#region Copyright notice and license | |
// Protocol Buffers - Google's data interchange format | |
// Copyright 2008 Google Inc. All rights reserved. | |
// https://developers.google.com/protocol-buffers/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following disclaimer | |
// in the documentation and/or other materials provided with the | |
// distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived from | |
// this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
#endregion | |
using System; | |
using System.IO; | |
using Google.Protobuf.TestProtos; | |
using NUnit.Framework; | |
namespace Google.Protobuf | |
{ | |
public class CodedOutputStreamTest | |
{ | |
/// <summary> | |
/// Writes the given value using WriteRawVarint32() and WriteRawVarint64() and | |
/// checks that the result matches the given bytes | |
/// </summary> | |
private static void AssertWriteVarint(byte[] data, ulong value) | |
{ | |
// Only do 32-bit write if the value fits in 32 bits. | |
if ((value >> 32) == 0) | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = new CodedOutputStream(rawOutput); | |
output.WriteRawVarint32((uint) value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
// Also try computing size. | |
Assert.AreEqual(data.Length, CodedOutputStream.ComputeRawVarint32Size((uint) value)); | |
} | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = new CodedOutputStream(rawOutput); | |
output.WriteRawVarint64(value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
// Also try computing size. | |
Assert.AreEqual(data.Length, CodedOutputStream.ComputeRawVarint64Size(value)); | |
} | |
// Try different buffer sizes. | |
for (int bufferSize = 1; bufferSize <= 16; bufferSize *= 2) | |
{ | |
// Only do 32-bit write if the value fits in 32 bits. | |
if ((value >> 32) == 0) | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = | |
new CodedOutputStream(rawOutput, bufferSize); | |
output.WriteRawVarint32((uint) value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
} | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = new CodedOutputStream(rawOutput, bufferSize); | |
output.WriteRawVarint64(value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
} | |
} | |
} | |
/// <summary> | |
/// Tests WriteRawVarint32() and WriteRawVarint64() | |
/// </summary> | |
[Test] | |
public void WriteVarint() | |
{ | |
AssertWriteVarint(new byte[] {0x00}, 0); | |
AssertWriteVarint(new byte[] {0x01}, 1); | |
AssertWriteVarint(new byte[] {0x7f}, 127); | |
// 14882 | |
AssertWriteVarint(new byte[] {0xa2, 0x74}, (0x22 << 0) | (0x74 << 7)); | |
// 2961488830 | |
AssertWriteVarint(new byte[] {0xbe, 0xf7, 0x92, 0x84, 0x0b}, | |
(0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | | |
(0x0bL << 28)); | |
// 64-bit | |
// 7256456126 | |
AssertWriteVarint(new byte[] {0xbe, 0xf7, 0x92, 0x84, 0x1b}, | |
(0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | | |
(0x1bL << 28)); | |
// 41256202580718336 | |
AssertWriteVarint( | |
new byte[] {0x80, 0xe6, 0xeb, 0x9c, 0xc3, 0xc9, 0xa4, 0x49}, | |
(0x00 << 0) | (0x66 << 7) | (0x6b << 14) | (0x1c << 21) | | |
(0x43UL << 28) | (0x49L << 35) | (0x24UL << 42) | (0x49UL << 49)); | |
// 11964378330978735131 | |
AssertWriteVarint( | |
new byte[] {0x9b, 0xa8, 0xf9, 0xc2, 0xbb, 0xd6, 0x80, 0x85, 0xa6, 0x01}, | |
unchecked((ulong) | |
((0x1b << 0) | (0x28 << 7) | (0x79 << 14) | (0x42 << 21) | | |
(0x3bL << 28) | (0x56L << 35) | (0x00L << 42) | | |
(0x05L << 49) | (0x26L << 56) | (0x01L << 63)))); | |
} | |
/// <summary> | |
/// Parses the given bytes using WriteRawLittleEndian32() and checks | |
/// that the result matches the given value. | |
/// </summary> | |
private static void AssertWriteLittleEndian32(byte[] data, uint value) | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = new CodedOutputStream(rawOutput); | |
output.WriteRawLittleEndian32(value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
// Try different buffer sizes. | |
for (int bufferSize = 1; bufferSize <= 16; bufferSize *= 2) | |
{ | |
rawOutput = new MemoryStream(); | |
output = new CodedOutputStream(rawOutput, bufferSize); | |
output.WriteRawLittleEndian32(value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
} | |
} | |
/// <summary> | |
/// Parses the given bytes using WriteRawLittleEndian64() and checks | |
/// that the result matches the given value. | |
/// </summary> | |
private static void AssertWriteLittleEndian64(byte[] data, ulong value) | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = new CodedOutputStream(rawOutput); | |
output.WriteRawLittleEndian64(value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
// Try different block sizes. | |
for (int blockSize = 1; blockSize <= 16; blockSize *= 2) | |
{ | |
rawOutput = new MemoryStream(); | |
output = new CodedOutputStream(rawOutput, blockSize); | |
output.WriteRawLittleEndian64(value); | |
output.Flush(); | |
Assert.AreEqual(data, rawOutput.ToArray()); | |
} | |
} | |
/// <summary> | |
/// Tests writeRawLittleEndian32() and writeRawLittleEndian64(). | |
/// </summary> | |
[Test] | |
public void WriteLittleEndian() | |
{ | |
AssertWriteLittleEndian32(new byte[] {0x78, 0x56, 0x34, 0x12}, 0x12345678); | |
AssertWriteLittleEndian32(new byte[] {0xf0, 0xde, 0xbc, 0x9a}, 0x9abcdef0); | |
AssertWriteLittleEndian64( | |
new byte[] {0xf0, 0xde, 0xbc, 0x9a, 0x78, 0x56, 0x34, 0x12}, | |
0x123456789abcdef0L); | |
AssertWriteLittleEndian64( | |
new byte[] {0x78, 0x56, 0x34, 0x12, 0xf0, 0xde, 0xbc, 0x9a}, | |
0x9abcdef012345678UL); | |
} | |
[Test] | |
public void WriteWholeMessage_VaryingBlockSizes() | |
{ | |
TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); | |
byte[] rawBytes = message.ToByteArray(); | |
// Try different block sizes. | |
for (int blockSize = 1; blockSize < 256; blockSize *= 2) | |
{ | |
MemoryStream rawOutput = new MemoryStream(); | |
CodedOutputStream output = new CodedOutputStream(rawOutput, blockSize); | |
message.WriteTo(output); | |
output.Flush(); | |
Assert.AreEqual(rawBytes, rawOutput.ToArray()); | |
} | |
} | |
[Test] | |
public void EncodeZigZag32() | |
{ | |
Assert.AreEqual(0u, WritingPrimitives.EncodeZigZag32(0)); | |
Assert.AreEqual(1u, WritingPrimitives.EncodeZigZag32(-1)); | |
Assert.AreEqual(2u, WritingPrimitives.EncodeZigZag32(1)); | |
Assert.AreEqual(3u, WritingPrimitives.EncodeZigZag32(-2)); | |
Assert.AreEqual(0x7FFFFFFEu, WritingPrimitives.EncodeZigZag32(0x3FFFFFFF)); | |
Assert.AreEqual(0x7FFFFFFFu, WritingPrimitives.EncodeZigZag32(unchecked((int) 0xC0000000))); | |
Assert.AreEqual(0xFFFFFFFEu, WritingPrimitives.EncodeZigZag32(0x7FFFFFFF)); | |
Assert.AreEqual(0xFFFFFFFFu, WritingPrimitives.EncodeZigZag32(unchecked((int) 0x80000000))); | |
} | |
[Test] | |
public void EncodeZigZag64() | |
{ | |
Assert.AreEqual(0u, WritingPrimitives.EncodeZigZag64(0)); | |
Assert.AreEqual(1u, WritingPrimitives.EncodeZigZag64(-1)); | |
Assert.AreEqual(2u, WritingPrimitives.EncodeZigZag64(1)); | |
Assert.AreEqual(3u, WritingPrimitives.EncodeZigZag64(-2)); | |
Assert.AreEqual(0x000000007FFFFFFEuL, | |
WritingPrimitives.EncodeZigZag64(unchecked((long) 0x000000003FFFFFFFUL))); | |
Assert.AreEqual(0x000000007FFFFFFFuL, | |
WritingPrimitives.EncodeZigZag64(unchecked((long) 0xFFFFFFFFC0000000UL))); | |
Assert.AreEqual(0x00000000FFFFFFFEuL, | |
WritingPrimitives.EncodeZigZag64(unchecked((long) 0x000000007FFFFFFFUL))); | |
Assert.AreEqual(0x00000000FFFFFFFFuL, | |
WritingPrimitives.EncodeZigZag64(unchecked((long) 0xFFFFFFFF80000000UL))); | |
Assert.AreEqual(0xFFFFFFFFFFFFFFFEL, | |
WritingPrimitives.EncodeZigZag64(unchecked((long) 0x7FFFFFFFFFFFFFFFUL))); | |
Assert.AreEqual(0xFFFFFFFFFFFFFFFFL, | |
WritingPrimitives.EncodeZigZag64(unchecked((long) 0x8000000000000000UL))); | |
} | |
[Test] | |
public void RoundTripZigZag32() | |
{ | |
// Some easier-to-verify round-trip tests. The inputs (other than 0, 1, -1) | |
// were chosen semi-randomly via keyboard bashing. | |
Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(0))); | |
Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(1))); | |
Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(-1))); | |
Assert.AreEqual(14927, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(14927))); | |
Assert.AreEqual(-3612, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(-3612))); | |
} | |
[Test] | |
public void RoundTripZigZag64() | |
{ | |
Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(0))); | |
Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(1))); | |
Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(-1))); | |
Assert.AreEqual(14927, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(14927))); | |
Assert.AreEqual(-3612, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(-3612))); | |
Assert.AreEqual(856912304801416L, | |
ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(856912304801416L))); | |
Assert.AreEqual(-75123905439571256L, | |
ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(-75123905439571256L))); | |
} | |
[Test] | |
public void TestNegativeEnumNoTag() | |
{ | |
Assert.AreEqual(10, CodedOutputStream.ComputeInt32Size(-2)); | |
Assert.AreEqual(10, CodedOutputStream.ComputeEnumSize((int) SampleEnum.NegativeValue)); | |
byte[] bytes = new byte[10]; | |
CodedOutputStream output = new CodedOutputStream(bytes); | |
output.WriteEnum((int) SampleEnum.NegativeValue); | |
Assert.AreEqual(0, output.SpaceLeft); | |
Assert.AreEqual("FE-FF-FF-FF-FF-FF-FF-FF-FF-01", BitConverter.ToString(bytes)); | |
} | |
[Test] | |
public void TestCodedInputOutputPosition() | |
{ | |
byte[] content = new byte[110]; | |
for (int i = 0; i < content.Length; i++) | |
content[i] = (byte)i; | |
byte[] child = new byte[120]; | |
{ | |
MemoryStream ms = new MemoryStream(child); | |
CodedOutputStream cout = new CodedOutputStream(ms, 20); | |
// Field 11: numeric value: 500 | |
cout.WriteTag(11, WireFormat.WireType.Varint); | |
Assert.AreEqual(1, cout.Position); | |
cout.WriteInt32(500); | |
Assert.AreEqual(3, cout.Position); | |
//Field 12: length delimited 120 bytes | |
cout.WriteTag(12, WireFormat.WireType.LengthDelimited); | |
Assert.AreEqual(4, cout.Position); | |
cout.WriteBytes(ByteString.CopyFrom(content)); | |
Assert.AreEqual(115, cout.Position); | |
// Field 13: fixed numeric value: 501 | |
cout.WriteTag(13, WireFormat.WireType.Fixed32); | |
Assert.AreEqual(116, cout.Position); | |
cout.WriteSFixed32(501); | |
Assert.AreEqual(120, cout.Position); | |
cout.Flush(); | |
} | |
byte[] bytes = new byte[130]; | |
{ | |
CodedOutputStream cout = new CodedOutputStream(bytes); | |
// Field 1: numeric value: 500 | |
cout.WriteTag(1, WireFormat.WireType.Varint); | |
Assert.AreEqual(1, cout.Position); | |
cout.WriteInt32(500); | |
Assert.AreEqual(3, cout.Position); | |
//Field 2: length delimited 120 bytes | |
cout.WriteTag(2, WireFormat.WireType.LengthDelimited); | |
Assert.AreEqual(4, cout.Position); | |
cout.WriteBytes(ByteString.CopyFrom(child)); | |
Assert.AreEqual(125, cout.Position); | |
// Field 3: fixed numeric value: 500 | |
cout.WriteTag(3, WireFormat.WireType.Fixed32); | |
Assert.AreEqual(126, cout.Position); | |
cout.WriteSFixed32(501); | |
Assert.AreEqual(130, cout.Position); | |
cout.Flush(); | |
} | |
// Now test Input stream: | |
{ | |
CodedInputStream cin = new CodedInputStream(new MemoryStream(bytes), new byte[50], 0, 0, false); | |
Assert.AreEqual(0, cin.Position); | |
// Field 1: | |
uint tag = cin.ReadTag(); | |
Assert.AreEqual(1, tag >> 3); | |
Assert.AreEqual(1, cin.Position); | |
Assert.AreEqual(500, cin.ReadInt32()); | |
Assert.AreEqual(3, cin.Position); | |
//Field 2: | |
tag = cin.ReadTag(); | |
Assert.AreEqual(2, tag >> 3); | |
Assert.AreEqual(4, cin.Position); | |
int childlen = cin.ReadLength(); | |
Assert.AreEqual(120, childlen); | |
Assert.AreEqual(5, cin.Position); | |
int oldlimit = cin.PushLimit((int)childlen); | |
Assert.AreEqual(5, cin.Position); | |
// Now we are reading child message | |
{ | |
// Field 11: numeric value: 500 | |
tag = cin.ReadTag(); | |
Assert.AreEqual(11, tag >> 3); | |
Assert.AreEqual(6, cin.Position); | |
Assert.AreEqual(500, cin.ReadInt32()); | |
Assert.AreEqual(8, cin.Position); | |
//Field 12: length delimited 120 bytes | |
tag = cin.ReadTag(); | |
Assert.AreEqual(12, tag >> 3); | |
Assert.AreEqual(9, cin.Position); | |
ByteString bstr = cin.ReadBytes(); | |
Assert.AreEqual(110, bstr.Length); | |
Assert.AreEqual((byte) 109, bstr[109]); | |
Assert.AreEqual(120, cin.Position); | |
// Field 13: fixed numeric value: 501 | |
tag = cin.ReadTag(); | |
Assert.AreEqual(13, tag >> 3); | |
// ROK - Previously broken here, this returned 126 failing to account for bufferSizeAfterLimit | |
Assert.AreEqual(121, cin.Position); | |
Assert.AreEqual(501, cin.ReadSFixed32()); | |
Assert.AreEqual(125, cin.Position); | |
Assert.IsTrue(cin.IsAtEnd); | |
} | |
cin.PopLimit(oldlimit); | |
Assert.AreEqual(125, cin.Position); | |
// Field 3: fixed numeric value: 501 | |
tag = cin.ReadTag(); | |
Assert.AreEqual(3, tag >> 3); | |
Assert.AreEqual(126, cin.Position); | |
Assert.AreEqual(501, cin.ReadSFixed32()); | |
Assert.AreEqual(130, cin.Position); | |
Assert.IsTrue(cin.IsAtEnd); | |
} | |
} | |
[Test] | |
public void Dispose_DisposesUnderlyingStream() | |
{ | |
var memoryStream = new MemoryStream(); | |
Assert.IsTrue(memoryStream.CanWrite); | |
using (var cos = new CodedOutputStream(memoryStream)) | |
{ | |
cos.WriteRawBytes(new byte[] {0}); | |
Assert.AreEqual(0, memoryStream.Position); // Not flushed yet | |
} | |
Assert.AreEqual(1, memoryStream.ToArray().Length); // Flushed data from CodedOutputStream to MemoryStream | |
Assert.IsFalse(memoryStream.CanWrite); // Disposed | |
} | |
[Test] | |
public void Dispose_WithLeaveOpen() | |
{ | |
var memoryStream = new MemoryStream(); | |
Assert.IsTrue(memoryStream.CanWrite); | |
using (var cos = new CodedOutputStream(memoryStream, true)) | |
{ | |
cos.WriteRawBytes(new byte[] {0}); | |
Assert.AreEqual(0, memoryStream.Position); // Not flushed yet | |
} | |
Assert.AreEqual(1, memoryStream.Position); // Flushed data from CodedOutputStream to MemoryStream | |
Assert.IsTrue(memoryStream.CanWrite); // We left the stream open | |
} | |
} | |
} |