blob: c7b307b1c85d414b2beb577ba10ee060dd6a0d91 [file] [log] [blame]
#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#endregion
using Google.Protobuf.Collections;
using Google.Protobuf.WellKnownTypes;
using System;
using System.Collections.Generic;
using System.Collections.ObjectModel;
using System.Linq;
using System.Threading;
using static Google.Protobuf.Reflection.SourceCodeInfo.Types;
namespace Google.Protobuf.Reflection
{
/// <summary>
/// The syntax of a .proto file
/// </summary>
[Obsolete("Use features instead")]
public enum Syntax
{
/// <summary>
/// Proto2 syntax
/// </summary>
Proto2,
/// <summary>
/// Proto3 syntax
/// </summary>
Proto3,
/// <summary>
/// Editions syntax
/// </summary>
Editions,
/// <summary>
/// An unknown declared syntax
/// </summary>
Unknown
}
/// <summary>
/// Describes a .proto file, including everything defined within.
/// IDescriptor is implemented such that the File property returns this descriptor,
/// and the FullName is the same as the Name.
/// </summary>
public sealed class FileDescriptor : IDescriptor
{
// Prevent linker failures when using IL2CPP with the well-known types.
static FileDescriptor()
{
#pragma warning disable CS0618 // Type or member is obsolete
ForceReflectionInitialization<Syntax>();
#pragma warning restore CS0618 // Type or member is obsolete
ForceReflectionInitialization<NullValue>();
ForceReflectionInitialization<Field.Types.Cardinality>();
ForceReflectionInitialization<Field.Types.Kind>();
ForceReflectionInitialization<Value.KindOneofCase>();
}
private readonly Lazy<Dictionary<IDescriptor, DescriptorDeclaration>> declarations;
private FileDescriptor(ByteString descriptorData, FileDescriptorProto proto, IEnumerable<FileDescriptor> dependencies, DescriptorPool pool, bool allowUnknownDependencies, GeneratedClrTypeInfo generatedCodeInfo)
{
SerializedData = descriptorData;
DescriptorPool = pool;
Proto = proto;
// Note: the Edition property relies on the proto being set first, so this line
// has to come after Proto = proto.
Features = FeatureSetDescriptor.GetEditionDefaults(Edition).MergedWith(proto.Options?.Features);
Dependencies = new ReadOnlyCollection<FileDescriptor>(dependencies.ToList());
PublicDependencies = DeterminePublicDependencies(this, proto, dependencies, allowUnknownDependencies);
pool.AddPackage(Package, this);
MessageTypes = DescriptorUtil.ConvertAndMakeReadOnly(proto.MessageType,
(message, index) =>
new MessageDescriptor(message, this, null, index, generatedCodeInfo?.NestedTypes[index]));
EnumTypes = DescriptorUtil.ConvertAndMakeReadOnly(proto.EnumType,
(enumType, index) =>
new EnumDescriptor(enumType, this, null, index, generatedCodeInfo?.NestedEnums[index]));
Services = DescriptorUtil.ConvertAndMakeReadOnly(proto.Service,
(service, index) =>
new ServiceDescriptor(service, this, index));
Extensions = new ExtensionCollection(this, generatedCodeInfo?.Extensions);
declarations = new Lazy<Dictionary<IDescriptor, DescriptorDeclaration>>(CreateDeclarationMap, LazyThreadSafetyMode.ExecutionAndPublication);
}
private Dictionary<IDescriptor, DescriptorDeclaration> CreateDeclarationMap()
{
var dictionary = new Dictionary<IDescriptor, DescriptorDeclaration>();
foreach (var location in Proto.SourceCodeInfo?.Location ?? Enumerable.Empty<Location>())
{
var descriptor = FindDescriptorForPath(location.Path);
if (descriptor != null)
{
dictionary[descriptor] = DescriptorDeclaration.FromProto(descriptor, location);
}
}
return dictionary;
}
private IDescriptor FindDescriptorForPath(IList<int> path)
{
// All complete declarations have an even, non-empty path length
// (There can be an empty path for a descriptor declaration, but that can't have any comments,
// so we currently ignore it.)
if (path.Count == 0 || (path.Count & 1) != 0)
{
return null;
}
IReadOnlyList<DescriptorBase> topLevelList = GetNestedDescriptorListForField(path[0]);
DescriptorBase current = GetDescriptorFromList(topLevelList, path[1]);
for (int i = 2; current != null && i < path.Count; i += 2)
{
var list = current.GetNestedDescriptorListForField(path[i]);
current = GetDescriptorFromList(list, path[i + 1]);
}
return current;
}
private DescriptorBase GetDescriptorFromList(IReadOnlyList<DescriptorBase> list, int index)
{
// This is fine: it may be a newer version of protobuf than we understand, with a new descriptor
// field.
if (list == null)
{
return null;
}
// We *could* return null to silently continue, but this is basically data corruption.
if (index < 0 || index >= list.Count)
{
// We don't have much extra information to give at this point unfortunately. If this becomes a problem,
// we can pass in the complete path and report that and the file name.
throw new InvalidProtocolBufferException($"Invalid descriptor location path: index out of range");
}
return list[index];
}
private IReadOnlyList<DescriptorBase> GetNestedDescriptorListForField(int fieldNumber) =>
fieldNumber switch
{
FileDescriptorProto.ServiceFieldNumber => (IReadOnlyList<DescriptorBase>)Services,
FileDescriptorProto.MessageTypeFieldNumber => (IReadOnlyList<DescriptorBase>)MessageTypes,
FileDescriptorProto.EnumTypeFieldNumber => (IReadOnlyList<DescriptorBase>)EnumTypes,
_ => null,
};
internal DescriptorDeclaration GetDeclaration(IDescriptor descriptor)
{
declarations.Value.TryGetValue(descriptor, out DescriptorDeclaration declaration);
return declaration;
}
/// <summary>
/// Computes the full name of a descriptor within this file, with an optional parent message.
/// </summary>
internal string ComputeFullName(MessageDescriptor parent, string name)
{
if (parent != null)
{
return parent.FullName + "." + name;
}
if (Package.Length > 0)
{
return Package + "." + name;
}
return name;
}
/// <summary>
/// Extracts public dependencies from direct dependencies. This is a static method despite its
/// first parameter, as the value we're in the middle of constructing is only used for exceptions.
/// </summary>
private static IList<FileDescriptor> DeterminePublicDependencies(FileDescriptor @this, FileDescriptorProto proto, IEnumerable<FileDescriptor> dependencies, bool allowUnknownDependencies)
{
var nameToFileMap = dependencies.ToDictionary(file => file.Name);
var publicDependencies = new List<FileDescriptor>();
for (int i = 0; i < proto.PublicDependency.Count; i++)
{
int index = proto.PublicDependency[i];
if (index < 0 || index >= proto.Dependency.Count)
{
throw new DescriptorValidationException(@this, "Invalid public dependency index.");
}
string name = proto.Dependency[index];
if (!nameToFileMap.TryGetValue(name, out FileDescriptor file))
{
if (!allowUnknownDependencies)
{
throw new DescriptorValidationException(@this, "Invalid public dependency: " + name);
}
// Ignore unknown dependencies.
}
else
{
publicDependencies.Add(file);
}
}
return new ReadOnlyCollection<FileDescriptor>(publicDependencies);
}
/// <value>
/// The descriptor in its protocol message representation.
/// </value>
internal FileDescriptorProto Proto { get; }
/// <summary>
/// Returns a clone of the underlying <see cref="FileDescriptorProto"/> describing this file.
/// Note that a copy is taken every time this method is called, so clients using it frequently
/// (and not modifying it) may want to cache the returned value.
/// </summary>
/// <returns>A protobuf representation of this file descriptor.</returns>
public FileDescriptorProto ToProto() => Proto.Clone();
/// <summary>
/// The feature set for this file, including inherited features.
/// </summary>
internal FeatureSetDescriptor Features { get; }
/// <summary>
/// Returns the edition of the file descriptor.
/// </summary>
internal Edition Edition => Proto.Syntax switch
{
"editions" => Proto.Edition,
"proto3" => Edition.Proto3,
_ => Edition.Proto2
};
/// <summary>
/// The syntax of the file.
/// </summary>
[Obsolete("Use features instead of proto syntax.")]
public Syntax Syntax => Proto.HasEdition ? Syntax.Editions
: Proto.Syntax switch
{
"proto3" => Syntax.Proto3,
"proto2" => Syntax.Proto2,
"" => Syntax.Proto2,
_ => throw new InvalidOperationException("No edition or known syntax present")
};
/// <value>
/// The file name.
/// </value>
public string Name => Proto.Name;
/// <summary>
/// The package as declared in the .proto file. This may or may not
/// be equivalent to the .NET namespace of the generated classes.
/// </summary>
public string Package => Proto.Package;
/// <value>
/// Unmodifiable list of top-level message types declared in this file.
/// </value>
public IList<MessageDescriptor> MessageTypes { get; }
/// <value>
/// Unmodifiable list of top-level enum types declared in this file.
/// </value>
public IList<EnumDescriptor> EnumTypes { get; }
/// <value>
/// Unmodifiable list of top-level services declared in this file.
/// </value>
public IList<ServiceDescriptor> Services { get; }
/// <summary>
/// Unmodifiable list of top-level extensions declared in this file.
/// Note that some extensions may be incomplete (FieldDescriptor.Extension may be null)
/// if this descriptor was generated using a version of protoc that did not fully
/// support extensions in C#.
/// </summary>
public ExtensionCollection Extensions { get; }
/// <value>
/// Unmodifiable list of this file's dependencies (imports).
/// </value>
public IList<FileDescriptor> Dependencies { get; }
/// <value>
/// Unmodifiable list of this file's public dependencies (public imports).
/// </value>
public IList<FileDescriptor> PublicDependencies { get; }
/// <value>
/// The original serialized binary form of this descriptor.
/// </value>
public ByteString SerializedData { get; }
/// <value>
/// Implementation of IDescriptor.FullName - just returns the same as Name.
/// </value>
string IDescriptor.FullName => Name;
/// <value>
/// Implementation of IDescriptor.File - just returns this descriptor.
/// </value>
FileDescriptor IDescriptor.File => this;
/// <value>
/// Pool containing symbol descriptors.
/// </value>
internal DescriptorPool DescriptorPool { get; }
/// <summary>
/// Finds a type (message, enum, service or extension) in the file by name. Does not find nested types.
/// </summary>
/// <param name="name">The unqualified type name to look for.</param>
/// <typeparam name="T">The type of descriptor to look for</typeparam>
/// <returns>The type's descriptor, or null if not found.</returns>
public T FindTypeByName<T>(string name)
where T : class, IDescriptor
{
// Don't allow looking up nested types. This will make optimization
// easier later.
if (name.IndexOf('.') != -1)
{
return null;
}
if (Package.Length > 0)
{
name = Package + "." + name;
}
T result = DescriptorPool.FindSymbol<T>(name);
if (result != null && result.File == this)
{
return result;
}
return null;
}
/// <summary>
/// Builds a FileDescriptor from its protocol buffer representation.
/// </summary>
/// <param name="descriptorData">The original serialized descriptor data.
/// We have only limited proto2 support, so serializing FileDescriptorProto
/// would not necessarily give us this.</param>
/// <param name="proto">The protocol message form of the FileDescriptor.</param>
/// <param name="dependencies">FileDescriptors corresponding to all of the
/// file's dependencies, in the exact order listed in the .proto file. May be null,
/// in which case it is treated as an empty array.</param>
/// <param name="allowUnknownDependencies">Whether unknown dependencies are ignored (true) or cause an exception to be thrown (false).</param>
/// <param name="generatedCodeInfo">Details about generated code, for the purposes of reflection.</param>
/// <exception cref="DescriptorValidationException">If <paramref name="proto"/> is not
/// a valid descriptor. This can occur for a number of reasons, such as a field
/// having an undefined type or because two messages were defined with the same name.</exception>
private static FileDescriptor BuildFrom(ByteString descriptorData, FileDescriptorProto proto, FileDescriptor[] dependencies, bool allowUnknownDependencies, GeneratedClrTypeInfo generatedCodeInfo)
{
// Building descriptors involves two steps: translating and linking.
// In the translation step (implemented by FileDescriptor's
// constructor), we build an object tree mirroring the
// FileDescriptorProto's tree and put all of the descriptors into the
// DescriptorPool's lookup tables. In the linking step, we look up all
// type references in the DescriptorPool, so that, for example, a
// FieldDescriptor for an embedded message contains a pointer directly
// to the Descriptor for that message's type. We also detect undefined
// types in the linking step.
if (dependencies == null)
{
dependencies = new FileDescriptor[0];
}
DescriptorPool pool = new DescriptorPool(dependencies);
FileDescriptor result = new FileDescriptor(descriptorData, proto, dependencies, pool, allowUnknownDependencies, generatedCodeInfo);
// Validate that the dependencies we've been passed (as FileDescriptors) are actually the ones we
// need.
if (dependencies.Length != proto.Dependency.Count)
{
throw new DescriptorValidationException(
result,
"Dependencies passed to FileDescriptor.BuildFrom() don't match " +
"those listed in the FileDescriptorProto.");
}
result.CrossLink();
return result;
}
private void CrossLink()
{
foreach (MessageDescriptor message in MessageTypes)
{
message.CrossLink();
}
foreach (ServiceDescriptor service in Services)
{
service.CrossLink();
}
Extensions.CrossLink();
}
/// <summary>
/// Creates a descriptor for generated code.
/// </summary>
/// <remarks>
/// This method is only designed to be used by the results of generating code with protoc,
/// which creates the appropriate dependencies etc. It has to be public because the generated
/// code is "external", but should not be called directly by end users.
/// </remarks>
public static FileDescriptor FromGeneratedCode(
byte[] descriptorData,
FileDescriptor[] dependencies,
GeneratedClrTypeInfo generatedCodeInfo)
{
ExtensionRegistry registry = new ExtensionRegistry();
registry.AddRange(GetAllExtensions(dependencies, generatedCodeInfo));
FileDescriptorProto proto;
try
{
proto = FileDescriptorProto.Parser.WithExtensionRegistry(registry).ParseFrom(descriptorData);
}
catch (InvalidProtocolBufferException e)
{
throw new ArgumentException("Failed to parse protocol buffer descriptor for generated code.", e);
}
try
{
// When building descriptors for generated code, we allow unknown
// dependencies by default.
return BuildFrom(ByteString.CopyFrom(descriptorData), proto, dependencies, true, generatedCodeInfo);
}
catch (DescriptorValidationException e)
{
throw new ArgumentException($"Invalid embedded descriptor for \"{proto.Name}\".", e);
}
}
private static IEnumerable<Extension> GetAllExtensions(FileDescriptor[] dependencies, GeneratedClrTypeInfo generatedInfo)
{
return dependencies.SelectMany(GetAllDependedExtensions).Distinct(ExtensionRegistry.ExtensionComparer.Instance).Concat(GetAllGeneratedExtensions(generatedInfo));
}
private static IEnumerable<Extension> GetAllGeneratedExtensions(GeneratedClrTypeInfo generated)
{
return generated.Extensions.Concat(generated.NestedTypes.Where(t => t != null).SelectMany(GetAllGeneratedExtensions));
}
private static IEnumerable<Extension> GetAllDependedExtensions(FileDescriptor descriptor)
{
return descriptor.Extensions.UnorderedExtensions
.Select(s => s.Extension)
.Where(e => e != null)
.Concat(descriptor.Dependencies.Concat(descriptor.PublicDependencies).SelectMany(GetAllDependedExtensions))
.Concat(descriptor.MessageTypes.SelectMany(GetAllDependedExtensionsFromMessage));
}
private static IEnumerable<Extension> GetAllDependedExtensionsFromMessage(MessageDescriptor descriptor)
{
return descriptor.Extensions.UnorderedExtensions
.Select(s => s.Extension)
.Where(e => e != null)
.Concat(descriptor.NestedTypes.SelectMany(GetAllDependedExtensionsFromMessage));
}
/// <summary>
/// Converts the given descriptor binary data into FileDescriptor objects.
/// Note: reflection using the returned FileDescriptors is not currently supported.
/// </summary>
/// <param name="descriptorData">The binary file descriptor proto data. Must not be null, and any
/// dependencies must come before the descriptor which depends on them. (If A depends on B, and B
/// depends on C, then the descriptors must be presented in the order C, B, A.) This is compatible
/// with the order in which protoc provides descriptors to plugins.</param>
/// <param name="registry">The extension registry to use when parsing, or null if no extensions are required.</param>
/// <returns>The file descriptors corresponding to <paramref name="descriptorData"/>.</returns>
public static IReadOnlyList<FileDescriptor> BuildFromByteStrings(IEnumerable<ByteString> descriptorData, ExtensionRegistry registry)
{
ProtoPreconditions.CheckNotNull(descriptorData, nameof(descriptorData));
var parser = FileDescriptorProto.Parser.WithExtensionRegistry(registry);
// TODO: See if we can build a single DescriptorPool instead of building lots of them.
// This will all behave correctly, but it's less efficient than we'd like.
var descriptors = new List<FileDescriptor>();
var descriptorsByName = new Dictionary<string, FileDescriptor>();
foreach (var data in descriptorData)
{
var proto = parser.ParseFrom(data);
var dependencies = new List<FileDescriptor>();
foreach (var dependencyName in proto.Dependency)
{
if (!descriptorsByName.TryGetValue(dependencyName, out FileDescriptor dependency))
{
throw new ArgumentException($"Dependency missing: {dependencyName}");
}
dependencies.Add(dependency);
}
var pool = new DescriptorPool(dependencies);
FileDescriptor descriptor = new FileDescriptor(
data, proto, dependencies, pool,
allowUnknownDependencies: false, generatedCodeInfo: null);
descriptor.CrossLink();
descriptors.Add(descriptor);
if (descriptorsByName.ContainsKey(descriptor.Name))
{
throw new ArgumentException($"Duplicate descriptor name: {descriptor.Name}");
}
descriptorsByName.Add(descriptor.Name, descriptor);
}
return new ReadOnlyCollection<FileDescriptor>(descriptors);
}
/// <summary>
/// Converts the given descriptor binary data into FileDescriptor objects.
/// Note: reflection using the returned FileDescriptors is not currently supported.
/// </summary>
/// <param name="descriptorData">The binary file descriptor proto data. Must not be null, and any
/// dependencies must come before the descriptor which depends on them. (If A depends on B, and B
/// depends on C, then the descriptors must be presented in the order C, B, A.) This is compatible
/// with the order in which protoc provides descriptors to plugins.</param>
/// <returns>The file descriptors corresponding to <paramref name="descriptorData"/>.</returns>
public static IReadOnlyList<FileDescriptor> BuildFromByteStrings(IEnumerable<ByteString> descriptorData) =>
BuildFromByteStrings(descriptorData, null);
/// <summary>
/// Returns a <see cref="System.String" /> that represents this instance.
/// </summary>
/// <returns>
/// A <see cref="System.String" /> that represents this instance.
/// </returns>
public override string ToString()
{
return $"FileDescriptor for {Name}";
}
/// <summary>
/// Returns the file descriptor for descriptor.proto.
/// </summary>
/// <remarks>
/// This is used for protos which take a direct dependency on <c>descriptor.proto</c>, typically for
/// annotations. While <c>descriptor.proto</c> is a proto2 file, it is built into the Google.Protobuf
/// runtime for reflection purposes. The messages are internal to the runtime as they would require
/// proto2 semantics for full support, but the file descriptor is available via this property. The
/// C# codegen in protoc automatically uses this property when it detects a dependency on <c>descriptor.proto</c>.
/// </remarks>
/// <value>
/// The file descriptor for <c>descriptor.proto</c>.
/// </value>
public static FileDescriptor DescriptorProtoFileDescriptor => DescriptorReflection.Descriptor;
/// <summary>
/// The (possibly empty) set of custom options for this file.
/// </summary>
[Obsolete("CustomOptions are obsolete. Use the GetOptions() method.")]
public CustomOptions CustomOptions => new CustomOptions(Proto.Options?._extensions?.ValuesByNumber);
/// <summary>
/// The <c>FileOptions</c>, defined in <c>descriptor.proto</c>.
/// If the options message is not present (i.e. there are no options), <c>null</c> is returned.
/// Custom options can be retrieved as extensions of the returned message.
/// NOTE: A defensive copy is created each time this property is retrieved.
/// </summary>
public FileOptions GetOptions()
{
var clone = Proto.Options?.Clone();
if (clone is null)
{
return null;
}
// Clients should be using feature accessor methods, not accessing features on the
// options proto.
clone.Features = null;
return clone;
}
/// <summary>
/// Gets a single value file option for this descriptor
/// </summary>
[Obsolete("GetOption is obsolete. Use the GetOptions() method.")]
public T GetOption<T>(Extension<FileOptions, T> extension)
{
var value = Proto.Options.GetExtension(extension);
return value is IDeepCloneable<T> ? (value as IDeepCloneable<T>).Clone() : value;
}
/// <summary>
/// Gets a repeated value file option for this descriptor
/// </summary>
[Obsolete("GetOption is obsolete. Use the GetOptions() method.")]
public RepeatedField<T> GetOption<T>(RepeatedExtension<FileOptions, T> extension)
{
return Proto.Options.GetExtension(extension).Clone();
}
/// <summary>
/// Performs initialization for the given generic type argument.
/// </summary>
/// <remarks>
/// This method is present for the sake of AOT compilers. It allows code (whether handwritten or generated)
/// to make calls into the reflection machinery of this library to express an intention to use that type
/// reflectively (e.g. for JSON parsing and formatting). The call itself does almost nothing, but AOT compilers
/// attempting to determine which generic type arguments need to be handled will spot the code path and act
/// accordingly.
/// </remarks>
/// <typeparam name="T">The type to force initialization for.</typeparam>
public static void ForceReflectionInitialization<T>() => ReflectionUtil.ForceInitialize<T>();
}
}