| # Copyright (c) 2009-2021, Google LLC | 
 | # All rights reserved. | 
 | # | 
 | # Redistribution and use in source and binary forms, with or without | 
 | # modification, are permitted provided that the following conditions are met: | 
 | #     * Redistributions of source code must retain the above copyright | 
 | #       notice, this list of conditions and the following disclaimer. | 
 | #     * Redistributions in binary form must reproduce the above copyright | 
 | #       notice, this list of conditions and the following disclaimer in the | 
 | #       documentation and/or other materials provided with the distribution. | 
 | #     * Neither the name of Google LLC nor the | 
 | #       names of its contributors may be used to endorse or promote products | 
 | #       derived from this software without specific prior written permission. | 
 | # | 
 | # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND | 
 | # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED | 
 | # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | 
 | # DISCLAIMED. IN NO EVENT SHALL Google LLC BE LIABLE FOR ANY | 
 | # DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES | 
 | # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; | 
 | # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND | 
 | # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
 | # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS | 
 | # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
 |  | 
 | import unittest | 
 |  | 
 | # begin:google_only | 
 | # from google.protobuf.internal.numpy_test import * | 
 | # end:google_only | 
 |  | 
 | # begin:github_only | 
 | # TODO(b/240447513) Delete workaround after numpy_test is open-sourced in | 
 | # protobuf github. | 
 | import unittest | 
 |  | 
 | import numpy as np | 
 |  | 
 | from google.protobuf import unittest_pb2 | 
 | from google.protobuf.internal import testing_refleaks | 
 |  | 
 | message = unittest_pb2.TestAllTypes() | 
 | np_float_scalar = np.float64(0.0) | 
 | np_1_float_array = np.zeros(shape=(1,), dtype=np.float64) | 
 | np_2_float_array = np.zeros(shape=(2,), dtype=np.float64) | 
 | np_11_float_array = np.zeros(shape=(1, 1), dtype=np.float64) | 
 | np_22_float_array = np.zeros(shape=(2, 2), dtype=np.float64) | 
 |  | 
 | np_int_scalar = np.int64(0) | 
 | np_1_int_array = np.zeros(shape=(1,), dtype=np.int64) | 
 | np_2_int_array = np.zeros(shape=(2,), dtype=np.int64) | 
 | np_11_int_array = np.zeros(shape=(1, 1), dtype=np.int64) | 
 | np_22_int_array = np.zeros(shape=(2, 2), dtype=np.int64) | 
 |  | 
 | np_uint_scalar = np.uint64(0) | 
 | np_1_uint_array = np.zeros(shape=(1,), dtype=np.uint64) | 
 | np_2_uint_array = np.zeros(shape=(2,), dtype=np.uint64) | 
 | np_11_uint_array = np.zeros(shape=(1, 1), dtype=np.uint64) | 
 | np_22_uint_array = np.zeros(shape=(2, 2), dtype=np.uint64) | 
 |  | 
 | np_bool_scalar = np.bool_(False) | 
 | np_1_bool_array = np.zeros(shape=(1,), dtype=np.bool_) | 
 | np_2_bool_array = np.zeros(shape=(2,), dtype=np.bool_) | 
 | np_11_bool_array = np.zeros(shape=(1, 1), dtype=np.bool_) | 
 | np_22_bool_array = np.zeros(shape=(2, 2), dtype=np.bool_) | 
 |  | 
 | @testing_refleaks.TestCase | 
 | class NumpyIntProtoTest(unittest.TestCase): | 
 |  | 
 |   # Assigning dim 1 ndarray of ints to repeated field should pass | 
 |   def testNumpyDim1IntArrayToRepeated_IsValid(self): | 
 |     message.repeated_int64[:] = np_1_int_array | 
 |     message.repeated_int64[:] = np_2_int_array | 
 |  | 
 |     message.repeated_uint64[:] = np_1_uint_array | 
 |     message.repeated_uint64[:] = np_2_uint_array | 
 |  | 
 |   # Assigning dim 2 ndarray of ints to repeated field should fail | 
 |   def testNumpyDim2IntArrayToRepeated_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_int64[:] = np_11_int_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_int64[:] = np_22_int_array | 
 |  | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_uint64[:] = np_11_uint_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_uint64[:] = np_22_uint_array | 
 |  | 
 |   # Assigning any ndarray of floats to repeated int field should fail | 
 |   def testNumpyFloatArrayToRepeated_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_int64[:] = np_1_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_int64[:] = np_11_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_int64[:] = np_22_float_array | 
 |  | 
 |   # Assigning any np int to scalar field should pass | 
 |   def testNumpyIntScalarToScalar_IsValid(self): | 
 |     message.optional_int64 = np_int_scalar | 
 |     message.optional_uint64 = np_uint_scalar | 
 |  | 
 |   # Assigning any ndarray of ints to scalar field should fail | 
 |   def testNumpyIntArrayToScalar_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_int64 = np_1_int_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_int64 = np_11_int_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_int64 = np_22_int_array | 
 |  | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_uint64 = np_1_uint_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_uint64 = np_11_uint_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_uint64 = np_22_uint_array | 
 |  | 
 |   # Assigning any ndarray of floats to scalar field should fail | 
 |   def testNumpyFloatArrayToScalar_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_int64 = np_1_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_int64 = np_11_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_int64 = np_22_float_array | 
 |  | 
 | @testing_refleaks.TestCase | 
 | class NumpyFloatProtoTest(unittest.TestCase): | 
 |  | 
 |   # Assigning dim 1 ndarray of floats to repeated field should pass | 
 |   def testNumpyDim1FloatArrayToRepeated_IsValid(self): | 
 |     message.repeated_float[:] = np_1_float_array | 
 |     message.repeated_float[:] = np_2_float_array | 
 |  | 
 |   # Assigning dim 2 ndarray of floats to repeated field should fail | 
 |   def testNumpyDim2FloatArrayToRepeated_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_float[:] = np_11_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_float[:] = np_22_float_array | 
 |  | 
 |   # Assigning any np float to scalar field should pass | 
 |   def testNumpyFloatScalarToScalar_IsValid(self): | 
 |     message.optional_float = np_float_scalar | 
 |  | 
 |   # Assigning any ndarray of float to scalar field should fail | 
 |   def testNumpyFloatArrayToScalar_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_float = np_1_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_float = np_11_float_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_float = np_22_float_array | 
 |  | 
 | @testing_refleaks.TestCase | 
 | class NumpyBoolProtoTest(unittest.TestCase): | 
 |  | 
 |   # Assigning dim 1 ndarray of bool to repeated field should pass | 
 |   def testNumpyDim1BoolArrayToRepeated_IsValid(self): | 
 |     message.repeated_bool[:] = np_1_bool_array | 
 |     message.repeated_bool[:] = np_2_bool_array | 
 |  | 
 |   # Assigning dim 2 ndarray of bool to repeated field should fail | 
 |   def testNumpyDim2BoolArrayToRepeated_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_bool[:] = np_11_bool_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.repeated_bool[:] = np_22_bool_array | 
 |  | 
 |   # Assigning any np bool to scalar field should pass | 
 |   def testNumpyBoolScalarToScalar_IsValid(self): | 
 |     message.optional_bool = np_bool_scalar | 
 |  | 
 |   # Assigning any ndarray of bool to scalar field should fail | 
 |   def testNumpyBoolArrayToScalar_RaisesTypeError(self): | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_bool = np_1_bool_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_bool = np_11_bool_array | 
 |     with self.assertRaises(TypeError): | 
 |       message.optional_bool = np_22_bool_array | 
 |  | 
 | @testing_refleaks.TestCase | 
 | class NumpyProtoIndexingTest(unittest.TestCase): | 
 |  | 
 |   def testNumpyIntScalarIndexing_Passes(self): | 
 |     data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) | 
 |     self.assertEqual(0, data.repeated_int64[np.int64(0)]) | 
 |  | 
 |   def testNumpyNegative1IntScalarIndexing_Passes(self): | 
 |     data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) | 
 |     self.assertEqual(2, data.repeated_int64[np.int64(-1)]) | 
 |  | 
 |   def testNumpyFloatScalarIndexing_Fails(self): | 
 |     data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) | 
 |     with self.assertRaises(TypeError): | 
 |       _ = data.repeated_int64[np.float64(0.0)] | 
 |  | 
 |   def testNumpyIntArrayIndexing_Fails(self): | 
 |     data = unittest_pb2.TestAllTypes(repeated_int64=[0, 1, 2]) | 
 |     with self.assertRaises(TypeError): | 
 |       _ = data.repeated_int64[np.array([0])] | 
 |     with self.assertRaises(TypeError): | 
 |       _ = data.repeated_int64[np.ndarray((1,), buffer=np.array([0]), dtype=int)] | 
 |     with self.assertRaises(TypeError): | 
 |       _ = data.repeated_int64[np.ndarray((1, 1), | 
 |                                          buffer=np.array([0]), | 
 |                                          dtype=int)] | 
 | # end:github_only | 
 |  | 
 | if __name__ == '__main__': | 
 |   unittest.main(verbosity=2) |