| #!/usr/bin/env python2.7 |
| |
| from __future__ import print_function |
| import argparse |
| import json |
| import uuid |
| import httplib2 |
| |
| from apiclient import discovery |
| from apiclient.errors import HttpError |
| from oauth2client.client import GoogleCredentials |
| |
| # 30 days in milliseconds |
| _EXPIRATION_MS = 30 * 24 * 60 * 60 * 1000 |
| NUM_RETRIES = 3 |
| |
| |
| def create_big_query(): |
| """Authenticates with cloud platform and gets a BiqQuery service object |
| """ |
| creds = GoogleCredentials.get_application_default() |
| return discovery.build( |
| 'bigquery', 'v2', credentials=creds, cache_discovery=False) |
| |
| |
| def create_dataset(biq_query, project_id, dataset_id): |
| is_success = True |
| body = { |
| 'datasetReference': { |
| 'projectId': project_id, |
| 'datasetId': dataset_id |
| } |
| } |
| |
| try: |
| dataset_req = biq_query.datasets().insert( |
| projectId=project_id, body=body) |
| dataset_req.execute(num_retries=NUM_RETRIES) |
| except HttpError as http_error: |
| if http_error.resp.status == 409: |
| print('Warning: The dataset %s already exists' % dataset_id) |
| else: |
| # Note: For more debugging info, print "http_error.content" |
| print('Error in creating dataset: %s. Err: %s' % (dataset_id, |
| http_error)) |
| is_success = False |
| return is_success |
| |
| |
| def create_table(big_query, project_id, dataset_id, table_id, table_schema, |
| description): |
| fields = [{ |
| 'name': field_name, |
| 'type': field_type, |
| 'description': field_description |
| } for (field_name, field_type, field_description) in table_schema] |
| return create_table2(big_query, project_id, dataset_id, table_id, fields, |
| description) |
| |
| |
| def create_partitioned_table(big_query, |
| project_id, |
| dataset_id, |
| table_id, |
| table_schema, |
| description, |
| partition_type='DAY', |
| expiration_ms=_EXPIRATION_MS): |
| """Creates a partitioned table. By default, a date-paritioned table is created with |
| each partition lasting 30 days after it was last modified. |
| """ |
| fields = [{ |
| 'name': field_name, |
| 'type': field_type, |
| 'description': field_description |
| } for (field_name, field_type, field_description) in table_schema] |
| return create_table2(big_query, project_id, dataset_id, table_id, fields, |
| description, partition_type, expiration_ms) |
| |
| |
| def create_table2(big_query, |
| project_id, |
| dataset_id, |
| table_id, |
| fields_schema, |
| description, |
| partition_type=None, |
| expiration_ms=None): |
| is_success = True |
| |
| body = { |
| 'description': description, |
| 'schema': { |
| 'fields': fields_schema |
| }, |
| 'tableReference': { |
| 'datasetId': dataset_id, |
| 'projectId': project_id, |
| 'tableId': table_id |
| } |
| } |
| |
| if partition_type and expiration_ms: |
| body["timePartitioning"] = { |
| "type": partition_type, |
| "expirationMs": expiration_ms |
| } |
| |
| try: |
| table_req = big_query.tables().insert( |
| projectId=project_id, datasetId=dataset_id, body=body) |
| res = table_req.execute(num_retries=NUM_RETRIES) |
| print('Successfully created %s "%s"' % (res['kind'], res['id'])) |
| except HttpError as http_error: |
| if http_error.resp.status == 409: |
| print('Warning: Table %s already exists' % table_id) |
| else: |
| print('Error in creating table: %s. Err: %s' % (table_id, |
| http_error)) |
| is_success = False |
| return is_success |
| |
| |
| def patch_table(big_query, project_id, dataset_id, table_id, fields_schema): |
| is_success = True |
| |
| body = { |
| 'schema': { |
| 'fields': fields_schema |
| }, |
| 'tableReference': { |
| 'datasetId': dataset_id, |
| 'projectId': project_id, |
| 'tableId': table_id |
| } |
| } |
| |
| try: |
| table_req = big_query.tables().patch( |
| projectId=project_id, |
| datasetId=dataset_id, |
| tableId=table_id, |
| body=body) |
| res = table_req.execute(num_retries=NUM_RETRIES) |
| print('Successfully patched %s "%s"' % (res['kind'], res['id'])) |
| except HttpError as http_error: |
| print('Error in creating table: %s. Err: %s' % (table_id, http_error)) |
| is_success = False |
| return is_success |
| |
| |
| def insert_rows(big_query, project_id, dataset_id, table_id, rows_list): |
| is_success = True |
| body = {'rows': rows_list} |
| try: |
| insert_req = big_query.tabledata().insertAll( |
| projectId=project_id, |
| datasetId=dataset_id, |
| tableId=table_id, |
| body=body) |
| res = insert_req.execute(num_retries=NUM_RETRIES) |
| if res.get('insertErrors', None): |
| print('Error inserting rows! Response: %s' % res) |
| is_success = False |
| except HttpError as http_error: |
| print('Error inserting rows to the table %s' % table_id) |
| is_success = False |
| |
| return is_success |
| |
| |
| def sync_query_job(big_query, project_id, query, timeout=5000): |
| query_data = {'query': query, 'timeoutMs': timeout} |
| query_job = None |
| try: |
| query_job = big_query.jobs().query( |
| projectId=project_id, |
| body=query_data).execute(num_retries=NUM_RETRIES) |
| except HttpError as http_error: |
| print('Query execute job failed with error: %s' % http_error) |
| print(http_error.content) |
| return query_job |
| |
| |
| # List of (column name, column type, description) tuples |
| def make_row(unique_row_id, row_values_dict): |
| """row_values_dict is a dictionary of column name and column value. |
| """ |
| return {'insertId': unique_row_id, 'json': row_values_dict} |