blob: 29c9d0f99400e48ae40972427cff7f3a90e44db3 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This header is logically internal, but is made public because it is used
// from protocol-compiler-generated code, which may reside in other components.
#ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__
#define GOOGLE_PROTOBUF_EXTENSION_SET_H__
#include <algorithm>
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <string>
#include <type_traits>
#include <utility>
#include <variant>
#include <vector>
#include "google/protobuf/stubs/common.h"
#include "absl/base/call_once.h"
#include "absl/base/casts.h"
#include "absl/base/prefetch.h"
#include "absl/container/btree_map.h"
#include "absl/log/absl_check.h"
#include "google/protobuf/generated_enum_util.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/port.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/parse_context.h"
#include "google/protobuf/repeated_field.h"
#include "google/protobuf/repeated_ptr_field.h"
#include "google/protobuf/wire_format_lite.h"
// clang-format off
#include "google/protobuf/port_def.inc" // Must be last
// clang-format on
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Arena;
class Descriptor; // descriptor.h
class FieldDescriptor; // descriptor.h
class DescriptorPool; // descriptor.h
class MessageLite; // message_lite.h
class Message; // message.h
class MessageFactory; // message.h
class Reflection; // message.h
class UnknownFieldSet; // unknown_field_set.h
class FeatureSet;
namespace internal {
struct DescriptorTable;
class FieldSkipper; // wire_format_lite.h
class ReflectionVisit; // message_reflection_util.h
class WireFormat;
struct DynamicExtensionInfoHelper;
void InitializeLazyExtensionSet();
} // namespace internal
} // namespace protobuf
} // namespace google
namespace pb {
class CppFeatures;
} // namespace pb
namespace google {
namespace protobuf {
namespace internal {
class InternalMetadata;
namespace v2 {
class TableDriven;
} // namespace v2
// Used to store values of type WireFormatLite::FieldType without having to
// #include wire_format_lite.h. Also, ensures that we use only one byte to
// store these values, which is important to keep the layout of
// ExtensionSet::Extension small.
typedef uint8_t FieldType;
// Version of the above which takes an argument. This is needed to deal with
// extensions that are not compiled in.
typedef bool EnumValidityFuncWithArg(const void* arg, int number);
enum class LazyAnnotation : int8_t {
kUndefined = 0,
kLazy = 1,
kEager = 2,
};
// Information about a registered extension.
struct ExtensionInfo {
constexpr ExtensionInfo() : enum_validity_check() {}
constexpr ExtensionInfo(const MessageLite* extendee, int param_number,
FieldType type_param, bool isrepeated, bool ispacked)
: message(extendee),
number(param_number),
type(type_param),
is_repeated(isrepeated),
is_packed(ispacked),
enum_validity_check() {}
constexpr ExtensionInfo(const MessageLite* extendee, int param_number,
FieldType type_param, bool isrepeated, bool ispacked,
LazyEagerVerifyFnType verify_func,
LazyAnnotation islazy = LazyAnnotation::kUndefined)
: message(extendee),
number(param_number),
type(type_param),
is_repeated(isrepeated),
is_packed(ispacked),
is_lazy(islazy),
enum_validity_check(),
lazy_eager_verify_func(verify_func) {}
const MessageLite* message = nullptr;
int number = 0;
FieldType type = 0;
bool is_repeated = false;
bool is_packed = false;
LazyAnnotation is_lazy = LazyAnnotation::kUndefined;
struct EnumValidityCheck {
// TODO: Fully remove the function pointer approach.
EnumValidityFuncWithArg* func;
const void* arg;
bool IsValid(int value) const {
return func != nullptr ? func(arg, value)
: internal::ValidateEnum(
value, static_cast<const uint32_t*>(arg));
}
};
struct MessageInfo {
const MessageLite* prototype;
// The TcParse table used for this object.
// Never null. (except in platforms that don't constant initialize default
// instances)
const internal::TcParseTableBase* tc_table;
};
union {
EnumValidityCheck enum_validity_check;
MessageInfo message_info;
};
// The descriptor for this extension, if one exists and is known. May be
// nullptr. Must not be nullptr if the descriptor for the extension does not
// live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor = nullptr;
// If this field is potentially lazy this function can be used as a cheap
// verification of the raw bytes.
// If nullptr then no verification is performed.
LazyEagerVerifyFnType lazy_eager_verify_func = nullptr;
};
// An ExtensionFinder is an object which looks up extension definitions. It
// must implement this method:
//
// bool Find(int number, ExtensionInfo* output);
// GeneratedExtensionFinder is an ExtensionFinder which finds extensions
// defined in .proto files which have been compiled into the binary.
class PROTOBUF_EXPORT GeneratedExtensionFinder {
public:
explicit GeneratedExtensionFinder(const MessageLite* extendee)
: extendee_(extendee) {}
// Returns true and fills in *output if found, otherwise returns false.
bool Find(int number, ExtensionInfo* output);
private:
const MessageLite* extendee_;
};
// Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for
// finding extensions from a DescriptorPool.
// This is an internal helper class intended for use within the protocol buffer
// library and generated classes. Clients should not use it directly. Instead,
// use the generated accessors such as GetExtension() of the class being
// extended.
//
// This class manages extensions for a protocol message object. The
// message's HasExtension(), GetExtension(), MutableExtension(), and
// ClearExtension() methods are just thin wrappers around the embedded
// ExtensionSet. When parsing, if a tag number is encountered which is
// inside one of the message type's extension ranges, the tag is passed
// off to the ExtensionSet for parsing. Etc.
class PROTOBUF_EXPORT ExtensionSet {
public:
constexpr ExtensionSet() : ExtensionSet(nullptr) {}
ExtensionSet(const ExtensionSet& rhs) = delete;
// Arena enabled constructors: for internal use only.
ExtensionSet(internal::InternalVisibility, Arena* arena)
: ExtensionSet(arena) {}
// TODO: make constructor private, and migrate `ArenaInitialized`
// to `InternalVisibility` overloaded constructor(s).
explicit constexpr ExtensionSet(Arena* arena);
ExtensionSet(ArenaInitialized, Arena* arena) : ExtensionSet(arena) {}
ExtensionSet& operator=(const ExtensionSet&) = delete;
~ExtensionSet();
// These are called at startup by protocol-compiler-generated code to
// register known extensions. The registrations are used by ParseField()
// to look up extensions for parsed field numbers. Note that dynamic parsing
// does not use ParseField(); only protocol-compiler-generated parsing
// methods do.
static void RegisterExtension(const MessageLite* extendee, int number,
FieldType type, bool is_repeated,
bool is_packed);
static void RegisterEnumExtension(const MessageLite* extendee, int number,
FieldType type, bool is_repeated,
bool is_packed,
const uint32_t* validation_data);
static void RegisterMessageExtension(const MessageLite* extendee, int number,
FieldType type, bool is_repeated,
bool is_packed,
const MessageLite* prototype,
LazyEagerVerifyFnType verify_func,
LazyAnnotation is_lazy);
// In weak descriptor mode we register extensions in two phases.
// This function determines if it is the right time to register a particular
// extension.
// During "preregistration" we only register extensions that have all their
// types linked in.
struct WeakPrototypeRef {
const internal::DescriptorTable* table;
int index;
};
static bool ShouldRegisterAtThisTime(
std::initializer_list<WeakPrototypeRef> messages,
bool is_preregistration);
// =================================================================
// Add all fields which are currently present to the given vector. This
// is useful to implement Reflection::ListFields(). Descriptors are appended
// in increasing tag order.
void AppendToList(const Descriptor* extendee, const DescriptorPool* pool,
std::vector<const FieldDescriptor*>* output) const;
// =================================================================
// Accessors
//
// Generated message classes include type-safe templated wrappers around
// these methods. Generally you should use those rather than call these
// directly, unless you are doing low-level memory management.
//
// When calling any of these accessors, the extension number requested
// MUST exist in the DescriptorPool provided to the constructor. Otherwise,
// the method will fail an assert. Normally, though, you would not call
// these directly; you would either call the generated accessors of your
// message class (e.g. GetExtension()) or you would call the accessors
// of the reflection interface. In both cases, it is impossible to
// trigger this assert failure: the generated accessors only accept
// linked-in extension types as parameters, while the Reflection interface
// requires you to provide the FieldDescriptor describing the extension.
//
// When calling any of these accessors, a protocol-compiler-generated
// implementation of the extension corresponding to the number MUST
// be linked in, and the FieldDescriptor used to refer to it MUST be
// the one generated by that linked-in code. Otherwise, the method will
// die on an assert failure. The message objects returned by the message
// accessors are guaranteed to be of the correct linked-in type.
//
// These methods pretty much match Reflection except that:
// - They're not virtual.
// - They identify fields by number rather than FieldDescriptors.
// - They identify enum values using integers rather than descriptors.
// - Strings provide Mutable() in addition to Set() accessors.
bool Has(int number) const;
int ExtensionSize(int number) const; // Size of a repeated extension.
int NumExtensions() const; // The number of extensions
FieldType ExtensionType(int number) const;
void ClearExtension(int number);
// singular fields -------------------------------------------------
int32_t GetInt32(int number, int32_t default_value) const;
int64_t GetInt64(int number, int64_t default_value) const;
uint32_t GetUInt32(int number, uint32_t default_value) const;
uint64_t GetUInt64(int number, uint64_t default_value) const;
float GetFloat(int number, float default_value) const;
double GetDouble(int number, double default_value) const;
bool GetBool(int number, bool default_value) const;
int GetEnum(int number, int default_value) const;
const std::string& GetString(int number,
const std::string& default_value) const;
const MessageLite& GetMessage(int number,
const MessageLite& default_value) const;
const MessageLite& GetMessage(int number, const Descriptor* message_type,
MessageFactory* factory) const;
// |descriptor| may be nullptr so long as it is known that the descriptor for
// the extension lives in the same pool as the descriptor for the containing
// type.
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void SetInt32(int number, FieldType type, int32_t value, desc);
void SetInt64(int number, FieldType type, int64_t value, desc);
void SetUInt32(int number, FieldType type, uint32_t value, desc);
void SetUInt64(int number, FieldType type, uint64_t value, desc);
void SetFloat(int number, FieldType type, float value, desc);
void SetDouble(int number, FieldType type, double value, desc);
void SetBool(int number, FieldType type, bool value, desc);
void SetEnum(int number, FieldType type, int value, desc);
void SetString(int number, FieldType type, std::string value, desc);
std::string* MutableString(int number, FieldType type, desc);
MessageLite* MutableMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* MutableMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
// Adds the given message to the ExtensionSet, taking ownership of the
// message object. Existing message with the same number will be deleted.
// If "message" is nullptr, this is equivalent to "ClearExtension(number)".
void SetAllocatedMessage(int number, FieldType type,
const FieldDescriptor* descriptor,
MessageLite* message);
void UnsafeArenaSetAllocatedMessage(int number, FieldType type,
const FieldDescriptor* descriptor,
MessageLite* message);
[[nodiscard]] MessageLite* ReleaseMessage(int number,
const MessageLite& prototype);
MessageLite* UnsafeArenaReleaseMessage(int number,
const MessageLite& prototype);
[[nodiscard]] MessageLite* ReleaseMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
#undef desc
Arena* GetArena() const { return arena_; }
// repeated fields -------------------------------------------------
// Fetches a RepeatedField extension by number; returns |default_value|
// if no such extension exists. User should not touch this directly; it is
// used by the GetRepeatedExtension() method.
const void* GetRawRepeatedField(int number, const void* default_value) const;
// Fetches a mutable version of a RepeatedField extension by number,
// instantiating one if none exists. Similar to above, user should not use
// this directly; it underlies MutableRepeatedExtension().
void* MutableRawRepeatedField(int number, FieldType field_type, bool packed,
const FieldDescriptor* desc);
// This is an overload of MutableRawRepeatedField to maintain compatibility
// with old code using a previous API. This version of
// MutableRawRepeatedField() will ABSL_CHECK-fail on a missing extension.
// (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.)
void* MutableRawRepeatedField(int number);
int32_t GetRepeatedInt32(int number, int index) const;
int64_t GetRepeatedInt64(int number, int index) const;
uint32_t GetRepeatedUInt32(int number, int index) const;
uint64_t GetRepeatedUInt64(int number, int index) const;
float GetRepeatedFloat(int number, int index) const;
double GetRepeatedDouble(int number, int index) const;
bool GetRepeatedBool(int number, int index) const;
int GetRepeatedEnum(int number, int index) const;
const std::string& GetRepeatedString(int number, int index) const;
const MessageLite& GetRepeatedMessage(int number, int index) const;
void SetRepeatedInt32(int number, int index, int32_t value);
void SetRepeatedInt64(int number, int index, int64_t value);
void SetRepeatedUInt32(int number, int index, uint32_t value);
void SetRepeatedUInt64(int number, int index, uint64_t value);
void SetRepeatedFloat(int number, int index, float value);
void SetRepeatedDouble(int number, int index, double value);
void SetRepeatedBool(int number, int index, bool value);
void SetRepeatedEnum(int number, int index, int value);
void SetRepeatedString(int number, int index, std::string value);
std::string* MutableRepeatedString(int number, int index);
MessageLite* MutableRepeatedMessage(int number, int index);
#define desc const FieldDescriptor* descriptor // avoid line wrapping
void AddInt32(int number, FieldType type, bool packed, int32_t value, desc);
void AddInt64(int number, FieldType type, bool packed, int64_t value, desc);
void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc);
void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc);
void AddFloat(int number, FieldType type, bool packed, float value, desc);
void AddDouble(int number, FieldType type, bool packed, double value, desc);
void AddBool(int number, FieldType type, bool packed, bool value, desc);
void AddEnum(int number, FieldType type, bool packed, int value, desc);
void AddString(int number, FieldType type, std::string value, desc);
std::string* AddString(int number, FieldType type, desc);
MessageLite* AddMessage(int number, FieldType type,
const MessageLite& prototype, desc);
MessageLite* AddMessage(const FieldDescriptor* descriptor,
MessageFactory* factory);
void AddAllocatedMessage(const FieldDescriptor* descriptor,
MessageLite* new_entry);
void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor,
MessageLite* new_entry);
#undef desc
void RemoveLast(int number);
[[nodiscard]] MessageLite* ReleaseLast(int number);
MessageLite* UnsafeArenaReleaseLast(int number);
void SwapElements(int number, int index1, int index2);
// =================================================================
// convenience methods for implementing methods of Message
//
// These could all be implemented in terms of the other methods of this
// class, but providing them here helps keep the generated code size down.
void Clear();
void MergeFrom(const MessageLite* extendee, const ExtensionSet& other);
void Swap(const MessageLite* extendee, ExtensionSet* other);
void InternalSwap(ExtensionSet* other);
void SwapExtension(const MessageLite* extendee, ExtensionSet* other,
int number);
void UnsafeShallowSwapExtension(ExtensionSet* other, int number);
bool IsInitialized(const MessageLite* extendee) const;
// Lite parser
const char* ParseField(uint64_t tag, const char* ptr,
const MessageLite* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
// Full parser
const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
template <typename Msg>
const char* ParseMessageSet(const char* ptr, const Msg* extendee,
InternalMetadata* metadata,
internal::ParseContext* ctx) {
while (!ctx->Done(&ptr)) {
uint32_t tag;
ptr = ReadTag(ptr, &tag);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
if (tag == WireFormatLite::kMessageSetItemStartTag) {
ptr = ctx->ParseGroupInlined(ptr, tag, [&](const char* ptr) {
return ParseMessageSetItem(ptr, extendee, metadata, ctx);
});
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
} else {
if (tag == 0 || (tag & 7) == 4) {
ctx->SetLastTag(tag);
return ptr;
}
ptr = ParseField(tag, ptr, extendee, metadata, ctx);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
}
}
return ptr;
}
// Write all extension fields with field numbers in the range
// [start_field_number, end_field_number)
// to the output stream, using the cached sizes computed when ByteSize() was
// last called. Note that the range bounds are inclusive-exclusive.
void SerializeWithCachedSizes(const MessageLite* extendee,
int start_field_number, int end_field_number,
io::CodedOutputStream* output) const {
output->SetCur(_InternalSerialize(extendee, start_field_number,
end_field_number, output->Cur(),
output->EpsCopy()));
}
// Same as SerializeWithCachedSizes, but without any bounds checking.
// The caller must ensure that target has sufficient capacity for the
// serialized extensions.
//
// Returns a pointer past the last written byte.
uint8_t* _InternalSerialize(const MessageLite* extendee,
int start_field_number, int end_field_number,
uint8_t* target,
io::EpsCopyOutputStream* stream) const {
if (flat_size_ == 0) {
assert(!is_large());
return target;
}
return _InternalSerializeImpl(extendee, start_field_number,
end_field_number, target, stream);
}
// Same as _InternalSerialize, but do not verify the range of field numbers.
uint8_t* _InternalSerializeAll(const MessageLite* extendee, uint8_t* target,
io::EpsCopyOutputStream* stream) const {
if (flat_size_ == 0) {
assert(!is_large());
return target;
}
return _InternalSerializeAllImpl(extendee, target, stream);
}
// Like above but serializes in MessageSet format.
void SerializeMessageSetWithCachedSizes(const MessageLite* extendee,
io::CodedOutputStream* output) const {
output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray(
extendee, output->Cur(), output->EpsCopy()));
}
uint8_t* InternalSerializeMessageSetWithCachedSizesToArray(
const MessageLite* extendee, uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// For backward-compatibility, versions of two of the above methods that
// serialize deterministically iff SetDefaultSerializationDeterministic()
// has been called.
uint8_t* SerializeWithCachedSizesToArray(int start_field_number,
int end_field_number,
uint8_t* target) const;
uint8_t* SerializeMessageSetWithCachedSizesToArray(
const MessageLite* extendee, uint8_t* target) const;
// Returns the total serialized size of all the extensions.
size_t ByteSize() const;
// Like ByteSize() but uses MessageSet format.
size_t MessageSetByteSize() const;
// Returns (an estimate of) the total number of bytes used for storing the
// extensions in memory, excluding sizeof(*this). If the ExtensionSet is
// for a lite message (and thus possibly contains lite messages), the results
// are undefined (might work, might crash, might corrupt data, might not even
// be linked in). It's up to the protocol compiler to avoid calling this on
// such ExtensionSets (easy enough since lite messages don't implement
// SpaceUsed()).
size_t SpaceUsedExcludingSelfLong() const;
// This method just calls SpaceUsedExcludingSelfLong() but it can not be
// inlined because the definition of SpaceUsedExcludingSelfLong() is not
// included in lite runtime and when an inline method refers to it MSVC
// will complain about unresolved symbols when building the lite runtime
// as .dll.
int SpaceUsedExcludingSelf() const;
static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) {
return PROTOBUF_FIELD_OFFSET(ExtensionSet, arena_);
}
private:
template <typename Type>
friend class PrimitiveTypeTraits;
template <typename Type>
friend class RepeatedPrimitiveTypeTraits;
template <typename Type>
friend class EnumTypeTraits;
template <typename Type>
friend class RepeatedEnumTypeTraits;
friend class google::protobuf::Reflection;
friend class google::protobuf::internal::ReflectionVisit;
friend struct google::protobuf::internal::DynamicExtensionInfoHelper;
friend class google::protobuf::internal::WireFormat;
friend class google::protobuf::internal::v2::TableDriven;
friend void internal::InitializeLazyExtensionSet();
static bool FieldTypeIsPointer(FieldType type);
const int32_t& GetRefInt32(int number, const int32_t& default_value) const;
const int64_t& GetRefInt64(int number, const int64_t& default_value) const;
const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const;
const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const;
const float& GetRefFloat(int number, const float& default_value) const;
const double& GetRefDouble(int number, const double& default_value) const;
const bool& GetRefBool(int number, const bool& default_value) const;
const int& GetRefEnum(int number, const int& default_value) const;
const int32_t& GetRefRepeatedInt32(int number, int index) const;
const int64_t& GetRefRepeatedInt64(int number, int index) const;
const uint32_t& GetRefRepeatedUInt32(int number, int index) const;
const uint64_t& GetRefRepeatedUInt64(int number, int index) const;
const float& GetRefRepeatedFloat(int number, int index) const;
const double& GetRefRepeatedDouble(int number, int index) const;
const bool& GetRefRepeatedBool(int number, int index) const;
const int& GetRefRepeatedEnum(int number, int index) const;
size_t GetMessageByteSizeLong(int number) const;
uint8_t* InternalSerializeMessage(int number, const MessageLite* prototype,
uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// Implementation of _InternalSerialize for non-empty map_.
uint8_t* _InternalSerializeImpl(const MessageLite* extendee,
int start_field_number, int end_field_number,
uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// Implementation of _InternalSerializeAll for non-empty map_.
uint8_t* _InternalSerializeAllImpl(const MessageLite* extendee,
uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// Implementation of _InternalSerialize for large map_.
// Extracted as a separate method to avoid inlining and to reuse in
// _InternalSerializeAllImpl.
uint8_t* _InternalSerializeImplLarge(const MessageLite* extendee,
int start_field_number,
int end_field_number, uint8_t* target,
io::EpsCopyOutputStream* stream) const;
// Interface of a lazily parsed singular message extension.
class PROTOBUF_EXPORT LazyMessageExtension {
public:
LazyMessageExtension() = default;
LazyMessageExtension(const LazyMessageExtension&) = delete;
LazyMessageExtension& operator=(const LazyMessageExtension&) = delete;
virtual ~LazyMessageExtension() = default;
virtual LazyMessageExtension* New(Arena* arena) const = 0;
virtual const MessageLite& GetMessage(const MessageLite& prototype,
Arena* arena) const = 0;
virtual const MessageLite& GetMessageIgnoreUnparsed(
const MessageLite& prototype, Arena* arena) const = 0;
virtual MessageLite* MutableMessage(const MessageLite& prototype,
Arena* arena) = 0;
virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0;
virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message,
Arena* arena) = 0;
[[nodiscard]] virtual MessageLite* ReleaseMessage(
const MessageLite& prototype, Arena* arena) = 0;
virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype,
Arena* arena) = 0;
virtual bool IsInitialized(const MessageLite* prototype,
Arena* arena) const = 0;
virtual bool IsEagerSerializeSafe(const MessageLite* prototype,
Arena* arena) const = 0;
[[deprecated("Please use ByteSizeLong() instead")]] virtual int ByteSize()
const {
return internal::ToIntSize(ByteSizeLong());
}
virtual size_t ByteSizeLong() const = 0;
virtual size_t SpaceUsedLong() const = 0;
virtual std::variant<size_t, const MessageLite*> UnparsedSizeOrMessage()
const = 0;
virtual void MergeFrom(const MessageLite* prototype,
const LazyMessageExtension& other, Arena* arena,
Arena* other_arena) = 0;
virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0;
virtual void Clear() = 0;
virtual const char* _InternalParse(const MessageLite& prototype,
Arena* arena, const char* ptr,
ParseContext* ctx) = 0;
virtual uint8_t* WriteMessageToArray(
const MessageLite* prototype, int number, uint8_t* target,
io::EpsCopyOutputStream* stream) const = 0;
private:
virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable.
};
// Give access to function defined below to see LazyMessageExtension.
static LazyMessageExtension* MaybeCreateLazyExtensionImpl(Arena* arena);
static LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena) {
auto* f = maybe_create_lazy_extension_.load(std::memory_order_relaxed);
return f != nullptr ? f(arena) : nullptr;
}
static std::atomic<LazyMessageExtension* (*)(Arena* arena)>
maybe_create_lazy_extension_;
// We can't directly use std::atomic for Extension::cached_size because
// Extension needs to be trivially copyable.
class TrivialAtomicInt {
public:
int operator()() const {
return reinterpret_cast<const AtomicT*>(int_)->load(
std::memory_order_relaxed);
}
void set(int v) {
reinterpret_cast<AtomicT*>(int_)->store(v, std::memory_order_relaxed);
}
private:
using AtomicT = std::atomic<int>;
alignas(AtomicT) char int_[sizeof(AtomicT)];
};
struct Extension {
// Some helper methods for operations on a single Extension.
uint8_t* InternalSerializeFieldWithCachedSizesToArray(
const MessageLite* extendee, const ExtensionSet* extension_set,
int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray(
const MessageLite* extendee, const ExtensionSet* extension_set,
int number, uint8_t* target, io::EpsCopyOutputStream* stream) const;
size_t ByteSize(int number) const;
size_t MessageSetItemByteSize(int number) const;
void Clear();
int GetSize() const;
void Free();
size_t SpaceUsedExcludingSelfLong() const;
bool IsInitialized(const ExtensionSet* ext_set, const MessageLite* extendee,
int number, Arena* arena) const;
const void* PrefetchPtr() const {
ABSL_DCHECK_EQ(is_pointer, is_repeated || FieldTypeIsPointer(type));
// We don't want to prefetch invalid/null pointers so if there isn't a
// pointer to prefetch, then return `this`.
return is_pointer ? absl::bit_cast<const void*>(ptr) : this;
}
// The order of these fields packs Extension into 24 bytes when using 8
// byte alignment. Consider this when adding or removing fields here.
// We need a separate named union for pointer values to allow for
// prefetching the pointer without undefined behavior.
union Pointer {
std::string* string_value;
MessageLite* message_value;
LazyMessageExtension* lazymessage_value;
RepeatedField<int32_t>* repeated_int32_t_value;
RepeatedField<int64_t>* repeated_int64_t_value;
RepeatedField<uint32_t>* repeated_uint32_t_value;
RepeatedField<uint64_t>* repeated_uint64_t_value;
RepeatedField<float>* repeated_float_value;
RepeatedField<double>* repeated_double_value;
RepeatedField<bool>* repeated_bool_value;
RepeatedField<int>* repeated_enum_value;
RepeatedPtrField<std::string>* repeated_string_value;
RepeatedPtrField<MessageLite>* repeated_message_value;
};
union {
int32_t int32_t_value;
int64_t int64_t_value;
uint32_t uint32_t_value;
uint64_t uint64_t_value;
float float_value;
double double_value;
bool bool_value;
int enum_value;
Pointer ptr;
};
FieldType type;
bool is_repeated;
// Whether the extension is a pointer. This is used for prefetching.
bool is_pointer : 1;
// For singular types, indicates if the extension is "cleared". This
// happens when an extension is set and then later cleared by the caller.
// We want to keep the Extension object around for reuse, so instead of
// removing it from the map, we just set is_cleared = true. This has no
// meaning for repeated types; for those, the size of the RepeatedField
// simply becomes zero when cleared.
bool is_cleared : 1;
// For singular message types, indicates whether lazy parsing is enabled
// for this extension. This field is only valid when type == TYPE_MESSAGE
// and !is_repeated because we only support lazy parsing for singular
// message types currently. If is_lazy = true, the extension is stored in
// lazymessage_value. Otherwise, the extension will be message_value.
bool is_lazy : 1;
// For repeated types, this indicates if the [packed=true] option is set.
bool is_packed;
// For packed fields, the size of the packed data is recorded here when
// ByteSize() is called then used during serialization.
mutable TrivialAtomicInt cached_size;
// The descriptor for this extension, if one exists and is known. May be
// nullptr. Must not be nullptr if the descriptor for the extension does
// not live in the same pool as the descriptor for the containing type.
const FieldDescriptor* descriptor;
};
// The Extension struct is small enough to be passed by value so we use it
// directly as the value type in mappings rather than use pointers. We use
// sorted maps rather than hash-maps because we expect most ExtensionSets will
// only contain a small number of extensions, and we want AppendToList and
// deterministic serialization to order fields by field number. In flat mode,
// the number of elements is small enough that linear search is faster than
// binary search.
struct KeyValue {
int first;
Extension second;
};
using LargeMap = absl::btree_map<int, Extension>;
// Wrapper API that switches between flat-map and LargeMap.
// Finds a key (if present) in the ExtensionSet.
const Extension* FindOrNull(int key) const;
Extension* FindOrNull(int key);
// Helper-functions that only inspect the LargeMap.
const Extension* FindOrNullInLargeMap(int key) const;
Extension* FindOrNullInLargeMap(int key);
// Inserts a new (key, Extension) into the ExtensionSet (and returns true), or
// finds the already-existing Extension for that key (returns false).
// The Extension* will point to the new-or-found Extension.
std::pair<Extension*, bool> Insert(int key);
// Grows the flat_capacity_.
// If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap.
void GrowCapacity(size_t minimum_new_capacity);
static constexpr uint16_t kMaximumFlatCapacity = 256;
bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; }
// Removes a key from the ExtensionSet.
void Erase(int key);
size_t Size() const {
return ABSL_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_;
}
// For use as `PrefetchFunctor`s in `ForEach`.
struct Prefetch {
void operator()(const void* ptr) const { absl::PrefetchToLocalCache(ptr); }
};
struct PrefetchNta {
void operator()(const void* ptr) const {
absl::PrefetchToLocalCacheNta(ptr);
}
};
template <typename Iterator, typename KeyValueFunctor,
typename PrefetchFunctor>
static void ForEachPrefetchImpl(Iterator it, Iterator end,
KeyValueFunctor func,
PrefetchFunctor prefetch_func) {
// Note: based on arena's ChunkList::Cleanup().
// Prefetch distance 16 performs better than 8 in load tests.
constexpr int kPrefetchDistance = 16;
Iterator prefetch = it;
// Prefetch the first kPrefetchDistance extensions.
for (int i = 0; prefetch != end && i < kPrefetchDistance; ++prefetch, ++i) {
prefetch_func(prefetch->second.PrefetchPtr());
}
// For the middle extensions, call func and then prefetch the extension
// kPrefetchDistance after the current one.
for (; prefetch != end; ++it, ++prefetch) {
func(it->first, it->second);
prefetch_func(prefetch->second.PrefetchPtr());
}
// Call func on the rest without prefetching.
for (; it != end; ++it) func(it->first, it->second);
}
// Similar to std::for_each, but returning void.
// Each Iterator is decomposed into ->first and ->second fields, so
// that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair.
// Applies a functor to the <int, Extension&> pairs in sorted order and
// prefetches ahead.
template <typename KeyValueFunctor, typename PrefetchFunctor>
void ForEach(KeyValueFunctor func, PrefetchFunctor prefetch_func) {
if (ABSL_PREDICT_FALSE(is_large())) {
ForEachPrefetchImpl(map_.large->begin(), map_.large->end(),
std::move(func), std::move(prefetch_func));
return;
}
ForEachPrefetchImpl(flat_begin(), flat_end(), std::move(func),
std::move(prefetch_func));
}
// As above, but const.
template <typename KeyValueFunctor, typename PrefetchFunctor>
void ForEach(KeyValueFunctor func, PrefetchFunctor prefetch_func) const {
if (ABSL_PREDICT_FALSE(is_large())) {
ForEachPrefetchImpl(map_.large->begin(), map_.large->end(),
std::move(func), std::move(prefetch_func));
return;
}
ForEachPrefetchImpl(flat_begin(), flat_end(), std::move(func),
std::move(prefetch_func));
}
// As above, but without prefetching. This is for use in cases where we never
// use the pointed-to extension values in `func`.
template <typename Iterator, typename KeyValueFunctor>
static void ForEachNoPrefetch(Iterator begin, Iterator end,
KeyValueFunctor func) {
for (Iterator it = begin; it != end; ++it) func(it->first, it->second);
}
// Applies a functor to the <int, Extension&> pairs in sorted order.
template <typename KeyValueFunctor>
void ForEachNoPrefetch(KeyValueFunctor func) {
if (ABSL_PREDICT_FALSE(is_large())) {
ForEachNoPrefetch(map_.large->begin(), map_.large->end(),
std::move(func));
return;
}
ForEachNoPrefetch(flat_begin(), flat_end(), std::move(func));
}
// As above, but const.
template <typename KeyValueFunctor>
void ForEachNoPrefetch(KeyValueFunctor func) const {
if (ABSL_PREDICT_FALSE(is_large())) {
ForEachNoPrefetch(map_.large->begin(), map_.large->end(),
std::move(func));
return;
}
ForEachNoPrefetch(flat_begin(), flat_end(), std::move(func));
}
// Merges existing Extension from other_extension
void InternalExtensionMergeFrom(const MessageLite* extendee, int number,
const Extension& other_extension,
Arena* other_arena);
inline static bool is_packable(WireFormatLite::WireType type) {
switch (type) {
case WireFormatLite::WIRETYPE_VARINT:
case WireFormatLite::WIRETYPE_FIXED64:
case WireFormatLite::WIRETYPE_FIXED32:
return true;
case WireFormatLite::WIRETYPE_LENGTH_DELIMITED:
case WireFormatLite::WIRETYPE_START_GROUP:
case WireFormatLite::WIRETYPE_END_GROUP:
return false;
// Do not add a default statement. Let the compiler complain when
// someone
// adds a new wire type.
}
Unreachable(); // switch handles all possible enum values
return false;
}
// Returns true and fills field_number and extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
template <typename ExtensionFinder>
bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder,
int* field_number, ExtensionInfo* extension,
bool* was_packed_on_wire) {
*field_number = WireFormatLite::GetTagFieldNumber(tag);
WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag);
return FindExtensionInfoFromFieldNumber(wire_type, *field_number,
extension_finder, extension,
was_packed_on_wire);
}
// Returns true and fills extension if extension is found.
// Note to support packed repeated field compatibility, it also fills whether
// the tag on wire is packed, which can be different from
// extension->is_packed (whether packed=true is specified).
template <typename ExtensionFinder>
bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number,
ExtensionFinder* extension_finder,
ExtensionInfo* extension,
bool* was_packed_on_wire) const {
if (!extension_finder->Find(field_number, extension)) {
return false;
}
ABSL_DCHECK(extension->type > 0 &&
extension->type <= WireFormatLite::MAX_FIELD_TYPE);
auto real_type = static_cast<WireFormatLite::FieldType>(extension->type);
WireFormatLite::WireType expected_wire_type =
WireFormatLite::WireTypeForFieldType(real_type);
// Check if this is a packed field.
*was_packed_on_wire = false;
if (extension->is_repeated &&
wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED &&
is_packable(expected_wire_type)) {
*was_packed_on_wire = true;
return true;
}
// Otherwise the wire type must match.
return expected_wire_type == wire_type;
}
// Find the prototype for a LazyMessage from the extension registry. Returns
// null if the extension is not found.
const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee,
int number) const;
// Returns true if extension is present and lazy.
bool HasLazy(int number) const;
// Gets the extension with the given number, creating it if it does not
// already exist. Returns true if the extension did not already exist.
bool MaybeNewExtension(int number, const FieldDescriptor* descriptor,
Extension** result);
// Gets the repeated extension for the given descriptor, creating it if
// it does not exist.
Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor);
bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee,
const internal::ParseContext* /*ctx*/,
ExtensionInfo* extension, bool* was_packed_on_wire) {
GeneratedExtensionFinder finder(extendee);
return FindExtensionInfoFromFieldNumber(wire_type, field, &finder,
extension, was_packed_on_wire);
}
inline bool FindExtension(int wire_type, uint32_t field,
const Message* extendee,
const internal::ParseContext* ctx,
ExtensionInfo* extension, bool* was_packed_on_wire);
// Used for MessageSet only
const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr,
const MessageLite* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx) {
// Lite MessageSet doesn't implement lazy.
return ParseField(tag, ptr, extendee, metadata, ctx);
}
const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr,
const Message* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
const char* ParseMessageSetItem(const char* ptr, const Message* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
// Implemented in extension_set_inl.h to keep code out of the header file.
template <typename T>
const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire,
const ExtensionInfo& info,
internal::InternalMetadata* metadata,
const char* ptr,
internal::ParseContext* ctx);
template <typename Msg, typename T>
const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee,
internal::InternalMetadata* metadata,
internal::ParseContext* ctx);
// Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This
// friendship should automatically extend to ExtensionSet::Extension, but
// unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this
// correctly. So, we must provide helpers for calling methods of that
// class.
// Defined in extension_set_heavy.cc.
static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong(
RepeatedPtrFieldBase* field);
KeyValue* flat_begin() {
assert(!is_large());
return map_.flat;
}
const KeyValue* flat_begin() const {
assert(!is_large());
return map_.flat;
}
KeyValue* flat_end() {
assert(!is_large());
return map_.flat + flat_size_;
}
const KeyValue* flat_end() const {
assert(!is_large());
return map_.flat + flat_size_;
}
Arena* arena_;
// Manual memory-management:
// map_.flat is an allocated array of flat_capacity_ elements.
// [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix.
uint16_t flat_capacity_;
uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large()
union AllocatedData {
KeyValue* flat;
// If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap,
// which guarantees O(n lg n) CPU but larger constant factors.
LargeMap* large;
} map_;
static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity);
};
constexpr ExtensionSet::ExtensionSet(Arena* arena)
: arena_(arena), flat_capacity_(0), flat_size_(0), map_{nullptr} {}
// These are just for convenience...
inline void ExtensionSet::SetString(int number, FieldType type,
std::string value,
const FieldDescriptor* descriptor) {
MutableString(number, type, descriptor)->assign(std::move(value));
}
inline void ExtensionSet::SetRepeatedString(int number, int index,
std::string value) {
MutableRepeatedString(number, index)->assign(std::move(value));
}
inline void ExtensionSet::AddString(int number, FieldType type,
std::string value,
const FieldDescriptor* descriptor) {
AddString(number, type, descriptor)->assign(std::move(value));
}
// ===================================================================
// Glue for generated extension accessors
// -------------------------------------------------------------------
// Template magic
// First we have a set of classes representing "type traits" for different
// field types. A type traits class knows how to implement basic accessors
// for extensions of a particular type given an ExtensionSet. The signature
// for a type traits class looks like this:
//
// class TypeTraits {
// public:
// typedef ? ConstType;
// typedef ? MutableType;
// // TypeTraits for singular fields and repeated fields will define the
// // symbol "Singular" or "Repeated" respectively. These two symbols will
// // be used in extension accessors to distinguish between singular
// // extensions and repeated extensions. If the TypeTraits for the passed
// // in extension doesn't have the expected symbol defined, it means the
// // user is passing a repeated extension to a singular accessor, or the
// // opposite. In that case the C++ compiler will generate an error
// // message "no matching member function" to inform the user.
// typedef ? Singular
// typedef ? Repeated
//
// static inline ConstType Get(int number, const ExtensionSet& set);
// static inline void Set(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, ExtensionSet* set);
//
// // Variants for repeated fields.
// static inline ConstType Get(int number, const ExtensionSet& set,
// int index);
// static inline void Set(int number, int index,
// ConstType value, ExtensionSet* set);
// static inline MutableType Mutable(int number, int index,
// ExtensionSet* set);
// static inline void Add(int number, ConstType value, ExtensionSet* set);
// static inline MutableType Add(int number, ExtensionSet* set);
// This is used by the ExtensionIdentifier constructor to register
// the extension at dynamic initialization.
// };
//
// Not all of these methods make sense for all field types. For example, the
// "Mutable" methods only make sense for strings and messages, and the
// repeated methods only make sense for repeated types. So, each type
// traits class implements only the set of methods from this signature that it
// actually supports. This will cause a compiler error if the user tries to
// access an extension using a method that doesn't make sense for its type.
// For example, if "foo" is an extension of type "optional int32", then if you
// try to write code like:
// my_message.MutableExtension(foo)
// you will get a compile error because PrimitiveTypeTraits<int32_t> does not
// have a "Mutable()" method.
// -------------------------------------------------------------------
// PrimitiveTypeTraits
// Since the ExtensionSet has different methods for each primitive type,
// we must explicitly define the methods of the type traits class for each
// known type.
template <typename Type>
class PrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
using InitType = ConstType;
static const ConstType& FromInitType(const InitType& v) { return v; }
typedef PrimitiveTypeTraits<Type> Singular;
static constexpr bool kLifetimeBound = false;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value);
static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
const ConstType& default_value);
static inline void Set(int number, FieldType field_type, ConstType value,
ExtensionSet* set);
};
template <typename Type>
class RepeatedPrimitiveTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
using InitType = ConstType;
static const ConstType& FromInitType(const InitType& v) { return v; }
typedef RepeatedPrimitiveTypeTraits<Type> Repeated;
static constexpr bool kLifetimeBound = false;
typedef RepeatedField<Type> RepeatedFieldType;
static inline Type Get(int number, const ExtensionSet& set, int index);
static inline const Type* GetPtr(int number, const ExtensionSet& set,
int index);
static inline const RepeatedField<ConstType>* GetRepeatedPtr(
int number, const ExtensionSet& set);
static inline void Set(int number, int index, Type value, ExtensionSet* set);
static inline void Add(int number, FieldType field_type, bool is_packed,
Type value, ExtensionSet* set);
static inline const RepeatedField<ConstType>& GetRepeated(
int number, const ExtensionSet& set);
static inline RepeatedField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set);
static const RepeatedFieldType* GetDefaultRepeatedField();
};
class PROTOBUF_EXPORT RepeatedPrimitiveDefaults {
private:
template <typename Type>
friend class RepeatedPrimitiveTypeTraits;
static const RepeatedPrimitiveDefaults* default_instance();
RepeatedField<int32_t> default_repeated_field_int32_t_;
RepeatedField<int64_t> default_repeated_field_int64_t_;
RepeatedField<uint32_t> default_repeated_field_uint32_t_;
RepeatedField<uint64_t> default_repeated_field_uint64_t_;
RepeatedField<double> default_repeated_field_double_;
RepeatedField<float> default_repeated_field_float_;
RepeatedField<bool> default_repeated_field_bool_;
};
#define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \
template <> \
inline TYPE PrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, TYPE default_value) { \
return set.Get##METHOD(number, default_value); \
} \
template <> \
inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \
int number, const ExtensionSet& set, const TYPE& default_value) { \
return &set.GetRef##METHOD(number, default_value); \
} \
template <> \
inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \
TYPE value, ExtensionSet* set) { \
set->Set##METHOD(number, field_type, value, nullptr); \
} \
\
template <> \
inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \
int number, const ExtensionSet& set, int index) { \
return set.GetRepeated##METHOD(number, index); \
} \
template <> \
inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \
int number, const ExtensionSet& set, int index) { \
return &set.GetRefRepeated##METHOD(number, index); \
} \
template <> \
inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \
int number, int index, TYPE value, ExtensionSet* set) { \
set->SetRepeated##METHOD(number, index, value); \
} \
template <> \
inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \
int number, FieldType field_type, bool is_packed, TYPE value, \
ExtensionSet* set) { \
set->Add##METHOD(number, field_type, is_packed, value, nullptr); \
} \
template <> \
inline const RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \
return &RepeatedPrimitiveDefaults::default_instance() \
->default_repeated_field_##TYPE##_; \
} \
template <> \
inline const RepeatedField<TYPE>& \
RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \
const ExtensionSet& set) { \
return *reinterpret_cast<const RepeatedField<TYPE>*>( \
set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \
} \
template <> \
inline const RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \
const ExtensionSet& set) { \
return &GetRepeated(number, set); \
} \
template <> \
inline RepeatedField<TYPE>* \
RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \
int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \
return reinterpret_cast<RepeatedField<TYPE>*>( \
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \
}
PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double)
PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool)
#undef PROTOBUF_DEFINE_PRIMITIVE_TYPE
// -------------------------------------------------------------------
// StringTypeTraits
// Strings support both Set() and Mutable().
class PROTOBUF_EXPORT StringTypeTraits {
public:
typedef const std::string& ConstType;
typedef std::string* MutableType;
using InitType = ConstType;
static ConstType FromInitType(InitType v) { return v; }
typedef StringTypeTraits Singular;
static constexpr bool kLifetimeBound = true;
static inline const std::string& Get(int number, const ExtensionSet& set,
ConstType default_value) {
return set.GetString(number, default_value);
}
static inline const std::string* GetPtr(int number, const ExtensionSet& set,
ConstType default_value) {
return &Get(number, set, default_value);
}
static inline void Set(int number, FieldType field_type,
const std::string& value, ExtensionSet* set) {
set->SetString(number, field_type, value, nullptr);
}
static inline std::string* Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return set->MutableString(number, field_type, nullptr);
}
};
class PROTOBUF_EXPORT RepeatedStringTypeTraits {
public:
typedef const std::string& ConstType;
typedef std::string* MutableType;
using InitType = ConstType;
static ConstType FromInitType(InitType v) { return v; }
typedef RepeatedStringTypeTraits Repeated;
static constexpr bool kLifetimeBound = true;
typedef RepeatedPtrField<std::string> RepeatedFieldType;
static inline const std::string& Get(int number, const ExtensionSet& set,
int index) {
return set.GetRepeatedString(number, index);
}
static inline const std::string* GetPtr(int number, const ExtensionSet& set,
int index) {
return &Get(number, set, index);
}
static inline const RepeatedPtrField<std::string>* GetRepeatedPtr(
int number, const ExtensionSet& set) {
return &GetRepeated(number, set);
}
static inline void Set(int number, int index, const std::string& value,
ExtensionSet* set) {
set->SetRepeatedString(number, index, value);
}
static inline std::string* Mutable(int number, int index, ExtensionSet* set) {
return set->MutableRepeatedString(number, index);
}
static inline void Add(int number, FieldType field_type, bool /*is_packed*/,
const std::string& value, ExtensionSet* set) {
set->AddString(number, field_type, value, nullptr);
}
static inline std::string* Add(int number, FieldType field_type,
ExtensionSet* set) {
return set->AddString(number, field_type, nullptr);
}
static inline const RepeatedPtrField<std::string>& GetRepeated(
int number, const ExtensionSet& set) {
return *reinterpret_cast<const RepeatedPtrField<std::string>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<std::string>* MutableRepeated(
int number, FieldType field_type, bool is_packed, ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<std::string>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
}
static const RepeatedFieldType* GetDefaultRepeatedField();
private:
static void InitializeDefaultRepeatedFields();
static void DestroyDefaultRepeatedFields();
};
// -------------------------------------------------------------------
// EnumTypeTraits
// ExtensionSet represents enums using integers internally, so we have to
// static_cast around.
template <typename Type>
class EnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
using InitType = ConstType;
static const ConstType& FromInitType(const InitType& v) { return v; }
typedef EnumTypeTraits<Type> Singular;
static constexpr bool kLifetimeBound = false;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<Type>(set.GetEnum(number, default_value));
}
static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
const ConstType& default_value) {
return reinterpret_cast<const Type*>(
&set.GetRefEnum(number, default_value));
}
static inline void Set(int number, FieldType field_type, ConstType value,
ExtensionSet* set) {
ABSL_DCHECK(
internal::ValidateEnum(value, EnumTraits<Type>::validation_data()));
set->SetEnum(number, field_type, value, nullptr);
}
};
template <typename Type>
class RepeatedEnumTypeTraits {
public:
typedef Type ConstType;
typedef Type MutableType;
using InitType = ConstType;
static const ConstType& FromInitType(const InitType& v) { return v; }
typedef RepeatedEnumTypeTraits<Type> Repeated;
static constexpr bool kLifetimeBound = false;
typedef RepeatedField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<Type>(set.GetRepeatedEnum(number, index));
}
static inline const ConstType* GetPtr(int number, const ExtensionSet& set,
int index) {
return reinterpret_cast<const Type*>(
&set.GetRefRepeatedEnum(number, index));
}
static inline void Set(int number, int index, ConstType value,
ExtensionSet* set) {
ABSL_DCHECK(
internal::ValidateEnum(value, EnumTraits<Type>::validation_data()));
set->SetRepeatedEnum(number, index, value);
}
static inline void Add(int number, FieldType field_type, bool is_packed,
ConstType value, ExtensionSet* set) {
ABSL_DCHECK(
internal::ValidateEnum(value, EnumTraits<Type>::validation_data()));
set->AddEnum(number, field_type, is_packed, value, nullptr);
}
static inline const RepeatedField<Type>& GetRepeated(
int number, const ExtensionSet& set) {
// Hack: the `Extension` struct stores a RepeatedField<int> for enums.
// RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType>
// so we need to do some casting magic. See message.h for similar
// contortions for non-extension fields.
return *reinterpret_cast<const RepeatedField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline const RepeatedField<Type>* GetRepeatedPtr(
int number, const ExtensionSet& set) {
return &GetRepeated(number, set);
}
static inline RepeatedField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
}
static const RepeatedFieldType* GetDefaultRepeatedField() {
// Hack: as noted above, repeated enum fields are internally stored as a
// RepeatedField<int>. We need to be able to instantiate global static
// objects to return as default (empty) repeated fields on non-existent
// extensions. We would not be able to know a-priori all of the enum types
// (values of |Type|) to instantiate all of these, so we just re-use
// int32_t's default repeated field object.
return reinterpret_cast<const RepeatedField<Type>*>(
RepeatedPrimitiveTypeTraits<int32_t>::GetDefaultRepeatedField());
}
};
// -------------------------------------------------------------------
// MessageTypeTraits
// ExtensionSet guarantees that when manipulating extensions with message
// types, the implementation used will be the compiled-in class representing
// that type. So, we can static_cast down to the exact type we expect.
template <typename Type>
class MessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
using InitType = const void*;
static ConstType FromInitType(InitType v) {
return *static_cast<const Type*>(v);
}
typedef MessageTypeTraits<Type> Singular;
static constexpr bool kLifetimeBound = true;
static inline ConstType Get(int number, const ExtensionSet& set,
ConstType default_value) {
return static_cast<const Type&>(set.GetMessage(number, default_value));
}
static inline std::nullptr_t GetPtr(int /* number */,
const ExtensionSet& /* set */,
ConstType /* default_value */) {
// Cannot be implemented because of forward declared messages?
return nullptr;
}
static inline MutableType Mutable(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(set->MutableMessage(
number, field_type, Type::default_instance(), nullptr));
}
static inline void SetAllocated(int number, FieldType field_type,
MutableType message, ExtensionSet* set) {
set->SetAllocatedMessage(number, field_type, nullptr, message);
}
static inline void UnsafeArenaSetAllocated(int number, FieldType field_type,
MutableType message,
ExtensionSet* set) {
set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message);
}
[[nodiscard]] static inline MutableType Release(int number,
FieldType /* field_type */,
ExtensionSet* set) {
return static_cast<Type*>(
set->ReleaseMessage(number, Type::default_instance()));
}
static inline MutableType UnsafeArenaRelease(int number,
FieldType /* field_type */,
ExtensionSet* set) {
return static_cast<Type*>(
set->UnsafeArenaReleaseMessage(number, Type::default_instance()));
}
};
// Used by WireFormatVerify to extract the verify function from the registry.
LazyEagerVerifyFnType FindExtensionLazyEagerVerifyFn(
const MessageLite* extendee, int number);
// forward declaration.
class RepeatedMessageGenericTypeTraits;
template <typename Type>
class RepeatedMessageTypeTraits {
public:
typedef const Type& ConstType;
typedef Type* MutableType;
using InitType = const void*;
static ConstType FromInitType(InitType v) {
return *static_cast<const Type*>(v);
}
typedef RepeatedMessageTypeTraits<Type> Repeated;
static constexpr bool kLifetimeBound = true;
typedef RepeatedPtrField<Type> RepeatedFieldType;
static inline ConstType Get(int number, const ExtensionSet& set, int index) {
return static_cast<const Type&>(set.GetRepeatedMessage(number, index));
}
static inline std::nullptr_t GetPtr(int /* number */,
const ExtensionSet& /* set */,
int /* index */) {
// Cannot be implemented because of forward declared messages?
return nullptr;
}
static inline std::nullptr_t GetRepeatedPtr(int /* number */,
const ExtensionSet& /* set */) {
// Cannot be implemented because of forward declared messages?
return nullptr;
}
static inline MutableType Mutable(int number, int index, ExtensionSet* set) {
return static_cast<Type*>(set->MutableRepeatedMessage(number, index));
}
static inline MutableType Add(int number, FieldType field_type,
ExtensionSet* set) {
return static_cast<Type*>(
set->AddMessage(number, field_type, Type::default_instance(), nullptr));
}
static inline const RepeatedPtrField<Type>& GetRepeated(
int number, const ExtensionSet& set) {
// See notes above in RepeatedEnumTypeTraits::GetRepeated(): same
// casting hack applies here, because a RepeatedPtrField<MessageLite>
// cannot naturally become a RepeatedPtrType<Type> even though Type is
// presumably a message. google::protobuf::Message goes through similar contortions
// with a reinterpret_cast<>.
return *reinterpret_cast<const RepeatedPtrField<Type>*>(
set.GetRawRepeatedField(number, GetDefaultRepeatedField()));
}
static inline RepeatedPtrField<Type>* MutableRepeated(int number,
FieldType field_type,
bool is_packed,
ExtensionSet* set) {
return reinterpret_cast<RepeatedPtrField<Type>*>(
set->MutableRawRepeatedField(number, field_type, is_packed, nullptr));
}
static const RepeatedFieldType* GetDefaultRepeatedField();
};
template <typename Type>
inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType*
RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() {
static auto instance = OnShutdownDelete(new RepeatedFieldType);
return instance;
}
// -------------------------------------------------------------------
// ExtensionIdentifier
// This is the type of actual extension objects. E.g. if you have:
// extend Foo {
// optional int32 bar = 1234;
// }
// then "bar" will be defined in C++ as:
// ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32_t>, 5, false> bar(1234);
//
// Note that we could, in theory, supply the field number as a template
// parameter, and thus make an instance of ExtensionIdentifier have no
// actual contents. However, if we did that, then using an extension
// identifier would not necessarily cause the compiler to output any sort
// of reference to any symbol defined in the extension's .pb.o file. Some
// linkers will actually drop object files that are not explicitly referenced,
// but that would be bad because it would cause this extension to not be
// registered at static initialization, and therefore using it would crash.
template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type,
bool is_packed>
class ExtensionIdentifier {
public:
typedef TypeTraitsType TypeTraits;
typedef ExtendeeType Extendee;
constexpr ExtensionIdentifier(int number,
typename TypeTraits::InitType default_value)
: number_(number), default_value_(default_value) {}
inline int number() const { return number_; }
typename TypeTraits::ConstType default_value() const {
return TypeTraits::FromInitType(default_value_);
}
typename TypeTraits::ConstType const& default_value_ref() const {
return TypeTraits::FromInitType(default_value_);
}
private:
const int number_;
typename TypeTraits::InitType default_value_;
};
// -------------------------------------------------------------------
// Generated accessors
} // namespace internal
// Call this function to ensure that this extensions's reflection is linked into
// the binary:
//
// google::protobuf::LinkExtensionReflection(Foo::my_extension);
//
// This will ensure that the following lookup will succeed:
//
// DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension");
//
// This is often relevant for parsing extensions in text mode.
//
// As a side-effect, it will also guarantee that anything else from the same
// .proto file will also be available for lookup in the generated pool.
//
// This function does not actually register the extension, so it does not need
// to be called before the lookup. However it does need to occur in a function
// that cannot be stripped from the binary (ie. it must be reachable from main).
//
// Best practice is to call this function as close as possible to where the
// reflection is actually needed. This function is very cheap to call, so you
// should not need to worry about its runtime overhead except in tight loops (on
// x86-64 it compiles into two "mov" instructions).
template <typename ExtendeeType, typename TypeTraitsType,
internal::FieldType field_type, bool is_packed>
void LinkExtensionReflection(
const google::protobuf::internal::ExtensionIdentifier<
ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
internal::StrongReference(extension);
}
// Returns the field descriptor for a generated extension identifier. This is
// useful when doing reflection over generated extensions.
template <typename ExtendeeType, typename TypeTraitsType,
internal::FieldType field_type, bool is_packed,
typename PoolType = DescriptorPool>
const FieldDescriptor* GetExtensionReflection(
const google::protobuf::internal::ExtensionIdentifier<
ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) {
return PoolType::generated_pool()->FindExtensionByNumber(
google::protobuf::internal::ExtensionIdentifier<ExtendeeType, TypeTraitsType,
field_type,
is_packed>::Extendee::descriptor(),
extension.number());
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__