int32Size(int32_t value) {
return io::CodedOutputStream::VarintSize32SignExtended(value);
}
inline size_t WireFormatLite::Int64Size(int64_t value) {
return io::CodedOutputStream::VarintSize64(static_cast<uint64_t>(value));
}
inline size_t WireFormatLite::UInt32Size(uint32_t value) {
return io::CodedOutputStream::VarintSize32(value);
}
inline size_t WireFormatLite::UInt64Size(uint64_t value) {
return io::CodedOutputStream::VarintSize64(value);
}
inline size_t WireFormatLite::SInt32Size(int32_t value) {
return io::CodedOutputStream::VarintSize32(ZigZagEncode32(value));
}
inline size_t WireFormatLite::SInt64Size(int64_t value) {
return io::CodedOutputStream::VarintSize64(ZigZagEncode64(value));
}
inline size_t WireFormatLite::EnumSize(int value) {
return io::CodedOutputStream::VarintSize32SignExtended(value);
}
inline size_t WireFormatLite::Int32SizePlusOne(int32_t value) {
return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value);
}
inline size_t WireFormatLite::Int64SizePlusOne(int64_t value) {
return io::CodedOutputStream::VarintSize64PlusOne(
static_cast<uint64_t>(value));
}
inline size_t WireFormatLite::UInt32SizePlusOne(uint32_t value) {
return io::CodedOutputStream::VarintSize32PlusOne(value);
}
inline size_t WireFormatLite::UInt64SizePlusOne(uint64_t value) {
return io::CodedOutputStream::VarintSize64PlusOne(value);
}
inline size_t WireFormatLite::SInt32SizePlusOne(int32_t value) {
return io::CodedOutputStream::VarintSize32PlusOne(ZigZagEncode32(value));
}
inline size_t WireFormatLite::SInt64SizePlusOne(int64_t value) {
return io::CodedOutputStream::VarintSize64PlusOne(ZigZagEncode64(value));
}
inline size_t WireFormatLite::EnumSizePlusOne(int value) {
return io::CodedOutputStream::VarintSize32SignExtendedPlusOne(value);
}
inline size_t WireFormatLite::StringSize(const std::string& value) {
return LengthDelimitedSize(value.size());
}
inline size_t WireFormatLite::BytesSize(const std::string& value) {
return LengthDelimitedSize(value.size());
}
template <typename MessageType>
inline size_t WireFormatLite::GroupSize(const MessageType& value) {
return value.ByteSizeLong();
}
template <typename MessageType>
inline size_t WireFormatLite::MessageSize(const MessageType& value) {
return LengthDelimitedSize(value.ByteSizeLong());
}
// See comment on ReadGroupNoVirtual to understand the need for this template
// parameter name.
template <typename MessageType_WorkAroundCppLookupDefect>
inline size_t WireFormatLite::GroupSizeNoVirtual(
const MessageType_WorkAroundCppLookupDefect& value) {
return value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong();
}
template <typename MessageType_WorkAroundCppLookupDefect>
inline size_t WireFormatLite::MessageSizeNoVirtual(
const MessageType_WorkAroundCppLookupDefect& value) {
return LengthDelimitedSize(
value.MessageType_WorkAroundCppLookupDefect::ByteSizeLong());
}
inline size_t WireFormatLite::LengthDelimitedSize(size_t length) {
// The static_cast here prevents an error in certain compiler configurations
// but is not technically correct--if length is too large to fit in a uint32_t
// then it will be silently truncated. We will need to fix this if we ever
// decide to start supporting serialized messages greater than 2 GiB in size.
return length +
io::CodedOutputStream::VarintSize32(static_cast<uint32_t>(length));
}
template <typename MS>
bool ParseMessageSetItemImpl(io::CodedInputStream* input, MS ms) {
// This method parses a group which should contain two fields:
// required int32 type_id = 2;
// required data message = 3;
uint32_t last_type_id = 0;
// If we see message data before the type_id, we'll append it to this so
// we can parse it later.
std::string message_data;
enum class State { kNoTag, kHasType, kHasPayload, kDone };
State state = State::kNoTag;
while (true) {
const uint32_t tag = input->ReadTagNoLastTag();
if (tag == 0) return false;
switch (tag) {
case WireFormatLite::kMessageSetTypeIdTag: {
uint32_t type_id;
if (!input->ReadVarint32(&type_id)) return false;
if (state == State::kNoTag) {
last_type_id = type_id;
state = State::kHasType;
} else if (state == State::kHasPayload) {
// We saw some message data before the type_id. Have to parse it
// now.
io::CodedInputStream sub_input(
reinterpret_cast<const uint8_t*>(message_data.data()),
static_cast<int>(message_data.size()));
sub_input.SetRecursionLimit(input->RecursionBudget());
if (!ms.ParseField(type_id, &sub_input)) {
return false;
}
message_data.clear();
state = State::kDone;
}
break;
}
case WireFormatLite::kMessageSetMessageTag: {
if (state == State::kHasType) {
// Already saw type_id, so we can parse this directly.
if (!ms.ParseField(last_type_id, input)) {
return false;
}
state = State::kDone;
} else if (state == State::kNoTag) {
// We haven't seen a type_id yet. Append this data to message_data.
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
if (static_cast<int32_t>(length) < 0) return false;
uint32_t size = static_cast<uint32_t>(
length + io::CodedOutputStream::VarintSize32(length));
message_data.resize(size);
auto ptr = reinterpret_cast<uint8_t*>(&message_data[0]);
ptr = io::CodedOutputStream::WriteVarint32ToArray(length, ptr);
if (!input->ReadRaw(ptr, length)) return false;
state = State::kHasPayload;
} else {
if (!ms.SkipField(tag, input)) return false;
}
break;
}
case WireFormatLite::kMessageSetItemEndTag: {
return true;
}
default: {
if (!ms.SkipField(tag, input)) return false;
}
}
}
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_WIRE_FORMAT_LITE_H__