| /* |
| ** upb_table Implementation |
| ** |
| ** Implementation is heavily inspired by Lua's ltable.c. |
| */ |
| |
| #include "upb/table.int.h" |
| |
| #include <string.h> |
| |
| #include "upb/port_def.inc" |
| |
| #define UPB_MAXARRSIZE 16 /* 64k. */ |
| |
| /* From Chromium. */ |
| #define ARRAY_SIZE(x) \ |
| ((sizeof(x)/sizeof(0[x])) / ((size_t)(!(sizeof(x) % sizeof(0[x]))))) |
| |
| static const double MAX_LOAD = 0.85; |
| |
| /* The minimum utilization of the array part of a mixed hash/array table. This |
| * is a speed/memory-usage tradeoff (though it's not straightforward because of |
| * cache effects). The lower this is, the more memory we'll use. */ |
| static const double MIN_DENSITY = 0.1; |
| |
| bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
| |
| int log2ceil(uint64_t v) { |
| int ret = 0; |
| bool pow2 = is_pow2(v); |
| while (v >>= 1) ret++; |
| ret = pow2 ? ret : ret + 1; /* Ceiling. */ |
| return UPB_MIN(UPB_MAXARRSIZE, ret); |
| } |
| |
| char *upb_strdup(const char *s, upb_alloc *a) { |
| return upb_strdup2(s, strlen(s), a); |
| } |
| |
| char *upb_strdup2(const char *s, size_t len, upb_alloc *a) { |
| size_t n; |
| char *p; |
| |
| /* Prevent overflow errors. */ |
| if (len == SIZE_MAX) return NULL; |
| /* Always null-terminate, even if binary data; but don't rely on the input to |
| * have a null-terminating byte since it may be a raw binary buffer. */ |
| n = len + 1; |
| p = upb_malloc(a, n); |
| if (p) { |
| memcpy(p, s, len); |
| p[len] = 0; |
| } |
| return p; |
| } |
| |
| /* A type to represent the lookup key of either a strtable or an inttable. */ |
| typedef union { |
| uintptr_t num; |
| struct { |
| const char *str; |
| size_t len; |
| } str; |
| } lookupkey_t; |
| |
| static lookupkey_t strkey2(const char *str, size_t len) { |
| lookupkey_t k; |
| k.str.str = str; |
| k.str.len = len; |
| return k; |
| } |
| |
| static lookupkey_t intkey(uintptr_t key) { |
| lookupkey_t k; |
| k.num = key; |
| return k; |
| } |
| |
| typedef uint32_t hashfunc_t(upb_tabkey key); |
| typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); |
| |
| /* Base table (shared code) ***************************************************/ |
| |
| /* For when we need to cast away const. */ |
| static upb_tabent *mutable_entries(upb_table *t) { |
| return (upb_tabent*)t->entries; |
| } |
| |
| static bool isfull(upb_table *t) { |
| if (upb_table_size(t) == 0) { |
| return true; |
| } else { |
| return ((double)(t->count + 1) / upb_table_size(t)) > MAX_LOAD; |
| } |
| } |
| |
| static bool init(upb_table *t, uint8_t size_lg2, upb_alloc *a) { |
| size_t bytes; |
| |
| t->count = 0; |
| t->size_lg2 = size_lg2; |
| t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; |
| bytes = upb_table_size(t) * sizeof(upb_tabent); |
| if (bytes > 0) { |
| t->entries = upb_malloc(a, bytes); |
| if (!t->entries) return false; |
| memset(mutable_entries(t), 0, bytes); |
| } else { |
| t->entries = NULL; |
| } |
| return true; |
| } |
| |
| static void uninit(upb_table *t, upb_alloc *a) { |
| upb_free(a, mutable_entries(t)); |
| } |
| |
| static upb_tabent *emptyent(upb_table *t) { |
| upb_tabent *e = mutable_entries(t) + upb_table_size(t); |
| while (1) { if (upb_tabent_isempty(--e)) return e; UPB_ASSERT(e > t->entries); } |
| } |
| |
| static upb_tabent *getentry_mutable(upb_table *t, uint32_t hash) { |
| return (upb_tabent*)upb_getentry(t, hash); |
| } |
| |
| static const upb_tabent *findentry(const upb_table *t, lookupkey_t key, |
| uint32_t hash, eqlfunc_t *eql) { |
| const upb_tabent *e; |
| |
| if (t->size_lg2 == 0) return NULL; |
| e = upb_getentry(t, hash); |
| if (upb_tabent_isempty(e)) return NULL; |
| while (1) { |
| if (eql(e->key, key)) return e; |
| if ((e = e->next) == NULL) return NULL; |
| } |
| } |
| |
| static upb_tabent *findentry_mutable(upb_table *t, lookupkey_t key, |
| uint32_t hash, eqlfunc_t *eql) { |
| return (upb_tabent*)findentry(t, key, hash, eql); |
| } |
| |
| static bool lookup(const upb_table *t, lookupkey_t key, upb_value *v, |
| uint32_t hash, eqlfunc_t *eql) { |
| const upb_tabent *e = findentry(t, key, hash, eql); |
| if (e) { |
| if (v) { |
| _upb_value_setval(v, e->val.val); |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /* The given key must not already exist in the table. */ |
| static void insert(upb_table *t, lookupkey_t key, upb_tabkey tabkey, |
| upb_value val, uint32_t hash, |
| hashfunc_t *hashfunc, eqlfunc_t *eql) { |
| upb_tabent *mainpos_e; |
| upb_tabent *our_e; |
| |
| UPB_ASSERT(findentry(t, key, hash, eql) == NULL); |
| |
| t->count++; |
| mainpos_e = getentry_mutable(t, hash); |
| our_e = mainpos_e; |
| |
| if (upb_tabent_isempty(mainpos_e)) { |
| /* Our main position is empty; use it. */ |
| our_e->next = NULL; |
| } else { |
| /* Collision. */ |
| upb_tabent *new_e = emptyent(t); |
| /* Head of collider's chain. */ |
| upb_tabent *chain = getentry_mutable(t, hashfunc(mainpos_e->key)); |
| if (chain == mainpos_e) { |
| /* Existing ent is in its main posisiton (it has the same hash as us, and |
| * is the head of our chain). Insert to new ent and append to this chain. */ |
| new_e->next = mainpos_e->next; |
| mainpos_e->next = new_e; |
| our_e = new_e; |
| } else { |
| /* Existing ent is not in its main position (it is a node in some other |
| * chain). This implies that no existing ent in the table has our hash. |
| * Evict it (updating its chain) and use its ent for head of our chain. */ |
| *new_e = *mainpos_e; /* copies next. */ |
| while (chain->next != mainpos_e) { |
| chain = (upb_tabent*)chain->next; |
| UPB_ASSERT(chain); |
| } |
| chain->next = new_e; |
| our_e = mainpos_e; |
| our_e->next = NULL; |
| } |
| } |
| our_e->key = tabkey; |
| our_e->val.val = val.val; |
| UPB_ASSERT(findentry(t, key, hash, eql) == our_e); |
| } |
| |
| static bool rm(upb_table *t, lookupkey_t key, upb_value *val, |
| upb_tabkey *removed, uint32_t hash, eqlfunc_t *eql) { |
| upb_tabent *chain = getentry_mutable(t, hash); |
| if (upb_tabent_isempty(chain)) return false; |
| if (eql(chain->key, key)) { |
| /* Element to remove is at the head of its chain. */ |
| t->count--; |
| if (val) _upb_value_setval(val, chain->val.val); |
| if (removed) *removed = chain->key; |
| if (chain->next) { |
| upb_tabent *move = (upb_tabent*)chain->next; |
| *chain = *move; |
| move->key = 0; /* Make the slot empty. */ |
| } else { |
| chain->key = 0; /* Make the slot empty. */ |
| } |
| return true; |
| } else { |
| /* Element to remove is either in a non-head position or not in the |
| * table. */ |
| while (chain->next && !eql(chain->next->key, key)) { |
| chain = (upb_tabent*)chain->next; |
| } |
| if (chain->next) { |
| /* Found element to remove. */ |
| upb_tabent *rm = (upb_tabent*)chain->next; |
| t->count--; |
| if (val) _upb_value_setval(val, chain->next->val.val); |
| if (removed) *removed = rm->key; |
| rm->key = 0; /* Make the slot empty. */ |
| chain->next = rm->next; |
| return true; |
| } else { |
| /* Element to remove is not in the table. */ |
| return false; |
| } |
| } |
| } |
| |
| static size_t next(const upb_table *t, size_t i) { |
| do { |
| if (++i >= upb_table_size(t)) |
| return SIZE_MAX - 1; /* Distinct from -1. */ |
| } while(upb_tabent_isempty(&t->entries[i])); |
| |
| return i; |
| } |
| |
| static size_t begin(const upb_table *t) { |
| return next(t, -1); |
| } |
| |
| |
| /* upb_strtable ***************************************************************/ |
| |
| /* A simple "subclass" of upb_table that only adds a hash function for strings. */ |
| |
| static upb_tabkey strcopy(lookupkey_t k2, upb_alloc *a) { |
| uint32_t len = (uint32_t) k2.str.len; |
| char *str = upb_malloc(a, k2.str.len + sizeof(uint32_t) + 1); |
| if (str == NULL) return 0; |
| memcpy(str, &len, sizeof(uint32_t)); |
| if (k2.str.len) memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len); |
| str[sizeof(uint32_t) + k2.str.len] = '\0'; |
| return (uintptr_t)str; |
| } |
| |
| static uint32_t strhash(upb_tabkey key) { |
| uint32_t len; |
| char *str = upb_tabstr(key, &len); |
| return upb_murmur_hash2(str, len, 0); |
| } |
| |
| static bool streql(upb_tabkey k1, lookupkey_t k2) { |
| uint32_t len; |
| char *str = upb_tabstr(k1, &len); |
| return len == k2.str.len && (len == 0 || memcmp(str, k2.str.str, len) == 0); |
| } |
| |
| bool upb_strtable_init2(upb_strtable *t, upb_ctype_t ctype, upb_alloc *a) { |
| UPB_UNUSED(ctype); /* TODO(haberman): rm */ |
| return init(&t->t, 2, a); |
| } |
| |
| void upb_strtable_clear(upb_strtable *t) { |
| size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent); |
| t->t.count = 0; |
| memset((char*)t->t.entries, 0, bytes); |
| } |
| |
| void upb_strtable_uninit2(upb_strtable *t, upb_alloc *a) { |
| size_t i; |
| for (i = 0; i < upb_table_size(&t->t); i++) |
| upb_free(a, (void*)t->t.entries[i].key); |
| uninit(&t->t, a); |
| } |
| |
| bool upb_strtable_resize(upb_strtable *t, size_t size_lg2, upb_alloc *a) { |
| upb_strtable new_table; |
| upb_strtable_iter i; |
| |
| if (!init(&new_table.t, size_lg2, a)) |
| return false; |
| upb_strtable_begin(&i, t); |
| for ( ; !upb_strtable_done(&i); upb_strtable_next(&i)) { |
| upb_strview key = upb_strtable_iter_key(&i); |
| upb_strtable_insert3( |
| &new_table, key.data, key.size, |
| upb_strtable_iter_value(&i), a); |
| } |
| upb_strtable_uninit2(t, a); |
| *t = new_table; |
| return true; |
| } |
| |
| bool upb_strtable_insert3(upb_strtable *t, const char *k, size_t len, |
| upb_value v, upb_alloc *a) { |
| lookupkey_t key; |
| upb_tabkey tabkey; |
| uint32_t hash; |
| |
| if (isfull(&t->t)) { |
| /* Need to resize. New table of double the size, add old elements to it. */ |
| if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { |
| return false; |
| } |
| } |
| |
| key = strkey2(k, len); |
| tabkey = strcopy(key, a); |
| if (tabkey == 0) return false; |
| |
| hash = upb_murmur_hash2(key.str.str, key.str.len, 0); |
| insert(&t->t, key, tabkey, v, hash, &strhash, &streql); |
| return true; |
| } |
| |
| bool upb_strtable_lookup2(const upb_strtable *t, const char *key, size_t len, |
| upb_value *v) { |
| uint32_t hash = upb_murmur_hash2(key, len, 0); |
| return lookup(&t->t, strkey2(key, len), v, hash, &streql); |
| } |
| |
| bool upb_strtable_remove3(upb_strtable *t, const char *key, size_t len, |
| upb_value *val, upb_alloc *alloc) { |
| uint32_t hash = upb_murmur_hash2(key, len, 0); |
| upb_tabkey tabkey; |
| if (rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql)) { |
| if (alloc) { |
| /* Arena-based allocs don't need to free and won't pass this. */ |
| upb_free(alloc, (void*)tabkey); |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /* Iteration */ |
| |
| void upb_strtable_begin(upb_strtable_iter *i, const upb_strtable *t) { |
| i->t = t; |
| i->index = begin(&t->t); |
| } |
| |
| void upb_strtable_next(upb_strtable_iter *i) { |
| i->index = next(&i->t->t, i->index); |
| } |
| |
| bool upb_strtable_done(const upb_strtable_iter *i) { |
| if (!i->t) return true; |
| return i->index >= upb_table_size(&i->t->t) || |
| upb_tabent_isempty(str_tabent(i)); |
| } |
| |
| upb_strview upb_strtable_iter_key(const upb_strtable_iter *i) { |
| upb_strview key; |
| uint32_t len; |
| UPB_ASSERT(!upb_strtable_done(i)); |
| key.data = upb_tabstr(str_tabent(i)->key, &len); |
| key.size = len; |
| return key; |
| } |
| |
| upb_value upb_strtable_iter_value(const upb_strtable_iter *i) { |
| UPB_ASSERT(!upb_strtable_done(i)); |
| return _upb_value_val(str_tabent(i)->val.val); |
| } |
| |
| void upb_strtable_iter_setdone(upb_strtable_iter *i) { |
| i->t = NULL; |
| i->index = SIZE_MAX; |
| } |
| |
| bool upb_strtable_iter_isequal(const upb_strtable_iter *i1, |
| const upb_strtable_iter *i2) { |
| if (upb_strtable_done(i1) && upb_strtable_done(i2)) |
| return true; |
| return i1->t == i2->t && i1->index == i2->index; |
| } |
| |
| |
| /* upb_inttable ***************************************************************/ |
| |
| /* For inttables we use a hybrid structure where small keys are kept in an |
| * array and large keys are put in the hash table. */ |
| |
| static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } |
| |
| static bool inteql(upb_tabkey k1, lookupkey_t k2) { |
| return k1 == k2.num; |
| } |
| |
| static upb_tabval *mutable_array(upb_inttable *t) { |
| return (upb_tabval*)t->array; |
| } |
| |
| static upb_tabval *inttable_val(upb_inttable *t, uintptr_t key) { |
| if (key < t->array_size) { |
| return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; |
| } else { |
| upb_tabent *e = |
| findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); |
| return e ? &e->val : NULL; |
| } |
| } |
| |
| static const upb_tabval *inttable_val_const(const upb_inttable *t, |
| uintptr_t key) { |
| return inttable_val((upb_inttable*)t, key); |
| } |
| |
| size_t upb_inttable_count(const upb_inttable *t) { |
| return t->t.count + t->array_count; |
| } |
| |
| static void check(upb_inttable *t) { |
| UPB_UNUSED(t); |
| #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
| { |
| /* This check is very expensive (makes inserts/deletes O(N)). */ |
| size_t count = 0; |
| upb_inttable_iter i; |
| upb_inttable_begin(&i, t); |
| for(; !upb_inttable_done(&i); upb_inttable_next(&i), count++) { |
| UPB_ASSERT(upb_inttable_lookup(t, upb_inttable_iter_key(&i), NULL)); |
| } |
| UPB_ASSERT(count == upb_inttable_count(t)); |
| } |
| #endif |
| } |
| |
| bool upb_inttable_sizedinit(upb_inttable *t, size_t asize, int hsize_lg2, |
| upb_alloc *a) { |
| size_t array_bytes; |
| |
| if (!init(&t->t, hsize_lg2, a)) return false; |
| /* Always make the array part at least 1 long, so that we know key 0 |
| * won't be in the hash part, which simplifies things. */ |
| t->array_size = UPB_MAX(1, asize); |
| t->array_count = 0; |
| array_bytes = t->array_size * sizeof(upb_value); |
| t->array = upb_malloc(a, array_bytes); |
| if (!t->array) { |
| uninit(&t->t, a); |
| return false; |
| } |
| memset(mutable_array(t), 0xff, array_bytes); |
| check(t); |
| return true; |
| } |
| |
| bool upb_inttable_init2(upb_inttable *t, upb_ctype_t ctype, upb_alloc *a) { |
| UPB_UNUSED(ctype); /* TODO(haberman): rm */ |
| return upb_inttable_sizedinit(t, 0, 4, a); |
| } |
| |
| void upb_inttable_uninit2(upb_inttable *t, upb_alloc *a) { |
| uninit(&t->t, a); |
| upb_free(a, mutable_array(t)); |
| } |
| |
| bool upb_inttable_insert2(upb_inttable *t, uintptr_t key, upb_value val, |
| upb_alloc *a) { |
| upb_tabval tabval; |
| tabval.val = val.val; |
| UPB_ASSERT(upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ |
| |
| if (key < t->array_size) { |
| UPB_ASSERT(!upb_arrhas(t->array[key])); |
| t->array_count++; |
| mutable_array(t)[key].val = val.val; |
| } else { |
| if (isfull(&t->t)) { |
| /* Need to resize the hash part, but we re-use the array part. */ |
| size_t i; |
| upb_table new_table; |
| |
| if (!init(&new_table, t->t.size_lg2 + 1, a)) { |
| return false; |
| } |
| |
| for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { |
| const upb_tabent *e = &t->t.entries[i]; |
| uint32_t hash; |
| upb_value v; |
| |
| _upb_value_setval(&v, e->val.val); |
| hash = upb_inthash(e->key); |
| insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); |
| } |
| |
| UPB_ASSERT(t->t.count == new_table.count); |
| |
| uninit(&t->t, a); |
| t->t = new_table; |
| } |
| insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); |
| } |
| check(t); |
| return true; |
| } |
| |
| bool upb_inttable_lookup(const upb_inttable *t, uintptr_t key, upb_value *v) { |
| const upb_tabval *table_v = inttable_val_const(t, key); |
| if (!table_v) return false; |
| if (v) _upb_value_setval(v, table_v->val); |
| return true; |
| } |
| |
| bool upb_inttable_replace(upb_inttable *t, uintptr_t key, upb_value val) { |
| upb_tabval *table_v = inttable_val(t, key); |
| if (!table_v) return false; |
| table_v->val = val.val; |
| return true; |
| } |
| |
| bool upb_inttable_remove(upb_inttable *t, uintptr_t key, upb_value *val) { |
| bool success; |
| if (key < t->array_size) { |
| if (upb_arrhas(t->array[key])) { |
| upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; |
| t->array_count--; |
| if (val) { |
| _upb_value_setval(val, t->array[key].val); |
| } |
| mutable_array(t)[key] = empty; |
| success = true; |
| } else { |
| success = false; |
| } |
| } else { |
| success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql); |
| } |
| check(t); |
| return success; |
| } |
| |
| bool upb_inttable_insertptr2(upb_inttable *t, const void *key, upb_value val, |
| upb_alloc *a) { |
| return upb_inttable_insert2(t, (uintptr_t)key, val, a); |
| } |
| |
| bool upb_inttable_lookupptr(const upb_inttable *t, const void *key, |
| upb_value *v) { |
| return upb_inttable_lookup(t, (uintptr_t)key, v); |
| } |
| |
| bool upb_inttable_removeptr(upb_inttable *t, const void *key, upb_value *val) { |
| return upb_inttable_remove(t, (uintptr_t)key, val); |
| } |
| |
| void upb_inttable_compact2(upb_inttable *t, upb_alloc *a) { |
| /* A power-of-two histogram of the table keys. */ |
| size_t counts[UPB_MAXARRSIZE + 1] = {0}; |
| |
| /* The max key in each bucket. */ |
| uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; |
| |
| upb_inttable_iter i; |
| size_t arr_count; |
| int size_lg2; |
| upb_inttable new_t; |
| |
| upb_inttable_begin(&i, t); |
| for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
| uintptr_t key = upb_inttable_iter_key(&i); |
| int bucket = log2ceil(key); |
| max[bucket] = UPB_MAX(max[bucket], key); |
| counts[bucket]++; |
| } |
| |
| /* Find the largest power of two that satisfies the MIN_DENSITY |
| * definition (while actually having some keys). */ |
| arr_count = upb_inttable_count(t); |
| |
| for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { |
| if (counts[size_lg2] == 0) { |
| /* We can halve again without losing any entries. */ |
| continue; |
| } else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { |
| break; |
| } |
| |
| arr_count -= counts[size_lg2]; |
| } |
| |
| UPB_ASSERT(arr_count <= upb_inttable_count(t)); |
| |
| { |
| /* Insert all elements into new, perfectly-sized table. */ |
| size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ |
| size_t hash_count = upb_inttable_count(t) - arr_count; |
| size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; |
| int hashsize_lg2 = log2ceil(hash_size); |
| |
| upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a); |
| upb_inttable_begin(&i, t); |
| for (; !upb_inttable_done(&i); upb_inttable_next(&i)) { |
| uintptr_t k = upb_inttable_iter_key(&i); |
| upb_inttable_insert2(&new_t, k, upb_inttable_iter_value(&i), a); |
| } |
| UPB_ASSERT(new_t.array_size == arr_size); |
| UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2); |
| } |
| upb_inttable_uninit2(t, a); |
| *t = new_t; |
| } |
| |
| /* Iteration. */ |
| |
| static const upb_tabent *int_tabent(const upb_inttable_iter *i) { |
| UPB_ASSERT(!i->array_part); |
| return &i->t->t.entries[i->index]; |
| } |
| |
| static upb_tabval int_arrent(const upb_inttable_iter *i) { |
| UPB_ASSERT(i->array_part); |
| return i->t->array[i->index]; |
| } |
| |
| void upb_inttable_begin(upb_inttable_iter *i, const upb_inttable *t) { |
| i->t = t; |
| i->index = -1; |
| i->array_part = true; |
| upb_inttable_next(i); |
| } |
| |
| void upb_inttable_next(upb_inttable_iter *iter) { |
| const upb_inttable *t = iter->t; |
| if (iter->array_part) { |
| while (++iter->index < t->array_size) { |
| if (upb_arrhas(int_arrent(iter))) { |
| return; |
| } |
| } |
| iter->array_part = false; |
| iter->index = begin(&t->t); |
| } else { |
| iter->index = next(&t->t, iter->index); |
| } |
| } |
| |
| bool upb_inttable_done(const upb_inttable_iter *i) { |
| if (!i->t) return true; |
| if (i->array_part) { |
| return i->index >= i->t->array_size || |
| !upb_arrhas(int_arrent(i)); |
| } else { |
| return i->index >= upb_table_size(&i->t->t) || |
| upb_tabent_isempty(int_tabent(i)); |
| } |
| } |
| |
| uintptr_t upb_inttable_iter_key(const upb_inttable_iter *i) { |
| UPB_ASSERT(!upb_inttable_done(i)); |
| return i->array_part ? i->index : int_tabent(i)->key; |
| } |
| |
| upb_value upb_inttable_iter_value(const upb_inttable_iter *i) { |
| UPB_ASSERT(!upb_inttable_done(i)); |
| return _upb_value_val( |
| i->array_part ? i->t->array[i->index].val : int_tabent(i)->val.val); |
| } |
| |
| void upb_inttable_iter_setdone(upb_inttable_iter *i) { |
| i->t = NULL; |
| i->index = SIZE_MAX; |
| i->array_part = false; |
| } |
| |
| bool upb_inttable_iter_isequal(const upb_inttable_iter *i1, |
| const upb_inttable_iter *i2) { |
| if (upb_inttable_done(i1) && upb_inttable_done(i2)) |
| return true; |
| return i1->t == i2->t && i1->index == i2->index && |
| i1->array_part == i2->array_part; |
| } |
| |
| #if defined(UPB_UNALIGNED_READS_OK) || defined(__s390x__) |
| /* ----------------------------------------------------------------------------- |
| * MurmurHash2, by Austin Appleby (released as public domain). |
| * Reformatted and C99-ified by Joshua Haberman. |
| * Note - This code makes a few assumptions about how your machine behaves - |
| * 1. We can read a 4-byte value from any address without crashing |
| * 2. sizeof(int) == 4 (in upb this limitation is removed by using uint32_t |
| * And it has a few limitations - |
| * 1. It will not work incrementally. |
| * 2. It will not produce the same results on little-endian and big-endian |
| * machines. */ |
| uint32_t upb_murmur_hash2(const void *key, size_t len, uint32_t seed) { |
| /* 'm' and 'r' are mixing constants generated offline. |
| * They're not really 'magic', they just happen to work well. */ |
| const uint32_t m = 0x5bd1e995; |
| const int32_t r = 24; |
| |
| /* Initialize the hash to a 'random' value */ |
| uint32_t h = seed ^ len; |
| |
| /* Mix 4 bytes at a time into the hash */ |
| const uint8_t * data = (const uint8_t *)key; |
| while(len >= 4) { |
| uint32_t k; |
| memcpy(&k, data, sizeof(k)); |
| |
| k *= m; |
| k ^= k >> r; |
| k *= m; |
| |
| h *= m; |
| h ^= k; |
| |
| data += 4; |
| len -= 4; |
| } |
| |
| /* Handle the last few bytes of the input array */ |
| switch(len) { |
| case 3: h ^= data[2] << 16; |
| case 2: h ^= data[1] << 8; |
| case 1: h ^= data[0]; h *= m; |
| }; |
| |
| /* Do a few final mixes of the hash to ensure the last few |
| * bytes are well-incorporated. */ |
| h ^= h >> 13; |
| h *= m; |
| h ^= h >> 15; |
| |
| return h; |
| } |
| |
| #else /* !UPB_UNALIGNED_READS_OK */ |
| |
| /* ----------------------------------------------------------------------------- |
| * MurmurHashAligned2, by Austin Appleby |
| * Same algorithm as MurmurHash2, but only does aligned reads - should be safer |
| * on certain platforms. |
| * Performance will be lower than MurmurHash2 */ |
| |
| #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } |
| |
| uint32_t upb_murmur_hash2(const void * key, size_t len, uint32_t seed) { |
| const uint32_t m = 0x5bd1e995; |
| const int32_t r = 24; |
| const uint8_t * data = (const uint8_t *)key; |
| uint32_t h = (uint32_t)(seed ^ len); |
| uint8_t align = (uintptr_t)data & 3; |
| |
| if(align && (len >= 4)) { |
| /* Pre-load the temp registers */ |
| uint32_t t = 0, d = 0; |
| int32_t sl; |
| int32_t sr; |
| |
| switch(align) { |
| case 1: t |= data[2] << 16; /* fallthrough */ |
| case 2: t |= data[1] << 8; /* fallthrough */ |
| case 3: t |= data[0]; |
| } |
| |
| t <<= (8 * align); |
| |
| data += 4-align; |
| len -= 4-align; |
| |
| sl = 8 * (4-align); |
| sr = 8 * align; |
| |
| /* Mix */ |
| |
| while(len >= 4) { |
| uint32_t k; |
| |
| d = *(uint32_t *)data; |
| t = (t >> sr) | (d << sl); |
| |
| k = t; |
| |
| MIX(h,k,m); |
| |
| t = d; |
| |
| data += 4; |
| len -= 4; |
| } |
| |
| /* Handle leftover data in temp registers */ |
| |
| d = 0; |
| |
| if(len >= align) { |
| uint32_t k; |
| |
| switch(align) { |
| case 3: d |= data[2] << 16; /* fallthrough */ |
| case 2: d |= data[1] << 8; /* fallthrough */ |
| case 1: d |= data[0]; /* fallthrough */ |
| } |
| |
| k = (t >> sr) | (d << sl); |
| MIX(h,k,m); |
| |
| data += align; |
| len -= align; |
| |
| /* ---------- |
| * Handle tail bytes */ |
| |
| switch(len) { |
| case 3: h ^= data[2] << 16; /* fallthrough */ |
| case 2: h ^= data[1] << 8; /* fallthrough */ |
| case 1: h ^= data[0]; h *= m; /* fallthrough */ |
| }; |
| } else { |
| switch(len) { |
| case 3: d |= data[2] << 16; /* fallthrough */ |
| case 2: d |= data[1] << 8; /* fallthrough */ |
| case 1: d |= data[0]; /* fallthrough */ |
| case 0: h ^= (t >> sr) | (d << sl); h *= m; |
| } |
| } |
| |
| h ^= h >> 13; |
| h *= m; |
| h ^= h >> 15; |
| |
| return h; |
| } else { |
| while(len >= 4) { |
| uint32_t k = *(uint32_t *)data; |
| |
| MIX(h,k,m); |
| |
| data += 4; |
| len -= 4; |
| } |
| |
| /* ---------- |
| * Handle tail bytes */ |
| |
| switch(len) { |
| case 3: h ^= data[2] << 16; /* fallthrough */ |
| case 2: h ^= data[1] << 8; /* fallthrough */ |
| case 1: h ^= data[0]; h *= m; |
| }; |
| |
| h ^= h >> 13; |
| h *= m; |
| h ^= h >> 15; |
| |
| return h; |
| } |
| } |
| #undef MIX |
| |
| #endif /* UPB_UNALIGNED_READS_OK */ |