|  | // Protocol Buffers - Google's data interchange format | 
|  | // Copyright 2014 Google Inc.  All rights reserved. | 
|  | // https://developers.google.com/protocol-buffers/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | #include "protobuf.h" | 
|  |  | 
|  | #include <math.h> | 
|  |  | 
|  | #include <ruby/encoding.h> | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Ruby <-> native slot management. | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  | #define DEREF(memory, type) *(type*)(memory) | 
|  |  | 
|  | size_t native_slot_size(upb_fieldtype_t type) { | 
|  | switch (type) { | 
|  | case UPB_TYPE_FLOAT:   return 4; | 
|  | case UPB_TYPE_DOUBLE:  return 8; | 
|  | case UPB_TYPE_BOOL:    return 1; | 
|  | case UPB_TYPE_STRING:  return sizeof(VALUE); | 
|  | case UPB_TYPE_BYTES:   return sizeof(VALUE); | 
|  | case UPB_TYPE_MESSAGE: return sizeof(VALUE); | 
|  | case UPB_TYPE_ENUM:    return 4; | 
|  | case UPB_TYPE_INT32:   return 4; | 
|  | case UPB_TYPE_INT64:   return 8; | 
|  | case UPB_TYPE_UINT32:  return 4; | 
|  | case UPB_TYPE_UINT64:  return 8; | 
|  | default: return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | static VALUE value_from_default(const upb_fielddef *field) { | 
|  | switch (upb_fielddef_type(field)) { | 
|  | case UPB_TYPE_FLOAT:   return DBL2NUM(upb_fielddef_defaultfloat(field)); | 
|  | case UPB_TYPE_DOUBLE:  return DBL2NUM(upb_fielddef_defaultdouble(field)); | 
|  | case UPB_TYPE_BOOL: | 
|  | return upb_fielddef_defaultbool(field) ? Qtrue : Qfalse; | 
|  | case UPB_TYPE_MESSAGE: return Qnil; | 
|  | case UPB_TYPE_ENUM: { | 
|  | const upb_enumdef *enumdef = upb_fielddef_enumsubdef(field); | 
|  | int32_t num = upb_fielddef_defaultint32(field); | 
|  | const char *label = upb_enumdef_iton(enumdef, num); | 
|  | if (label) { | 
|  | return ID2SYM(rb_intern(label)); | 
|  | } else { | 
|  | return INT2NUM(num); | 
|  | } | 
|  | } | 
|  | case UPB_TYPE_INT32:   return INT2NUM(upb_fielddef_defaultint32(field)); | 
|  | case UPB_TYPE_INT64:   return LL2NUM(upb_fielddef_defaultint64(field));; | 
|  | case UPB_TYPE_UINT32:  return UINT2NUM(upb_fielddef_defaultuint32(field)); | 
|  | case UPB_TYPE_UINT64:  return ULL2NUM(upb_fielddef_defaultuint64(field)); | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: { | 
|  | size_t size; | 
|  | const char *str = upb_fielddef_defaultstr(field, &size); | 
|  | return rb_str_new(str, size); | 
|  | } | 
|  | default: return Qnil; | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool is_ruby_num(VALUE value) { | 
|  | return (TYPE(value) == T_FLOAT || | 
|  | TYPE(value) == T_FIXNUM || | 
|  | TYPE(value) == T_BIGNUM); | 
|  | } | 
|  |  | 
|  | void native_slot_check_int_range_precision(upb_fieldtype_t type, VALUE val) { | 
|  | if (!is_ruby_num(val)) { | 
|  | rb_raise(rb_eTypeError, "Expected number type for integral field."); | 
|  | } | 
|  |  | 
|  | // NUM2{INT,UINT,LL,ULL} macros do the appropriate range checks on upper | 
|  | // bound; we just need to do precision checks (i.e., disallow rounding) and | 
|  | // check for < 0 on unsigned types. | 
|  | if (TYPE(val) == T_FLOAT) { | 
|  | double dbl_val = NUM2DBL(val); | 
|  | if (floor(dbl_val) != dbl_val) { | 
|  | rb_raise(rb_eRangeError, | 
|  | "Non-integral floating point value assigned to integer field."); | 
|  | } | 
|  | } | 
|  | if (type == UPB_TYPE_UINT32 || type == UPB_TYPE_UINT64) { | 
|  | if (NUM2DBL(val) < 0) { | 
|  | rb_raise(rb_eRangeError, | 
|  | "Assigning negative value to unsigned integer field."); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VALUE native_slot_encode_and_freeze_string(upb_fieldtype_t type, VALUE value) { | 
|  | rb_encoding* desired_encoding = (type == UPB_TYPE_STRING) ? | 
|  | kRubyStringUtf8Encoding : kRubyString8bitEncoding; | 
|  | VALUE desired_encoding_value = rb_enc_from_encoding(desired_encoding); | 
|  |  | 
|  | // Note: this will not duplicate underlying string data unless necessary. | 
|  | value = rb_str_encode(value, desired_encoding_value, 0, Qnil); | 
|  |  | 
|  | if (type == UPB_TYPE_STRING && | 
|  | rb_enc_str_coderange(value) == ENC_CODERANGE_BROKEN) { | 
|  | rb_raise(rb_eEncodingError, "String is invalid UTF-8"); | 
|  | } | 
|  |  | 
|  | // Ensure the data remains valid.  Since we called #encode a moment ago, | 
|  | // this does not freeze the string the user assigned. | 
|  | rb_obj_freeze(value); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | void native_slot_set(upb_fieldtype_t type, VALUE type_class, | 
|  | void* memory, VALUE value) { | 
|  | native_slot_set_value_and_case(type, type_class, memory, value, NULL, 0); | 
|  | } | 
|  |  | 
|  | void native_slot_set_value_and_case(upb_fieldtype_t type, VALUE type_class, | 
|  | void* memory, VALUE value, | 
|  | uint32_t* case_memory, | 
|  | uint32_t case_number) { | 
|  | // Note that in order to atomically change the value in memory and the case | 
|  | // value (w.r.t. Ruby VM calls), we must set the value at |memory| only after | 
|  | // all Ruby VM calls are complete. The case is then set at the bottom of this | 
|  | // function. | 
|  | switch (type) { | 
|  | case UPB_TYPE_FLOAT: | 
|  | if (!is_ruby_num(value)) { | 
|  | rb_raise(rb_eTypeError, "Expected number type for float field."); | 
|  | } | 
|  | DEREF(memory, float) = NUM2DBL(value); | 
|  | break; | 
|  | case UPB_TYPE_DOUBLE: | 
|  | if (!is_ruby_num(value)) { | 
|  | rb_raise(rb_eTypeError, "Expected number type for double field."); | 
|  | } | 
|  | DEREF(memory, double) = NUM2DBL(value); | 
|  | break; | 
|  | case UPB_TYPE_BOOL: { | 
|  | int8_t val = -1; | 
|  | if (value == Qtrue) { | 
|  | val = 1; | 
|  | } else if (value == Qfalse) { | 
|  | val = 0; | 
|  | } else { | 
|  | rb_raise(rb_eTypeError, "Invalid argument for boolean field."); | 
|  | } | 
|  | DEREF(memory, int8_t) = val; | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: { | 
|  | if (CLASS_OF(value) != rb_cString) { | 
|  | rb_raise(rb_eTypeError, "Invalid argument for string field."); | 
|  | } | 
|  |  | 
|  | DEREF(memory, VALUE) = native_slot_encode_and_freeze_string(type, value); | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_MESSAGE: { | 
|  | if (CLASS_OF(value) == CLASS_OF(Qnil)) { | 
|  | value = Qnil; | 
|  | } else if (CLASS_OF(value) != type_class) { | 
|  | rb_raise(rb_eTypeError, | 
|  | "Invalid type %s to assign to submessage field.", | 
|  | rb_class2name(CLASS_OF(value))); | 
|  | } | 
|  | DEREF(memory, VALUE) = value; | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_ENUM: { | 
|  | int32_t int_val = 0; | 
|  | if (!is_ruby_num(value) && TYPE(value) != T_SYMBOL) { | 
|  | rb_raise(rb_eTypeError, | 
|  | "Expected number or symbol type for enum field."); | 
|  | } | 
|  | if (TYPE(value) == T_SYMBOL) { | 
|  | // Ensure that the given symbol exists in the enum module. | 
|  | VALUE lookup = rb_funcall(type_class, rb_intern("resolve"), 1, value); | 
|  | if (lookup == Qnil) { | 
|  | rb_raise(rb_eRangeError, "Unknown symbol value for enum field."); | 
|  | } else { | 
|  | int_val = NUM2INT(lookup); | 
|  | } | 
|  | } else { | 
|  | native_slot_check_int_range_precision(UPB_TYPE_INT32, value); | 
|  | int_val = NUM2INT(value); | 
|  | } | 
|  | DEREF(memory, int32_t) = int_val; | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_INT32: | 
|  | case UPB_TYPE_INT64: | 
|  | case UPB_TYPE_UINT32: | 
|  | case UPB_TYPE_UINT64: | 
|  | native_slot_check_int_range_precision(type, value); | 
|  | switch (type) { | 
|  | case UPB_TYPE_INT32: | 
|  | DEREF(memory, int32_t) = NUM2INT(value); | 
|  | break; | 
|  | case UPB_TYPE_INT64: | 
|  | DEREF(memory, int64_t) = NUM2LL(value); | 
|  | break; | 
|  | case UPB_TYPE_UINT32: | 
|  | DEREF(memory, uint32_t) = NUM2UINT(value); | 
|  | break; | 
|  | case UPB_TYPE_UINT64: | 
|  | DEREF(memory, uint64_t) = NUM2ULL(value); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (case_memory != NULL) { | 
|  | *case_memory = case_number; | 
|  | } | 
|  | } | 
|  |  | 
|  | VALUE native_slot_get(upb_fieldtype_t type, | 
|  | VALUE type_class, | 
|  | const void* memory) { | 
|  | switch (type) { | 
|  | case UPB_TYPE_FLOAT: | 
|  | return DBL2NUM(DEREF(memory, float)); | 
|  | case UPB_TYPE_DOUBLE: | 
|  | return DBL2NUM(DEREF(memory, double)); | 
|  | case UPB_TYPE_BOOL: | 
|  | return DEREF(memory, int8_t) ? Qtrue : Qfalse; | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | case UPB_TYPE_MESSAGE: | 
|  | return DEREF(memory, VALUE); | 
|  | case UPB_TYPE_ENUM: { | 
|  | int32_t val = DEREF(memory, int32_t); | 
|  | VALUE symbol = enum_lookup(type_class, INT2NUM(val)); | 
|  | if (symbol == Qnil) { | 
|  | return INT2NUM(val); | 
|  | } else { | 
|  | return symbol; | 
|  | } | 
|  | } | 
|  | case UPB_TYPE_INT32: | 
|  | return INT2NUM(DEREF(memory, int32_t)); | 
|  | case UPB_TYPE_INT64: | 
|  | return LL2NUM(DEREF(memory, int64_t)); | 
|  | case UPB_TYPE_UINT32: | 
|  | return UINT2NUM(DEREF(memory, uint32_t)); | 
|  | case UPB_TYPE_UINT64: | 
|  | return ULL2NUM(DEREF(memory, uint64_t)); | 
|  | default: | 
|  | return Qnil; | 
|  | } | 
|  | } | 
|  |  | 
|  | void native_slot_init(upb_fieldtype_t type, void* memory) { | 
|  | switch (type) { | 
|  | case UPB_TYPE_FLOAT: | 
|  | DEREF(memory, float) = 0.0; | 
|  | break; | 
|  | case UPB_TYPE_DOUBLE: | 
|  | DEREF(memory, double) = 0.0; | 
|  | break; | 
|  | case UPB_TYPE_BOOL: | 
|  | DEREF(memory, int8_t) = 0; | 
|  | break; | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | DEREF(memory, VALUE) = rb_str_new2(""); | 
|  | rb_enc_associate(DEREF(memory, VALUE), (type == UPB_TYPE_BYTES) ? | 
|  | kRubyString8bitEncoding : kRubyStringUtf8Encoding); | 
|  | break; | 
|  | case UPB_TYPE_MESSAGE: | 
|  | DEREF(memory, VALUE) = Qnil; | 
|  | break; | 
|  | case UPB_TYPE_ENUM: | 
|  | case UPB_TYPE_INT32: | 
|  | DEREF(memory, int32_t) = 0; | 
|  | break; | 
|  | case UPB_TYPE_INT64: | 
|  | DEREF(memory, int64_t) = 0; | 
|  | break; | 
|  | case UPB_TYPE_UINT32: | 
|  | DEREF(memory, uint32_t) = 0; | 
|  | break; | 
|  | case UPB_TYPE_UINT64: | 
|  | DEREF(memory, uint64_t) = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void native_slot_mark(upb_fieldtype_t type, void* memory) { | 
|  | switch (type) { | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | case UPB_TYPE_MESSAGE: | 
|  | rb_gc_mark(DEREF(memory, VALUE)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | void native_slot_dup(upb_fieldtype_t type, void* to, void* from) { | 
|  | memcpy(to, from, native_slot_size(type)); | 
|  | } | 
|  |  | 
|  | void native_slot_deep_copy(upb_fieldtype_t type, void* to, void* from) { | 
|  | switch (type) { | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: { | 
|  | VALUE from_val = DEREF(from, VALUE); | 
|  | DEREF(to, VALUE) = (from_val != Qnil) ? | 
|  | rb_funcall(from_val, rb_intern("dup"), 0) : Qnil; | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_MESSAGE: { | 
|  | VALUE from_val = DEREF(from, VALUE); | 
|  | DEREF(to, VALUE) = (from_val != Qnil) ? | 
|  | Message_deep_copy(from_val) : Qnil; | 
|  | break; | 
|  | } | 
|  | default: | 
|  | memcpy(to, from, native_slot_size(type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool native_slot_eq(upb_fieldtype_t type, void* mem1, void* mem2) { | 
|  | switch (type) { | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | case UPB_TYPE_MESSAGE: { | 
|  | VALUE val1 = DEREF(mem1, VALUE); | 
|  | VALUE val2 = DEREF(mem2, VALUE); | 
|  | VALUE ret = rb_funcall(val1, rb_intern("=="), 1, val2); | 
|  | return ret == Qtrue; | 
|  | } | 
|  | default: | 
|  | return !memcmp(mem1, mem2, native_slot_size(type)); | 
|  | } | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Map field utilities. | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  | const upb_msgdef* tryget_map_entry_msgdef(const upb_fielddef* field) { | 
|  | const upb_msgdef* subdef; | 
|  | if (upb_fielddef_label(field) != UPB_LABEL_REPEATED || | 
|  | upb_fielddef_type(field) != UPB_TYPE_MESSAGE) { | 
|  | return NULL; | 
|  | } | 
|  | subdef = upb_fielddef_msgsubdef(field); | 
|  | return upb_msgdef_mapentry(subdef) ? subdef : NULL; | 
|  | } | 
|  |  | 
|  | const upb_msgdef *map_entry_msgdef(const upb_fielddef* field) { | 
|  | const upb_msgdef* subdef = tryget_map_entry_msgdef(field); | 
|  | assert(subdef); | 
|  | return subdef; | 
|  | } | 
|  |  | 
|  | bool is_map_field(const upb_fielddef *field) { | 
|  | return tryget_map_entry_msgdef(field) != NULL; | 
|  | } | 
|  |  | 
|  | const upb_fielddef* map_field_key(const upb_fielddef* field) { | 
|  | const upb_msgdef* subdef = map_entry_msgdef(field); | 
|  | return map_entry_key(subdef); | 
|  | } | 
|  |  | 
|  | const upb_fielddef* map_field_value(const upb_fielddef* field) { | 
|  | const upb_msgdef* subdef = map_entry_msgdef(field); | 
|  | return map_entry_value(subdef); | 
|  | } | 
|  |  | 
|  | const upb_fielddef* map_entry_key(const upb_msgdef* msgdef) { | 
|  | const upb_fielddef* key_field = upb_msgdef_itof(msgdef, MAP_KEY_FIELD); | 
|  | assert(key_field != NULL); | 
|  | return key_field; | 
|  | } | 
|  |  | 
|  | const upb_fielddef* map_entry_value(const upb_msgdef* msgdef) { | 
|  | const upb_fielddef* value_field = upb_msgdef_itof(msgdef, MAP_VALUE_FIELD); | 
|  | assert(value_field != NULL); | 
|  | return value_field; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Memory layout management. | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  | static size_t align_up_to(size_t offset, size_t granularity) { | 
|  | // Granularity must be a power of two. | 
|  | return (offset + granularity - 1) & ~(granularity - 1); | 
|  | } | 
|  |  | 
|  | MessageLayout* create_layout(const upb_msgdef* msgdef) { | 
|  | MessageLayout* layout = ALLOC(MessageLayout); | 
|  | int nfields = upb_msgdef_numfields(msgdef); | 
|  | upb_msg_field_iter it; | 
|  | upb_msg_oneof_iter oit; | 
|  | size_t off = 0; | 
|  |  | 
|  | layout->fields = ALLOC_N(MessageField, nfields); | 
|  |  | 
|  | for (upb_msg_field_begin(&it, msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  | size_t field_size; | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | // Oneofs are handled separately below. | 
|  | continue; | 
|  | } | 
|  |  | 
|  | // Allocate |field_size| bytes for this field in the layout. | 
|  | field_size = 0; | 
|  | if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | field_size = sizeof(VALUE); | 
|  | } else { | 
|  | field_size = native_slot_size(upb_fielddef_type(field)); | 
|  | } | 
|  | // Align current offset up to |size| granularity. | 
|  | off = align_up_to(off, field_size); | 
|  | layout->fields[upb_fielddef_index(field)].offset = off; | 
|  | layout->fields[upb_fielddef_index(field)].case_offset = | 
|  | MESSAGE_FIELD_NO_CASE; | 
|  | off += field_size; | 
|  | } | 
|  |  | 
|  | // Handle oneofs now -- we iterate over oneofs specifically and allocate only | 
|  | // one slot per oneof. | 
|  | // | 
|  | // We assign all value slots first, then pack the 'case' fields at the end, | 
|  | // since in the common case (modern 64-bit platform) these are 8 bytes and 4 | 
|  | // bytes respectively and we want to avoid alignment overhead. | 
|  | // | 
|  | // Note that we reserve 4 bytes (a uint32) per 'case' slot because the value | 
|  | // space for oneof cases is conceptually as wide as field tag numbers. In | 
|  | // practice, it's unlikely that a oneof would have more than e.g. 256 or 64K | 
|  | // members (8 or 16 bits respectively), so conceivably we could assign | 
|  | // consecutive case numbers and then pick a smaller oneof case slot size, but | 
|  | // the complexity to implement this indirection is probably not worthwhile. | 
|  | for (upb_msg_oneof_begin(&oit, msgdef); | 
|  | !upb_msg_oneof_done(&oit); | 
|  | upb_msg_oneof_next(&oit)) { | 
|  | const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); | 
|  | upb_oneof_iter fit; | 
|  |  | 
|  | // Always allocate NATIVE_SLOT_MAX_SIZE bytes, but share the slot between | 
|  | // all fields. | 
|  | size_t field_size = NATIVE_SLOT_MAX_SIZE; | 
|  | // Align the offset. | 
|  | off = align_up_to(off, field_size); | 
|  | // Assign all fields in the oneof this same offset. | 
|  | for (upb_oneof_begin(&fit, oneof); | 
|  | !upb_oneof_done(&fit); | 
|  | upb_oneof_next(&fit)) { | 
|  | const upb_fielddef* field = upb_oneof_iter_field(&fit); | 
|  | layout->fields[upb_fielddef_index(field)].offset = off; | 
|  | } | 
|  | off += field_size; | 
|  | } | 
|  |  | 
|  | // Now the case fields. | 
|  | for (upb_msg_oneof_begin(&oit, msgdef); | 
|  | !upb_msg_oneof_done(&oit); | 
|  | upb_msg_oneof_next(&oit)) { | 
|  | const upb_oneofdef* oneof = upb_msg_iter_oneof(&oit); | 
|  | upb_oneof_iter fit; | 
|  |  | 
|  | size_t field_size = sizeof(uint32_t); | 
|  | // Align the offset. | 
|  | off = (off + field_size - 1) & ~(field_size - 1); | 
|  | // Assign all fields in the oneof this same offset. | 
|  | for (upb_oneof_begin(&fit, oneof); | 
|  | !upb_oneof_done(&fit); | 
|  | upb_oneof_next(&fit)) { | 
|  | const upb_fielddef* field = upb_oneof_iter_field(&fit); | 
|  | layout->fields[upb_fielddef_index(field)].case_offset = off; | 
|  | } | 
|  | off += field_size; | 
|  | } | 
|  |  | 
|  | layout->size = off; | 
|  |  | 
|  | layout->msgdef = msgdef; | 
|  | upb_msgdef_ref(layout->msgdef, &layout->msgdef); | 
|  |  | 
|  | return layout; | 
|  | } | 
|  |  | 
|  | void free_layout(MessageLayout* layout) { | 
|  | xfree(layout->fields); | 
|  | upb_msgdef_unref(layout->msgdef, &layout->msgdef); | 
|  | xfree(layout); | 
|  | } | 
|  |  | 
|  | VALUE field_type_class(const upb_fielddef* field) { | 
|  | VALUE type_class = Qnil; | 
|  | if (upb_fielddef_type(field) == UPB_TYPE_MESSAGE) { | 
|  | VALUE submsgdesc = | 
|  | get_def_obj(upb_fielddef_subdef(field)); | 
|  | type_class = Descriptor_msgclass(submsgdesc); | 
|  | } else if (upb_fielddef_type(field) == UPB_TYPE_ENUM) { | 
|  | VALUE subenumdesc = | 
|  | get_def_obj(upb_fielddef_subdef(field)); | 
|  | type_class = EnumDescriptor_enummodule(subenumdesc); | 
|  | } | 
|  | return type_class; | 
|  | } | 
|  |  | 
|  | static void* slot_memory(MessageLayout* layout, | 
|  | const void* storage, | 
|  | const upb_fielddef* field) { | 
|  | return ((uint8_t *)storage) + | 
|  | layout->fields[upb_fielddef_index(field)].offset; | 
|  | } | 
|  |  | 
|  | static uint32_t* slot_oneof_case(MessageLayout* layout, | 
|  | const void* storage, | 
|  | const upb_fielddef* field) { | 
|  | return (uint32_t *)(((uint8_t *)storage) + | 
|  | layout->fields[upb_fielddef_index(field)].case_offset); | 
|  | } | 
|  |  | 
|  |  | 
|  | VALUE layout_get(MessageLayout* layout, | 
|  | const void* storage, | 
|  | const upb_fielddef* field) { | 
|  | void* memory = slot_memory(layout, storage, field); | 
|  | uint32_t* oneof_case = slot_oneof_case(layout, storage, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | if (*oneof_case != upb_fielddef_number(field)) { | 
|  | return value_from_default(field); | 
|  | } | 
|  | return native_slot_get(upb_fielddef_type(field), | 
|  | field_type_class(field), | 
|  | memory); | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | return *((VALUE *)memory); | 
|  | } else { | 
|  | return native_slot_get(upb_fielddef_type(field), | 
|  | field_type_class(field), | 
|  | memory); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_repeated_field_type(VALUE val, const upb_fielddef* field) { | 
|  | RepeatedField* self; | 
|  | assert(upb_fielddef_label(field) == UPB_LABEL_REPEATED); | 
|  |  | 
|  | if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || | 
|  | RTYPEDDATA_TYPE(val) != &RepeatedField_type) { | 
|  | rb_raise(rb_eTypeError, "Expected repeated field array"); | 
|  | } | 
|  |  | 
|  | self = ruby_to_RepeatedField(val); | 
|  | if (self->field_type != upb_fielddef_type(field)) { | 
|  | rb_raise(rb_eTypeError, "Repeated field array has wrong element type"); | 
|  | } | 
|  |  | 
|  | if (self->field_type == UPB_TYPE_MESSAGE || | 
|  | self->field_type == UPB_TYPE_ENUM) { | 
|  | if (self->field_type_class != | 
|  | get_def_obj(upb_fielddef_subdef(field))) { | 
|  | rb_raise(rb_eTypeError, | 
|  | "Repeated field array has wrong message/enum class"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void check_map_field_type(VALUE val, const upb_fielddef* field) { | 
|  | const upb_fielddef* key_field = map_field_key(field); | 
|  | const upb_fielddef* value_field = map_field_value(field); | 
|  | Map* self; | 
|  |  | 
|  | if (!RB_TYPE_P(val, T_DATA) || !RTYPEDDATA_P(val) || | 
|  | RTYPEDDATA_TYPE(val) != &Map_type) { | 
|  | rb_raise(rb_eTypeError, "Expected Map instance"); | 
|  | } | 
|  |  | 
|  | self = ruby_to_Map(val); | 
|  | if (self->key_type != upb_fielddef_type(key_field)) { | 
|  | rb_raise(rb_eTypeError, "Map key type does not match field's key type"); | 
|  | } | 
|  | if (self->value_type != upb_fielddef_type(value_field)) { | 
|  | rb_raise(rb_eTypeError, "Map value type does not match field's value type"); | 
|  | } | 
|  | if (upb_fielddef_type(value_field) == UPB_TYPE_MESSAGE || | 
|  | upb_fielddef_type(value_field) == UPB_TYPE_ENUM) { | 
|  | if (self->value_type_class != | 
|  | get_def_obj(upb_fielddef_subdef(value_field))) { | 
|  | rb_raise(rb_eTypeError, | 
|  | "Map value type has wrong message/enum class"); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | void layout_set(MessageLayout* layout, | 
|  | void* storage, | 
|  | const upb_fielddef* field, | 
|  | VALUE val) { | 
|  | void* memory = slot_memory(layout, storage, field); | 
|  | uint32_t* oneof_case = slot_oneof_case(layout, storage, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | if (val == Qnil) { | 
|  | // Assigning nil to a oneof field clears the oneof completely. | 
|  | *oneof_case = ONEOF_CASE_NONE; | 
|  | memset(memory, 0, NATIVE_SLOT_MAX_SIZE); | 
|  | } else { | 
|  | // The transition between field types for a single oneof (union) slot is | 
|  | // somewhat complex because we need to ensure that a GC triggered at any | 
|  | // point by a call into the Ruby VM sees a valid state for this field and | 
|  | // does not either go off into the weeds (following what it thinks is a | 
|  | // VALUE but is actually a different field type) or miss an object (seeing | 
|  | // what it thinks is a primitive field but is actually a VALUE for the new | 
|  | // field type). | 
|  | // | 
|  | // In order for the transition to be safe, the oneof case slot must be in | 
|  | // sync with the value slot whenever the Ruby VM has been called. Thus, we | 
|  | // use native_slot_set_value_and_case(), which ensures that both the value | 
|  | // and case number are altered atomically (w.r.t. the Ruby VM). | 
|  | native_slot_set_value_and_case( | 
|  | upb_fielddef_type(field), field_type_class(field), | 
|  | memory, val, | 
|  | oneof_case, upb_fielddef_number(field)); | 
|  | } | 
|  | } else if (is_map_field(field)) { | 
|  | check_map_field_type(val, field); | 
|  | DEREF(memory, VALUE) = val; | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | check_repeated_field_type(val, field); | 
|  | DEREF(memory, VALUE) = val; | 
|  | } else { | 
|  | native_slot_set(upb_fielddef_type(field), field_type_class(field), | 
|  | memory, val); | 
|  | } | 
|  | } | 
|  |  | 
|  | void layout_init(MessageLayout* layout, | 
|  | void* storage) { | 
|  | upb_msg_field_iter it; | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  | void* memory = slot_memory(layout, storage, field); | 
|  | uint32_t* oneof_case = slot_oneof_case(layout, storage, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | memset(memory, 0, NATIVE_SLOT_MAX_SIZE); | 
|  | *oneof_case = ONEOF_CASE_NONE; | 
|  | } else if (is_map_field(field)) { | 
|  | VALUE map = Qnil; | 
|  |  | 
|  | const upb_fielddef* key_field = map_field_key(field); | 
|  | const upb_fielddef* value_field = map_field_value(field); | 
|  | VALUE type_class = field_type_class(value_field); | 
|  |  | 
|  | if (type_class != Qnil) { | 
|  | VALUE args[3] = { | 
|  | fieldtype_to_ruby(upb_fielddef_type(key_field)), | 
|  | fieldtype_to_ruby(upb_fielddef_type(value_field)), | 
|  | type_class, | 
|  | }; | 
|  | map = rb_class_new_instance(3, args, cMap); | 
|  | } else { | 
|  | VALUE args[2] = { | 
|  | fieldtype_to_ruby(upb_fielddef_type(key_field)), | 
|  | fieldtype_to_ruby(upb_fielddef_type(value_field)), | 
|  | }; | 
|  | map = rb_class_new_instance(2, args, cMap); | 
|  | } | 
|  |  | 
|  | DEREF(memory, VALUE) = map; | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | VALUE ary = Qnil; | 
|  |  | 
|  | VALUE type_class = field_type_class(field); | 
|  |  | 
|  | if (type_class != Qnil) { | 
|  | VALUE args[2] = { | 
|  | fieldtype_to_ruby(upb_fielddef_type(field)), | 
|  | type_class, | 
|  | }; | 
|  | ary = rb_class_new_instance(2, args, cRepeatedField); | 
|  | } else { | 
|  | VALUE args[1] = { fieldtype_to_ruby(upb_fielddef_type(field)) }; | 
|  | ary = rb_class_new_instance(1, args, cRepeatedField); | 
|  | } | 
|  |  | 
|  | DEREF(memory, VALUE) = ary; | 
|  | } else { | 
|  | native_slot_init(upb_fielddef_type(field), memory); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void layout_mark(MessageLayout* layout, void* storage) { | 
|  | upb_msg_field_iter it; | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  | void* memory = slot_memory(layout, storage, field); | 
|  | uint32_t* oneof_case = slot_oneof_case(layout, storage, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | if (*oneof_case == upb_fielddef_number(field)) { | 
|  | native_slot_mark(upb_fielddef_type(field), memory); | 
|  | } | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | rb_gc_mark(DEREF(memory, VALUE)); | 
|  | } else { | 
|  | native_slot_mark(upb_fielddef_type(field), memory); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void layout_dup(MessageLayout* layout, void* to, void* from) { | 
|  | upb_msg_field_iter it; | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  |  | 
|  | void* to_memory = slot_memory(layout, to, field); | 
|  | uint32_t* to_oneof_case = slot_oneof_case(layout, to, field); | 
|  | void* from_memory = slot_memory(layout, from, field); | 
|  | uint32_t* from_oneof_case = slot_oneof_case(layout, from, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | if (*from_oneof_case == upb_fielddef_number(field)) { | 
|  | *to_oneof_case = *from_oneof_case; | 
|  | native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); | 
|  | } | 
|  | } else if (is_map_field(field)) { | 
|  | DEREF(to_memory, VALUE) = Map_dup(DEREF(from_memory, VALUE)); | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | DEREF(to_memory, VALUE) = RepeatedField_dup(DEREF(from_memory, VALUE)); | 
|  | } else { | 
|  | native_slot_dup(upb_fielddef_type(field), to_memory, from_memory); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void layout_deep_copy(MessageLayout* layout, void* to, void* from) { | 
|  | upb_msg_field_iter it; | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  |  | 
|  | void* to_memory = slot_memory(layout, to, field); | 
|  | uint32_t* to_oneof_case = slot_oneof_case(layout, to, field); | 
|  | void* from_memory = slot_memory(layout, from, field); | 
|  | uint32_t* from_oneof_case = slot_oneof_case(layout, from, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | if (*from_oneof_case == upb_fielddef_number(field)) { | 
|  | *to_oneof_case = *from_oneof_case; | 
|  | native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory); | 
|  | } | 
|  | } else if (is_map_field(field)) { | 
|  | DEREF(to_memory, VALUE) = | 
|  | Map_deep_copy(DEREF(from_memory, VALUE)); | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | DEREF(to_memory, VALUE) = | 
|  | RepeatedField_deep_copy(DEREF(from_memory, VALUE)); | 
|  | } else { | 
|  | native_slot_deep_copy(upb_fielddef_type(field), to_memory, from_memory); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | VALUE layout_eq(MessageLayout* layout, void* msg1, void* msg2) { | 
|  | upb_msg_field_iter it; | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  |  | 
|  | void* msg1_memory = slot_memory(layout, msg1, field); | 
|  | uint32_t* msg1_oneof_case = slot_oneof_case(layout, msg1, field); | 
|  | void* msg2_memory = slot_memory(layout, msg2, field); | 
|  | uint32_t* msg2_oneof_case = slot_oneof_case(layout, msg2, field); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(field)) { | 
|  | if (*msg1_oneof_case != *msg2_oneof_case || | 
|  | (*msg1_oneof_case == upb_fielddef_number(field) && | 
|  | !native_slot_eq(upb_fielddef_type(field), | 
|  | msg1_memory, | 
|  | msg2_memory))) { | 
|  | return Qfalse; | 
|  | } | 
|  | } else if (is_map_field(field)) { | 
|  | if (!Map_eq(DEREF(msg1_memory, VALUE), | 
|  | DEREF(msg2_memory, VALUE))) { | 
|  | return Qfalse; | 
|  | } | 
|  | } else if (upb_fielddef_label(field) == UPB_LABEL_REPEATED) { | 
|  | if (!RepeatedField_eq(DEREF(msg1_memory, VALUE), | 
|  | DEREF(msg2_memory, VALUE))) { | 
|  | return Qfalse; | 
|  | } | 
|  | } else { | 
|  | if (!native_slot_eq(upb_fielddef_type(field), | 
|  | msg1_memory, msg2_memory)) { | 
|  | return Qfalse; | 
|  | } | 
|  | } | 
|  | } | 
|  | return Qtrue; | 
|  | } | 
|  |  | 
|  | VALUE layout_hash(MessageLayout* layout, void* storage) { | 
|  | upb_msg_field_iter it; | 
|  | st_index_t h = rb_hash_start(0); | 
|  | VALUE hash_sym = rb_intern("hash"); | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  | VALUE field_val = layout_get(layout, storage, field); | 
|  | h = rb_hash_uint(h, NUM2LONG(rb_funcall(field_val, hash_sym, 0))); | 
|  | } | 
|  | h = rb_hash_end(h); | 
|  |  | 
|  | return INT2FIX(h); | 
|  | } | 
|  |  | 
|  | VALUE layout_inspect(MessageLayout* layout, void* storage) { | 
|  | VALUE str = rb_str_new2(""); | 
|  |  | 
|  | upb_msg_field_iter it; | 
|  | bool first = true; | 
|  | for (upb_msg_field_begin(&it, layout->msgdef); | 
|  | !upb_msg_field_done(&it); | 
|  | upb_msg_field_next(&it)) { | 
|  | const upb_fielddef* field = upb_msg_iter_field(&it); | 
|  | VALUE field_val = layout_get(layout, storage, field); | 
|  |  | 
|  | if (!first) { | 
|  | str = rb_str_cat2(str, ", "); | 
|  | } else { | 
|  | first = false; | 
|  | } | 
|  | str = rb_str_cat2(str, upb_fielddef_name(field)); | 
|  | str = rb_str_cat2(str, ": "); | 
|  |  | 
|  | str = rb_str_append(str, rb_funcall(field_val, rb_intern("inspect"), 0)); | 
|  | } | 
|  |  | 
|  | return str; | 
|  | } |