blob: c5b126bb4a335f56c5ce790a19c57599777748f3 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "google/protobuf/arenaz_sampler.h"
#include <atomic>
#include <cstdint>
#include <limits>
#include <utility>
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
namespace internal {
ThreadSafeArenazSampler& GlobalThreadSafeArenazSampler() {
static auto* sampler = new ThreadSafeArenazSampler();
return *sampler;
}
void UnsampleSlow(ThreadSafeArenaStats* info) {
GlobalThreadSafeArenazSampler().Unregister(info);
}
#if defined(PROTOBUF_ARENAZ_SAMPLE)
namespace {
PROTOBUF_CONSTINIT std::atomic<bool> g_arenaz_enabled{true};
PROTOBUF_CONSTINIT std::atomic<int32_t> g_arenaz_sample_parameter{1 << 10};
PROTOBUF_CONSTINIT std::atomic<ThreadSafeArenazConfigListener>
g_arenaz_config_listener{nullptr};
PROTOBUF_THREAD_LOCAL absl::profiling_internal::ExponentialBiased
g_exponential_biased_generator;
void TriggerThreadSafeArenazConfigListener() {
auto* listener = g_arenaz_config_listener.load(std::memory_order_acquire);
if (listener != nullptr) listener();
}
} // namespace
PROTOBUF_THREAD_LOCAL SamplingState global_sampling_state = {
/*next_sample=*/0, /*sample_stride=*/0};
ThreadSafeArenaStats::ThreadSafeArenaStats() { PrepareForSampling(0); }
ThreadSafeArenaStats::~ThreadSafeArenaStats() = default;
void ThreadSafeArenaStats::BlockStats::PrepareForSampling() {
num_allocations.store(0, std::memory_order_relaxed);
bytes_allocated.store(0, std::memory_order_relaxed);
bytes_used.store(0, std::memory_order_relaxed);
bytes_wasted.store(0, std::memory_order_relaxed);
}
void ThreadSafeArenaStats::PrepareForSampling(int64_t stride) {
for (auto& blockstats : block_histogram) blockstats.PrepareForSampling();
max_block_size.store(0, std::memory_order_relaxed);
thread_ids.store(0, std::memory_order_relaxed);
weight = stride;
// The inliner makes hardcoded skip_count difficult (especially when combined
// with LTO). We use the ability to exclude stacks by regex when encoding
// instead.
depth = absl::GetStackTrace(stack, kMaxStackDepth, /* skip_count= */ 0);
}
size_t ThreadSafeArenaStats::FindBin(size_t bytes) {
if (bytes <= kMaxSizeForBinZero) return 0;
if (bytes <= kMaxSizeForPenultimateBin) {
// absl::bit_width() returns one plus the base-2 logarithm of x, with any
// fractional part discarded.
return absl::bit_width(absl::bit_ceil(bytes)) - kLogMaxSizeForBinZero - 1;
}
return kBlockHistogramBins - 1;
}
std::pair<size_t, size_t> ThreadSafeArenaStats::MinMaxBlockSizeForBin(
size_t bin) {
ABSL_ASSERT(bin < kBlockHistogramBins);
if (bin == 0) return {1, kMaxSizeForBinZero};
if (bin < kBlockHistogramBins - 1) {
return {(1 << (kLogMaxSizeForBinZero + bin - 1)) + 1,
1 << (kLogMaxSizeForBinZero + bin)};
}
return {kMaxSizeForPenultimateBin + 1, std::numeric_limits<size_t>::max()};
}
void RecordAllocateSlow(ThreadSafeArenaStats* info, size_t used,
size_t allocated, size_t wasted) {
// Update the allocated bytes for the current block.
ThreadSafeArenaStats::BlockStats& curr =
info->block_histogram[ThreadSafeArenaStats::FindBin(allocated)];
curr.bytes_allocated.fetch_add(allocated, std::memory_order_relaxed);
curr.num_allocations.fetch_add(1, std::memory_order_relaxed);
// Update the used and wasted bytes for the previous block.
ThreadSafeArenaStats::BlockStats& prev =
info->block_histogram[ThreadSafeArenaStats::FindBin(used + wasted)];
prev.bytes_used.fetch_add(used, std::memory_order_relaxed);
prev.bytes_wasted.fetch_add(wasted, std::memory_order_relaxed);
if (info->max_block_size.load(std::memory_order_relaxed) < allocated) {
info->max_block_size.store(allocated, std::memory_order_relaxed);
}
const uint64_t tid = 1ULL << (GetCachedTID() % 63);
info->thread_ids.fetch_or(tid, std::memory_order_relaxed);
}
ThreadSafeArenaStats* SampleSlow(SamplingState& sampling_state) {
bool first = sampling_state.next_sample < 0;
const int64_t next_stride = g_exponential_biased_generator.GetStride(
g_arenaz_sample_parameter.load(std::memory_order_relaxed));
// Small values of interval are equivalent to just sampling next time.
ABSL_ASSERT(next_stride >= 1);
sampling_state.next_sample = next_stride;
const int64_t old_stride =
std::exchange(sampling_state.sample_stride, next_stride);
// g_arenaz_enabled can be dynamically flipped, we need to set a threshold low
// enough that we will start sampling in a reasonable time, so we just use the
// default sampling rate.
if (!g_arenaz_enabled.load(std::memory_order_relaxed)) return nullptr;
// We will only be negative on our first count, so we should just retry in
// that case.
if (first) {
if (PROTOBUF_PREDICT_TRUE(--sampling_state.next_sample > 0)) return nullptr;
return SampleSlow(sampling_state);
}
return GlobalThreadSafeArenazSampler().Register(old_stride);
}
void SetThreadSafeArenazConfigListener(ThreadSafeArenazConfigListener l) {
g_arenaz_config_listener.store(l, std::memory_order_release);
}
bool IsThreadSafeArenazEnabled() {
return g_arenaz_enabled.load(std::memory_order_acquire);
}
void SetThreadSafeArenazEnabled(bool enabled) {
SetThreadSafeArenazEnabledInternal(enabled);
TriggerThreadSafeArenazConfigListener();
}
void SetThreadSafeArenazEnabledInternal(bool enabled) {
g_arenaz_enabled.store(enabled, std::memory_order_release);
}
void SetThreadSafeArenazSampleParameter(int32_t rate) {
SetThreadSafeArenazSampleParameterInternal(rate);
TriggerThreadSafeArenazConfigListener();
}
void SetThreadSafeArenazSampleParameterInternal(int32_t rate) {
if (rate > 0) {
g_arenaz_sample_parameter.store(rate, std::memory_order_release);
} else {
ABSL_RAW_LOG(ERROR, "Invalid thread safe arenaz sample rate: %lld",
static_cast<long long>(rate)); // NOLINT(runtime/int)
}
}
int32_t ThreadSafeArenazSampleParameter() {
return g_arenaz_sample_parameter.load(std::memory_order_relaxed);
}
void SetThreadSafeArenazMaxSamples(int32_t max) {
SetThreadSafeArenazMaxSamplesInternal(max);
TriggerThreadSafeArenazConfigListener();
}
void SetThreadSafeArenazMaxSamplesInternal(int32_t max) {
if (max > 0) {
GlobalThreadSafeArenazSampler().SetMaxSamples(max);
} else {
ABSL_RAW_LOG(ERROR, "Invalid thread safe arenaz max samples: %lld",
static_cast<long long>(max)); // NOLINT(runtime/int)
}
}
size_t ThreadSafeArenazMaxSamples() {
return GlobalThreadSafeArenazSampler().GetMaxSamples();
}
void SetThreadSafeArenazGlobalNextSample(int64_t next_sample) {
if (next_sample >= 0) {
global_sampling_state.next_sample = next_sample;
global_sampling_state.sample_stride = next_sample;
} else {
ABSL_RAW_LOG(ERROR, "Invalid thread safe arenaz next sample: %lld",
static_cast<long long>(next_sample)); // NOLINT(runtime/int)
}
}
#else
ThreadSafeArenaStats* SampleSlow(int64_t* next_sample) {
*next_sample = std::numeric_limits<int64_t>::max();
return nullptr;
}
void SetThreadSafeArenazConfigListener(ThreadSafeArenazConfigListener) {}
void SetThreadSafeArenazEnabled(bool enabled) {}
void SetThreadSafeArenazEnabledInternal(bool enabled) {}
bool IsThreadSafeArenazEnabled() { return false; }
void SetThreadSafeArenazSampleParameter(int32_t rate) {}
void SetThreadSafeArenazSampleParameterInternal(int32_t rate) {}
int32_t ThreadSafeArenazSampleParameter() { return 0; }
void SetThreadSafeArenazMaxSamples(int32_t max) {}
void SetThreadSafeArenazMaxSamplesInternal(int32_t max) {}
size_t ThreadSafeArenazMaxSamples() { return 0; }
void SetThreadSafeArenazGlobalNextSample(int64_t next_sample) {}
#endif // defined(PROTOBUF_ARENAZ_SAMPLE)
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"