| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // This file defines the map container and its helpers to support protobuf maps. |
| // |
| // The Map and MapIterator types are provided by this header file. |
| // Please avoid using other types defined here, unless they are public |
| // types within Map or MapIterator, such as Map::value_type. |
| |
| #ifndef GOOGLE_PROTOBUF_MAP_H__ |
| #define GOOGLE_PROTOBUF_MAP_H__ |
| |
| #include <functional> |
| #include <initializer_list> |
| #include <iterator> |
| #include <limits> // To support Visual Studio 2008 |
| #include <map> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #if defined(__cpp_lib_string_view) |
| #include <string_view> |
| #endif // defined(__cpp_lib_string_view) |
| |
| #if !defined(GOOGLE_PROTOBUF_NO_RDTSC) && defined(__APPLE__) |
| #include <mach/mach_time.h> |
| #endif |
| |
| #include <google/protobuf/stubs/common.h> |
| #include <google/protobuf/arena.h> |
| #include <google/protobuf/generated_enum_util.h> |
| #include <google/protobuf/map_type_handler.h> |
| #include <google/protobuf/stubs/hash.h> |
| |
| #ifdef SWIG |
| #error "You cannot SWIG proto headers" |
| #endif |
| |
| #include <google/protobuf/port_def.inc> |
| |
| namespace google { |
| namespace protobuf { |
| |
| template <typename Key, typename T> |
| class Map; |
| |
| class MapIterator; |
| |
| template <typename Enum> |
| struct is_proto_enum; |
| |
| namespace internal { |
| template <typename Derived, typename Key, typename T, |
| WireFormatLite::FieldType key_wire_type, |
| WireFormatLite::FieldType value_wire_type> |
| class MapFieldLite; |
| |
| template <typename Derived, typename Key, typename T, |
| WireFormatLite::FieldType key_wire_type, |
| WireFormatLite::FieldType value_wire_type> |
| class MapField; |
| |
| template <typename Key, typename T> |
| class TypeDefinedMapFieldBase; |
| |
| class DynamicMapField; |
| |
| class GeneratedMessageReflection; |
| |
| // re-implement std::allocator to use arena allocator for memory allocation. |
| // Used for Map implementation. Users should not use this class |
| // directly. |
| template <typename U> |
| class MapAllocator { |
| public: |
| using value_type = U; |
| using pointer = value_type*; |
| using const_pointer = const value_type*; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| using size_type = size_t; |
| using difference_type = ptrdiff_t; |
| |
| constexpr MapAllocator() : arena_(nullptr) {} |
| explicit constexpr MapAllocator(Arena* arena) : arena_(arena) {} |
| template <typename X> |
| MapAllocator(const MapAllocator<X>& allocator) // NOLINT(runtime/explicit) |
| : arena_(allocator.arena()) {} |
| |
| pointer allocate(size_type n, const void* /* hint */ = nullptr) { |
| // If arena is not given, malloc needs to be called which doesn't |
| // construct element object. |
| if (arena_ == nullptr) { |
| return static_cast<pointer>(::operator new(n * sizeof(value_type))); |
| } else { |
| return reinterpret_cast<pointer>( |
| Arena::CreateArray<uint8_t>(arena_, n * sizeof(value_type))); |
| } |
| } |
| |
| void deallocate(pointer p, size_type n) { |
| if (arena_ == nullptr) { |
| #if defined(__GXX_DELETE_WITH_SIZE__) || defined(__cpp_sized_deallocation) |
| ::operator delete(p, n * sizeof(value_type)); |
| #else |
| (void)n; |
| ::operator delete(p); |
| #endif |
| } |
| } |
| |
| #if !defined(GOOGLE_PROTOBUF_OS_APPLE) && !defined(GOOGLE_PROTOBUF_OS_NACL) && \ |
| !defined(GOOGLE_PROTOBUF_OS_EMSCRIPTEN) |
| template <class NodeType, class... Args> |
| void construct(NodeType* p, Args&&... args) { |
| // Clang 3.6 doesn't compile static casting to void* directly. (Issue |
| // #1266) According C++ standard 5.2.9/1: "The static_cast operator shall |
| // not cast away constness". So first the maybe const pointer is casted to |
| // const void* and after the const void* is const casted. |
| new (const_cast<void*>(static_cast<const void*>(p))) |
| NodeType(std::forward<Args>(args)...); |
| } |
| |
| template <class NodeType> |
| void destroy(NodeType* p) { |
| p->~NodeType(); |
| } |
| #else |
| void construct(pointer p, const_reference t) { new (p) value_type(t); } |
| |
| void destroy(pointer p) { p->~value_type(); } |
| #endif |
| |
| template <typename X> |
| struct rebind { |
| using other = MapAllocator<X>; |
| }; |
| |
| template <typename X> |
| bool operator==(const MapAllocator<X>& other) const { |
| return arena_ == other.arena_; |
| } |
| |
| template <typename X> |
| bool operator!=(const MapAllocator<X>& other) const { |
| return arena_ != other.arena_; |
| } |
| |
| // To support Visual Studio 2008 |
| size_type max_size() const { |
| // parentheses around (std::...:max) prevents macro warning of max() |
| return (std::numeric_limits<size_type>::max)(); |
| } |
| |
| // To support gcc-4.4, which does not properly |
| // support templated friend classes |
| Arena* arena() const { return arena_; } |
| |
| private: |
| using DestructorSkippable_ = void; |
| Arena* arena_; |
| }; |
| |
| template <typename T> |
| using KeyForTree = |
| typename std::conditional<std::is_scalar<T>::value, T, |
| std::reference_wrapper<const T>>::type; |
| |
| // Default case: Not transparent. |
| // We use std::hash<key_type>/std::less<key_type> and all the lookup functions |
| // only accept `key_type`. |
| template <typename key_type> |
| struct TransparentSupport { |
| using hash = std::hash<key_type>; |
| using less = std::less<key_type>; |
| |
| static bool Equals(const key_type& a, const key_type& b) { return a == b; } |
| |
| template <typename K> |
| using key_arg = key_type; |
| }; |
| |
| #if defined(__cpp_lib_string_view) |
| // If std::string_view is available, we add transparent support for std::string |
| // keys. We use std::hash<std::string_view> as it supports the input types we |
| // care about. The lookup functions accept arbitrary `K`. This will include any |
| // key type that is convertible to std::string_view. |
| template <> |
| struct TransparentSupport<std::string> { |
| static std::string_view ImplicitConvert(std::string_view str) { return str; } |
| // If the element is not convertible to std::string_view, try to convert to |
| // std::string first. |
| // The template makes this overload lose resolution when both have the same |
| // rank otherwise. |
| template <typename = void> |
| static std::string_view ImplicitConvert(const std::string& str) { |
| return str; |
| } |
| |
| struct hash : private std::hash<std::string_view> { |
| using is_transparent = void; |
| |
| template <typename T> |
| size_t operator()(const T& str) const { |
| return base()(ImplicitConvert(str)); |
| } |
| |
| private: |
| const std::hash<std::string_view>& base() const { return *this; } |
| }; |
| struct less { |
| using is_transparent = void; |
| |
| template <typename T, typename U> |
| bool operator()(const T& t, const U& u) const { |
| return ImplicitConvert(t) < ImplicitConvert(u); |
| } |
| }; |
| |
| template <typename T, typename U> |
| static bool Equals(const T& t, const U& u) { |
| return ImplicitConvert(t) == ImplicitConvert(u); |
| } |
| |
| template <typename K> |
| using key_arg = K; |
| }; |
| #endif // defined(__cpp_lib_string_view) |
| |
| template <typename Key> |
| using TreeForMap = |
| std::map<KeyForTree<Key>, void*, typename TransparentSupport<Key>::less, |
| MapAllocator<std::pair<const KeyForTree<Key>, void*>>>; |
| |
| inline bool TableEntryIsEmpty(void* const* table, size_t b) { |
| return table[b] == nullptr; |
| } |
| inline bool TableEntryIsNonEmptyList(void* const* table, size_t b) { |
| return table[b] != nullptr && table[b] != table[b ^ 1]; |
| } |
| inline bool TableEntryIsTree(void* const* table, size_t b) { |
| return !TableEntryIsEmpty(table, b) && !TableEntryIsNonEmptyList(table, b); |
| } |
| inline bool TableEntryIsList(void* const* table, size_t b) { |
| return !TableEntryIsTree(table, b); |
| } |
| |
| // This captures all numeric types. |
| inline size_t MapValueSpaceUsedExcludingSelfLong(bool) { return 0; } |
| inline size_t MapValueSpaceUsedExcludingSelfLong(const std::string& str) { |
| return StringSpaceUsedExcludingSelfLong(str); |
| } |
| template <typename T, |
| typename = decltype(std::declval<const T&>().SpaceUsedLong())> |
| size_t MapValueSpaceUsedExcludingSelfLong(const T& message) { |
| return message.SpaceUsedLong() - sizeof(T); |
| } |
| |
| constexpr size_t kGlobalEmptyTableSize = 1; |
| PROTOBUF_EXPORT extern void* const kGlobalEmptyTable[kGlobalEmptyTableSize]; |
| |
| // Space used for the table, trees, and nodes. |
| // Does not include the indirect space used. Eg the data of a std::string. |
| template <typename Key> |
| PROTOBUF_NOINLINE size_t SpaceUsedInTable(void** table, size_t num_buckets, |
| size_t num_elements, |
| size_t sizeof_node) { |
| size_t size = 0; |
| // The size of the table. |
| size += sizeof(void*) * num_buckets; |
| // All the nodes. |
| size += sizeof_node * num_elements; |
| // For each tree, count the overhead of the those nodes. |
| // Two buckets at a time because we only care about trees. |
| for (size_t b = 0; b < num_buckets; b += 2) { |
| if (internal::TableEntryIsTree(table, b)) { |
| using Tree = TreeForMap<Key>; |
| Tree* tree = static_cast<Tree*>(table[b]); |
| // Estimated cost of the red-black tree nodes, 3 pointers plus a |
| // bool (plus alignment, so 4 pointers). |
| size += tree->size() * |
| (sizeof(typename Tree::value_type) + sizeof(void*) * 4); |
| } |
| } |
| return size; |
| } |
| |
| template <typename Map, |
| typename = typename std::enable_if< |
| !std::is_scalar<typename Map::key_type>::value || |
| !std::is_scalar<typename Map::mapped_type>::value>::type> |
| size_t SpaceUsedInValues(const Map* map) { |
| size_t size = 0; |
| for (const auto& v : *map) { |
| size += internal::MapValueSpaceUsedExcludingSelfLong(v.first) + |
| internal::MapValueSpaceUsedExcludingSelfLong(v.second); |
| } |
| return size; |
| } |
| |
| inline size_t SpaceUsedInValues(const void*) { return 0; } |
| |
| } // namespace internal |
| |
| // This is the class for Map's internal value_type. Instead of using |
| // std::pair as value_type, we use this class which provides us more control of |
| // its process of construction and destruction. |
| template <typename Key, typename T> |
| struct MapPair { |
| using first_type = const Key; |
| using second_type = T; |
| |
| MapPair(const Key& other_first, const T& other_second) |
| : first(other_first), second(other_second) {} |
| explicit MapPair(const Key& other_first) : first(other_first), second() {} |
| explicit MapPair(Key&& other_first) |
| : first(std::move(other_first)), second() {} |
| MapPair(const MapPair& other) : first(other.first), second(other.second) {} |
| |
| ~MapPair() {} |
| |
| // Implicitly convertible to std::pair of compatible types. |
| template <typename T1, typename T2> |
| operator std::pair<T1, T2>() const { // NOLINT(runtime/explicit) |
| return std::pair<T1, T2>(first, second); |
| } |
| |
| const Key first; |
| T second; |
| |
| private: |
| friend class Arena; |
| friend class Map<Key, T>; |
| }; |
| |
| // Map is an associative container type used to store protobuf map |
| // fields. Each Map instance may or may not use a different hash function, a |
| // different iteration order, and so on. E.g., please don't examine |
| // implementation details to decide if the following would work: |
| // Map<int, int> m0, m1; |
| // m0[0] = m1[0] = m0[1] = m1[1] = 0; |
| // assert(m0.begin()->first == m1.begin()->first); // Bug! |
| // |
| // Map's interface is similar to std::unordered_map, except that Map is not |
| // designed to play well with exceptions. |
| template <typename Key, typename T> |
| class Map { |
| public: |
| using key_type = Key; |
| using mapped_type = T; |
| using value_type = MapPair<Key, T>; |
| |
| using pointer = value_type*; |
| using const_pointer = const value_type*; |
| using reference = value_type&; |
| using const_reference = const value_type&; |
| |
| using size_type = size_t; |
| using hasher = typename internal::TransparentSupport<Key>::hash; |
| |
| constexpr Map() : elements_(nullptr) {} |
| explicit Map(Arena* arena) : elements_(arena) {} |
| |
| Map(const Map& other) : Map() { insert(other.begin(), other.end()); } |
| |
| Map(Map&& other) noexcept : Map() { |
| if (other.arena() != nullptr) { |
| *this = other; |
| } else { |
| swap(other); |
| } |
| } |
| |
| Map& operator=(Map&& other) noexcept { |
| if (this != &other) { |
| if (arena() != other.arena()) { |
| *this = other; |
| } else { |
| swap(other); |
| } |
| } |
| return *this; |
| } |
| |
| template <class InputIt> |
| Map(const InputIt& first, const InputIt& last) : Map() { |
| insert(first, last); |
| } |
| |
| ~Map() {} |
| |
| private: |
| using Allocator = internal::MapAllocator<void*>; |
| |
| // InnerMap is a generic hash-based map. It doesn't contain any |
| // protocol-buffer-specific logic. It is a chaining hash map with the |
| // additional feature that some buckets can be converted to use an ordered |
| // container. This ensures O(lg n) bounds on find, insert, and erase, while |
| // avoiding the overheads of ordered containers most of the time. |
| // |
| // The implementation doesn't need the full generality of unordered_map, |
| // and it doesn't have it. More bells and whistles can be added as needed. |
| // Some implementation details: |
| // 1. The hash function has type hasher and the equality function |
| // equal_to<Key>. We inherit from hasher to save space |
| // (empty-base-class optimization). |
| // 2. The number of buckets is a power of two. |
| // 3. Buckets are converted to trees in pairs: if we convert bucket b then |
| // buckets b and b^1 will share a tree. Invariant: buckets b and b^1 have |
| // the same non-null value iff they are sharing a tree. (An alternative |
| // implementation strategy would be to have a tag bit per bucket.) |
| // 4. As is typical for hash_map and such, the Keys and Values are always |
| // stored in linked list nodes. Pointers to elements are never invalidated |
| // until the element is deleted. |
| // 5. The trees' payload type is pointer to linked-list node. Tree-converting |
| // a bucket doesn't copy Key-Value pairs. |
| // 6. Once we've tree-converted a bucket, it is never converted back. However, |
| // the items a tree contains may wind up assigned to trees or lists upon a |
| // rehash. |
| // 7. The code requires no C++ features from C++14 or later. |
| // 8. Mutations to a map do not invalidate the map's iterators, pointers to |
| // elements, or references to elements. |
| // 9. Except for erase(iterator), any non-const method can reorder iterators. |
| // 10. InnerMap uses KeyForTree<Key> when using the Tree representation, which |
| // is either `Key`, if Key is a scalar, or `reference_wrapper<const Key>` |
| // otherwise. This avoids unnecessary copies of string keys, for example. |
| class InnerMap : private hasher { |
| public: |
| explicit constexpr InnerMap(Arena* arena) |
| : hasher(), |
| num_elements_(0), |
| num_buckets_(internal::kGlobalEmptyTableSize), |
| seed_(0), |
| index_of_first_non_null_(internal::kGlobalEmptyTableSize), |
| table_(const_cast<void**>(internal::kGlobalEmptyTable)), |
| alloc_(arena) {} |
| |
| ~InnerMap() { |
| if (alloc_.arena() == nullptr && |
| num_buckets_ != internal::kGlobalEmptyTableSize) { |
| clear(); |
| Dealloc<void*>(table_, num_buckets_); |
| } |
| } |
| |
| private: |
| enum { kMinTableSize = 8 }; |
| |
| // Linked-list nodes, as one would expect for a chaining hash table. |
| struct Node { |
| value_type kv; |
| Node* next; |
| }; |
| |
| // Trees. The payload type is a copy of Key, so that we can query the tree |
| // with Keys that are not in any particular data structure. |
| // The value is a void* pointing to Node. We use void* instead of Node* to |
| // avoid code bloat. That way there is only one instantiation of the tree |
| // class per key type. |
| using Tree = internal::TreeForMap<Key>; |
| using TreeIterator = typename Tree::iterator; |
| |
| static Node* NodeFromTreeIterator(TreeIterator it) { |
| return static_cast<Node*>(it->second); |
| } |
| |
| // iterator and const_iterator are instantiations of iterator_base. |
| template <typename KeyValueType> |
| class iterator_base { |
| public: |
| using reference = KeyValueType&; |
| using pointer = KeyValueType*; |
| |
| // Invariants: |
| // node_ is always correct. This is handy because the most common |
| // operations are operator* and operator-> and they only use node_. |
| // When node_ is set to a non-null value, all the other non-const fields |
| // are updated to be correct also, but those fields can become stale |
| // if the underlying map is modified. When those fields are needed they |
| // are rechecked, and updated if necessary. |
| iterator_base() : node_(nullptr), m_(nullptr), bucket_index_(0) {} |
| |
| explicit iterator_base(const InnerMap* m) : m_(m) { |
| SearchFrom(m->index_of_first_non_null_); |
| } |
| |
| // Any iterator_base can convert to any other. This is overkill, and we |
| // rely on the enclosing class to use it wisely. The standard "iterator |
| // can convert to const_iterator" is OK but the reverse direction is not. |
| template <typename U> |
| explicit iterator_base(const iterator_base<U>& it) |
| : node_(it.node_), m_(it.m_), bucket_index_(it.bucket_index_) {} |
| |
| iterator_base(Node* n, const InnerMap* m, size_type index) |
| : node_(n), m_(m), bucket_index_(index) {} |
| |
| iterator_base(TreeIterator tree_it, const InnerMap* m, size_type index) |
| : node_(NodeFromTreeIterator(tree_it)), m_(m), bucket_index_(index) { |
| // Invariant: iterators that use buckets with trees have an even |
| // bucket_index_. |
| GOOGLE_DCHECK_EQ(bucket_index_ % 2, 0u); |
| } |
| |
| // Advance through buckets, looking for the first that isn't empty. |
| // If nothing non-empty is found then leave node_ == nullptr. |
| void SearchFrom(size_type start_bucket) { |
| GOOGLE_DCHECK(m_->index_of_first_non_null_ == m_->num_buckets_ || |
| m_->table_[m_->index_of_first_non_null_] != nullptr); |
| node_ = nullptr; |
| for (bucket_index_ = start_bucket; bucket_index_ < m_->num_buckets_; |
| bucket_index_++) { |
| if (m_->TableEntryIsNonEmptyList(bucket_index_)) { |
| node_ = static_cast<Node*>(m_->table_[bucket_index_]); |
| break; |
| } else if (m_->TableEntryIsTree(bucket_index_)) { |
| Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); |
| GOOGLE_DCHECK(!tree->empty()); |
| node_ = NodeFromTreeIterator(tree->begin()); |
| break; |
| } |
| } |
| } |
| |
| reference operator*() const { return node_->kv; } |
| pointer operator->() const { return &(operator*()); } |
| |
| friend bool operator==(const iterator_base& a, const iterator_base& b) { |
| return a.node_ == b.node_; |
| } |
| friend bool operator!=(const iterator_base& a, const iterator_base& b) { |
| return a.node_ != b.node_; |
| } |
| |
| iterator_base& operator++() { |
| if (node_->next == nullptr) { |
| TreeIterator tree_it; |
| const bool is_list = revalidate_if_necessary(&tree_it); |
| if (is_list) { |
| SearchFrom(bucket_index_ + 1); |
| } else { |
| GOOGLE_DCHECK_EQ(bucket_index_ & 1, 0u); |
| Tree* tree = static_cast<Tree*>(m_->table_[bucket_index_]); |
| if (++tree_it == tree->end()) { |
| SearchFrom(bucket_index_ + 2); |
| } else { |
| node_ = NodeFromTreeIterator(tree_it); |
| } |
| } |
| } else { |
| node_ = node_->next; |
| } |
| return *this; |
| } |
| |
| iterator_base operator++(int /* unused */) { |
| iterator_base tmp = *this; |
| ++*this; |
| return tmp; |
| } |
| |
| // Assumes node_ and m_ are correct and non-null, but other fields may be |
| // stale. Fix them as needed. Then return true iff node_ points to a |
| // Node in a list. If false is returned then *it is modified to be |
| // a valid iterator for node_. |
| bool revalidate_if_necessary(TreeIterator* it) { |
| GOOGLE_DCHECK(node_ != nullptr && m_ != nullptr); |
| // Force bucket_index_ to be in range. |
| bucket_index_ &= (m_->num_buckets_ - 1); |
| // Common case: the bucket we think is relevant points to node_. |
| if (m_->table_[bucket_index_] == static_cast<void*>(node_)) return true; |
| // Less common: the bucket is a linked list with node_ somewhere in it, |
| // but not at the head. |
| if (m_->TableEntryIsNonEmptyList(bucket_index_)) { |
| Node* l = static_cast<Node*>(m_->table_[bucket_index_]); |
| while ((l = l->next) != nullptr) { |
| if (l == node_) { |
| return true; |
| } |
| } |
| } |
| // Well, bucket_index_ still might be correct, but probably |
| // not. Revalidate just to be sure. This case is rare enough that we |
| // don't worry about potential optimizations, such as having a custom |
| // find-like method that compares Node* instead of the key. |
| iterator_base i(m_->find(node_->kv.first, it)); |
| bucket_index_ = i.bucket_index_; |
| return m_->TableEntryIsList(bucket_index_); |
| } |
| |
| Node* node_; |
| const InnerMap* m_; |
| size_type bucket_index_; |
| }; |
| |
| public: |
| using iterator = iterator_base<value_type>; |
| using const_iterator = iterator_base<const value_type>; |
| |
| Arena* arena() const { return alloc_.arena(); } |
| |
| void Swap(InnerMap* other) { |
| std::swap(num_elements_, other->num_elements_); |
| std::swap(num_buckets_, other->num_buckets_); |
| std::swap(seed_, other->seed_); |
| std::swap(index_of_first_non_null_, other->index_of_first_non_null_); |
| std::swap(table_, other->table_); |
| std::swap(alloc_, other->alloc_); |
| } |
| |
| iterator begin() { return iterator(this); } |
| iterator end() { return iterator(); } |
| const_iterator begin() const { return const_iterator(this); } |
| const_iterator end() const { return const_iterator(); } |
| |
| void clear() { |
| for (size_type b = 0; b < num_buckets_; b++) { |
| if (TableEntryIsNonEmptyList(b)) { |
| Node* node = static_cast<Node*>(table_[b]); |
| table_[b] = nullptr; |
| do { |
| Node* next = node->next; |
| DestroyNode(node); |
| node = next; |
| } while (node != nullptr); |
| } else if (TableEntryIsTree(b)) { |
| Tree* tree = static_cast<Tree*>(table_[b]); |
| GOOGLE_DCHECK(table_[b] == table_[b + 1] && (b & 1) == 0); |
| table_[b] = table_[b + 1] = nullptr; |
| typename Tree::iterator tree_it = tree->begin(); |
| do { |
| Node* node = NodeFromTreeIterator(tree_it); |
| typename Tree::iterator next = tree_it; |
| ++next; |
| tree->erase(tree_it); |
| DestroyNode(node); |
| tree_it = next; |
| } while (tree_it != tree->end()); |
| DestroyTree(tree); |
| b++; |
| } |
| } |
| num_elements_ = 0; |
| index_of_first_non_null_ = num_buckets_; |
| } |
| |
| const hasher& hash_function() const { return *this; } |
| |
| static size_type max_size() { |
| return static_cast<size_type>(1) << (sizeof(void**) >= 8 ? 60 : 28); |
| } |
| size_type size() const { return num_elements_; } |
| bool empty() const { return size() == 0; } |
| |
| template <typename K> |
| iterator find(const K& k) { |
| return iterator(FindHelper(k).first); |
| } |
| |
| template <typename K> |
| const_iterator find(const K& k) const { |
| return FindHelper(k).first; |
| } |
| |
| // Insert the key into the map, if not present. In that case, the value will |
| // be value initialized. |
| template <typename K> |
| std::pair<iterator, bool> insert(K&& k) { |
| std::pair<const_iterator, size_type> p = FindHelper(k); |
| // Case 1: key was already present. |
| if (p.first.node_ != nullptr) |
| return std::make_pair(iterator(p.first), false); |
| // Case 2: insert. |
| if (ResizeIfLoadIsOutOfRange(num_elements_ + 1)) { |
| p = FindHelper(k); |
| } |
| const size_type b = p.second; // bucket number |
| // If K is not key_type, make the conversion to key_type explicit. |
| using TypeToInit = typename std::conditional< |
| std::is_same<typename std::decay<K>::type, key_type>::value, K&&, |
| key_type>::type; |
| Node* node = Alloc<Node>(1); |
| // Even when arena is nullptr, CreateInArenaStorage is still used to |
| // ensure the arena of submessage will be consistent. Otherwise, |
| // submessage may have its own arena when message-owned arena is enabled. |
| Arena::CreateInArenaStorage(const_cast<Key*>(&node->kv.first), |
| alloc_.arena(), |
| static_cast<TypeToInit>(std::forward<K>(k))); |
| Arena::CreateInArenaStorage(&node->kv.second, alloc_.arena()); |
| |
| iterator result = InsertUnique(b, node); |
| ++num_elements_; |
| return std::make_pair(result, true); |
| } |
| |
| template <typename K> |
| value_type& operator[](K&& k) { |
| return *insert(std::forward<K>(k)).first; |
| } |
| |
| void erase(iterator it) { |
| GOOGLE_DCHECK_EQ(it.m_, this); |
| typename Tree::iterator tree_it; |
| const bool is_list = it.revalidate_if_necessary(&tree_it); |
| size_type b = it.bucket_index_; |
| Node* const item = it.node_; |
| if (is_list) { |
| GOOGLE_DCHECK(TableEntryIsNonEmptyList(b)); |
| Node* head = static_cast<Node*>(table_[b]); |
| head = EraseFromLinkedList(item, head); |
| table_[b] = static_cast<void*>(head); |
| } else { |
| GOOGLE_DCHECK(TableEntryIsTree(b)); |
| Tree* tree = static_cast<Tree*>(table_[b]); |
| tree->erase(tree_it); |
| if (tree->empty()) { |
| // Force b to be the minimum of b and b ^ 1. This is important |
| // only because we want index_of_first_non_null_ to be correct. |
| b &= ~static_cast<size_type>(1); |
| DestroyTree(tree); |
| table_[b] = table_[b + 1] = nullptr; |
| } |
| } |
| DestroyNode(item); |
| --num_elements_; |
| if (PROTOBUF_PREDICT_FALSE(b == index_of_first_non_null_)) { |
| while (index_of_first_non_null_ < num_buckets_ && |
| table_[index_of_first_non_null_] == nullptr) { |
| ++index_of_first_non_null_; |
| } |
| } |
| } |
| |
| size_t SpaceUsedInternal() const { |
| return internal::SpaceUsedInTable<Key>(table_, num_buckets_, |
| num_elements_, sizeof(Node)); |
| } |
| |
| private: |
| const_iterator find(const Key& k, TreeIterator* it) const { |
| return FindHelper(k, it).first; |
| } |
| template <typename K> |
| std::pair<const_iterator, size_type> FindHelper(const K& k) const { |
| return FindHelper(k, nullptr); |
| } |
| template <typename K> |
| std::pair<const_iterator, size_type> FindHelper(const K& k, |
| TreeIterator* it) const { |
| size_type b = BucketNumber(k); |
| if (TableEntryIsNonEmptyList(b)) { |
| Node* node = static_cast<Node*>(table_[b]); |
| do { |
| if (internal::TransparentSupport<Key>::Equals(node->kv.first, k)) { |
| return std::make_pair(const_iterator(node, this, b), b); |
| } else { |
| node = node->next; |
| } |
| } while (node != nullptr); |
| } else if (TableEntryIsTree(b)) { |
| GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); |
| b &= ~static_cast<size_t>(1); |
| Tree* tree = static_cast<Tree*>(table_[b]); |
| auto tree_it = tree->find(k); |
| if (tree_it != tree->end()) { |
| if (it != nullptr) *it = tree_it; |
| return std::make_pair(const_iterator(tree_it, this, b), b); |
| } |
| } |
| return std::make_pair(end(), b); |
| } |
| |
| // Insert the given Node in bucket b. If that would make bucket b too big, |
| // and bucket b is not a tree, create a tree for buckets b and b^1 to share. |
| // Requires count(*KeyPtrFromNodePtr(node)) == 0 and that b is the correct |
| // bucket. num_elements_ is not modified. |
| iterator InsertUnique(size_type b, Node* node) { |
| GOOGLE_DCHECK(index_of_first_non_null_ == num_buckets_ || |
| table_[index_of_first_non_null_] != nullptr); |
| // In practice, the code that led to this point may have already |
| // determined whether we are inserting into an empty list, a short list, |
| // or whatever. But it's probably cheap enough to recompute that here; |
| // it's likely that we're inserting into an empty or short list. |
| iterator result; |
| GOOGLE_DCHECK(find(node->kv.first) == end()); |
| if (TableEntryIsEmpty(b)) { |
| result = InsertUniqueInList(b, node); |
| } else if (TableEntryIsNonEmptyList(b)) { |
| if (PROTOBUF_PREDICT_FALSE(TableEntryIsTooLong(b))) { |
| TreeConvert(b); |
| result = InsertUniqueInTree(b, node); |
| GOOGLE_DCHECK_EQ(result.bucket_index_, b & ~static_cast<size_type>(1)); |
| } else { |
| // Insert into a pre-existing list. This case cannot modify |
| // index_of_first_non_null_, so we skip the code to update it. |
| return InsertUniqueInList(b, node); |
| } |
| } else { |
| // Insert into a pre-existing tree. This case cannot modify |
| // index_of_first_non_null_, so we skip the code to update it. |
| return InsertUniqueInTree(b, node); |
| } |
| // parentheses around (std::min) prevents macro expansion of min(...) |
| index_of_first_non_null_ = |
| (std::min)(index_of_first_non_null_, result.bucket_index_); |
| return result; |
| } |
| |
| // Returns whether we should insert after the head of the list. For |
| // non-optimized builds, we randomly decide whether to insert right at the |
| // head of the list or just after the head. This helps add a little bit of |
| // non-determinism to the map ordering. |
| bool ShouldInsertAfterHead(void* node) { |
| #ifdef NDEBUG |
| (void)node; |
| return false; |
| #else |
| // Doing modulo with a prime mixes the bits more. |
| return (reinterpret_cast<uintptr_t>(node) ^ seed_) % 13 > 6; |
| #endif |
| } |
| |
| // Helper for InsertUnique. Handles the case where bucket b is a |
| // not-too-long linked list. |
| iterator InsertUniqueInList(size_type b, Node* node) { |
| if (table_[b] != nullptr && ShouldInsertAfterHead(node)) { |
| Node* first = static_cast<Node*>(table_[b]); |
| node->next = first->next; |
| first->next = node; |
| return iterator(node, this, b); |
| } |
| |
| node->next = static_cast<Node*>(table_[b]); |
| table_[b] = static_cast<void*>(node); |
| return iterator(node, this, b); |
| } |
| |
| // Helper for InsertUnique. Handles the case where bucket b points to a |
| // Tree. |
| iterator InsertUniqueInTree(size_type b, Node* node) { |
| GOOGLE_DCHECK_EQ(table_[b], table_[b ^ 1]); |
| // Maintain the invariant that node->next is null for all Nodes in Trees. |
| node->next = nullptr; |
| return iterator( |
| static_cast<Tree*>(table_[b])->insert({node->kv.first, node}).first, |
| this, b & ~static_cast<size_t>(1)); |
| } |
| |
| // Returns whether it did resize. Currently this is only used when |
| // num_elements_ increases, though it could be used in other situations. |
| // It checks for load too low as well as load too high: because any number |
| // of erases can occur between inserts, the load could be as low as 0 here. |
| // Resizing to a lower size is not always helpful, but failing to do so can |
| // destroy the expected big-O bounds for some operations. By having the |
| // policy that sometimes we resize down as well as up, clients can easily |
| // keep O(size()) = O(number of buckets) if they want that. |
| bool ResizeIfLoadIsOutOfRange(size_type new_size) { |
| const size_type kMaxMapLoadTimes16 = 12; // controls RAM vs CPU tradeoff |
| const size_type hi_cutoff = num_buckets_ * kMaxMapLoadTimes16 / 16; |
| const size_type lo_cutoff = hi_cutoff / 4; |
| // We don't care how many elements are in trees. If a lot are, |
| // we may resize even though there are many empty buckets. In |
| // practice, this seems fine. |
| if (PROTOBUF_PREDICT_FALSE(new_size >= hi_cutoff)) { |
| if (num_buckets_ <= max_size() / 2) { |
| Resize(num_buckets_ * 2); |
| return true; |
| } |
| } else if (PROTOBUF_PREDICT_FALSE(new_size <= lo_cutoff && |
| num_buckets_ > kMinTableSize)) { |
| size_type lg2_of_size_reduction_factor = 1; |
| // It's possible we want to shrink a lot here... size() could even be 0. |
| // So, estimate how much to shrink by making sure we don't shrink so |
| // much that we would need to grow the table after a few inserts. |
| const size_type hypothetical_size = new_size * 5 / 4 + 1; |
| while ((hypothetical_size << lg2_of_size_reduction_factor) < |
| hi_cutoff) { |
| ++lg2_of_size_reduction_factor; |
| } |
| size_type new_num_buckets = std::max<size_type>( |
| kMinTableSize, num_buckets_ >> lg2_of_size_reduction_factor); |
| if (new_num_buckets != num_buckets_) { |
| Resize(new_num_buckets); |
| return true; |
| } |
| } |
| return false; |
| } |
| |
| // Resize to the given number of buckets. |
| void Resize(size_t new_num_buckets) { |
| if (num_buckets_ == internal::kGlobalEmptyTableSize) { |
| // This is the global empty array. |
| // Just overwrite with a new one. No need to transfer or free anything. |
| num_buckets_ = index_of_first_non_null_ = kMinTableSize; |
| table_ = CreateEmptyTable(num_buckets_); |
| seed_ = Seed(); |
| return; |
| } |
| |
| GOOGLE_DCHECK_GE(new_num_buckets, kMinTableSize); |
| void** const old_table = table_; |
| const size_type old_table_size = num_buckets_; |
| num_buckets_ = new_num_buckets; |
| table_ = CreateEmptyTable(num_buckets_); |
| const size_type start = index_of_first_non_null_; |
| index_of_first_non_null_ = num_buckets_; |
| for (size_type i = start; i < old_table_size; i++) { |
| if (internal::TableEntryIsNonEmptyList(old_table, i)) { |
| TransferList(old_table, i); |
| } else if (internal::TableEntryIsTree(old_table, i)) { |
| TransferTree(old_table, i++); |
| } |
| } |
| Dealloc<void*>(old_table, old_table_size); |
| } |
| |
| void TransferList(void* const* table, size_type index) { |
| Node* node = static_cast<Node*>(table[index]); |
| do { |
| Node* next = node->next; |
| InsertUnique(BucketNumber(node->kv.first), node); |
| node = next; |
| } while (node != nullptr); |
| } |
| |
| void TransferTree(void* const* table, size_type index) { |
| Tree* tree = static_cast<Tree*>(table[index]); |
| typename Tree::iterator tree_it = tree->begin(); |
| do { |
| InsertUnique(BucketNumber(std::cref(tree_it->first).get()), |
| NodeFromTreeIterator(tree_it)); |
| } while (++tree_it != tree->end()); |
| DestroyTree(tree); |
| } |
| |
| Node* EraseFromLinkedList(Node* item, Node* head) { |
| if (head == item) { |
| return head->next; |
| } else { |
| head->next = EraseFromLinkedList(item, head->next); |
| return head; |
| } |
| } |
| |
| bool TableEntryIsEmpty(size_type b) const { |
| return internal::TableEntryIsEmpty(table_, b); |
| } |
| bool TableEntryIsNonEmptyList(size_type b) const { |
| return internal::TableEntryIsNonEmptyList(table_, b); |
| } |
| bool TableEntryIsTree(size_type b) const { |
| return internal::TableEntryIsTree(table_, b); |
| } |
| bool TableEntryIsList(size_type b) const { |
| return internal::TableEntryIsList(table_, b); |
| } |
| |
| void TreeConvert(size_type b) { |
| GOOGLE_DCHECK(!TableEntryIsTree(b) && !TableEntryIsTree(b ^ 1)); |
| Tree* tree = |
| Arena::Create<Tree>(alloc_.arena(), typename Tree::key_compare(), |
| typename Tree::allocator_type(alloc_)); |
| size_type count = CopyListToTree(b, tree) + CopyListToTree(b ^ 1, tree); |
| GOOGLE_DCHECK_EQ(count, tree->size()); |
| table_[b] = table_[b ^ 1] = static_cast<void*>(tree); |
| } |
| |
| // Copy a linked list in the given bucket to a tree. |
| // Returns the number of things it copied. |
| size_type CopyListToTree(size_type b, Tree* tree) { |
| size_type count = 0; |
| Node* node = static_cast<Node*>(table_[b]); |
| while (node != nullptr) { |
| tree->insert({node->kv.first, node}); |
| ++count; |
| Node* next = node->next; |
| node->next = nullptr; |
| node = next; |
| } |
| return count; |
| } |
| |
| // Return whether table_[b] is a linked list that seems awfully long. |
| // Requires table_[b] to point to a non-empty linked list. |
| bool TableEntryIsTooLong(size_type b) { |
| const size_type kMaxLength = 8; |
| size_type count = 0; |
| Node* node = static_cast<Node*>(table_[b]); |
| do { |
| ++count; |
| node = node->next; |
| } while (node != nullptr); |
| // Invariant: no linked list ever is more than kMaxLength in length. |
| GOOGLE_DCHECK_LE(count, kMaxLength); |
| return count >= kMaxLength; |
| } |
| |
| template <typename K> |
| size_type BucketNumber(const K& k) const { |
| // We xor the hash value against the random seed so that we effectively |
| // have a random hash function. |
| uint64_t h = hash_function()(k) ^ seed_; |
| |
| // We use the multiplication method to determine the bucket number from |
| // the hash value. The constant kPhi (suggested by Knuth) is roughly |
| // (sqrt(5) - 1) / 2 * 2^64. |
| constexpr uint64_t kPhi = uint64_t{0x9e3779b97f4a7c15}; |
| return ((kPhi * h) >> 32) & (num_buckets_ - 1); |
| } |
| |
| // Return a power of two no less than max(kMinTableSize, n). |
| // Assumes either n < kMinTableSize or n is a power of two. |
| size_type TableSize(size_type n) { |
| return n < static_cast<size_type>(kMinTableSize) |
| ? static_cast<size_type>(kMinTableSize) |
| : n; |
| } |
| |
| // Use alloc_ to allocate an array of n objects of type U. |
| template <typename U> |
| U* Alloc(size_type n) { |
| using alloc_type = typename Allocator::template rebind<U>::other; |
| return alloc_type(alloc_).allocate(n); |
| } |
| |
| // Use alloc_ to deallocate an array of n objects of type U. |
| template <typename U> |
| void Dealloc(U* t, size_type n) { |
| using alloc_type = typename Allocator::template rebind<U>::other; |
| alloc_type(alloc_).deallocate(t, n); |
| } |
| |
| void DestroyNode(Node* node) { |
| if (alloc_.arena() == nullptr) { |
| delete node; |
| } |
| } |
| |
| void DestroyTree(Tree* tree) { |
| if (alloc_.arena() == nullptr) { |
| delete tree; |
| } |
| } |
| |
| void** CreateEmptyTable(size_type n) { |
| GOOGLE_DCHECK(n >= kMinTableSize); |
| GOOGLE_DCHECK_EQ(n & (n - 1), 0u); |
| void** result = Alloc<void*>(n); |
| memset(result, 0, n * sizeof(result[0])); |
| return result; |
| } |
| |
| // Return a randomish value. |
| size_type Seed() const { |
| // We get a little bit of randomness from the address of the map. The |
| // lower bits are not very random, due to alignment, so we discard them |
| // and shift the higher bits into their place. |
| size_type s = reinterpret_cast<uintptr_t>(this) >> 4; |
| #if !defined(GOOGLE_PROTOBUF_NO_RDTSC) |
| #if defined(__APPLE__) |
| // Use a commpage-based fast time function on Apple environments (MacOS, |
| // iOS, tvOS, watchOS, etc). |
| s += mach_absolute_time(); |
| #elif defined(__x86_64__) && defined(__GNUC__) |
| uint32_t hi, lo; |
| asm volatile("rdtsc" : "=a"(lo), "=d"(hi)); |
| s += ((static_cast<uint64_t>(hi) << 32) | lo); |
| #elif defined(__aarch64__) && defined(__GNUC__) |
| // There is no rdtsc on ARMv8. CNTVCT_EL0 is the virtual counter of the |
| // system timer. It runs at a different frequency than the CPU's, but is |
| // the best source of time-based entropy we get. |
| uint64_t virtual_timer_value; |
| asm volatile("mrs %0, cntvct_el0" : "=r"(virtual_timer_value)); |
| s += virtual_timer_value; |
| #endif |
| #endif // !defined(GOOGLE_PROTOBUF_NO_RDTSC) |
| return s; |
| } |
| |
| friend class Arena; |
| using InternalArenaConstructable_ = void; |
| using DestructorSkippable_ = void; |
| |
| size_type num_elements_; |
| size_type num_buckets_; |
| size_type seed_; |
| size_type index_of_first_non_null_; |
| void** table_; // an array with num_buckets_ entries |
| Allocator alloc_; |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(InnerMap); |
| }; // end of class InnerMap |
| |
| template <typename LookupKey> |
| using key_arg = typename internal::TransparentSupport< |
| key_type>::template key_arg<LookupKey>; |
| |
| public: |
| // Iterators |
| class const_iterator { |
| using InnerIt = typename InnerMap::const_iterator; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename Map::value_type; |
| using difference_type = ptrdiff_t; |
| using pointer = const value_type*; |
| using reference = const value_type&; |
| |
| const_iterator() {} |
| explicit const_iterator(const InnerIt& it) : it_(it) {} |
| |
| const_reference operator*() const { return *it_; } |
| const_pointer operator->() const { return &(operator*()); } |
| |
| const_iterator& operator++() { |
| ++it_; |
| return *this; |
| } |
| const_iterator operator++(int) { return const_iterator(it_++); } |
| |
| friend bool operator==(const const_iterator& a, const const_iterator& b) { |
| return a.it_ == b.it_; |
| } |
| friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
| return !(a == b); |
| } |
| |
| private: |
| InnerIt it_; |
| }; |
| |
| class iterator { |
| using InnerIt = typename InnerMap::iterator; |
| |
| public: |
| using iterator_category = std::forward_iterator_tag; |
| using value_type = typename Map::value_type; |
| using difference_type = ptrdiff_t; |
| using pointer = value_type*; |
| using reference = value_type&; |
| |
| iterator() {} |
| explicit iterator(const InnerIt& it) : it_(it) {} |
| |
| reference operator*() const { return *it_; } |
| pointer operator->() const { return &(operator*()); } |
| |
| iterator& operator++() { |
| ++it_; |
| return *this; |
| } |
| iterator operator++(int) { return iterator(it_++); } |
| |
| // Allow implicit conversion to const_iterator. |
| operator const_iterator() const { // NOLINT(runtime/explicit) |
| return const_iterator(typename InnerMap::const_iterator(it_)); |
| } |
| |
| friend bool operator==(const iterator& a, const iterator& b) { |
| return a.it_ == b.it_; |
| } |
| friend bool operator!=(const iterator& a, const iterator& b) { |
| return !(a == b); |
| } |
| |
| private: |
| friend class Map; |
| |
| InnerIt it_; |
| }; |
| |
| iterator begin() { return iterator(elements_.begin()); } |
| iterator end() { return iterator(elements_.end()); } |
| const_iterator begin() const { return const_iterator(elements_.begin()); } |
| const_iterator end() const { return const_iterator(elements_.end()); } |
| const_iterator cbegin() const { return begin(); } |
| const_iterator cend() const { return end(); } |
| |
| // Capacity |
| size_type size() const { return elements_.size(); } |
| bool empty() const { return size() == 0; } |
| |
| // Element access |
| template <typename K = key_type> |
| T& operator[](const key_arg<K>& key) { |
| return elements_[key].second; |
| } |
| template < |
| typename K = key_type, |
| // Disable for integral types to reduce code bloat. |
| typename = typename std::enable_if<!std::is_integral<K>::value>::type> |
| T& operator[](key_arg<K>&& key) { |
| return elements_[std::forward<K>(key)].second; |
| } |
| |
| template <typename K = key_type> |
| const T& at(const key_arg<K>& key) const { |
| const_iterator it = find(key); |
| GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
| return it->second; |
| } |
| |
| template <typename K = key_type> |
| T& at(const key_arg<K>& key) { |
| iterator it = find(key); |
| GOOGLE_CHECK(it != end()) << "key not found: " << static_cast<Key>(key); |
| return it->second; |
| } |
| |
| // Lookup |
| template <typename K = key_type> |
| size_type count(const key_arg<K>& key) const { |
| return find(key) == end() ? 0 : 1; |
| } |
| |
| template <typename K = key_type> |
| const_iterator find(const key_arg<K>& key) const { |
| return const_iterator(elements_.find(key)); |
| } |
| template <typename K = key_type> |
| iterator find(const key_arg<K>& key) { |
| return iterator(elements_.find(key)); |
| } |
| |
| template <typename K = key_type> |
| bool contains(const key_arg<K>& key) const { |
| return find(key) != end(); |
| } |
| |
| template <typename K = key_type> |
| std::pair<const_iterator, const_iterator> equal_range( |
| const key_arg<K>& key) const { |
| const_iterator it = find(key); |
| if (it == end()) { |
| return std::pair<const_iterator, const_iterator>(it, it); |
| } else { |
| const_iterator begin = it++; |
| return std::pair<const_iterator, const_iterator>(begin, it); |
| } |
| } |
| |
| template <typename K = key_type> |
| std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { |
| iterator it = find(key); |
| if (it == end()) { |
| return std::pair<iterator, iterator>(it, it); |
| } else { |
| iterator begin = it++; |
| return std::pair<iterator, iterator>(begin, it); |
| } |
| } |
| |
| // insert |
| std::pair<iterator, bool> insert(const value_type& value) { |
| std::pair<typename InnerMap::iterator, bool> p = |
| elements_.insert(value.first); |
| if (p.second) { |
| p.first->second = value.second; |
| } |
| return std::pair<iterator, bool>(iterator(p.first), p.second); |
| } |
| template <class InputIt> |
| void insert(InputIt first, InputIt last) { |
| for (InputIt it = first; it != last; ++it) { |
| iterator exist_it = find(it->first); |
| if (exist_it == end()) { |
| operator[](it->first) = it->second; |
| } |
| } |
| } |
| void insert(std::initializer_list<value_type> values) { |
| insert(values.begin(), values.end()); |
| } |
| |
| // Erase and clear |
| template <typename K = key_type> |
| size_type erase(const key_arg<K>& key) { |
| iterator it = find(key); |
| if (it == end()) { |
| return 0; |
| } else { |
| erase(it); |
| return 1; |
| } |
| } |
| iterator erase(iterator pos) { |
| iterator i = pos++; |
| elements_.erase(i.it_); |
| return pos; |
| } |
| void erase(iterator first, iterator last) { |
| while (first != last) { |
| first = erase(first); |
| } |
| } |
| void clear() { elements_.clear(); } |
| |
| // Assign |
| Map& operator=(const Map& other) { |
| if (this != &other) { |
| clear(); |
| insert(other.begin(), other.end()); |
| } |
| return *this; |
| } |
| |
| void swap(Map& other) { |
| if (arena() == other.arena()) { |
| InternalSwap(other); |
| } else { |
| // TODO(zuguang): optimize this. The temporary copy can be allocated |
| // in the same arena as the other message, and the "other = copy" can |
| // be replaced with the fast-path swap above. |
| Map copy = *this; |
| *this = other; |
| other = copy; |
| } |
| } |
| |
| void InternalSwap(Map& other) { elements_.Swap(&other.elements_); } |
| |
| // Access to hasher. Currently this returns a copy, but it may |
| // be modified to return a const reference in the future. |
| hasher hash_function() const { return elements_.hash_function(); } |
| |
| size_t SpaceUsedExcludingSelfLong() const { |
| if (empty()) return 0; |
| return elements_.SpaceUsedInternal() + internal::SpaceUsedInValues(this); |
| } |
| |
| private: |
| Arena* arena() const { return elements_.arena(); } |
| InnerMap elements_; |
| |
| friend class Arena; |
| using InternalArenaConstructable_ = void; |
| using DestructorSkippable_ = void; |
| template <typename Derived, typename K, typename V, |
| internal::WireFormatLite::FieldType key_wire_type, |
| internal::WireFormatLite::FieldType value_wire_type> |
| friend class internal::MapFieldLite; |
| }; |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #include <google/protobuf/port_undef.inc> |
| |
| #endif // GOOGLE_PROTOBUF_MAP_H__ |