| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| // Author: kenton@google.com (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // This header is logically internal, but is made public because it is used |
| // from protocol-compiler-generated code, which may reside in other components. |
| |
| #ifndef GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| #define GOOGLE_PROTOBUF_EXTENSION_SET_H__ |
| |
| #include <algorithm> |
| #include <atomic> |
| #include <cassert> |
| #include <cstddef> |
| #include <cstdint> |
| #include <initializer_list> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <variant> |
| #include <vector> |
| |
| #include "google/protobuf/stubs/common.h" |
| #include "absl/base/call_once.h" |
| #include "absl/base/casts.h" |
| #include "absl/base/prefetch.h" |
| #include "absl/container/btree_map.h" |
| #include "absl/log/absl_check.h" |
| #include "google/protobuf/generated_enum_util.h" |
| #include "google/protobuf/internal_visibility.h" |
| #include "google/protobuf/port.h" |
| #include "google/protobuf/io/coded_stream.h" |
| #include "google/protobuf/message_lite.h" |
| #include "google/protobuf/parse_context.h" |
| #include "google/protobuf/repeated_field.h" |
| #include "google/protobuf/repeated_ptr_field.h" |
| #include "google/protobuf/wire_format_lite.h" |
| |
| // clang-format off |
| #include "google/protobuf/port_def.inc" // Must be last |
| // clang-format on |
| |
| #ifdef SWIG |
| #error "You cannot SWIG proto headers" |
| #endif |
| |
| |
| namespace google { |
| namespace protobuf { |
| class Arena; |
| class Descriptor; // descriptor.h |
| class FieldDescriptor; // descriptor.h |
| class DescriptorPool; // descriptor.h |
| class MessageLite; // message_lite.h |
| class Message; // message.h |
| class MessageFactory; // message.h |
| class Reflection; // message.h |
| class UnknownFieldSet; // unknown_field_set.h |
| class FeatureSet; |
| namespace internal { |
| struct DescriptorTable; |
| class FieldSkipper; // wire_format_lite.h |
| class ReflectionVisit; // message_reflection_util.h |
| class WireFormat; |
| struct DynamicExtensionInfoHelper; |
| void InitializeLazyExtensionSet(); |
| } // namespace internal |
| } // namespace protobuf |
| } // namespace google |
| namespace pb { |
| class CppFeatures; |
| } // namespace pb |
| |
| namespace google { |
| namespace protobuf { |
| namespace internal { |
| |
| class InternalMetadata; |
| |
| namespace v2 { |
| class TableDriven; |
| } // namespace v2 |
| |
| // Used to store values of type WireFormatLite::FieldType without having to |
| // #include wire_format_lite.h. Also, ensures that we use only one byte to |
| // store these values, which is important to keep the layout of |
| // ExtensionSet::Extension small. |
| typedef uint8_t FieldType; |
| |
| // Version of the above which takes an argument. This is needed to deal with |
| // extensions that are not compiled in. |
| typedef bool EnumValidityFuncWithArg(const void* arg, int number); |
| |
| enum class LazyAnnotation : int8_t { |
| kUndefined = 0, |
| kLazy = 1, |
| kEager = 2, |
| }; |
| |
| // Information about a registered extension. |
| struct ExtensionInfo { |
| constexpr ExtensionInfo() : enum_validity_check() {} |
| constexpr ExtensionInfo(const MessageLite* extendee, int param_number, |
| FieldType type_param, bool isrepeated, bool ispacked) |
| : message(extendee), |
| number(param_number), |
| type(type_param), |
| is_repeated(isrepeated), |
| is_packed(ispacked), |
| enum_validity_check() {} |
| constexpr ExtensionInfo(const MessageLite* extendee, int param_number, |
| FieldType type_param, bool isrepeated, bool ispacked, |
| LazyEagerVerifyFnType verify_func, |
| LazyAnnotation islazy = LazyAnnotation::kUndefined) |
| : message(extendee), |
| number(param_number), |
| type(type_param), |
| is_repeated(isrepeated), |
| is_packed(ispacked), |
| is_lazy(islazy), |
| enum_validity_check(), |
| lazy_eager_verify_func(verify_func) {} |
| |
| const MessageLite* message = nullptr; |
| int number = 0; |
| |
| FieldType type = 0; |
| bool is_repeated = false; |
| bool is_packed = false; |
| LazyAnnotation is_lazy = LazyAnnotation::kUndefined; |
| |
| struct EnumValidityCheck { |
| // TODO: Fully remove the function pointer approach. |
| EnumValidityFuncWithArg* func; |
| const void* arg; |
| |
| bool IsValid(int value) const { |
| return func != nullptr ? func(arg, value) |
| : internal::ValidateEnum( |
| value, static_cast<const uint32_t*>(arg)); |
| } |
| }; |
| |
| struct MessageInfo { |
| const MessageLite* prototype; |
| // The TcParse table used for this object. |
| // Never null. (except in platforms that don't constant initialize default |
| // instances) |
| const internal::TcParseTableBase* tc_table; |
| }; |
| |
| union { |
| EnumValidityCheck enum_validity_check; |
| MessageInfo message_info; |
| }; |
| |
| // The descriptor for this extension, if one exists and is known. May be |
| // nullptr. Must not be nullptr if the descriptor for the extension does not |
| // live in the same pool as the descriptor for the containing type. |
| const FieldDescriptor* descriptor = nullptr; |
| |
| // If this field is potentially lazy this function can be used as a cheap |
| // verification of the raw bytes. |
| // If nullptr then no verification is performed. |
| LazyEagerVerifyFnType lazy_eager_verify_func = nullptr; |
| }; |
| |
| |
| // An ExtensionFinder is an object which looks up extension definitions. It |
| // must implement this method: |
| // |
| // bool Find(int number, ExtensionInfo* output); |
| |
| // GeneratedExtensionFinder is an ExtensionFinder which finds extensions |
| // defined in .proto files which have been compiled into the binary. |
| class PROTOBUF_EXPORT GeneratedExtensionFinder { |
| public: |
| explicit GeneratedExtensionFinder(const MessageLite* extendee) |
| : extendee_(extendee) {} |
| |
| // Returns true and fills in *output if found, otherwise returns false. |
| bool Find(int number, ExtensionInfo* output); |
| |
| private: |
| const MessageLite* extendee_; |
| }; |
| |
| // Note: extension_set_heavy.cc defines DescriptorPoolExtensionFinder for |
| // finding extensions from a DescriptorPool. |
| |
| // This is an internal helper class intended for use within the protocol buffer |
| // library and generated classes. Clients should not use it directly. Instead, |
| // use the generated accessors such as GetExtension() of the class being |
| // extended. |
| // |
| // This class manages extensions for a protocol message object. The |
| // message's HasExtension(), GetExtension(), MutableExtension(), and |
| // ClearExtension() methods are just thin wrappers around the embedded |
| // ExtensionSet. When parsing, if a tag number is encountered which is |
| // inside one of the message type's extension ranges, the tag is passed |
| // off to the ExtensionSet for parsing. Etc. |
| class PROTOBUF_EXPORT ExtensionSet { |
| public: |
| constexpr ExtensionSet() : ExtensionSet(nullptr) {} |
| ExtensionSet(const ExtensionSet& rhs) = delete; |
| |
| // Arena enabled constructors: for internal use only. |
| ExtensionSet(internal::InternalVisibility, Arena* arena) |
| : ExtensionSet(arena) {} |
| |
| // TODO: make constructor private, and migrate `ArenaInitialized` |
| // to `InternalVisibility` overloaded constructor(s). |
| explicit constexpr ExtensionSet(Arena* arena); |
| ExtensionSet(ArenaInitialized, Arena* arena) : ExtensionSet(arena) {} |
| |
| ExtensionSet& operator=(const ExtensionSet&) = delete; |
| ~ExtensionSet(); |
| |
| // These are called at startup by protocol-compiler-generated code to |
| // register known extensions. The registrations are used by ParseField() |
| // to look up extensions for parsed field numbers. Note that dynamic parsing |
| // does not use ParseField(); only protocol-compiler-generated parsing |
| // methods do. |
| static void RegisterExtension(const MessageLite* extendee, int number, |
| FieldType type, bool is_repeated, |
| bool is_packed); |
| static void RegisterEnumExtension(const MessageLite* extendee, int number, |
| FieldType type, bool is_repeated, |
| bool is_packed, |
| const uint32_t* validation_data); |
| static void RegisterMessageExtension(const MessageLite* extendee, int number, |
| FieldType type, bool is_repeated, |
| bool is_packed, |
| const MessageLite* prototype, |
| LazyEagerVerifyFnType verify_func, |
| LazyAnnotation is_lazy); |
| |
| // In weak descriptor mode we register extensions in two phases. |
| // This function determines if it is the right time to register a particular |
| // extension. |
| // During "preregistration" we only register extensions that have all their |
| // types linked in. |
| struct WeakPrototypeRef { |
| const internal::DescriptorTable* table; |
| int index; |
| }; |
| static bool ShouldRegisterAtThisTime( |
| std::initializer_list<WeakPrototypeRef> messages, |
| bool is_preregistration); |
| |
| // ================================================================= |
| |
| // Add all fields which are currently present to the given vector. This |
| // is useful to implement Reflection::ListFields(). Descriptors are appended |
| // in increasing tag order. |
| void AppendToList(const Descriptor* extendee, const DescriptorPool* pool, |
| std::vector<const FieldDescriptor*>* output) const; |
| |
| // ================================================================= |
| // Accessors |
| // |
| // Generated message classes include type-safe templated wrappers around |
| // these methods. Generally you should use those rather than call these |
| // directly, unless you are doing low-level memory management. |
| // |
| // When calling any of these accessors, the extension number requested |
| // MUST exist in the DescriptorPool provided to the constructor. Otherwise, |
| // the method will fail an assert. Normally, though, you would not call |
| // these directly; you would either call the generated accessors of your |
| // message class (e.g. GetExtension()) or you would call the accessors |
| // of the reflection interface. In both cases, it is impossible to |
| // trigger this assert failure: the generated accessors only accept |
| // linked-in extension types as parameters, while the Reflection interface |
| // requires you to provide the FieldDescriptor describing the extension. |
| // |
| // When calling any of these accessors, a protocol-compiler-generated |
| // implementation of the extension corresponding to the number MUST |
| // be linked in, and the FieldDescriptor used to refer to it MUST be |
| // the one generated by that linked-in code. Otherwise, the method will |
| // die on an assert failure. The message objects returned by the message |
| // accessors are guaranteed to be of the correct linked-in type. |
| // |
| // These methods pretty much match Reflection except that: |
| // - They're not virtual. |
| // - They identify fields by number rather than FieldDescriptors. |
| // - They identify enum values using integers rather than descriptors. |
| // - Strings provide Mutable() in addition to Set() accessors. |
| |
| bool Has(int number) const; |
| int ExtensionSize(int number) const; // Size of a repeated extension. |
| int NumExtensions() const; // The number of extensions |
| FieldType ExtensionType(int number) const; |
| void ClearExtension(int number); |
| |
| // singular fields ------------------------------------------------- |
| |
| int32_t GetInt32(int number, int32_t default_value) const; |
| int64_t GetInt64(int number, int64_t default_value) const; |
| uint32_t GetUInt32(int number, uint32_t default_value) const; |
| uint64_t GetUInt64(int number, uint64_t default_value) const; |
| float GetFloat(int number, float default_value) const; |
| double GetDouble(int number, double default_value) const; |
| bool GetBool(int number, bool default_value) const; |
| int GetEnum(int number, int default_value) const; |
| const std::string& GetString(int number, |
| const std::string& default_value) const; |
| const MessageLite& GetMessage(int number, |
| const MessageLite& default_value) const; |
| const MessageLite& GetMessage(int number, const Descriptor* message_type, |
| MessageFactory* factory) const; |
| |
| // |descriptor| may be nullptr so long as it is known that the descriptor for |
| // the extension lives in the same pool as the descriptor for the containing |
| // type. |
| #define desc const FieldDescriptor* descriptor // avoid line wrapping |
| void SetInt32(int number, FieldType type, int32_t value, desc); |
| void SetInt64(int number, FieldType type, int64_t value, desc); |
| void SetUInt32(int number, FieldType type, uint32_t value, desc); |
| void SetUInt64(int number, FieldType type, uint64_t value, desc); |
| void SetFloat(int number, FieldType type, float value, desc); |
| void SetDouble(int number, FieldType type, double value, desc); |
| void SetBool(int number, FieldType type, bool value, desc); |
| void SetEnum(int number, FieldType type, int value, desc); |
| void SetString(int number, FieldType type, std::string value, desc); |
| std::string* MutableString(int number, FieldType type, desc); |
| MessageLite* MutableMessage(int number, FieldType type, |
| const MessageLite& prototype, desc); |
| MessageLite* MutableMessage(const FieldDescriptor* descriptor, |
| MessageFactory* factory); |
| // Adds the given message to the ExtensionSet, taking ownership of the |
| // message object. Existing message with the same number will be deleted. |
| // If "message" is nullptr, this is equivalent to "ClearExtension(number)". |
| void SetAllocatedMessage(int number, FieldType type, |
| const FieldDescriptor* descriptor, |
| MessageLite* message); |
| void UnsafeArenaSetAllocatedMessage(int number, FieldType type, |
| const FieldDescriptor* descriptor, |
| MessageLite* message); |
| [[nodiscard]] MessageLite* ReleaseMessage(int number, |
| const MessageLite& prototype); |
| MessageLite* UnsafeArenaReleaseMessage(int number, |
| const MessageLite& prototype); |
| |
| [[nodiscard]] MessageLite* ReleaseMessage(const FieldDescriptor* descriptor, |
| MessageFactory* factory); |
| MessageLite* UnsafeArenaReleaseMessage(const FieldDescriptor* descriptor, |
| MessageFactory* factory); |
| #undef desc |
| Arena* GetArena() const { return arena_; } |
| |
| // repeated fields ------------------------------------------------- |
| |
| // Fetches a RepeatedField extension by number; returns |default_value| |
| // if no such extension exists. User should not touch this directly; it is |
| // used by the GetRepeatedExtension() method. |
| const void* GetRawRepeatedField(int number, const void* default_value) const; |
| // Fetches a mutable version of a RepeatedField extension by number, |
| // instantiating one if none exists. Similar to above, user should not use |
| // this directly; it underlies MutableRepeatedExtension(). |
| void* MutableRawRepeatedField(int number, FieldType field_type, bool packed, |
| const FieldDescriptor* desc); |
| |
| // This is an overload of MutableRawRepeatedField to maintain compatibility |
| // with old code using a previous API. This version of |
| // MutableRawRepeatedField() will ABSL_CHECK-fail on a missing extension. |
| // (E.g.: borg/clients/internal/proto1/proto2_reflection.cc.) |
| void* MutableRawRepeatedField(int number); |
| |
| int32_t GetRepeatedInt32(int number, int index) const; |
| int64_t GetRepeatedInt64(int number, int index) const; |
| uint32_t GetRepeatedUInt32(int number, int index) const; |
| uint64_t GetRepeatedUInt64(int number, int index) const; |
| float GetRepeatedFloat(int number, int index) const; |
| double GetRepeatedDouble(int number, int index) const; |
| bool GetRepeatedBool(int number, int index) const; |
| int GetRepeatedEnum(int number, int index) const; |
| const std::string& GetRepeatedString(int number, int index) const; |
| const MessageLite& GetRepeatedMessage(int number, int index) const; |
| |
| void SetRepeatedInt32(int number, int index, int32_t value); |
| void SetRepeatedInt64(int number, int index, int64_t value); |
| void SetRepeatedUInt32(int number, int index, uint32_t value); |
| void SetRepeatedUInt64(int number, int index, uint64_t value); |
| void SetRepeatedFloat(int number, int index, float value); |
| void SetRepeatedDouble(int number, int index, double value); |
| void SetRepeatedBool(int number, int index, bool value); |
| void SetRepeatedEnum(int number, int index, int value); |
| void SetRepeatedString(int number, int index, std::string value); |
| std::string* MutableRepeatedString(int number, int index); |
| MessageLite* MutableRepeatedMessage(int number, int index); |
| |
| #define desc const FieldDescriptor* descriptor // avoid line wrapping |
| void AddInt32(int number, FieldType type, bool packed, int32_t value, desc); |
| void AddInt64(int number, FieldType type, bool packed, int64_t value, desc); |
| void AddUInt32(int number, FieldType type, bool packed, uint32_t value, desc); |
| void AddUInt64(int number, FieldType type, bool packed, uint64_t value, desc); |
| void AddFloat(int number, FieldType type, bool packed, float value, desc); |
| void AddDouble(int number, FieldType type, bool packed, double value, desc); |
| void AddBool(int number, FieldType type, bool packed, bool value, desc); |
| void AddEnum(int number, FieldType type, bool packed, int value, desc); |
| void AddString(int number, FieldType type, std::string value, desc); |
| std::string* AddString(int number, FieldType type, desc); |
| MessageLite* AddMessage(int number, FieldType type, |
| const MessageLite& prototype, desc); |
| MessageLite* AddMessage(const FieldDescriptor* descriptor, |
| MessageFactory* factory); |
| void AddAllocatedMessage(const FieldDescriptor* descriptor, |
| MessageLite* new_entry); |
| void UnsafeArenaAddAllocatedMessage(const FieldDescriptor* descriptor, |
| MessageLite* new_entry); |
| #undef desc |
| |
| void RemoveLast(int number); |
| [[nodiscard]] MessageLite* ReleaseLast(int number); |
| MessageLite* UnsafeArenaReleaseLast(int number); |
| void SwapElements(int number, int index1, int index2); |
| |
| // ================================================================= |
| // convenience methods for implementing methods of Message |
| // |
| // These could all be implemented in terms of the other methods of this |
| // class, but providing them here helps keep the generated code size down. |
| |
| void Clear(); |
| void MergeFrom(const MessageLite* extendee, const ExtensionSet& other); |
| void Swap(const MessageLite* extendee, ExtensionSet* other); |
| void InternalSwap(ExtensionSet* other); |
| void SwapExtension(const MessageLite* extendee, ExtensionSet* other, |
| int number); |
| void UnsafeShallowSwapExtension(ExtensionSet* other, int number); |
| bool IsInitialized(const MessageLite* extendee) const; |
| |
| // Lite parser |
| const char* ParseField(uint64_t tag, const char* ptr, |
| const MessageLite* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx); |
| // Full parser |
| const char* ParseField(uint64_t tag, const char* ptr, const Message* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx); |
| template <typename Msg> |
| const char* ParseMessageSet(const char* ptr, const Msg* extendee, |
| InternalMetadata* metadata, |
| internal::ParseContext* ctx) { |
| while (!ctx->Done(&ptr)) { |
| uint32_t tag; |
| ptr = ReadTag(ptr, &tag); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| if (tag == WireFormatLite::kMessageSetItemStartTag) { |
| ptr = ctx->ParseGroupInlined(ptr, tag, [&](const char* ptr) { |
| return ParseMessageSetItem(ptr, extendee, metadata, ctx); |
| }); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| } else { |
| if (tag == 0 || (tag & 7) == 4) { |
| ctx->SetLastTag(tag); |
| return ptr; |
| } |
| ptr = ParseField(tag, ptr, extendee, metadata, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| } |
| } |
| return ptr; |
| } |
| |
| // Write all extension fields with field numbers in the range |
| // [start_field_number, end_field_number) |
| // to the output stream, using the cached sizes computed when ByteSize() was |
| // last called. Note that the range bounds are inclusive-exclusive. |
| void SerializeWithCachedSizes(const MessageLite* extendee, |
| int start_field_number, int end_field_number, |
| io::CodedOutputStream* output) const { |
| output->SetCur(_InternalSerialize(extendee, start_field_number, |
| end_field_number, output->Cur(), |
| output->EpsCopy())); |
| } |
| |
| // Same as SerializeWithCachedSizes, but without any bounds checking. |
| // The caller must ensure that target has sufficient capacity for the |
| // serialized extensions. |
| // |
| // Returns a pointer past the last written byte. |
| uint8_t* _InternalSerialize(const MessageLite* extendee, |
| int start_field_number, int end_field_number, |
| uint8_t* target, |
| io::EpsCopyOutputStream* stream) const { |
| if (flat_size_ == 0) { |
| assert(!is_large()); |
| return target; |
| } |
| return _InternalSerializeImpl(extendee, start_field_number, |
| end_field_number, target, stream); |
| } |
| |
| // Same as _InternalSerialize, but do not verify the range of field numbers. |
| uint8_t* _InternalSerializeAll(const MessageLite* extendee, uint8_t* target, |
| io::EpsCopyOutputStream* stream) const { |
| if (flat_size_ == 0) { |
| assert(!is_large()); |
| return target; |
| } |
| return _InternalSerializeAllImpl(extendee, target, stream); |
| } |
| |
| // Like above but serializes in MessageSet format. |
| void SerializeMessageSetWithCachedSizes(const MessageLite* extendee, |
| io::CodedOutputStream* output) const { |
| output->SetCur(InternalSerializeMessageSetWithCachedSizesToArray( |
| extendee, output->Cur(), output->EpsCopy())); |
| } |
| uint8_t* InternalSerializeMessageSetWithCachedSizesToArray( |
| const MessageLite* extendee, uint8_t* target, |
| io::EpsCopyOutputStream* stream) const; |
| |
| // For backward-compatibility, versions of two of the above methods that |
| // serialize deterministically iff SetDefaultSerializationDeterministic() |
| // has been called. |
| uint8_t* SerializeWithCachedSizesToArray(int start_field_number, |
| int end_field_number, |
| uint8_t* target) const; |
| uint8_t* SerializeMessageSetWithCachedSizesToArray( |
| const MessageLite* extendee, uint8_t* target) const; |
| |
| // Returns the total serialized size of all the extensions. |
| size_t ByteSize() const; |
| |
| // Like ByteSize() but uses MessageSet format. |
| size_t MessageSetByteSize() const; |
| |
| // Returns (an estimate of) the total number of bytes used for storing the |
| // extensions in memory, excluding sizeof(*this). If the ExtensionSet is |
| // for a lite message (and thus possibly contains lite messages), the results |
| // are undefined (might work, might crash, might corrupt data, might not even |
| // be linked in). It's up to the protocol compiler to avoid calling this on |
| // such ExtensionSets (easy enough since lite messages don't implement |
| // SpaceUsed()). |
| size_t SpaceUsedExcludingSelfLong() const; |
| |
| // This method just calls SpaceUsedExcludingSelfLong() but it can not be |
| // inlined because the definition of SpaceUsedExcludingSelfLong() is not |
| // included in lite runtime and when an inline method refers to it MSVC |
| // will complain about unresolved symbols when building the lite runtime |
| // as .dll. |
| int SpaceUsedExcludingSelf() const; |
| |
| static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) { |
| return PROTOBUF_FIELD_OFFSET(ExtensionSet, arena_); |
| } |
| |
| private: |
| template <typename Type> |
| friend class PrimitiveTypeTraits; |
| |
| template <typename Type> |
| friend class RepeatedPrimitiveTypeTraits; |
| |
| template <typename Type> |
| friend class EnumTypeTraits; |
| |
| template <typename Type> |
| friend class RepeatedEnumTypeTraits; |
| |
| friend class google::protobuf::Reflection; |
| friend class google::protobuf::internal::ReflectionVisit; |
| friend struct google::protobuf::internal::DynamicExtensionInfoHelper; |
| friend class google::protobuf::internal::WireFormat; |
| friend class google::protobuf::internal::v2::TableDriven; |
| |
| friend void internal::InitializeLazyExtensionSet(); |
| |
| static bool FieldTypeIsPointer(FieldType type); |
| |
| const int32_t& GetRefInt32(int number, const int32_t& default_value) const; |
| const int64_t& GetRefInt64(int number, const int64_t& default_value) const; |
| const uint32_t& GetRefUInt32(int number, const uint32_t& default_value) const; |
| const uint64_t& GetRefUInt64(int number, const uint64_t& default_value) const; |
| const float& GetRefFloat(int number, const float& default_value) const; |
| const double& GetRefDouble(int number, const double& default_value) const; |
| const bool& GetRefBool(int number, const bool& default_value) const; |
| const int& GetRefEnum(int number, const int& default_value) const; |
| const int32_t& GetRefRepeatedInt32(int number, int index) const; |
| const int64_t& GetRefRepeatedInt64(int number, int index) const; |
| const uint32_t& GetRefRepeatedUInt32(int number, int index) const; |
| const uint64_t& GetRefRepeatedUInt64(int number, int index) const; |
| const float& GetRefRepeatedFloat(int number, int index) const; |
| const double& GetRefRepeatedDouble(int number, int index) const; |
| const bool& GetRefRepeatedBool(int number, int index) const; |
| const int& GetRefRepeatedEnum(int number, int index) const; |
| |
| size_t GetMessageByteSizeLong(int number) const; |
| uint8_t* InternalSerializeMessage(int number, const MessageLite* prototype, |
| uint8_t* target, |
| io::EpsCopyOutputStream* stream) const; |
| |
| // Implementation of _InternalSerialize for non-empty map_. |
| uint8_t* _InternalSerializeImpl(const MessageLite* extendee, |
| int start_field_number, int end_field_number, |
| uint8_t* target, |
| io::EpsCopyOutputStream* stream) const; |
| // Implementation of _InternalSerializeAll for non-empty map_. |
| uint8_t* _InternalSerializeAllImpl(const MessageLite* extendee, |
| uint8_t* target, |
| io::EpsCopyOutputStream* stream) const; |
| // Implementation of _InternalSerialize for large map_. |
| // Extracted as a separate method to avoid inlining and to reuse in |
| // _InternalSerializeAllImpl. |
| uint8_t* _InternalSerializeImplLarge(const MessageLite* extendee, |
| int start_field_number, |
| int end_field_number, uint8_t* target, |
| io::EpsCopyOutputStream* stream) const; |
| // Interface of a lazily parsed singular message extension. |
| class PROTOBUF_EXPORT LazyMessageExtension { |
| public: |
| LazyMessageExtension() = default; |
| LazyMessageExtension(const LazyMessageExtension&) = delete; |
| LazyMessageExtension& operator=(const LazyMessageExtension&) = delete; |
| virtual ~LazyMessageExtension() = default; |
| |
| virtual LazyMessageExtension* New(Arena* arena) const = 0; |
| virtual const MessageLite& GetMessage(const MessageLite& prototype, |
| Arena* arena) const = 0; |
| virtual const MessageLite& GetMessageIgnoreUnparsed( |
| const MessageLite& prototype, Arena* arena) const = 0; |
| virtual MessageLite* MutableMessage(const MessageLite& prototype, |
| Arena* arena) = 0; |
| virtual void SetAllocatedMessage(MessageLite* message, Arena* arena) = 0; |
| virtual void UnsafeArenaSetAllocatedMessage(MessageLite* message, |
| Arena* arena) = 0; |
| [[nodiscard]] virtual MessageLite* ReleaseMessage( |
| const MessageLite& prototype, Arena* arena) = 0; |
| virtual MessageLite* UnsafeArenaReleaseMessage(const MessageLite& prototype, |
| Arena* arena) = 0; |
| |
| virtual bool IsInitialized(const MessageLite* prototype, |
| Arena* arena) const = 0; |
| virtual bool IsEagerSerializeSafe(const MessageLite* prototype, |
| Arena* arena) const = 0; |
| |
| [[deprecated("Please use ByteSizeLong() instead")]] virtual int ByteSize() |
| const { |
| return internal::ToIntSize(ByteSizeLong()); |
| } |
| virtual size_t ByteSizeLong() const = 0; |
| virtual size_t SpaceUsedLong() const = 0; |
| |
| virtual std::variant<size_t, const MessageLite*> UnparsedSizeOrMessage() |
| const = 0; |
| |
| virtual void MergeFrom(const MessageLite* prototype, |
| const LazyMessageExtension& other, Arena* arena, |
| Arena* other_arena) = 0; |
| virtual void MergeFromMessage(const MessageLite& msg, Arena* arena) = 0; |
| virtual void Clear() = 0; |
| |
| virtual const char* _InternalParse(const MessageLite& prototype, |
| Arena* arena, const char* ptr, |
| ParseContext* ctx) = 0; |
| virtual uint8_t* WriteMessageToArray( |
| const MessageLite* prototype, int number, uint8_t* target, |
| io::EpsCopyOutputStream* stream) const = 0; |
| |
| private: |
| virtual void UnusedKeyMethod(); // Dummy key method to avoid weak vtable. |
| }; |
| // Give access to function defined below to see LazyMessageExtension. |
| static LazyMessageExtension* MaybeCreateLazyExtensionImpl(Arena* arena); |
| static LazyMessageExtension* MaybeCreateLazyExtension(Arena* arena) { |
| auto* f = maybe_create_lazy_extension_.load(std::memory_order_relaxed); |
| return f != nullptr ? f(arena) : nullptr; |
| } |
| static std::atomic<LazyMessageExtension* (*)(Arena* arena)> |
| maybe_create_lazy_extension_; |
| |
| // We can't directly use std::atomic for Extension::cached_size because |
| // Extension needs to be trivially copyable. |
| class TrivialAtomicInt { |
| public: |
| int operator()() const { |
| return reinterpret_cast<const AtomicT*>(int_)->load( |
| std::memory_order_relaxed); |
| } |
| void set(int v) { |
| reinterpret_cast<AtomicT*>(int_)->store(v, std::memory_order_relaxed); |
| } |
| |
| private: |
| using AtomicT = std::atomic<int>; |
| alignas(AtomicT) char int_[sizeof(AtomicT)]; |
| }; |
| |
| struct Extension { |
| // Some helper methods for operations on a single Extension. |
| uint8_t* InternalSerializeFieldWithCachedSizesToArray( |
| const MessageLite* extendee, const ExtensionSet* extension_set, |
| int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; |
| uint8_t* InternalSerializeMessageSetItemWithCachedSizesToArray( |
| const MessageLite* extendee, const ExtensionSet* extension_set, |
| int number, uint8_t* target, io::EpsCopyOutputStream* stream) const; |
| size_t ByteSize(int number) const; |
| size_t MessageSetItemByteSize(int number) const; |
| void Clear(); |
| int GetSize() const; |
| void Free(); |
| size_t SpaceUsedExcludingSelfLong() const; |
| bool IsInitialized(const ExtensionSet* ext_set, const MessageLite* extendee, |
| int number, Arena* arena) const; |
| const void* PrefetchPtr() const { |
| ABSL_DCHECK_EQ(is_pointer, is_repeated || FieldTypeIsPointer(type)); |
| // We don't want to prefetch invalid/null pointers so if there isn't a |
| // pointer to prefetch, then return `this`. |
| return is_pointer ? absl::bit_cast<const void*>(ptr) : this; |
| } |
| |
| // The order of these fields packs Extension into 24 bytes when using 8 |
| // byte alignment. Consider this when adding or removing fields here. |
| |
| // We need a separate named union for pointer values to allow for |
| // prefetching the pointer without undefined behavior. |
| union Pointer { |
| std::string* string_value; |
| MessageLite* message_value; |
| LazyMessageExtension* lazymessage_value; |
| |
| RepeatedField<int32_t>* repeated_int32_t_value; |
| RepeatedField<int64_t>* repeated_int64_t_value; |
| RepeatedField<uint32_t>* repeated_uint32_t_value; |
| RepeatedField<uint64_t>* repeated_uint64_t_value; |
| RepeatedField<float>* repeated_float_value; |
| RepeatedField<double>* repeated_double_value; |
| RepeatedField<bool>* repeated_bool_value; |
| RepeatedField<int>* repeated_enum_value; |
| RepeatedPtrField<std::string>* repeated_string_value; |
| RepeatedPtrField<MessageLite>* repeated_message_value; |
| }; |
| |
| union { |
| int32_t int32_t_value; |
| int64_t int64_t_value; |
| uint32_t uint32_t_value; |
| uint64_t uint64_t_value; |
| float float_value; |
| double double_value; |
| bool bool_value; |
| int enum_value; |
| Pointer ptr; |
| }; |
| |
| FieldType type; |
| bool is_repeated; |
| |
| // Whether the extension is a pointer. This is used for prefetching. |
| bool is_pointer : 1; |
| |
| // For singular types, indicates if the extension is "cleared". This |
| // happens when an extension is set and then later cleared by the caller. |
| // We want to keep the Extension object around for reuse, so instead of |
| // removing it from the map, we just set is_cleared = true. This has no |
| // meaning for repeated types; for those, the size of the RepeatedField |
| // simply becomes zero when cleared. |
| bool is_cleared : 1; |
| |
| // For singular message types, indicates whether lazy parsing is enabled |
| // for this extension. This field is only valid when type == TYPE_MESSAGE |
| // and !is_repeated because we only support lazy parsing for singular |
| // message types currently. If is_lazy = true, the extension is stored in |
| // lazymessage_value. Otherwise, the extension will be message_value. |
| bool is_lazy : 1; |
| |
| // For repeated types, this indicates if the [packed=true] option is set. |
| bool is_packed; |
| |
| // For packed fields, the size of the packed data is recorded here when |
| // ByteSize() is called then used during serialization. |
| mutable TrivialAtomicInt cached_size; |
| |
| // The descriptor for this extension, if one exists and is known. May be |
| // nullptr. Must not be nullptr if the descriptor for the extension does |
| // not live in the same pool as the descriptor for the containing type. |
| const FieldDescriptor* descriptor; |
| }; |
| |
| // The Extension struct is small enough to be passed by value so we use it |
| // directly as the value type in mappings rather than use pointers. We use |
| // sorted maps rather than hash-maps because we expect most ExtensionSets will |
| // only contain a small number of extensions, and we want AppendToList and |
| // deterministic serialization to order fields by field number. In flat mode, |
| // the number of elements is small enough that linear search is faster than |
| // binary search. |
| |
| struct KeyValue { |
| int first; |
| Extension second; |
| }; |
| |
| using LargeMap = absl::btree_map<int, Extension>; |
| |
| // Wrapper API that switches between flat-map and LargeMap. |
| |
| // Finds a key (if present) in the ExtensionSet. |
| const Extension* FindOrNull(int key) const; |
| Extension* FindOrNull(int key); |
| |
| // Helper-functions that only inspect the LargeMap. |
| const Extension* FindOrNullInLargeMap(int key) const; |
| Extension* FindOrNullInLargeMap(int key); |
| |
| // Inserts a new (key, Extension) into the ExtensionSet (and returns true), or |
| // finds the already-existing Extension for that key (returns false). |
| // The Extension* will point to the new-or-found Extension. |
| std::pair<Extension*, bool> Insert(int key); |
| |
| // Grows the flat_capacity_. |
| // If flat_capacity_ > kMaximumFlatCapacity, converts to LargeMap. |
| void GrowCapacity(size_t minimum_new_capacity); |
| static constexpr uint16_t kMaximumFlatCapacity = 256; |
| bool is_large() const { return static_cast<int16_t>(flat_size_) < 0; } |
| |
| // Removes a key from the ExtensionSet. |
| void Erase(int key); |
| |
| size_t Size() const { |
| return ABSL_PREDICT_FALSE(is_large()) ? map_.large->size() : flat_size_; |
| } |
| |
| // For use as `PrefetchFunctor`s in `ForEach`. |
| struct Prefetch { |
| void operator()(const void* ptr) const { absl::PrefetchToLocalCache(ptr); } |
| }; |
| struct PrefetchNta { |
| void operator()(const void* ptr) const { |
| absl::PrefetchToLocalCacheNta(ptr); |
| } |
| }; |
| |
| template <typename Iterator, typename KeyValueFunctor, |
| typename PrefetchFunctor> |
| static void ForEachPrefetchImpl(Iterator it, Iterator end, |
| KeyValueFunctor func, |
| PrefetchFunctor prefetch_func) { |
| // Note: based on arena's ChunkList::Cleanup(). |
| // Prefetch distance 16 performs better than 8 in load tests. |
| constexpr int kPrefetchDistance = 16; |
| Iterator prefetch = it; |
| // Prefetch the first kPrefetchDistance extensions. |
| for (int i = 0; prefetch != end && i < kPrefetchDistance; ++prefetch, ++i) { |
| prefetch_func(prefetch->second.PrefetchPtr()); |
| } |
| // For the middle extensions, call func and then prefetch the extension |
| // kPrefetchDistance after the current one. |
| for (; prefetch != end; ++it, ++prefetch) { |
| func(it->first, it->second); |
| prefetch_func(prefetch->second.PrefetchPtr()); |
| } |
| // Call func on the rest without prefetching. |
| for (; it != end; ++it) func(it->first, it->second); |
| } |
| |
| // Similar to std::for_each, but returning void. |
| // Each Iterator is decomposed into ->first and ->second fields, so |
| // that the KeyValueFunctor can be agnostic vis-a-vis KeyValue-vs-std::pair. |
| // Applies a functor to the <int, Extension&> pairs in sorted order and |
| // prefetches ahead. |
| template <typename KeyValueFunctor, typename PrefetchFunctor> |
| void ForEach(KeyValueFunctor func, PrefetchFunctor prefetch_func) { |
| if (ABSL_PREDICT_FALSE(is_large())) { |
| ForEachPrefetchImpl(map_.large->begin(), map_.large->end(), |
| std::move(func), std::move(prefetch_func)); |
| return; |
| } |
| ForEachPrefetchImpl(flat_begin(), flat_end(), std::move(func), |
| std::move(prefetch_func)); |
| } |
| // As above, but const. |
| template <typename KeyValueFunctor, typename PrefetchFunctor> |
| void ForEach(KeyValueFunctor func, PrefetchFunctor prefetch_func) const { |
| if (ABSL_PREDICT_FALSE(is_large())) { |
| ForEachPrefetchImpl(map_.large->begin(), map_.large->end(), |
| std::move(func), std::move(prefetch_func)); |
| return; |
| } |
| ForEachPrefetchImpl(flat_begin(), flat_end(), std::move(func), |
| std::move(prefetch_func)); |
| } |
| |
| // As above, but without prefetching. This is for use in cases where we never |
| // use the pointed-to extension values in `func`. |
| template <typename Iterator, typename KeyValueFunctor> |
| static void ForEachNoPrefetch(Iterator begin, Iterator end, |
| KeyValueFunctor func) { |
| for (Iterator it = begin; it != end; ++it) func(it->first, it->second); |
| } |
| |
| // Applies a functor to the <int, Extension&> pairs in sorted order. |
| template <typename KeyValueFunctor> |
| void ForEachNoPrefetch(KeyValueFunctor func) { |
| if (ABSL_PREDICT_FALSE(is_large())) { |
| ForEachNoPrefetch(map_.large->begin(), map_.large->end(), |
| std::move(func)); |
| return; |
| } |
| ForEachNoPrefetch(flat_begin(), flat_end(), std::move(func)); |
| } |
| |
| // As above, but const. |
| template <typename KeyValueFunctor> |
| void ForEachNoPrefetch(KeyValueFunctor func) const { |
| if (ABSL_PREDICT_FALSE(is_large())) { |
| ForEachNoPrefetch(map_.large->begin(), map_.large->end(), |
| std::move(func)); |
| return; |
| } |
| ForEachNoPrefetch(flat_begin(), flat_end(), std::move(func)); |
| } |
| |
| // Merges existing Extension from other_extension |
| void InternalExtensionMergeFrom(const MessageLite* extendee, int number, |
| const Extension& other_extension, |
| Arena* other_arena); |
| |
| inline static bool is_packable(WireFormatLite::WireType type) { |
| switch (type) { |
| case WireFormatLite::WIRETYPE_VARINT: |
| case WireFormatLite::WIRETYPE_FIXED64: |
| case WireFormatLite::WIRETYPE_FIXED32: |
| return true; |
| case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: |
| case WireFormatLite::WIRETYPE_START_GROUP: |
| case WireFormatLite::WIRETYPE_END_GROUP: |
| return false; |
| |
| // Do not add a default statement. Let the compiler complain when |
| // someone |
| // adds a new wire type. |
| } |
| Unreachable(); // switch handles all possible enum values |
| return false; |
| } |
| |
| // Returns true and fills field_number and extension if extension is found. |
| // Note to support packed repeated field compatibility, it also fills whether |
| // the tag on wire is packed, which can be different from |
| // extension->is_packed (whether packed=true is specified). |
| template <typename ExtensionFinder> |
| bool FindExtensionInfoFromTag(uint32_t tag, ExtensionFinder* extension_finder, |
| int* field_number, ExtensionInfo* extension, |
| bool* was_packed_on_wire) { |
| *field_number = WireFormatLite::GetTagFieldNumber(tag); |
| WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag); |
| return FindExtensionInfoFromFieldNumber(wire_type, *field_number, |
| extension_finder, extension, |
| was_packed_on_wire); |
| } |
| |
| // Returns true and fills extension if extension is found. |
| // Note to support packed repeated field compatibility, it also fills whether |
| // the tag on wire is packed, which can be different from |
| // extension->is_packed (whether packed=true is specified). |
| template <typename ExtensionFinder> |
| bool FindExtensionInfoFromFieldNumber(int wire_type, int field_number, |
| ExtensionFinder* extension_finder, |
| ExtensionInfo* extension, |
| bool* was_packed_on_wire) const { |
| if (!extension_finder->Find(field_number, extension)) { |
| return false; |
| } |
| |
| ABSL_DCHECK(extension->type > 0 && |
| extension->type <= WireFormatLite::MAX_FIELD_TYPE); |
| auto real_type = static_cast<WireFormatLite::FieldType>(extension->type); |
| |
| WireFormatLite::WireType expected_wire_type = |
| WireFormatLite::WireTypeForFieldType(real_type); |
| |
| // Check if this is a packed field. |
| *was_packed_on_wire = false; |
| if (extension->is_repeated && |
| wire_type == WireFormatLite::WIRETYPE_LENGTH_DELIMITED && |
| is_packable(expected_wire_type)) { |
| *was_packed_on_wire = true; |
| return true; |
| } |
| // Otherwise the wire type must match. |
| return expected_wire_type == wire_type; |
| } |
| |
| // Find the prototype for a LazyMessage from the extension registry. Returns |
| // null if the extension is not found. |
| const MessageLite* GetPrototypeForLazyMessage(const MessageLite* extendee, |
| int number) const; |
| |
| // Returns true if extension is present and lazy. |
| bool HasLazy(int number) const; |
| |
| // Gets the extension with the given number, creating it if it does not |
| // already exist. Returns true if the extension did not already exist. |
| bool MaybeNewExtension(int number, const FieldDescriptor* descriptor, |
| Extension** result); |
| |
| // Gets the repeated extension for the given descriptor, creating it if |
| // it does not exist. |
| Extension* MaybeNewRepeatedExtension(const FieldDescriptor* descriptor); |
| |
| bool FindExtension(int wire_type, uint32_t field, const MessageLite* extendee, |
| const internal::ParseContext* /*ctx*/, |
| ExtensionInfo* extension, bool* was_packed_on_wire) { |
| GeneratedExtensionFinder finder(extendee); |
| return FindExtensionInfoFromFieldNumber(wire_type, field, &finder, |
| extension, was_packed_on_wire); |
| } |
| inline bool FindExtension(int wire_type, uint32_t field, |
| const Message* extendee, |
| const internal::ParseContext* ctx, |
| ExtensionInfo* extension, bool* was_packed_on_wire); |
| // Used for MessageSet only |
| const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, |
| const MessageLite* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx) { |
| // Lite MessageSet doesn't implement lazy. |
| return ParseField(tag, ptr, extendee, metadata, ctx); |
| } |
| const char* ParseFieldMaybeLazily(uint64_t tag, const char* ptr, |
| const Message* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx); |
| const char* ParseMessageSetItem(const char* ptr, const MessageLite* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx); |
| const char* ParseMessageSetItem(const char* ptr, const Message* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx); |
| |
| // Implemented in extension_set_inl.h to keep code out of the header file. |
| template <typename T> |
| const char* ParseFieldWithExtensionInfo(int number, bool was_packed_on_wire, |
| const ExtensionInfo& info, |
| internal::InternalMetadata* metadata, |
| const char* ptr, |
| internal::ParseContext* ctx); |
| template <typename Msg, typename T> |
| const char* ParseMessageSetItemTmpl(const char* ptr, const Msg* extendee, |
| internal::InternalMetadata* metadata, |
| internal::ParseContext* ctx); |
| |
| // Hack: RepeatedPtrFieldBase declares ExtensionSet as a friend. This |
| // friendship should automatically extend to ExtensionSet::Extension, but |
| // unfortunately some older compilers (e.g. GCC 3.4.4) do not implement this |
| // correctly. So, we must provide helpers for calling methods of that |
| // class. |
| |
| // Defined in extension_set_heavy.cc. |
| static inline size_t RepeatedMessage_SpaceUsedExcludingSelfLong( |
| RepeatedPtrFieldBase* field); |
| |
| KeyValue* flat_begin() { |
| assert(!is_large()); |
| return map_.flat; |
| } |
| const KeyValue* flat_begin() const { |
| assert(!is_large()); |
| return map_.flat; |
| } |
| KeyValue* flat_end() { |
| assert(!is_large()); |
| return map_.flat + flat_size_; |
| } |
| const KeyValue* flat_end() const { |
| assert(!is_large()); |
| return map_.flat + flat_size_; |
| } |
| |
| Arena* arena_; |
| |
| // Manual memory-management: |
| // map_.flat is an allocated array of flat_capacity_ elements. |
| // [map_.flat, map_.flat + flat_size_) is the currently-in-use prefix. |
| uint16_t flat_capacity_; |
| uint16_t flat_size_; // negative int16_t(flat_size_) indicates is_large() |
| union AllocatedData { |
| KeyValue* flat; |
| |
| // If flat_capacity_ > kMaximumFlatCapacity, switch to LargeMap, |
| // which guarantees O(n lg n) CPU but larger constant factors. |
| LargeMap* large; |
| } map_; |
| |
| static void DeleteFlatMap(const KeyValue* flat, uint16_t flat_capacity); |
| }; |
| |
| constexpr ExtensionSet::ExtensionSet(Arena* arena) |
| : arena_(arena), flat_capacity_(0), flat_size_(0), map_{nullptr} {} |
| |
| // These are just for convenience... |
| inline void ExtensionSet::SetString(int number, FieldType type, |
| std::string value, |
| const FieldDescriptor* descriptor) { |
| MutableString(number, type, descriptor)->assign(std::move(value)); |
| } |
| inline void ExtensionSet::SetRepeatedString(int number, int index, |
| std::string value) { |
| MutableRepeatedString(number, index)->assign(std::move(value)); |
| } |
| inline void ExtensionSet::AddString(int number, FieldType type, |
| std::string value, |
| const FieldDescriptor* descriptor) { |
| AddString(number, type, descriptor)->assign(std::move(value)); |
| } |
| // =================================================================== |
| // Glue for generated extension accessors |
| |
| // ------------------------------------------------------------------- |
| // Template magic |
| |
| // First we have a set of classes representing "type traits" for different |
| // field types. A type traits class knows how to implement basic accessors |
| // for extensions of a particular type given an ExtensionSet. The signature |
| // for a type traits class looks like this: |
| // |
| // class TypeTraits { |
| // public: |
| // typedef ? ConstType; |
| // typedef ? MutableType; |
| // // TypeTraits for singular fields and repeated fields will define the |
| // // symbol "Singular" or "Repeated" respectively. These two symbols will |
| // // be used in extension accessors to distinguish between singular |
| // // extensions and repeated extensions. If the TypeTraits for the passed |
| // // in extension doesn't have the expected symbol defined, it means the |
| // // user is passing a repeated extension to a singular accessor, or the |
| // // opposite. In that case the C++ compiler will generate an error |
| // // message "no matching member function" to inform the user. |
| // typedef ? Singular |
| // typedef ? Repeated |
| // |
| // static inline ConstType Get(int number, const ExtensionSet& set); |
| // static inline void Set(int number, ConstType value, ExtensionSet* set); |
| // static inline MutableType Mutable(int number, ExtensionSet* set); |
| // |
| // // Variants for repeated fields. |
| // static inline ConstType Get(int number, const ExtensionSet& set, |
| // int index); |
| // static inline void Set(int number, int index, |
| // ConstType value, ExtensionSet* set); |
| // static inline MutableType Mutable(int number, int index, |
| // ExtensionSet* set); |
| // static inline void Add(int number, ConstType value, ExtensionSet* set); |
| // static inline MutableType Add(int number, ExtensionSet* set); |
| // This is used by the ExtensionIdentifier constructor to register |
| // the extension at dynamic initialization. |
| // }; |
| // |
| // Not all of these methods make sense for all field types. For example, the |
| // "Mutable" methods only make sense for strings and messages, and the |
| // repeated methods only make sense for repeated types. So, each type |
| // traits class implements only the set of methods from this signature that it |
| // actually supports. This will cause a compiler error if the user tries to |
| // access an extension using a method that doesn't make sense for its type. |
| // For example, if "foo" is an extension of type "optional int32", then if you |
| // try to write code like: |
| // my_message.MutableExtension(foo) |
| // you will get a compile error because PrimitiveTypeTraits<int32_t> does not |
| // have a "Mutable()" method. |
| |
| // ------------------------------------------------------------------- |
| // PrimitiveTypeTraits |
| |
| // Since the ExtensionSet has different methods for each primitive type, |
| // we must explicitly define the methods of the type traits class for each |
| // known type. |
| template <typename Type> |
| class PrimitiveTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| using InitType = ConstType; |
| static const ConstType& FromInitType(const InitType& v) { return v; } |
| typedef PrimitiveTypeTraits<Type> Singular; |
| static constexpr bool kLifetimeBound = false; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, |
| ConstType default_value); |
| |
| static inline const ConstType* GetPtr(int number, const ExtensionSet& set, |
| const ConstType& default_value); |
| static inline void Set(int number, FieldType field_type, ConstType value, |
| ExtensionSet* set); |
| }; |
| |
| template <typename Type> |
| class RepeatedPrimitiveTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| using InitType = ConstType; |
| static const ConstType& FromInitType(const InitType& v) { return v; } |
| typedef RepeatedPrimitiveTypeTraits<Type> Repeated; |
| static constexpr bool kLifetimeBound = false; |
| |
| typedef RepeatedField<Type> RepeatedFieldType; |
| |
| static inline Type Get(int number, const ExtensionSet& set, int index); |
| static inline const Type* GetPtr(int number, const ExtensionSet& set, |
| int index); |
| static inline const RepeatedField<ConstType>* GetRepeatedPtr( |
| int number, const ExtensionSet& set); |
| static inline void Set(int number, int index, Type value, ExtensionSet* set); |
| static inline void Add(int number, FieldType field_type, bool is_packed, |
| Type value, ExtensionSet* set); |
| |
| static inline const RepeatedField<ConstType>& GetRepeated( |
| int number, const ExtensionSet& set); |
| static inline RepeatedField<Type>* MutableRepeated(int number, |
| FieldType field_type, |
| bool is_packed, |
| ExtensionSet* set); |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField(); |
| }; |
| |
| class PROTOBUF_EXPORT RepeatedPrimitiveDefaults { |
| private: |
| template <typename Type> |
| friend class RepeatedPrimitiveTypeTraits; |
| static const RepeatedPrimitiveDefaults* default_instance(); |
| RepeatedField<int32_t> default_repeated_field_int32_t_; |
| RepeatedField<int64_t> default_repeated_field_int64_t_; |
| RepeatedField<uint32_t> default_repeated_field_uint32_t_; |
| RepeatedField<uint64_t> default_repeated_field_uint64_t_; |
| RepeatedField<double> default_repeated_field_double_; |
| RepeatedField<float> default_repeated_field_float_; |
| RepeatedField<bool> default_repeated_field_bool_; |
| }; |
| |
| #define PROTOBUF_DEFINE_PRIMITIVE_TYPE(TYPE, METHOD) \ |
| template <> \ |
| inline TYPE PrimitiveTypeTraits<TYPE>::Get( \ |
| int number, const ExtensionSet& set, TYPE default_value) { \ |
| return set.Get##METHOD(number, default_value); \ |
| } \ |
| template <> \ |
| inline const TYPE* PrimitiveTypeTraits<TYPE>::GetPtr( \ |
| int number, const ExtensionSet& set, const TYPE& default_value) { \ |
| return &set.GetRef##METHOD(number, default_value); \ |
| } \ |
| template <> \ |
| inline void PrimitiveTypeTraits<TYPE>::Set(int number, FieldType field_type, \ |
| TYPE value, ExtensionSet* set) { \ |
| set->Set##METHOD(number, field_type, value, nullptr); \ |
| } \ |
| \ |
| template <> \ |
| inline TYPE RepeatedPrimitiveTypeTraits<TYPE>::Get( \ |
| int number, const ExtensionSet& set, int index) { \ |
| return set.GetRepeated##METHOD(number, index); \ |
| } \ |
| template <> \ |
| inline const TYPE* RepeatedPrimitiveTypeTraits<TYPE>::GetPtr( \ |
| int number, const ExtensionSet& set, int index) { \ |
| return &set.GetRefRepeated##METHOD(number, index); \ |
| } \ |
| template <> \ |
| inline void RepeatedPrimitiveTypeTraits<TYPE>::Set( \ |
| int number, int index, TYPE value, ExtensionSet* set) { \ |
| set->SetRepeated##METHOD(number, index, value); \ |
| } \ |
| template <> \ |
| inline void RepeatedPrimitiveTypeTraits<TYPE>::Add( \ |
| int number, FieldType field_type, bool is_packed, TYPE value, \ |
| ExtensionSet* set) { \ |
| set->Add##METHOD(number, field_type, is_packed, value, nullptr); \ |
| } \ |
| template <> \ |
| inline const RepeatedField<TYPE>* \ |
| RepeatedPrimitiveTypeTraits<TYPE>::GetDefaultRepeatedField() { \ |
| return &RepeatedPrimitiveDefaults::default_instance() \ |
| ->default_repeated_field_##TYPE##_; \ |
| } \ |
| template <> \ |
| inline const RepeatedField<TYPE>& \ |
| RepeatedPrimitiveTypeTraits<TYPE>::GetRepeated(int number, \ |
| const ExtensionSet& set) { \ |
| return *reinterpret_cast<const RepeatedField<TYPE>*>( \ |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); \ |
| } \ |
| template <> \ |
| inline const RepeatedField<TYPE>* \ |
| RepeatedPrimitiveTypeTraits<TYPE>::GetRepeatedPtr(int number, \ |
| const ExtensionSet& set) { \ |
| return &GetRepeated(number, set); \ |
| } \ |
| template <> \ |
| inline RepeatedField<TYPE>* \ |
| RepeatedPrimitiveTypeTraits<TYPE>::MutableRepeated( \ |
| int number, FieldType field_type, bool is_packed, ExtensionSet* set) { \ |
| return reinterpret_cast<RepeatedField<TYPE>*>( \ |
| set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); \ |
| } |
| |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(int32_t, Int32) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(int64_t, Int64) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint32_t, UInt32) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(uint64_t, UInt64) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(float, Float) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(double, Double) |
| PROTOBUF_DEFINE_PRIMITIVE_TYPE(bool, Bool) |
| |
| #undef PROTOBUF_DEFINE_PRIMITIVE_TYPE |
| |
| // ------------------------------------------------------------------- |
| // StringTypeTraits |
| |
| // Strings support both Set() and Mutable(). |
| class PROTOBUF_EXPORT StringTypeTraits { |
| public: |
| typedef const std::string& ConstType; |
| typedef std::string* MutableType; |
| using InitType = ConstType; |
| static ConstType FromInitType(InitType v) { return v; } |
| typedef StringTypeTraits Singular; |
| static constexpr bool kLifetimeBound = true; |
| |
| static inline const std::string& Get(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return set.GetString(number, default_value); |
| } |
| static inline const std::string* GetPtr(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return &Get(number, set, default_value); |
| } |
| static inline void Set(int number, FieldType field_type, |
| const std::string& value, ExtensionSet* set) { |
| set->SetString(number, field_type, value, nullptr); |
| } |
| static inline std::string* Mutable(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return set->MutableString(number, field_type, nullptr); |
| } |
| }; |
| |
| class PROTOBUF_EXPORT RepeatedStringTypeTraits { |
| public: |
| typedef const std::string& ConstType; |
| typedef std::string* MutableType; |
| using InitType = ConstType; |
| static ConstType FromInitType(InitType v) { return v; } |
| typedef RepeatedStringTypeTraits Repeated; |
| static constexpr bool kLifetimeBound = true; |
| |
| typedef RepeatedPtrField<std::string> RepeatedFieldType; |
| |
| static inline const std::string& Get(int number, const ExtensionSet& set, |
| int index) { |
| return set.GetRepeatedString(number, index); |
| } |
| static inline const std::string* GetPtr(int number, const ExtensionSet& set, |
| int index) { |
| return &Get(number, set, index); |
| } |
| static inline const RepeatedPtrField<std::string>* GetRepeatedPtr( |
| int number, const ExtensionSet& set) { |
| return &GetRepeated(number, set); |
| } |
| static inline void Set(int number, int index, const std::string& value, |
| ExtensionSet* set) { |
| set->SetRepeatedString(number, index, value); |
| } |
| static inline std::string* Mutable(int number, int index, ExtensionSet* set) { |
| return set->MutableRepeatedString(number, index); |
| } |
| static inline void Add(int number, FieldType field_type, bool /*is_packed*/, |
| const std::string& value, ExtensionSet* set) { |
| set->AddString(number, field_type, value, nullptr); |
| } |
| static inline std::string* Add(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return set->AddString(number, field_type, nullptr); |
| } |
| static inline const RepeatedPtrField<std::string>& GetRepeated( |
| int number, const ExtensionSet& set) { |
| return *reinterpret_cast<const RepeatedPtrField<std::string>*>( |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
| } |
| |
| static inline RepeatedPtrField<std::string>* MutableRepeated( |
| int number, FieldType field_type, bool is_packed, ExtensionSet* set) { |
| return reinterpret_cast<RepeatedPtrField<std::string>*>( |
| set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); |
| } |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField(); |
| |
| private: |
| static void InitializeDefaultRepeatedFields(); |
| static void DestroyDefaultRepeatedFields(); |
| }; |
| |
| // ------------------------------------------------------------------- |
| // EnumTypeTraits |
| |
| // ExtensionSet represents enums using integers internally, so we have to |
| // static_cast around. |
| template <typename Type> |
| class EnumTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| using InitType = ConstType; |
| static const ConstType& FromInitType(const InitType& v) { return v; } |
| typedef EnumTypeTraits<Type> Singular; |
| static constexpr bool kLifetimeBound = false; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return static_cast<Type>(set.GetEnum(number, default_value)); |
| } |
| static inline const ConstType* GetPtr(int number, const ExtensionSet& set, |
| const ConstType& default_value) { |
| return reinterpret_cast<const Type*>( |
| &set.GetRefEnum(number, default_value)); |
| } |
| static inline void Set(int number, FieldType field_type, ConstType value, |
| ExtensionSet* set) { |
| ABSL_DCHECK( |
| internal::ValidateEnum(value, EnumTraits<Type>::validation_data())); |
| set->SetEnum(number, field_type, value, nullptr); |
| } |
| }; |
| |
| template <typename Type> |
| class RepeatedEnumTypeTraits { |
| public: |
| typedef Type ConstType; |
| typedef Type MutableType; |
| using InitType = ConstType; |
| static const ConstType& FromInitType(const InitType& v) { return v; } |
| typedef RepeatedEnumTypeTraits<Type> Repeated; |
| static constexpr bool kLifetimeBound = false; |
| |
| typedef RepeatedField<Type> RepeatedFieldType; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
| return static_cast<Type>(set.GetRepeatedEnum(number, index)); |
| } |
| static inline const ConstType* GetPtr(int number, const ExtensionSet& set, |
| int index) { |
| return reinterpret_cast<const Type*>( |
| &set.GetRefRepeatedEnum(number, index)); |
| } |
| static inline void Set(int number, int index, ConstType value, |
| ExtensionSet* set) { |
| ABSL_DCHECK( |
| internal::ValidateEnum(value, EnumTraits<Type>::validation_data())); |
| set->SetRepeatedEnum(number, index, value); |
| } |
| static inline void Add(int number, FieldType field_type, bool is_packed, |
| ConstType value, ExtensionSet* set) { |
| ABSL_DCHECK( |
| internal::ValidateEnum(value, EnumTraits<Type>::validation_data())); |
| set->AddEnum(number, field_type, is_packed, value, nullptr); |
| } |
| static inline const RepeatedField<Type>& GetRepeated( |
| int number, const ExtensionSet& set) { |
| // Hack: the `Extension` struct stores a RepeatedField<int> for enums. |
| // RepeatedField<int> cannot implicitly convert to RepeatedField<EnumType> |
| // so we need to do some casting magic. See message.h for similar |
| // contortions for non-extension fields. |
| return *reinterpret_cast<const RepeatedField<Type>*>( |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
| } |
| static inline const RepeatedField<Type>* GetRepeatedPtr( |
| int number, const ExtensionSet& set) { |
| return &GetRepeated(number, set); |
| } |
| static inline RepeatedField<Type>* MutableRepeated(int number, |
| FieldType field_type, |
| bool is_packed, |
| ExtensionSet* set) { |
| return reinterpret_cast<RepeatedField<Type>*>( |
| set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); |
| } |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField() { |
| // Hack: as noted above, repeated enum fields are internally stored as a |
| // RepeatedField<int>. We need to be able to instantiate global static |
| // objects to return as default (empty) repeated fields on non-existent |
| // extensions. We would not be able to know a-priori all of the enum types |
| // (values of |Type|) to instantiate all of these, so we just re-use |
| // int32_t's default repeated field object. |
| return reinterpret_cast<const RepeatedField<Type>*>( |
| RepeatedPrimitiveTypeTraits<int32_t>::GetDefaultRepeatedField()); |
| } |
| }; |
| |
| // ------------------------------------------------------------------- |
| // MessageTypeTraits |
| |
| // ExtensionSet guarantees that when manipulating extensions with message |
| // types, the implementation used will be the compiled-in class representing |
| // that type. So, we can static_cast down to the exact type we expect. |
| template <typename Type> |
| class MessageTypeTraits { |
| public: |
| typedef const Type& ConstType; |
| typedef Type* MutableType; |
| using InitType = const void*; |
| static ConstType FromInitType(InitType v) { |
| return *static_cast<const Type*>(v); |
| } |
| typedef MessageTypeTraits<Type> Singular; |
| static constexpr bool kLifetimeBound = true; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, |
| ConstType default_value) { |
| return static_cast<const Type&>(set.GetMessage(number, default_value)); |
| } |
| static inline std::nullptr_t GetPtr(int /* number */, |
| const ExtensionSet& /* set */, |
| ConstType /* default_value */) { |
| // Cannot be implemented because of forward declared messages? |
| return nullptr; |
| } |
| static inline MutableType Mutable(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return static_cast<Type*>(set->MutableMessage( |
| number, field_type, Type::default_instance(), nullptr)); |
| } |
| static inline void SetAllocated(int number, FieldType field_type, |
| MutableType message, ExtensionSet* set) { |
| set->SetAllocatedMessage(number, field_type, nullptr, message); |
| } |
| static inline void UnsafeArenaSetAllocated(int number, FieldType field_type, |
| MutableType message, |
| ExtensionSet* set) { |
| set->UnsafeArenaSetAllocatedMessage(number, field_type, nullptr, message); |
| } |
| [[nodiscard]] static inline MutableType Release(int number, |
| FieldType /* field_type */, |
| ExtensionSet* set) { |
| return static_cast<Type*>( |
| set->ReleaseMessage(number, Type::default_instance())); |
| } |
| static inline MutableType UnsafeArenaRelease(int number, |
| FieldType /* field_type */, |
| ExtensionSet* set) { |
| return static_cast<Type*>( |
| set->UnsafeArenaReleaseMessage(number, Type::default_instance())); |
| } |
| }; |
| |
| // Used by WireFormatVerify to extract the verify function from the registry. |
| LazyEagerVerifyFnType FindExtensionLazyEagerVerifyFn( |
| const MessageLite* extendee, int number); |
| |
| // forward declaration. |
| class RepeatedMessageGenericTypeTraits; |
| |
| template <typename Type> |
| class RepeatedMessageTypeTraits { |
| public: |
| typedef const Type& ConstType; |
| typedef Type* MutableType; |
| using InitType = const void*; |
| static ConstType FromInitType(InitType v) { |
| return *static_cast<const Type*>(v); |
| } |
| typedef RepeatedMessageTypeTraits<Type> Repeated; |
| static constexpr bool kLifetimeBound = true; |
| |
| typedef RepeatedPtrField<Type> RepeatedFieldType; |
| |
| static inline ConstType Get(int number, const ExtensionSet& set, int index) { |
| return static_cast<const Type&>(set.GetRepeatedMessage(number, index)); |
| } |
| static inline std::nullptr_t GetPtr(int /* number */, |
| const ExtensionSet& /* set */, |
| int /* index */) { |
| // Cannot be implemented because of forward declared messages? |
| return nullptr; |
| } |
| static inline std::nullptr_t GetRepeatedPtr(int /* number */, |
| const ExtensionSet& /* set */) { |
| // Cannot be implemented because of forward declared messages? |
| return nullptr; |
| } |
| static inline MutableType Mutable(int number, int index, ExtensionSet* set) { |
| return static_cast<Type*>(set->MutableRepeatedMessage(number, index)); |
| } |
| static inline MutableType Add(int number, FieldType field_type, |
| ExtensionSet* set) { |
| return static_cast<Type*>( |
| set->AddMessage(number, field_type, Type::default_instance(), nullptr)); |
| } |
| static inline const RepeatedPtrField<Type>& GetRepeated( |
| int number, const ExtensionSet& set) { |
| // See notes above in RepeatedEnumTypeTraits::GetRepeated(): same |
| // casting hack applies here, because a RepeatedPtrField<MessageLite> |
| // cannot naturally become a RepeatedPtrType<Type> even though Type is |
| // presumably a message. google::protobuf::Message goes through similar contortions |
| // with a reinterpret_cast<>. |
| return *reinterpret_cast<const RepeatedPtrField<Type>*>( |
| set.GetRawRepeatedField(number, GetDefaultRepeatedField())); |
| } |
| static inline RepeatedPtrField<Type>* MutableRepeated(int number, |
| FieldType field_type, |
| bool is_packed, |
| ExtensionSet* set) { |
| return reinterpret_cast<RepeatedPtrField<Type>*>( |
| set->MutableRawRepeatedField(number, field_type, is_packed, nullptr)); |
| } |
| |
| static const RepeatedFieldType* GetDefaultRepeatedField(); |
| }; |
| |
| template <typename Type> |
| inline const typename RepeatedMessageTypeTraits<Type>::RepeatedFieldType* |
| RepeatedMessageTypeTraits<Type>::GetDefaultRepeatedField() { |
| static auto instance = OnShutdownDelete(new RepeatedFieldType); |
| return instance; |
| } |
| |
| // ------------------------------------------------------------------- |
| // ExtensionIdentifier |
| |
| // This is the type of actual extension objects. E.g. if you have: |
| // extend Foo { |
| // optional int32 bar = 1234; |
| // } |
| // then "bar" will be defined in C++ as: |
| // ExtensionIdentifier<Foo, PrimitiveTypeTraits<int32_t>, 5, false> bar(1234); |
| // |
| // Note that we could, in theory, supply the field number as a template |
| // parameter, and thus make an instance of ExtensionIdentifier have no |
| // actual contents. However, if we did that, then using an extension |
| // identifier would not necessarily cause the compiler to output any sort |
| // of reference to any symbol defined in the extension's .pb.o file. Some |
| // linkers will actually drop object files that are not explicitly referenced, |
| // but that would be bad because it would cause this extension to not be |
| // registered at static initialization, and therefore using it would crash. |
| |
| template <typename ExtendeeType, typename TypeTraitsType, FieldType field_type, |
| bool is_packed> |
| class ExtensionIdentifier { |
| public: |
| typedef TypeTraitsType TypeTraits; |
| typedef ExtendeeType Extendee; |
| |
| constexpr ExtensionIdentifier(int number, |
| typename TypeTraits::InitType default_value) |
| : number_(number), default_value_(default_value) {} |
| |
| inline int number() const { return number_; } |
| typename TypeTraits::ConstType default_value() const { |
| return TypeTraits::FromInitType(default_value_); |
| } |
| |
| typename TypeTraits::ConstType const& default_value_ref() const { |
| return TypeTraits::FromInitType(default_value_); |
| } |
| |
| private: |
| const int number_; |
| typename TypeTraits::InitType default_value_; |
| }; |
| |
| // ------------------------------------------------------------------- |
| // Generated accessors |
| |
| |
| } // namespace internal |
| |
| // Call this function to ensure that this extensions's reflection is linked into |
| // the binary: |
| // |
| // google::protobuf::LinkExtensionReflection(Foo::my_extension); |
| // |
| // This will ensure that the following lookup will succeed: |
| // |
| // DescriptorPool::generated_pool()->FindExtensionByName("Foo.my_extension"); |
| // |
| // This is often relevant for parsing extensions in text mode. |
| // |
| // As a side-effect, it will also guarantee that anything else from the same |
| // .proto file will also be available for lookup in the generated pool. |
| // |
| // This function does not actually register the extension, so it does not need |
| // to be called before the lookup. However it does need to occur in a function |
| // that cannot be stripped from the binary (ie. it must be reachable from main). |
| // |
| // Best practice is to call this function as close as possible to where the |
| // reflection is actually needed. This function is very cheap to call, so you |
| // should not need to worry about its runtime overhead except in tight loops (on |
| // x86-64 it compiles into two "mov" instructions). |
| template <typename ExtendeeType, typename TypeTraitsType, |
| internal::FieldType field_type, bool is_packed> |
| void LinkExtensionReflection( |
| const google::protobuf::internal::ExtensionIdentifier< |
| ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { |
| internal::StrongReference(extension); |
| } |
| |
| // Returns the field descriptor for a generated extension identifier. This is |
| // useful when doing reflection over generated extensions. |
| template <typename ExtendeeType, typename TypeTraitsType, |
| internal::FieldType field_type, bool is_packed, |
| typename PoolType = DescriptorPool> |
| const FieldDescriptor* GetExtensionReflection( |
| const google::protobuf::internal::ExtensionIdentifier< |
| ExtendeeType, TypeTraitsType, field_type, is_packed>& extension) { |
| return PoolType::generated_pool()->FindExtensionByNumber( |
| google::protobuf::internal::ExtensionIdentifier<ExtendeeType, TypeTraitsType, |
| field_type, |
| is_packed>::Extendee::descriptor(), |
| extension.number()); |
| } |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #include "google/protobuf/port_undef.inc" |
| |
| #endif // GOOGLE_PROTOBUF_EXTENSION_SET_H__ |