| // Protocol Buffers - Google's data interchange format |
| // Copyright 2014 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| #include "message.h" |
| |
| #include "convert.h" |
| #include "defs.h" |
| #include "map.h" |
| #include "protobuf.h" |
| #include "repeated_field.h" |
| |
| static VALUE cParseError = Qnil; |
| static VALUE cAbstractMessage = Qnil; |
| static ID descriptor_instancevar_interned; |
| |
| static VALUE initialize_rb_class_with_no_args(VALUE klass) { |
| return rb_funcall(klass, rb_intern("new"), 0); |
| } |
| |
| VALUE MessageOrEnum_GetDescriptor(VALUE klass) { |
| return rb_ivar_get(klass, descriptor_instancevar_interned); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Class/module creation from msgdefs and enumdefs, respectively. |
| // ----------------------------------------------------------------------------- |
| |
| typedef struct { |
| VALUE arena; |
| const upb_Message* msg; // Can get as mutable when non-frozen. |
| const upb_MessageDef* |
| msgdef; // kept alive by self.class.descriptor reference. |
| } Message; |
| |
| static void Message_mark(void* _self) { |
| Message* self = (Message*)_self; |
| rb_gc_mark(self->arena); |
| } |
| |
| static rb_data_type_t Message_type = { |
| "Message", |
| {Message_mark, RUBY_DEFAULT_FREE, NULL}, |
| .flags = RUBY_TYPED_FREE_IMMEDIATELY, |
| }; |
| |
| static Message* ruby_to_Message(VALUE msg_rb) { |
| Message* msg; |
| TypedData_Get_Struct(msg_rb, Message, &Message_type, msg); |
| return msg; |
| } |
| |
| static VALUE Message_alloc(VALUE klass) { |
| VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); |
| Message* msg = ALLOC(Message); |
| VALUE ret; |
| |
| msg->msgdef = Descriptor_GetMsgDef(descriptor); |
| msg->arena = Qnil; |
| msg->msg = NULL; |
| |
| ret = TypedData_Wrap_Struct(klass, &Message_type, msg); |
| rb_ivar_set(ret, descriptor_instancevar_interned, descriptor); |
| |
| return ret; |
| } |
| |
| const upb_Message* Message_Get(VALUE msg_rb, const upb_MessageDef** m) { |
| Message* msg = ruby_to_Message(msg_rb); |
| if (m) *m = msg->msgdef; |
| return msg->msg; |
| } |
| |
| upb_Message* Message_GetMutable(VALUE msg_rb, const upb_MessageDef** m) { |
| rb_check_frozen(msg_rb); |
| return (upb_Message*)Message_Get(msg_rb, m); |
| } |
| |
| void Message_InitPtr(VALUE self_, upb_Message* msg, VALUE arena) { |
| Message* self = ruby_to_Message(self_); |
| self->msg = msg; |
| self->arena = arena; |
| ObjectCache_Add(msg, self_); |
| } |
| |
| VALUE Message_GetArena(VALUE msg_rb) { |
| Message* msg = ruby_to_Message(msg_rb); |
| return msg->arena; |
| } |
| |
| void Message_CheckClass(VALUE klass) { |
| if (rb_get_alloc_func(klass) != &Message_alloc) { |
| rb_raise(rb_eArgError, |
| "Message class was not returned by the DescriptorPool."); |
| } |
| } |
| |
| VALUE Message_GetRubyWrapper(upb_Message* msg, const upb_MessageDef* m, |
| VALUE arena) { |
| if (msg == NULL) return Qnil; |
| |
| VALUE val = ObjectCache_Get(msg); |
| |
| if (val == Qnil) { |
| VALUE klass = Descriptor_DefToClass(m); |
| val = Message_alloc(klass); |
| Message_InitPtr(val, msg, arena); |
| } |
| |
| return val; |
| } |
| |
| void Message_PrintMessage(StringBuilder* b, const upb_Message* msg, |
| const upb_MessageDef* m) { |
| bool first = true; |
| int n = upb_MessageDef_FieldCount(m); |
| VALUE klass = Descriptor_DefToClass(m); |
| StringBuilder_Printf(b, "<%s: ", rb_class2name(klass)); |
| |
| for (int i = 0; i < n; i++) { |
| const upb_FieldDef* field = upb_MessageDef_Field(m, i); |
| |
| if (upb_FieldDef_HasPresence(field) && |
| !upb_Message_HasFieldByDef(msg, field)) { |
| continue; |
| } |
| |
| if (!first) { |
| StringBuilder_Printf(b, ", "); |
| } else { |
| first = false; |
| } |
| |
| upb_MessageValue msgval = upb_Message_GetFieldByDef(msg, field); |
| |
| StringBuilder_Printf(b, "%s: ", upb_FieldDef_Name(field)); |
| |
| if (upb_FieldDef_IsMap(field)) { |
| const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(field); |
| const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1); |
| const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2); |
| TypeInfo val_info = TypeInfo_get(val_f); |
| Map_Inspect(b, msgval.map_val, upb_FieldDef_CType(key_f), val_info); |
| } else if (upb_FieldDef_IsRepeated(field)) { |
| RepeatedField_Inspect(b, msgval.array_val, TypeInfo_get(field)); |
| } else { |
| StringBuilder_PrintMsgval(b, msgval, TypeInfo_get(field)); |
| } |
| } |
| |
| StringBuilder_Printf(b, ">"); |
| } |
| |
| // Helper functions for #method_missing //////////////////////////////////////// |
| |
| enum { |
| METHOD_UNKNOWN = 0, |
| METHOD_GETTER = 1, |
| METHOD_SETTER = 2, |
| METHOD_CLEAR = 3, |
| METHOD_PRESENCE = 4, |
| METHOD_ENUM_GETTER = 5, |
| METHOD_WRAPPER_GETTER = 6, |
| METHOD_WRAPPER_SETTER = 7 |
| }; |
| |
| // Check if the field is a well known wrapper type |
| static bool IsWrapper(const upb_MessageDef* m) { |
| if (!m) return false; |
| switch (upb_MessageDef_WellKnownType(m)) { |
| case kUpb_WellKnown_DoubleValue: |
| case kUpb_WellKnown_FloatValue: |
| case kUpb_WellKnown_Int64Value: |
| case kUpb_WellKnown_UInt64Value: |
| case kUpb_WellKnown_Int32Value: |
| case kUpb_WellKnown_UInt32Value: |
| case kUpb_WellKnown_StringValue: |
| case kUpb_WellKnown_BytesValue: |
| case kUpb_WellKnown_BoolValue: |
| return true; |
| default: |
| return false; |
| } |
| } |
| |
| static bool IsFieldWrapper(const upb_FieldDef* f) { |
| return IsWrapper(upb_FieldDef_MessageSubDef(f)); |
| } |
| |
| static bool Match(const upb_MessageDef* m, const char* name, |
| const upb_FieldDef** f, const upb_OneofDef** o, |
| const char* prefix, const char* suffix) { |
| size_t sp = strlen(prefix); |
| size_t ss = strlen(suffix); |
| size_t sn = strlen(name); |
| |
| if (sn <= sp + ss) return false; |
| |
| if (memcmp(name, prefix, sp) != 0 || |
| memcmp(name + sn - ss, suffix, ss) != 0) { |
| return false; |
| } |
| |
| return upb_MessageDef_FindByNameWithSize(m, name + sp, sn - sp - ss, f, o); |
| } |
| |
| static int extract_method_call(VALUE method_name, Message* self, |
| const upb_FieldDef** f, const upb_OneofDef** o) { |
| const upb_MessageDef* m = self->msgdef; |
| const char* name; |
| |
| Check_Type(method_name, T_SYMBOL); |
| name = rb_id2name(SYM2ID(method_name)); |
| |
| if (Match(m, name, f, o, "", "")) return METHOD_GETTER; |
| if (Match(m, name, f, o, "", "=")) return METHOD_SETTER; |
| if (Match(m, name, f, o, "clear_", "")) return METHOD_CLEAR; |
| if (Match(m, name, f, o, "has_", "?") && |
| (*o || (*f && upb_FieldDef_HasPresence(*f)))) { |
| // Disallow oneof hazzers for proto3. |
| // TODO(haberman): remove this test when we are enabling oneof hazzers for |
| // proto3. |
| if (*f && !upb_FieldDef_IsSubMessage(*f) && |
| upb_FieldDef_RealContainingOneof(*f) && |
| upb_MessageDef_Syntax(upb_FieldDef_ContainingType(*f)) != |
| kUpb_Syntax_Proto2) { |
| return METHOD_UNKNOWN; |
| } |
| return METHOD_PRESENCE; |
| } |
| if (Match(m, name, f, o, "", "_as_value") && *f && |
| !upb_FieldDef_IsRepeated(*f) && IsFieldWrapper(*f)) { |
| return METHOD_WRAPPER_GETTER; |
| } |
| if (Match(m, name, f, o, "", "_as_value=") && *f && |
| !upb_FieldDef_IsRepeated(*f) && IsFieldWrapper(*f)) { |
| return METHOD_WRAPPER_SETTER; |
| } |
| if (Match(m, name, f, o, "", "_const") && *f && |
| upb_FieldDef_CType(*f) == kUpb_CType_Enum) { |
| return METHOD_ENUM_GETTER; |
| } |
| |
| return METHOD_UNKNOWN; |
| } |
| |
| static VALUE Message_oneof_accessor(VALUE _self, const upb_OneofDef* o, |
| int accessor_type) { |
| Message* self = ruby_to_Message(_self); |
| const upb_FieldDef* oneof_field = upb_Message_WhichOneof(self->msg, o); |
| |
| switch (accessor_type) { |
| case METHOD_PRESENCE: |
| return oneof_field == NULL ? Qfalse : Qtrue; |
| case METHOD_CLEAR: |
| if (oneof_field != NULL) { |
| upb_Message_ClearFieldByDef(Message_GetMutable(_self, NULL), |
| oneof_field); |
| } |
| return Qnil; |
| case METHOD_GETTER: |
| return oneof_field == NULL |
| ? Qnil |
| : ID2SYM(rb_intern(upb_FieldDef_Name(oneof_field))); |
| case METHOD_SETTER: |
| rb_raise(rb_eRuntimeError, "Oneof accessors are read-only."); |
| } |
| rb_raise(rb_eRuntimeError, "Invalid access of oneof field."); |
| } |
| |
| static void Message_setfield(upb_Message* msg, const upb_FieldDef* f, VALUE val, |
| upb_Arena* arena) { |
| upb_MessageValue msgval; |
| if (upb_FieldDef_IsMap(f)) { |
| msgval.map_val = Map_GetUpbMap(val, f, arena); |
| } else if (upb_FieldDef_IsRepeated(f)) { |
| msgval.array_val = RepeatedField_GetUpbArray(val, f, arena); |
| } else { |
| if (val == Qnil && |
| (upb_FieldDef_IsSubMessage(f) || upb_FieldDef_RealContainingOneof(f))) { |
| upb_Message_ClearFieldByDef(msg, f); |
| return; |
| } |
| msgval = |
| Convert_RubyToUpb(val, upb_FieldDef_Name(f), TypeInfo_get(f), arena); |
| } |
| upb_Message_SetFieldByDef(msg, f, msgval, arena); |
| } |
| |
| VALUE Message_getfield(VALUE _self, const upb_FieldDef* f) { |
| Message* self = ruby_to_Message(_self); |
| // This is a special-case: upb_Message_Mutable() for map & array are logically |
| // const (they will not change what is serialized) but physically |
| // non-const, as they do allocate a repeated field or map. The logical |
| // constness means it's ok to do even if the message is frozen. |
| upb_Message* msg = (upb_Message*)self->msg; |
| upb_Arena* arena = Arena_get(self->arena); |
| if (upb_FieldDef_IsMap(f)) { |
| upb_Map* map = upb_Message_Mutable(msg, f, arena).map; |
| const upb_FieldDef* key_f = map_field_key(f); |
| const upb_FieldDef* val_f = map_field_value(f); |
| upb_CType key_type = upb_FieldDef_CType(key_f); |
| TypeInfo value_type_info = TypeInfo_get(val_f); |
| return Map_GetRubyWrapper(map, key_type, value_type_info, self->arena); |
| } else if (upb_FieldDef_IsRepeated(f)) { |
| upb_Array* arr = upb_Message_Mutable(msg, f, arena).array; |
| return RepeatedField_GetRubyWrapper(arr, TypeInfo_get(f), self->arena); |
| } else if (upb_FieldDef_IsSubMessage(f)) { |
| if (!upb_Message_HasFieldByDef(self->msg, f)) return Qnil; |
| upb_Message* submsg = upb_Message_Mutable(msg, f, arena).msg; |
| const upb_MessageDef* m = upb_FieldDef_MessageSubDef(f); |
| return Message_GetRubyWrapper(submsg, m, self->arena); |
| } else { |
| upb_MessageValue msgval = upb_Message_GetFieldByDef(self->msg, f); |
| return Convert_UpbToRuby(msgval, TypeInfo_get(f), self->arena); |
| } |
| } |
| |
| static VALUE Message_field_accessor(VALUE _self, const upb_FieldDef* f, |
| int accessor_type, int argc, VALUE* argv) { |
| upb_Arena* arena = Arena_get(Message_GetArena(_self)); |
| |
| switch (accessor_type) { |
| case METHOD_SETTER: |
| Message_setfield(Message_GetMutable(_self, NULL), f, argv[1], arena); |
| return Qnil; |
| case METHOD_CLEAR: |
| upb_Message_ClearFieldByDef(Message_GetMutable(_self, NULL), f); |
| return Qnil; |
| case METHOD_PRESENCE: |
| if (!upb_FieldDef_HasPresence(f)) { |
| rb_raise(rb_eRuntimeError, "Field does not have presence."); |
| } |
| return upb_Message_HasFieldByDef(Message_Get(_self, NULL), f); |
| case METHOD_WRAPPER_GETTER: { |
| Message* self = ruby_to_Message(_self); |
| if (upb_Message_HasFieldByDef(self->msg, f)) { |
| PBRUBY_ASSERT(upb_FieldDef_IsSubMessage(f) && |
| !upb_FieldDef_IsRepeated(f)); |
| upb_MessageValue wrapper = upb_Message_GetFieldByDef(self->msg, f); |
| const upb_MessageDef* wrapper_m = upb_FieldDef_MessageSubDef(f); |
| const upb_FieldDef* value_f = |
| upb_MessageDef_FindFieldByNumber(wrapper_m, 1); |
| upb_MessageValue value = |
| upb_Message_GetFieldByDef(wrapper.msg_val, value_f); |
| return Convert_UpbToRuby(value, TypeInfo_get(value_f), self->arena); |
| } else { |
| return Qnil; |
| } |
| } |
| case METHOD_WRAPPER_SETTER: { |
| upb_Message* msg = Message_GetMutable(_self, NULL); |
| if (argv[1] == Qnil) { |
| upb_Message_ClearFieldByDef(msg, f); |
| } else { |
| const upb_FieldDef* val_f = |
| upb_MessageDef_FindFieldByNumber(upb_FieldDef_MessageSubDef(f), 1); |
| upb_MessageValue msgval = Convert_RubyToUpb( |
| argv[1], upb_FieldDef_Name(f), TypeInfo_get(val_f), arena); |
| upb_Message* wrapper = upb_Message_Mutable(msg, f, arena).msg; |
| upb_Message_SetFieldByDef(wrapper, val_f, msgval, arena); |
| } |
| return Qnil; |
| } |
| case METHOD_ENUM_GETTER: { |
| upb_MessageValue msgval = |
| upb_Message_GetFieldByDef(Message_Get(_self, NULL), f); |
| |
| if (upb_FieldDef_Label(f) == kUpb_Label_Repeated) { |
| // Map repeated fields to a new type with ints |
| VALUE arr = rb_ary_new(); |
| size_t i, n = upb_Array_Size(msgval.array_val); |
| for (i = 0; i < n; i++) { |
| upb_MessageValue elem = upb_Array_Get(msgval.array_val, i); |
| rb_ary_push(arr, INT2NUM(elem.int32_val)); |
| } |
| return arr; |
| } else { |
| return INT2NUM(msgval.int32_val); |
| } |
| } |
| case METHOD_GETTER: |
| return Message_getfield(_self, f); |
| default: |
| rb_raise(rb_eRuntimeError, "Internal error, no such accessor: %d", |
| accessor_type); |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Message.method_missing(*args) |
| * |
| * Provides accessors and setters and methods to clear and check for presence of |
| * message fields according to their field names. |
| * |
| * For any field whose name does not conflict with a built-in method, an |
| * accessor is provided with the same name as the field, and a setter is |
| * provided with the name of the field plus the '=' suffix. Thus, given a |
| * message instance 'msg' with field 'foo', the following code is valid: |
| * |
| * msg.foo = 42 |
| * puts msg.foo |
| * |
| * This method also provides read-only accessors for oneofs. If a oneof exists |
| * with name 'my_oneof', then msg.my_oneof will return a Ruby symbol equal to |
| * the name of the field in that oneof that is currently set, or nil if none. |
| * |
| * It also provides methods of the form 'clear_fieldname' to clear the value |
| * of the field 'fieldname'. For basic data types, this will set the default |
| * value of the field. |
| * |
| * Additionally, it provides methods of the form 'has_fieldname?', which returns |
| * true if the field 'fieldname' is set in the message object, else false. For |
| * 'proto3' syntax, calling this for a basic type field will result in an error. |
| */ |
| static VALUE Message_method_missing(int argc, VALUE* argv, VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| const upb_OneofDef* o; |
| const upb_FieldDef* f; |
| int accessor_type; |
| |
| if (argc < 1) { |
| rb_raise(rb_eArgError, "Expected method name as first argument."); |
| } |
| |
| accessor_type = extract_method_call(argv[0], self, &f, &o); |
| |
| if (accessor_type == METHOD_UNKNOWN) return rb_call_super(argc, argv); |
| |
| // Validate argument count. |
| switch (accessor_type) { |
| case METHOD_SETTER: |
| case METHOD_WRAPPER_SETTER: |
| if (argc != 2) { |
| rb_raise(rb_eArgError, "Expected 2 arguments, received %d", argc); |
| } |
| rb_check_frozen(_self); |
| break; |
| default: |
| if (argc != 1) { |
| rb_raise(rb_eArgError, "Expected 1 argument, received %d", argc); |
| } |
| break; |
| } |
| |
| // Dispatch accessor. |
| if (o != NULL) { |
| return Message_oneof_accessor(_self, o, accessor_type); |
| } else { |
| return Message_field_accessor(_self, f, accessor_type, argc, argv); |
| } |
| } |
| |
| static VALUE Message_respond_to_missing(int argc, VALUE* argv, VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| const upb_OneofDef* o; |
| const upb_FieldDef* f; |
| int accessor_type; |
| |
| if (argc < 1) { |
| rb_raise(rb_eArgError, "Expected method name as first argument."); |
| } |
| |
| accessor_type = extract_method_call(argv[0], self, &f, &o); |
| |
| if (accessor_type == METHOD_UNKNOWN) { |
| return rb_call_super(argc, argv); |
| } else if (o != NULL) { |
| return accessor_type == METHOD_SETTER ? Qfalse : Qtrue; |
| } else { |
| return Qtrue; |
| } |
| } |
| |
| void Message_InitFromValue(upb_Message* msg, const upb_MessageDef* m, VALUE val, |
| upb_Arena* arena); |
| |
| typedef struct { |
| upb_Map* map; |
| TypeInfo key_type; |
| TypeInfo val_type; |
| upb_Arena* arena; |
| } MapInit; |
| |
| static int Map_initialize_kwarg(VALUE key, VALUE val, VALUE _self) { |
| MapInit* map_init = (MapInit*)_self; |
| upb_MessageValue k, v; |
| k = Convert_RubyToUpb(key, "", map_init->key_type, NULL); |
| |
| if (map_init->val_type.type == kUpb_CType_Message && TYPE(val) == T_HASH) { |
| upb_MiniTable* t = upb_MessageDef_MiniTable(map_init->val_type.def.msgdef); |
| upb_Message* msg = upb_Message_New(t, map_init->arena); |
| Message_InitFromValue(msg, map_init->val_type.def.msgdef, val, |
| map_init->arena); |
| v.msg_val = msg; |
| } else { |
| v = Convert_RubyToUpb(val, "", map_init->val_type, map_init->arena); |
| } |
| upb_Map_Set(map_init->map, k, v, map_init->arena); |
| return ST_CONTINUE; |
| } |
| |
| static void Map_InitFromValue(upb_Map* map, const upb_FieldDef* f, VALUE val, |
| upb_Arena* arena) { |
| const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(f); |
| const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1); |
| const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2); |
| if (TYPE(val) != T_HASH) { |
| rb_raise(rb_eArgError, |
| "Expected Hash object as initializer value for map field '%s' " |
| "(given %s).", |
| upb_FieldDef_Name(f), rb_class2name(CLASS_OF(val))); |
| } |
| MapInit map_init = {map, TypeInfo_get(key_f), TypeInfo_get(val_f), arena}; |
| rb_hash_foreach(val, Map_initialize_kwarg, (VALUE)&map_init); |
| } |
| |
| static upb_MessageValue MessageValue_FromValue(VALUE val, TypeInfo info, |
| upb_Arena* arena) { |
| if (info.type == kUpb_CType_Message) { |
| upb_MessageValue msgval; |
| upb_MiniTable* t = upb_MessageDef_MiniTable(info.def.msgdef); |
| upb_Message* msg = upb_Message_New(t, arena); |
| Message_InitFromValue(msg, info.def.msgdef, val, arena); |
| msgval.msg_val = msg; |
| return msgval; |
| } else { |
| return Convert_RubyToUpb(val, "", info, arena); |
| } |
| } |
| |
| static void RepeatedField_InitFromValue(upb_Array* arr, const upb_FieldDef* f, |
| VALUE val, upb_Arena* arena) { |
| TypeInfo type_info = TypeInfo_get(f); |
| |
| if (TYPE(val) != T_ARRAY) { |
| rb_raise(rb_eArgError, |
| "Expected array as initializer value for repeated field '%s' " |
| "(given %s).", |
| upb_FieldDef_Name(f), rb_class2name(CLASS_OF(val))); |
| } |
| |
| for (int i = 0; i < RARRAY_LEN(val); i++) { |
| VALUE entry = rb_ary_entry(val, i); |
| upb_MessageValue msgval; |
| if (upb_FieldDef_IsSubMessage(f) && TYPE(entry) == T_HASH) { |
| msgval = MessageValue_FromValue(entry, type_info, arena); |
| } else { |
| msgval = Convert_RubyToUpb(entry, upb_FieldDef_Name(f), type_info, arena); |
| } |
| upb_Array_Append(arr, msgval, arena); |
| } |
| } |
| |
| static void Message_InitFieldFromValue(upb_Message* msg, const upb_FieldDef* f, |
| VALUE val, upb_Arena* arena) { |
| if (TYPE(val) == T_NIL) return; |
| |
| if (upb_FieldDef_IsMap(f)) { |
| upb_Map* map = upb_Message_Mutable(msg, f, arena).map; |
| Map_InitFromValue(map, f, val, arena); |
| } else if (upb_FieldDef_Label(f) == kUpb_Label_Repeated) { |
| upb_Array* arr = upb_Message_Mutable(msg, f, arena).array; |
| RepeatedField_InitFromValue(arr, f, val, arena); |
| } else if (upb_FieldDef_IsSubMessage(f)) { |
| if (TYPE(val) == T_HASH) { |
| upb_Message* submsg = upb_Message_Mutable(msg, f, arena).msg; |
| Message_InitFromValue(submsg, upb_FieldDef_MessageSubDef(f), val, arena); |
| } else { |
| Message_setfield(msg, f, val, arena); |
| } |
| } else { |
| upb_MessageValue msgval = |
| Convert_RubyToUpb(val, upb_FieldDef_Name(f), TypeInfo_get(f), arena); |
| upb_Message_SetFieldByDef(msg, f, msgval, arena); |
| } |
| } |
| |
| typedef struct { |
| upb_Message* msg; |
| const upb_MessageDef* msgdef; |
| upb_Arena* arena; |
| } MsgInit; |
| |
| static int Message_initialize_kwarg(VALUE key, VALUE val, VALUE _self) { |
| MsgInit* msg_init = (MsgInit*)_self; |
| const char* name; |
| |
| if (TYPE(key) == T_STRING) { |
| name = RSTRING_PTR(key); |
| } else if (TYPE(key) == T_SYMBOL) { |
| name = RSTRING_PTR(rb_id2str(SYM2ID(key))); |
| } else { |
| rb_raise(rb_eArgError, |
| "Expected string or symbols as hash keys when initializing proto " |
| "from hash."); |
| } |
| |
| const upb_FieldDef* f = |
| upb_MessageDef_FindFieldByName(msg_init->msgdef, name); |
| |
| if (f == NULL) { |
| rb_raise(rb_eArgError, |
| "Unknown field name '%s' in initialization map entry.", name); |
| } |
| |
| Message_InitFieldFromValue(msg_init->msg, f, val, msg_init->arena); |
| return ST_CONTINUE; |
| } |
| |
| void Message_InitFromValue(upb_Message* msg, const upb_MessageDef* m, VALUE val, |
| upb_Arena* arena) { |
| MsgInit msg_init = {msg, m, arena}; |
| if (TYPE(val) == T_HASH) { |
| rb_hash_foreach(val, Message_initialize_kwarg, (VALUE)&msg_init); |
| } else { |
| rb_raise(rb_eArgError, "Expected hash arguments or message, not %s", |
| rb_class2name(CLASS_OF(val))); |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Message.new(kwargs) => new_message |
| * |
| * Creates a new instance of the given message class. Keyword arguments may be |
| * provided with keywords corresponding to field names. |
| * |
| * Note that no literal Message class exists. Only concrete classes per message |
| * type exist, as provided by the #msgclass method on Descriptors after they |
| * have been added to a pool. The method definitions described here on the |
| * Message class are provided on each concrete message class. |
| */ |
| static VALUE Message_initialize(int argc, VALUE* argv, VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| VALUE arena_rb = Arena_new(); |
| upb_Arena* arena = Arena_get(arena_rb); |
| upb_MiniTable* t = upb_MessageDef_MiniTable(self->msgdef); |
| upb_Message* msg = upb_Message_New(t, arena); |
| |
| Message_InitPtr(_self, msg, arena_rb); |
| |
| if (argc == 0) { |
| return Qnil; |
| } |
| if (argc != 1) { |
| rb_raise(rb_eArgError, "Expected 0 or 1 arguments."); |
| } |
| Message_InitFromValue((upb_Message*)self->msg, self->msgdef, argv[0], arena); |
| return Qnil; |
| } |
| |
| /* |
| * call-seq: |
| * Message.dup => new_message |
| * |
| * Performs a shallow copy of this message and returns the new copy. |
| */ |
| static VALUE Message_dup(VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| VALUE new_msg = rb_class_new_instance(0, NULL, CLASS_OF(_self)); |
| Message* new_msg_self = ruby_to_Message(new_msg); |
| size_t size = upb_MessageDef_MiniTable(self->msgdef)->size; |
| |
| // TODO(copy unknown fields?) |
| // TODO(use official upb msg copy function) |
| memcpy((upb_Message*)new_msg_self->msg, self->msg, size); |
| Arena_fuse(self->arena, Arena_get(new_msg_self->arena)); |
| return new_msg; |
| } |
| |
| // Support function for Message_eq, and also used by other #eq functions. |
| bool Message_Equal(const upb_Message* m1, const upb_Message* m2, |
| const upb_MessageDef* m) { |
| if (m1 == m2) return true; |
| |
| size_t size1, size2; |
| int encode_opts = |
| kUpb_EncodeOption_SkipUnknown | kUpb_EncodeOption_Deterministic; |
| upb_Arena* arena_tmp = upb_Arena_New(); |
| const upb_MiniTable* layout = upb_MessageDef_MiniTable(m); |
| |
| // Compare deterministically serialized payloads with no unknown fields. |
| char* data1; |
| char* data2; |
| upb_EncodeStatus status1 = |
| upb_Encode(m1, layout, encode_opts, arena_tmp, &data1, &size1); |
| upb_EncodeStatus status2 = |
| upb_Encode(m2, layout, encode_opts, arena_tmp, &data2, &size2); |
| |
| if (status1 == kUpb_EncodeStatus_Ok && status2 == kUpb_EncodeStatus_Ok) { |
| bool ret = (size1 == size2) && (memcmp(data1, data2, size1) == 0); |
| upb_Arena_Free(arena_tmp); |
| return ret; |
| } else { |
| upb_Arena_Free(arena_tmp); |
| rb_raise(cParseError, "Error comparing messages"); |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Message.==(other) => boolean |
| * |
| * Performs a deep comparison of this message with another. Messages are equal |
| * if they have the same type and if each field is equal according to the :== |
| * method's semantics (a more efficient comparison may actually be done if the |
| * field is of a primitive type). |
| */ |
| static VALUE Message_eq(VALUE _self, VALUE _other) { |
| if (CLASS_OF(_self) != CLASS_OF(_other)) return Qfalse; |
| |
| Message* self = ruby_to_Message(_self); |
| Message* other = ruby_to_Message(_other); |
| assert(self->msgdef == other->msgdef); |
| |
| return Message_Equal(self->msg, other->msg, self->msgdef) ? Qtrue : Qfalse; |
| } |
| |
| uint64_t Message_Hash(const upb_Message* msg, const upb_MessageDef* m, |
| uint64_t seed) { |
| upb_Arena* arena = upb_Arena_New(); |
| char* data; |
| size_t size; |
| |
| // Hash a deterministically serialized payloads with no unknown fields. |
| upb_EncodeStatus status = upb_Encode( |
| msg, upb_MessageDef_MiniTable(m), |
| kUpb_EncodeOption_SkipUnknown | kUpb_EncodeOption_Deterministic, arena, |
| &data, &size); |
| |
| if (status == kUpb_EncodeStatus_Ok) { |
| uint64_t ret = _upb_Hash(data, size, seed); |
| upb_Arena_Free(arena); |
| return ret; |
| } else { |
| upb_Arena_Free(arena); |
| rb_raise(cParseError, "Error calculating hash"); |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Message.hash => hash_value |
| * |
| * Returns a hash value that represents this message's field values. |
| */ |
| static VALUE Message_hash(VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| uint64_t hash_value = Message_Hash(self->msg, self->msgdef, 0); |
| // RUBY_FIXNUM_MAX should be one less than a power of 2. |
| assert((RUBY_FIXNUM_MAX & (RUBY_FIXNUM_MAX + 1)) == 0); |
| return INT2FIX(hash_value & RUBY_FIXNUM_MAX); |
| } |
| |
| /* |
| * call-seq: |
| * Message.inspect => string |
| * |
| * Returns a human-readable string representing this message. It will be |
| * formatted as "<MessageType: field1: value1, field2: value2, ...>". Each |
| * field's value is represented according to its own #inspect method. |
| */ |
| static VALUE Message_inspect(VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| |
| StringBuilder* builder = StringBuilder_New(); |
| Message_PrintMessage(builder, self->msg, self->msgdef); |
| VALUE ret = StringBuilder_ToRubyString(builder); |
| StringBuilder_Free(builder); |
| return ret; |
| } |
| |
| // Support functions for Message_to_h ////////////////////////////////////////// |
| |
| static VALUE RepeatedField_CreateArray(const upb_Array* arr, |
| TypeInfo type_info) { |
| int size = arr ? upb_Array_Size(arr) : 0; |
| VALUE ary = rb_ary_new2(size); |
| |
| for (int i = 0; i < size; i++) { |
| upb_MessageValue msgval = upb_Array_Get(arr, i); |
| VALUE val = Scalar_CreateHash(msgval, type_info); |
| rb_ary_push(ary, val); |
| } |
| |
| return ary; |
| } |
| |
| static VALUE Message_CreateHash(const upb_Message* msg, |
| const upb_MessageDef* m) { |
| if (!msg) return Qnil; |
| |
| VALUE hash = rb_hash_new(); |
| int n = upb_MessageDef_FieldCount(m); |
| bool is_proto2; |
| |
| // We currently have a few behaviors that are specific to proto2. |
| // This is unfortunate, we should key behaviors off field attributes (like |
| // whether a field has presence), not proto2 vs. proto3. We should see if we |
| // can change this without breaking users. |
| is_proto2 = upb_MessageDef_Syntax(m) == kUpb_Syntax_Proto2; |
| |
| for (int i = 0; i < n; i++) { |
| const upb_FieldDef* field = upb_MessageDef_Field(m, i); |
| TypeInfo type_info = TypeInfo_get(field); |
| upb_MessageValue msgval; |
| VALUE msg_value; |
| VALUE msg_key; |
| |
| if (!is_proto2 && upb_FieldDef_IsSubMessage(field) && |
| !upb_FieldDef_IsRepeated(field) && |
| !upb_Message_HasFieldByDef(msg, field)) { |
| // TODO: Legacy behavior, remove when we fix the is_proto2 differences. |
| msg_key = ID2SYM(rb_intern(upb_FieldDef_Name(field))); |
| rb_hash_aset(hash, msg_key, Qnil); |
| continue; |
| } |
| |
| // Do not include fields that are not present (oneof or optional fields). |
| if (is_proto2 && upb_FieldDef_HasPresence(field) && |
| !upb_Message_HasFieldByDef(msg, field)) { |
| continue; |
| } |
| |
| msg_key = ID2SYM(rb_intern(upb_FieldDef_Name(field))); |
| msgval = upb_Message_GetFieldByDef(msg, field); |
| |
| // Proto2 omits empty map/repeated filds also. |
| |
| if (upb_FieldDef_IsMap(field)) { |
| const upb_MessageDef* entry_m = upb_FieldDef_MessageSubDef(field); |
| const upb_FieldDef* key_f = upb_MessageDef_FindFieldByNumber(entry_m, 1); |
| const upb_FieldDef* val_f = upb_MessageDef_FindFieldByNumber(entry_m, 2); |
| upb_CType key_type = upb_FieldDef_CType(key_f); |
| msg_value = Map_CreateHash(msgval.map_val, key_type, TypeInfo_get(val_f)); |
| } else if (upb_FieldDef_IsRepeated(field)) { |
| if (is_proto2 && |
| (!msgval.array_val || upb_Array_Size(msgval.array_val) == 0)) { |
| continue; |
| } |
| msg_value = RepeatedField_CreateArray(msgval.array_val, type_info); |
| } else { |
| msg_value = Scalar_CreateHash(msgval, type_info); |
| } |
| |
| rb_hash_aset(hash, msg_key, msg_value); |
| } |
| |
| return hash; |
| } |
| |
| VALUE Scalar_CreateHash(upb_MessageValue msgval, TypeInfo type_info) { |
| if (type_info.type == kUpb_CType_Message) { |
| return Message_CreateHash(msgval.msg_val, type_info.def.msgdef); |
| } else { |
| return Convert_UpbToRuby(msgval, type_info, Qnil); |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Message.to_h => {} |
| * |
| * Returns the message as a Ruby Hash object, with keys as symbols. |
| */ |
| static VALUE Message_to_h(VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| return Message_CreateHash(self->msg, self->msgdef); |
| } |
| |
| /* |
| * call-seq: |
| * Message.freeze => self |
| * |
| * Freezes the message object. We have to intercept this so we can pin the |
| * Ruby object into memory so we don't forget it's frozen. |
| */ |
| static VALUE Message_freeze(VALUE _self) { |
| Message* self = ruby_to_Message(_self); |
| if (!RB_OBJ_FROZEN(_self)) { |
| Arena_Pin(self->arena, _self); |
| RB_OBJ_FREEZE(_self); |
| } |
| return _self; |
| } |
| |
| /* |
| * call-seq: |
| * Message.[](index) => value |
| * |
| * Accesses a field's value by field name. The provided field name should be a |
| * string. |
| */ |
| static VALUE Message_index(VALUE _self, VALUE field_name) { |
| Message* self = ruby_to_Message(_self); |
| const upb_FieldDef* field; |
| |
| Check_Type(field_name, T_STRING); |
| field = upb_MessageDef_FindFieldByName(self->msgdef, RSTRING_PTR(field_name)); |
| |
| if (field == NULL) { |
| return Qnil; |
| } |
| |
| return Message_getfield(_self, field); |
| } |
| |
| /* |
| * call-seq: |
| * Message.[]=(index, value) |
| * |
| * Sets a field's value by field name. The provided field name should be a |
| * string. |
| */ |
| static VALUE Message_index_set(VALUE _self, VALUE field_name, VALUE value) { |
| Message* self = ruby_to_Message(_self); |
| const upb_FieldDef* f; |
| upb_MessageValue val; |
| upb_Arena* arena = Arena_get(self->arena); |
| |
| Check_Type(field_name, T_STRING); |
| f = upb_MessageDef_FindFieldByName(self->msgdef, RSTRING_PTR(field_name)); |
| |
| if (f == NULL) { |
| rb_raise(rb_eArgError, "Unknown field: %s", RSTRING_PTR(field_name)); |
| } |
| |
| val = Convert_RubyToUpb(value, upb_FieldDef_Name(f), TypeInfo_get(f), arena); |
| upb_Message_SetFieldByDef(Message_GetMutable(_self, NULL), f, val, arena); |
| |
| return Qnil; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.decode(data, options) => message |
| * |
| * Decodes the given data (as a string containing bytes in protocol buffers wire |
| * format) under the interpretration given by this message class's definition |
| * and returns a message object with the corresponding field values. |
| * @param options [Hash] options for the decoder |
| * recursion_limit: set to maximum decoding depth for message (default is 64) |
| */ |
| static VALUE Message_decode(int argc, VALUE* argv, VALUE klass) { |
| VALUE data = argv[0]; |
| int options = 0; |
| |
| if (argc < 1 || argc > 2) { |
| rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); |
| } |
| |
| if (argc == 2) { |
| VALUE hash_args = argv[1]; |
| if (TYPE(hash_args) != T_HASH) { |
| rb_raise(rb_eArgError, "Expected hash arguments."); |
| } |
| |
| VALUE depth = |
| rb_hash_lookup(hash_args, ID2SYM(rb_intern("recursion_limit"))); |
| |
| if (depth != Qnil && TYPE(depth) == T_FIXNUM) { |
| options |= UPB_DECODE_MAXDEPTH(FIX2INT(depth)); |
| } |
| } |
| |
| if (TYPE(data) != T_STRING) { |
| rb_raise(rb_eArgError, "Expected string for binary protobuf data."); |
| } |
| |
| VALUE msg_rb = initialize_rb_class_with_no_args(klass); |
| Message* msg = ruby_to_Message(msg_rb); |
| |
| upb_DecodeStatus status = |
| upb_Decode(RSTRING_PTR(data), RSTRING_LEN(data), (upb_Message*)msg->msg, |
| upb_MessageDef_MiniTable(msg->msgdef), NULL, options, |
| Arena_get(msg->arena)); |
| |
| if (status != kUpb_DecodeStatus_Ok) { |
| rb_raise(cParseError, "Error occurred during parsing"); |
| } |
| |
| return msg_rb; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.decode_json(data, options = {}) => message |
| * |
| * Decodes the given data (as a string containing bytes in protocol buffers wire |
| * format) under the interpretration given by this message class's definition |
| * and returns a message object with the corresponding field values. |
| * |
| * @param options [Hash] options for the decoder |
| * ignore_unknown_fields: set true to ignore unknown fields (default is to |
| * raise an error) |
| */ |
| static VALUE Message_decode_json(int argc, VALUE* argv, VALUE klass) { |
| VALUE data = argv[0]; |
| int options = 0; |
| upb_Status status; |
| |
| // TODO(haberman): use this message's pool instead. |
| const upb_DefPool* symtab = DescriptorPool_GetSymtab(generated_pool); |
| |
| if (argc < 1 || argc > 2) { |
| rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); |
| } |
| |
| if (argc == 2) { |
| VALUE hash_args = argv[1]; |
| if (TYPE(hash_args) != T_HASH) { |
| rb_raise(rb_eArgError, "Expected hash arguments."); |
| } |
| |
| if (RTEST(rb_hash_lookup2( |
| hash_args, ID2SYM(rb_intern("ignore_unknown_fields")), Qfalse))) { |
| options |= upb_JsonDecode_IgnoreUnknown; |
| } |
| } |
| |
| if (TYPE(data) != T_STRING) { |
| rb_raise(rb_eArgError, "Expected string for JSON data."); |
| } |
| |
| // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to |
| // convert, because string handlers pass data directly to message string |
| // fields. |
| |
| VALUE msg_rb = initialize_rb_class_with_no_args(klass); |
| Message* msg = ruby_to_Message(msg_rb); |
| |
| // We don't allow users to decode a wrapper type directly. |
| if (IsWrapper(msg->msgdef)) { |
| rb_raise(rb_eRuntimeError, "Cannot parse a wrapper directly."); |
| } |
| |
| upb_Status_Clear(&status); |
| if (!upb_JsonDecode(RSTRING_PTR(data), RSTRING_LEN(data), |
| (upb_Message*)msg->msg, msg->msgdef, symtab, options, |
| Arena_get(msg->arena), &status)) { |
| rb_raise(cParseError, "Error occurred during parsing: %s", |
| upb_Status_ErrorMessage(&status)); |
| } |
| |
| return msg_rb; |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.encode(msg, options) => bytes |
| * |
| * Encodes the given message object to its serialized form in protocol buffers |
| * wire format. |
| * @param options [Hash] options for the encoder |
| * recursion_limit: set to maximum encoding depth for message (default is 64) |
| */ |
| static VALUE Message_encode(int argc, VALUE* argv, VALUE klass) { |
| Message* msg = ruby_to_Message(argv[0]); |
| int options = 0; |
| char* data; |
| size_t size; |
| |
| if (CLASS_OF(argv[0]) != klass) { |
| rb_raise(rb_eArgError, "Message of wrong type."); |
| } |
| |
| if (argc < 1 || argc > 2) { |
| rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); |
| } |
| |
| if (argc == 2) { |
| VALUE hash_args = argv[1]; |
| if (TYPE(hash_args) != T_HASH) { |
| rb_raise(rb_eArgError, "Expected hash arguments."); |
| } |
| VALUE depth = |
| rb_hash_lookup(hash_args, ID2SYM(rb_intern("recursion_limit"))); |
| |
| if (depth != Qnil && TYPE(depth) == T_FIXNUM) { |
| options |= UPB_DECODE_MAXDEPTH(FIX2INT(depth)); |
| } |
| } |
| |
| upb_Arena* arena = upb_Arena_New(); |
| |
| upb_EncodeStatus status = |
| upb_Encode(msg->msg, upb_MessageDef_MiniTable(msg->msgdef), options, |
| arena, &data, &size); |
| |
| if (status == kUpb_EncodeStatus_Ok) { |
| VALUE ret = rb_str_new(data, size); |
| rb_enc_associate(ret, rb_ascii8bit_encoding()); |
| upb_Arena_Free(arena); |
| return ret; |
| } else { |
| upb_Arena_Free(arena); |
| rb_raise(rb_eRuntimeError, "Exceeded maximum depth (possibly cycle)"); |
| } |
| } |
| |
| /* |
| * call-seq: |
| * MessageClass.encode_json(msg, options = {}) => json_string |
| * |
| * Encodes the given message object into its serialized JSON representation. |
| * @param options [Hash] options for the decoder |
| * preserve_proto_fieldnames: set true to use original fieldnames (default is |
| * to camelCase) emit_defaults: set true to emit 0/false values (default is to |
| * omit them) |
| */ |
| static VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) { |
| Message* msg = ruby_to_Message(argv[0]); |
| int options = 0; |
| char buf[1024]; |
| size_t size; |
| upb_Status status; |
| |
| // TODO(haberman): use this message's pool instead. |
| const upb_DefPool* symtab = DescriptorPool_GetSymtab(generated_pool); |
| |
| if (argc < 1 || argc > 2) { |
| rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); |
| } |
| |
| if (argc == 2) { |
| VALUE hash_args = argv[1]; |
| if (TYPE(hash_args) != T_HASH) { |
| if (RTEST(rb_funcall(hash_args, rb_intern("respond_to?"), 1, |
| rb_str_new2("to_h")))) { |
| hash_args = rb_funcall(hash_args, rb_intern("to_h"), 0); |
| } else { |
| rb_raise(rb_eArgError, "Expected hash arguments."); |
| } |
| } |
| |
| if (RTEST(rb_hash_lookup2(hash_args, |
| ID2SYM(rb_intern("preserve_proto_fieldnames")), |
| Qfalse))) { |
| options |= upb_JsonEncode_UseProtoNames; |
| } |
| |
| if (RTEST(rb_hash_lookup2(hash_args, ID2SYM(rb_intern("emit_defaults")), |
| Qfalse))) { |
| options |= upb_JsonEncode_EmitDefaults; |
| } |
| } |
| |
| upb_Status_Clear(&status); |
| size = upb_JsonEncode(msg->msg, msg->msgdef, symtab, options, buf, |
| sizeof(buf), &status); |
| |
| if (!upb_Status_IsOk(&status)) { |
| rb_raise(cParseError, "Error occurred during encoding: %s", |
| upb_Status_ErrorMessage(&status)); |
| } |
| |
| VALUE ret; |
| if (size >= sizeof(buf)) { |
| char* buf2 = malloc(size + 1); |
| upb_JsonEncode(msg->msg, msg->msgdef, symtab, options, buf2, size + 1, |
| &status); |
| ret = rb_str_new(buf2, size); |
| free(buf2); |
| } else { |
| ret = rb_str_new(buf, size); |
| } |
| |
| rb_enc_associate(ret, rb_utf8_encoding()); |
| return ret; |
| } |
| |
| /* |
| * call-seq: |
| * Message.descriptor => descriptor |
| * |
| * Class method that returns the Descriptor instance corresponding to this |
| * message class's type. |
| */ |
| static VALUE Message_descriptor(VALUE klass) { |
| return rb_ivar_get(klass, descriptor_instancevar_interned); |
| } |
| |
| VALUE build_class_from_descriptor(VALUE descriptor) { |
| const char* name; |
| VALUE klass; |
| |
| name = upb_MessageDef_FullName(Descriptor_GetMsgDef(descriptor)); |
| if (name == NULL) { |
| rb_raise(rb_eRuntimeError, "Descriptor does not have assigned name."); |
| } |
| |
| klass = rb_define_class_id( |
| // Docs say this parameter is ignored. User will assign return value to |
| // their own toplevel constant class name. |
| rb_intern("Message"), cAbstractMessage); |
| rb_ivar_set(klass, descriptor_instancevar_interned, descriptor); |
| return klass; |
| } |
| |
| /* |
| * call-seq: |
| * Enum.lookup(number) => name |
| * |
| * This module method, provided on each generated enum module, looks up an enum |
| * value by number and returns its name as a Ruby symbol, or nil if not found. |
| */ |
| static VALUE enum_lookup(VALUE self, VALUE number) { |
| int32_t num = NUM2INT(number); |
| VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); |
| const upb_EnumDef* e = EnumDescriptor_GetEnumDef(desc); |
| const upb_EnumValueDef* ev = upb_EnumDef_FindValueByNumber(e, num); |
| if (ev) { |
| return ID2SYM(rb_intern(upb_EnumValueDef_Name(ev))); |
| } else { |
| return Qnil; |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Enum.resolve(name) => number |
| * |
| * This module method, provided on each generated enum module, looks up an enum |
| * value by name (as a Ruby symbol) and returns its name, or nil if not found. |
| */ |
| static VALUE enum_resolve(VALUE self, VALUE sym) { |
| const char* name = rb_id2name(SYM2ID(sym)); |
| VALUE desc = rb_ivar_get(self, descriptor_instancevar_interned); |
| const upb_EnumDef* e = EnumDescriptor_GetEnumDef(desc); |
| const upb_EnumValueDef* ev = upb_EnumDef_FindValueByName(e, name); |
| if (ev) { |
| return INT2NUM(upb_EnumValueDef_Number(ev)); |
| } else { |
| return Qnil; |
| } |
| } |
| |
| /* |
| * call-seq: |
| * Enum.descriptor |
| * |
| * This module method, provided on each generated enum module, returns the |
| * EnumDescriptor corresponding to this enum type. |
| */ |
| static VALUE enum_descriptor(VALUE self) { |
| return rb_ivar_get(self, descriptor_instancevar_interned); |
| } |
| |
| VALUE build_module_from_enumdesc(VALUE _enumdesc) { |
| const upb_EnumDef* e = EnumDescriptor_GetEnumDef(_enumdesc); |
| VALUE mod = rb_define_module_id(rb_intern(upb_EnumDef_FullName(e))); |
| |
| int n = upb_EnumDef_ValueCount(e); |
| for (int i = 0; i < n; i++) { |
| const upb_EnumValueDef* ev = upb_EnumDef_Value(e, i); |
| upb_Arena* arena = upb_Arena_New(); |
| const char* src_name = upb_EnumValueDef_Name(ev); |
| char* name = upb_strdup2(src_name, strlen(src_name), arena); |
| int32_t value = upb_EnumValueDef_Number(ev); |
| if (name[0] < 'A' || name[0] > 'Z') { |
| if (name[0] >= 'a' && name[0] <= 'z') { |
| name[0] -= 32; // auto capitalize |
| } else { |
| rb_warn( |
| "Enum value '%s' does not start with an uppercase letter " |
| "as is required for Ruby constants.", |
| name); |
| } |
| } |
| rb_define_const(mod, name, INT2NUM(value)); |
| upb_Arena_Free(arena); |
| } |
| |
| rb_define_singleton_method(mod, "lookup", enum_lookup, 1); |
| rb_define_singleton_method(mod, "resolve", enum_resolve, 1); |
| rb_define_singleton_method(mod, "descriptor", enum_descriptor, 0); |
| rb_ivar_set(mod, descriptor_instancevar_interned, _enumdesc); |
| |
| return mod; |
| } |
| |
| // Internal to the library; used by Google::Protobuf.deep_copy. |
| upb_Message* Message_deep_copy(const upb_Message* msg, const upb_MessageDef* m, |
| upb_Arena* arena) { |
| // Serialize and parse. |
| upb_Arena* tmp_arena = upb_Arena_New(); |
| const upb_MiniTable* layout = upb_MessageDef_MiniTable(m); |
| size_t size; |
| |
| upb_Message* new_msg = upb_Message_New(layout, arena); |
| char* data; |
| |
| if (upb_Encode(msg, layout, 0, tmp_arena, &data, &size) != |
| kUpb_EncodeStatus_Ok || |
| upb_Decode(data, size, new_msg, layout, NULL, 0, arena) != |
| kUpb_DecodeStatus_Ok) { |
| upb_Arena_Free(tmp_arena); |
| rb_raise(cParseError, "Error occurred copying proto"); |
| } |
| |
| upb_Arena_Free(tmp_arena); |
| return new_msg; |
| } |
| |
| const upb_Message* Message_GetUpbMessage(VALUE value, const upb_MessageDef* m, |
| const char* name, upb_Arena* arena) { |
| if (value == Qnil) { |
| rb_raise(cTypeError, "nil message not allowed here."); |
| } |
| |
| VALUE klass = CLASS_OF(value); |
| VALUE desc_rb = rb_ivar_get(klass, descriptor_instancevar_interned); |
| const upb_MessageDef* val_m = |
| desc_rb == Qnil ? NULL : Descriptor_GetMsgDef(desc_rb); |
| |
| if (val_m != m) { |
| // Check for possible implicit conversions |
| // TODO: hash conversion? |
| |
| switch (upb_MessageDef_WellKnownType(m)) { |
| case kUpb_WellKnown_Timestamp: { |
| // Time -> Google::Protobuf::Timestamp |
| const upb_MiniTable* t = upb_MessageDef_MiniTable(m); |
| upb_Message* msg = upb_Message_New(t, arena); |
| upb_MessageValue sec, nsec; |
| struct timespec time; |
| const upb_FieldDef* sec_f = upb_MessageDef_FindFieldByNumber(m, 1); |
| const upb_FieldDef* nsec_f = upb_MessageDef_FindFieldByNumber(m, 2); |
| |
| if (!rb_obj_is_kind_of(value, rb_cTime)) goto badtype; |
| |
| time = rb_time_timespec(value); |
| sec.int64_val = time.tv_sec; |
| nsec.int32_val = time.tv_nsec; |
| upb_Message_SetFieldByDef(msg, sec_f, sec, arena); |
| upb_Message_SetFieldByDef(msg, nsec_f, nsec, arena); |
| return msg; |
| } |
| case kUpb_WellKnown_Duration: { |
| // Numeric -> Google::Protobuf::Duration |
| const upb_MiniTable* t = upb_MessageDef_MiniTable(m); |
| upb_Message* msg = upb_Message_New(t, arena); |
| upb_MessageValue sec, nsec; |
| const upb_FieldDef* sec_f = upb_MessageDef_FindFieldByNumber(m, 1); |
| const upb_FieldDef* nsec_f = upb_MessageDef_FindFieldByNumber(m, 2); |
| |
| if (!rb_obj_is_kind_of(value, rb_cNumeric)) goto badtype; |
| |
| sec.int64_val = NUM2LL(value); |
| nsec.int32_val = round((NUM2DBL(value) - NUM2LL(value)) * 1000000000); |
| upb_Message_SetFieldByDef(msg, sec_f, sec, arena); |
| upb_Message_SetFieldByDef(msg, nsec_f, nsec, arena); |
| return msg; |
| } |
| default: |
| badtype: |
| rb_raise(cTypeError, |
| "Invalid type %s to assign to submessage field '%s'.", |
| rb_class2name(CLASS_OF(value)), name); |
| } |
| } |
| |
| Message* self = ruby_to_Message(value); |
| Arena_fuse(self->arena, arena); |
| |
| return self->msg; |
| } |
| |
| static void Message_define_class(VALUE klass) { |
| rb_define_alloc_func(klass, Message_alloc); |
| |
| rb_require("google/protobuf/message_exts"); |
| rb_define_method(klass, "method_missing", Message_method_missing, -1); |
| rb_define_method(klass, "respond_to_missing?", Message_respond_to_missing, |
| -1); |
| rb_define_method(klass, "initialize", Message_initialize, -1); |
| rb_define_method(klass, "dup", Message_dup, 0); |
| // Also define #clone so that we don't inherit Object#clone. |
| rb_define_method(klass, "clone", Message_dup, 0); |
| rb_define_method(klass, "==", Message_eq, 1); |
| rb_define_method(klass, "eql?", Message_eq, 1); |
| rb_define_method(klass, "freeze", Message_freeze, 0); |
| rb_define_method(klass, "hash", Message_hash, 0); |
| rb_define_method(klass, "to_h", Message_to_h, 0); |
| rb_define_method(klass, "inspect", Message_inspect, 0); |
| rb_define_method(klass, "to_s", Message_inspect, 0); |
| rb_define_method(klass, "[]", Message_index, 1); |
| rb_define_method(klass, "[]=", Message_index_set, 2); |
| rb_define_singleton_method(klass, "decode", Message_decode, -1); |
| rb_define_singleton_method(klass, "encode", Message_encode, -1); |
| rb_define_singleton_method(klass, "decode_json", Message_decode_json, -1); |
| rb_define_singleton_method(klass, "encode_json", Message_encode_json, -1); |
| rb_define_singleton_method(klass, "descriptor", Message_descriptor, 0); |
| } |
| |
| void Message_register(VALUE protobuf) { |
| cParseError = rb_const_get(protobuf, rb_intern("ParseError")); |
| cAbstractMessage = |
| rb_define_class_under(protobuf, "AbstractMessage", rb_cObject); |
| Message_define_class(cAbstractMessage); |
| rb_gc_register_address(&cAbstractMessage); |
| |
| // Ruby-interned string: "descriptor". We use this identifier to store an |
| // instance variable on message classes we create in order to link them back |
| // to their descriptors. |
| descriptor_instancevar_interned = rb_intern("@descriptor"); |
| } |