| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| // Author: kenton@google.com (Kenton Varda) |
| // Based on original Protocol Buffers design by |
| // Sanjay Ghemawat, Jeff Dean, and others. |
| // |
| // TODO: Improve this unittest to bring it up to the standards of |
| // other proto2 unittests. |
| |
| #include "google/protobuf/repeated_field.h" |
| |
| #include <algorithm> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstdlib> |
| #include <cstring> |
| #include <iterator> |
| #include <limits> |
| #include <list> |
| #include <sstream> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| #include <vector> |
| |
| #include <gmock/gmock.h> |
| #include <gtest/gtest.h> |
| #include "absl/base/config.h" |
| #include "absl/numeric/bits.h" |
| #include "absl/strings/cord.h" |
| #include "absl/types/span.h" |
| #include "google/protobuf/arena_test_util.h" |
| #include "google/protobuf/internal_visibility_for_testing.h" |
| #include "google/protobuf/io/coded_stream.h" |
| #include "google/protobuf/io/zero_copy_stream_impl_lite.h" |
| #include "google/protobuf/parse_context.h" |
| #include "google/protobuf/port.h" |
| // TODO: Remove. |
| #include "google/protobuf/repeated_ptr_field.h" |
| #include "google/protobuf/unittest.pb.h" |
| |
| |
| // Must be included last. |
| #include "google/protobuf/port_def.inc" |
| |
| namespace google { |
| namespace protobuf { |
| namespace { |
| |
| using ::protobuf_unittest::TestAllTypes; |
| using ::testing::A; |
| using ::testing::AllOf; |
| using ::testing::ElementsAre; |
| using ::testing::Ge; |
| using ::testing::Le; |
| |
| TEST(RepeatedFieldIterator, Traits) { |
| using It = RepeatedField<absl::Cord>::iterator; |
| EXPECT_TRUE((std::is_same<It::value_type, absl::Cord>::value)); |
| EXPECT_TRUE((std::is_same<It::reference, absl::Cord&>::value)); |
| EXPECT_TRUE((std::is_same<It::pointer, absl::Cord*>::value)); |
| EXPECT_TRUE((std::is_same<It::difference_type, std::ptrdiff_t>::value)); |
| EXPECT_TRUE((std::is_same<It::iterator_category, |
| std::random_access_iterator_tag>::value)); |
| #if __cplusplus >= 202002L |
| EXPECT_TRUE(( |
| std::is_same<It::iterator_concept, std::contiguous_iterator_tag>::value)); |
| #else |
| EXPECT_TRUE((std::is_same<It::iterator_concept, |
| std::random_access_iterator_tag>::value)); |
| #endif |
| } |
| |
| TEST(ConstRepeatedFieldIterator, Traits) { |
| using It = RepeatedField<absl::Cord>::const_iterator; |
| EXPECT_TRUE((std::is_same<It::value_type, absl::Cord>::value)); |
| EXPECT_TRUE((std::is_same<It::reference, const absl::Cord&>::value)); |
| EXPECT_TRUE((std::is_same<It::pointer, const absl::Cord*>::value)); |
| EXPECT_TRUE((std::is_same<It::difference_type, std::ptrdiff_t>::value)); |
| EXPECT_TRUE((std::is_same<It::iterator_category, |
| std::random_access_iterator_tag>::value)); |
| #if __cplusplus >= 202002L |
| EXPECT_TRUE(( |
| std::is_same<It::iterator_concept, std::contiguous_iterator_tag>::value)); |
| #else |
| EXPECT_TRUE((std::is_same<It::iterator_concept, |
| std::random_access_iterator_tag>::value)); |
| #endif |
| } |
| |
| TEST(RepeatedField, ConstInit) { |
| PROTOBUF_CONSTINIT static RepeatedField<int> field{}; // NOLINT |
| EXPECT_TRUE(field.empty()); |
| } |
| |
| // Test operations on a small RepeatedField. |
| TEST(RepeatedField, Small) { |
| RepeatedField<int> field; |
| |
| EXPECT_TRUE(field.empty()); |
| EXPECT_EQ(field.size(), 0); |
| |
| field.Add(5); |
| |
| EXPECT_FALSE(field.empty()); |
| EXPECT_EQ(field.size(), 1); |
| EXPECT_EQ(field.Get(0), 5); |
| EXPECT_EQ(field.at(0), 5); |
| |
| field.Add(42); |
| |
| EXPECT_FALSE(field.empty()); |
| EXPECT_EQ(field.size(), 2); |
| EXPECT_EQ(field.Get(0), 5); |
| EXPECT_EQ(field.at(0), 5); |
| EXPECT_EQ(field.Get(1), 42); |
| EXPECT_EQ(field.at(1), 42); |
| |
| field.Set(1, 23); |
| |
| EXPECT_FALSE(field.empty()); |
| EXPECT_EQ(field.size(), 2); |
| EXPECT_EQ(field.Get(0), 5); |
| EXPECT_EQ(field.at(0), 5); |
| EXPECT_EQ(field.Get(1), 23); |
| EXPECT_EQ(field.at(1), 23); |
| |
| field.at(1) = 25; |
| |
| EXPECT_FALSE(field.empty()); |
| EXPECT_EQ(field.size(), 2); |
| EXPECT_EQ(field.Get(0), 5); |
| EXPECT_EQ(field.at(0), 5); |
| EXPECT_EQ(field.Get(1), 25); |
| EXPECT_EQ(field.at(1), 25); |
| |
| field.RemoveLast(); |
| |
| EXPECT_FALSE(field.empty()); |
| EXPECT_EQ(field.size(), 1); |
| EXPECT_EQ(field.Get(0), 5); |
| EXPECT_EQ(field.at(0), 5); |
| |
| field.Clear(); |
| |
| EXPECT_TRUE(field.empty()); |
| EXPECT_EQ(field.size(), 0); |
| if (sizeof(void*) == 8) { |
| // Usage should be 0 because this should fit in SOO space. |
| EXPECT_EQ(field.SpaceUsedExcludingSelf(), 0); |
| } |
| } |
| |
| |
| // Test operations on a RepeatedField which is large enough to allocate a |
| // separate array. |
| TEST(RepeatedField, Large) { |
| RepeatedField<int> field; |
| |
| for (int i = 0; i < 16; i++) { |
| field.Add(i * i); |
| } |
| |
| EXPECT_FALSE(field.empty()); |
| EXPECT_EQ(field.size(), 16); |
| |
| for (int i = 0; i < 16; i++) { |
| EXPECT_EQ(field.Get(i), i * i); |
| } |
| |
| int expected_usage = 16 * sizeof(int); |
| EXPECT_GE(field.SpaceUsedExcludingSelf(), expected_usage); |
| } |
| |
| template <typename Rep> |
| void CheckAllocationSizes() { |
| using T = typename Rep::value_type; |
| // Use a large initial block to make the checks below easier to predict. |
| std::string buf(1 << 20, 0); |
| |
| Arena arena(&buf[0], buf.size()); |
| auto* rep = Arena::Create<Rep>(&arena); |
| size_t prev = arena.SpaceUsed(); |
| |
| for (int i = 0; i < 100; ++i) { |
| rep->Add(T{}); |
| if (sizeof(void*) == 8) { |
| size_t new_used = arena.SpaceUsed(); |
| size_t last_alloc = new_used - prev; |
| prev = new_used; |
| |
| // When we actually allocated something, check the size. |
| if (last_alloc != 0) { |
| // Must be `>= 16`, as expected by the Arena. |
| ASSERT_GE(last_alloc, 16); |
| // Must be of a power of two. |
| size_t log2 = absl::bit_width(last_alloc) - 1; |
| ASSERT_EQ((1 << log2), last_alloc); |
| } |
| |
| // The byte size must be a multiple of 8 when not SOO. |
| const int capacity_bytes = rep->Capacity() * sizeof(T); |
| if (capacity_bytes > internal::kSooCapacityBytes) { |
| ASSERT_EQ(capacity_bytes % 8, 0); |
| } |
| } |
| } |
| } |
| |
| TEST(RepeatedField, ArenaAllocationSizesMatchExpectedValues) { |
| // RepeatedField guarantees that in 64-bit mode we never allocate anything |
| // smaller than 16 bytes from an arena. |
| // This is important to avoid a branch in the reallocation path. |
| // This is also important because allocating anything less would be wasting |
| // memory. |
| // If the allocation size is wrong, ReturnArrayMemory will ABSL_DCHECK. |
| EXPECT_NO_FATAL_FAILURE(CheckAllocationSizes<RepeatedField<bool>>()); |
| EXPECT_NO_FATAL_FAILURE(CheckAllocationSizes<RepeatedField<uint32_t>>()); |
| EXPECT_NO_FATAL_FAILURE(CheckAllocationSizes<RepeatedField<uint64_t>>()); |
| EXPECT_NO_FATAL_FAILURE(CheckAllocationSizes<RepeatedField<absl::Cord>>()); |
| } |
| |
| TEST(RepeatedField, NaturalGrowthOnArenasReuseBlocks) { |
| Arena arena; |
| std::vector<RepeatedField<int>*> values; |
| |
| static constexpr int kNumFields = 100; |
| static constexpr int kNumElems = 1000; |
| for (int i = 0; i < kNumFields; ++i) { |
| values.push_back(Arena::Create<RepeatedField<int>>(&arena)); |
| auto& field = *values.back(); |
| for (int j = 0; j < kNumElems; ++j) { |
| field.Add(j); |
| } |
| } |
| |
| size_t expected = values.size() * values[0]->Capacity() * sizeof(int); |
| // Use a 2% slack for other overhead. If we were not reusing the blocks, the |
| // actual value would be ~2x the expected. |
| EXPECT_THAT(arena.SpaceUsed(), AllOf(Ge(expected), Le(1.02 * expected))); |
| } |
| |
| // Test swapping between various types of RepeatedFields. |
| TEST(RepeatedField, SwapSmallSmall) { |
| RepeatedField<int> field1; |
| RepeatedField<int> field2; |
| |
| field1.Add(5); |
| field1.Add(42); |
| |
| EXPECT_FALSE(field1.empty()); |
| EXPECT_EQ(field1.size(), 2); |
| EXPECT_EQ(field1.Get(0), 5); |
| EXPECT_EQ(field1.Get(1), 42); |
| |
| EXPECT_TRUE(field2.empty()); |
| EXPECT_EQ(field2.size(), 0); |
| |
| field1.Swap(&field2); |
| |
| EXPECT_TRUE(field1.empty()); |
| EXPECT_EQ(field1.size(), 0); |
| |
| EXPECT_FALSE(field2.empty()); |
| EXPECT_EQ(field2.size(), 2); |
| EXPECT_EQ(field2.Get(0), 5); |
| EXPECT_EQ(field2.Get(1), 42); |
| } |
| |
| TEST(RepeatedField, SwapLargeSmall) { |
| RepeatedField<int> field1; |
| RepeatedField<int> field2; |
| |
| for (int i = 0; i < 16; i++) { |
| field1.Add(i * i); |
| } |
| field2.Add(5); |
| field2.Add(42); |
| field1.Swap(&field2); |
| |
| EXPECT_EQ(field1.size(), 2); |
| EXPECT_EQ(field1.Get(0), 5); |
| EXPECT_EQ(field1.Get(1), 42); |
| EXPECT_EQ(field2.size(), 16); |
| for (int i = 0; i < 16; i++) { |
| EXPECT_EQ(field2.Get(i), i * i); |
| } |
| } |
| |
| TEST(RepeatedField, SwapLargeLarge) { |
| RepeatedField<int> field1; |
| RepeatedField<int> field2; |
| |
| field1.Add(5); |
| field1.Add(42); |
| for (int i = 0; i < 16; i++) { |
| field1.Add(i); |
| field2.Add(i * i); |
| } |
| field2.Swap(&field1); |
| |
| EXPECT_EQ(field1.size(), 16); |
| for (int i = 0; i < 16; i++) { |
| EXPECT_EQ(field1.Get(i), i * i); |
| } |
| EXPECT_EQ(field2.size(), 18); |
| EXPECT_EQ(field2.Get(0), 5); |
| EXPECT_EQ(field2.Get(1), 42); |
| for (int i = 2; i < 18; i++) { |
| EXPECT_EQ(field2.Get(i), i - 2); |
| } |
| } |
| |
| template <int kSize> |
| void TestMemswap() { |
| SCOPED_TRACE(kSize); |
| |
| const auto a_char = [](int i) -> char { return (i % ('z' - 'a')) + 'a'; }; |
| const auto b_char = [](int i) -> char { return (i % ('Z' - 'A')) + 'A'; }; |
| std::string a, b; |
| for (int i = 0; i < kSize; ++i) { |
| a += a_char(i); |
| b += b_char(i); |
| } |
| // We will not swap these. |
| a += '+'; |
| b += '-'; |
| |
| std::string expected_a = b, expected_b = a; |
| expected_a.back() = '+'; |
| expected_b.back() = '-'; |
| |
| internal::memswap<kSize>(&a[0], &b[0]); |
| |
| // ODR use the functions in a way that forces the linker to keep them. That |
| // way we can see their generated code. |
| volatile auto odr_use_for_asm_dump = &internal::memswap<kSize>; |
| (void)odr_use_for_asm_dump; |
| |
| EXPECT_EQ(expected_a, a); |
| EXPECT_EQ(expected_b, b); |
| } |
| |
| TEST(Memswap, VerifyWithSmallAndLargeSizes) { |
| // Arbitrary sizes |
| TestMemswap<0>(); |
| TestMemswap<1>(); |
| TestMemswap<10>(); |
| TestMemswap<100>(); |
| TestMemswap<1000>(); |
| TestMemswap<10000>(); |
| TestMemswap<100000>(); |
| TestMemswap<1000000>(); |
| |
| // Pointer aligned sizes |
| TestMemswap<sizeof(void*) * 1>(); |
| TestMemswap<sizeof(void*) * 7>(); |
| TestMemswap<sizeof(void*) * 17>(); |
| TestMemswap<sizeof(void*) * 27>(); |
| |
| // Test also just the block size and no leftover. |
| TestMemswap<64 * 1>(); |
| TestMemswap<64 * 2>(); |
| TestMemswap<64 * 3>(); |
| TestMemswap<64 * 4>(); |
| } |
| |
| // Determines how much space was reserved by the given field by adding elements |
| // to it until it re-allocates its space. |
| static int ReservedSpace(RepeatedField<int>* field) { |
| const int* ptr = field->data(); |
| do { |
| field->Add(0); |
| } while (field->data() == ptr); |
| |
| return field->size() - 1; |
| } |
| |
| TEST(RepeatedField, ReserveMoreThanDouble) { |
| // Reserve more than double the previous space in the field and expect the |
| // field to reserve exactly the amount specified. |
| RepeatedField<int> field; |
| field.Reserve(20); |
| |
| EXPECT_LE(20, ReservedSpace(&field)); |
| } |
| |
| TEST(RepeatedField, ReserveLessThanDouble) { |
| // Reserve less than double the previous space in the field and expect the |
| // field to grow by double instead. |
| RepeatedField<int> field; |
| field.Reserve(20); |
| int capacity = field.Capacity(); |
| field.Reserve(capacity * 1.5); |
| |
| EXPECT_LE(2 * capacity, ReservedSpace(&field)); |
| } |
| |
| TEST(RepeatedField, ReserveLessThanExisting) { |
| // Reserve less than the previous space in the field and expect the |
| // field to not re-allocate at all. |
| RepeatedField<int> field; |
| field.Reserve(20); |
| const int* previous_ptr = field.data(); |
| field.Reserve(10); |
| |
| EXPECT_EQ(previous_ptr, field.data()); |
| EXPECT_LE(20, ReservedSpace(&field)); |
| } |
| |
| TEST(RepeatedField, Resize) { |
| RepeatedField<int> field; |
| field.Resize(2, 1); |
| EXPECT_EQ(2, field.size()); |
| field.Resize(5, 2); |
| EXPECT_EQ(5, field.size()); |
| field.Resize(4, 3); |
| ASSERT_EQ(4, field.size()); |
| EXPECT_EQ(1, field.Get(0)); |
| EXPECT_EQ(1, field.Get(1)); |
| EXPECT_EQ(2, field.Get(2)); |
| EXPECT_EQ(2, field.Get(3)); |
| field.Resize(0, 4); |
| EXPECT_TRUE(field.empty()); |
| } |
| |
| TEST(RepeatedField, ReserveLowerClamp) { |
| int clamped_value = internal::CalculateReserveSize<bool, sizeof(void*)>(0, 1); |
| EXPECT_GE(clamped_value, sizeof(void*) / sizeof(bool)); |
| EXPECT_EQ((internal::RepeatedFieldLowerClampLimit<bool, sizeof(void*)>()), |
| clamped_value); |
| // EXPECT_EQ(clamped_value, (internal::CalculateReserveSize<bool, |
| // sizeof(void*)>( clamped_value, 2))); |
| |
| clamped_value = internal::CalculateReserveSize<int, sizeof(void*)>(0, 1); |
| EXPECT_GE(clamped_value, sizeof(void*) / sizeof(int)); |
| EXPECT_EQ((internal::RepeatedFieldLowerClampLimit<int, sizeof(void*)>()), |
| clamped_value); |
| // EXPECT_EQ(clamped_value, (internal::CalculateReserveSize<int, |
| // sizeof(void*)>( clamped_value, 2))); |
| } |
| |
| TEST(RepeatedField, ReserveGrowth) { |
| // Make sure the field capacity doubles in size on repeated reservation. |
| for (int size = internal::RepeatedFieldLowerClampLimit<int, sizeof(void*)>(), |
| i = 0; |
| i < 4; ++i) { |
| int next = |
| sizeof(Arena*) >= sizeof(int) |
| ? |
| // for small enough elements, we double number of total bytes |
| ((2 * (size * sizeof(int) + sizeof(Arena*))) - sizeof(Arena*)) / |
| sizeof(int) |
| : |
| // we just double the number of elements if too large size. |
| size * 2; |
| EXPECT_EQ(next, (internal::CalculateReserveSize<int, sizeof(void*)>( |
| size, size + 1))); |
| size = next; |
| } |
| } |
| |
| TEST(RepeatedField, ReserveLarge) { |
| const int old_size = 10; |
| // This is a size we won't get by doubling: |
| const int new_size = old_size * 3 + 1; |
| |
| // Reserving more than 2x current capacity should grow directly to that size. |
| EXPECT_EQ(new_size, (internal::CalculateReserveSize<int, sizeof(void*)>( |
| old_size, new_size))); |
| } |
| |
| TEST(RepeatedField, ReserveHuge) { |
| if (internal::HasAnySanitizer()) { |
| GTEST_SKIP() << "Disabled because sanitizer is active"; |
| } |
| // Largest value that does not clamp to the large limit: |
| constexpr int non_clamping_limit = |
| (std::numeric_limits<int>::max() - sizeof(Arena*)) / 2; |
| ASSERT_LT(2 * non_clamping_limit, std::numeric_limits<int>::max()); |
| EXPECT_LT((internal::CalculateReserveSize<int, sizeof(void*)>( |
| non_clamping_limit, non_clamping_limit + 1)), |
| std::numeric_limits<int>::max()); |
| |
| // Smallest size that *will* clamp to the upper limit: |
| constexpr int min_clamping_size = std::numeric_limits<int>::max() / 2 + 1; |
| EXPECT_EQ((internal::CalculateReserveSize<int, sizeof(void*)>( |
| min_clamping_size, min_clamping_size + 1)), |
| std::numeric_limits<int>::max()); |
| |
| #ifdef PROTOBUF_TEST_ALLOW_LARGE_ALLOC |
| // The rest of this test may allocate several GB of memory, so it is only |
| // built if explicitly requested. |
| RepeatedField<int> huge_field; |
| |
| // Reserve a size for huge_field that will clamp. |
| huge_field.Reserve(min_clamping_size); |
| EXPECT_GE(huge_field.Capacity(), min_clamping_size); |
| ASSERT_LT(huge_field.Capacity(), std::numeric_limits<int>::max() - 1); |
| |
| // The array containing all the fields is, in theory, up to MAXINT-1 in size. |
| // However, some compilers can't handle a struct whose size is larger |
| // than 2GB, and the protocol buffer format doesn't handle more than 2GB of |
| // data at once, either. So we limit it, but the code below accesses beyond |
| // that limit. |
| |
| // Allocation may return more memory than we requested. However, the updated |
| // size must still be clamped to a valid range. |
| huge_field.Reserve(huge_field.Capacity() + 1); |
| EXPECT_EQ(huge_field.Capacity(), std::numeric_limits<int>::max()); |
| #endif // PROTOBUF_TEST_ALLOW_LARGE_ALLOC |
| } |
| |
| TEST(RepeatedField, MergeFrom) { |
| RepeatedField<int> source, destination; |
| source.Add(4); |
| source.Add(5); |
| destination.Add(1); |
| destination.Add(2); |
| destination.Add(3); |
| |
| destination.MergeFrom(source); |
| |
| ASSERT_EQ(5, destination.size()); |
| EXPECT_EQ(1, destination.Get(0)); |
| EXPECT_EQ(2, destination.Get(1)); |
| EXPECT_EQ(3, destination.Get(2)); |
| EXPECT_EQ(4, destination.Get(3)); |
| EXPECT_EQ(5, destination.Get(4)); |
| } |
| |
| |
| TEST(RepeatedField, CopyFrom) { |
| RepeatedField<int> source, destination; |
| source.Add(4); |
| source.Add(5); |
| destination.Add(1); |
| destination.Add(2); |
| destination.Add(3); |
| |
| destination.CopyFrom(source); |
| |
| ASSERT_EQ(2, destination.size()); |
| EXPECT_EQ(4, destination.Get(0)); |
| EXPECT_EQ(5, destination.Get(1)); |
| } |
| |
| TEST(RepeatedField, CopyFromSelf) { |
| RepeatedField<int> me; |
| me.Add(3); |
| me.CopyFrom(me); |
| ASSERT_EQ(1, me.size()); |
| EXPECT_EQ(3, me.Get(0)); |
| } |
| |
| TEST(RepeatedField, Erase) { |
| RepeatedField<int> me; |
| RepeatedField<int>::iterator it = me.erase(me.begin(), me.end()); |
| EXPECT_TRUE(me.begin() == it); |
| EXPECT_EQ(0, me.size()); |
| |
| me.Add(1); |
| me.Add(2); |
| me.Add(3); |
| it = me.erase(me.begin(), me.end()); |
| EXPECT_TRUE(me.begin() == it); |
| EXPECT_EQ(0, me.size()); |
| |
| me.Add(4); |
| me.Add(5); |
| me.Add(6); |
| it = me.erase(me.begin() + 2, me.end()); |
| EXPECT_TRUE(me.begin() + 2 == it); |
| EXPECT_EQ(2, me.size()); |
| EXPECT_EQ(4, me.Get(0)); |
| EXPECT_EQ(5, me.Get(1)); |
| |
| me.Add(6); |
| me.Add(7); |
| me.Add(8); |
| it = me.erase(me.begin() + 1, me.begin() + 3); |
| EXPECT_TRUE(me.begin() + 1 == it); |
| EXPECT_EQ(3, me.size()); |
| EXPECT_EQ(4, me.Get(0)); |
| EXPECT_EQ(7, me.Get(1)); |
| EXPECT_EQ(8, me.Get(2)); |
| } |
| |
| // Add contents of empty container to an empty field. |
| TEST(RepeatedField, AddRange1) { |
| RepeatedField<int> me; |
| std::vector<int> values; |
| |
| me.Add(values.begin(), values.end()); |
| ASSERT_EQ(me.size(), 0); |
| } |
| |
| // Add contents of container with one thing to an empty field. |
| TEST(RepeatedField, AddRange2) { |
| RepeatedField<int> me; |
| std::vector<int> values; |
| values.push_back(-1); |
| |
| me.Add(values.begin(), values.end()); |
| ASSERT_EQ(me.size(), 1); |
| ASSERT_EQ(me.Get(0), values[0]); |
| } |
| |
| // Add contents of container with more than one thing to an empty field. |
| TEST(RepeatedField, AddRange3) { |
| RepeatedField<int> me; |
| std::vector<int> values; |
| values.push_back(0); |
| values.push_back(1); |
| |
| me.Add(values.begin(), values.end()); |
| ASSERT_EQ(me.size(), 2); |
| ASSERT_EQ(me.Get(0), values[0]); |
| ASSERT_EQ(me.Get(1), values[1]); |
| } |
| |
| // Add contents of container with more than one thing to a non-empty field. |
| TEST(RepeatedField, AddRange4) { |
| RepeatedField<int> me; |
| me.Add(0); |
| me.Add(1); |
| |
| std::vector<int> values; |
| values.push_back(2); |
| values.push_back(3); |
| |
| me.Add(values.begin(), values.end()); |
| ASSERT_EQ(me.size(), 4); |
| ASSERT_EQ(me.Get(0), 0); |
| ASSERT_EQ(me.Get(1), 1); |
| ASSERT_EQ(me.Get(2), values[0]); |
| ASSERT_EQ(me.Get(3), values[1]); |
| } |
| |
| // Add contents of a stringstream in order to test code paths where there is |
| // an input iterator. |
| TEST(RepeatedField, AddRange5) { |
| RepeatedField<int> me; |
| me.Add(0); |
| |
| std::stringstream ss; |
| ss << 1 << ' ' << 2; |
| |
| me.Add(std::istream_iterator<int>(ss), std::istream_iterator<int>()); |
| ASSERT_EQ(me.size(), 3); |
| ASSERT_EQ(me.Get(0), 0); |
| ASSERT_EQ(me.Get(1), 1); |
| ASSERT_EQ(me.Get(2), 2); |
| } |
| |
| // Add contents of container with a quirky iterator like std::vector<bool> |
| TEST(RepeatedField, AddRange6) { |
| RepeatedField<bool> me; |
| me.Add(true); |
| me.Add(false); |
| |
| std::vector<bool> values; |
| values.push_back(true); |
| values.push_back(true); |
| values.push_back(false); |
| |
| me.Add(values.begin(), values.end()); |
| ASSERT_EQ(me.size(), 5); |
| ASSERT_EQ(me.Get(0), true); |
| ASSERT_EQ(me.Get(1), false); |
| ASSERT_EQ(me.Get(2), true); |
| ASSERT_EQ(me.Get(3), true); |
| ASSERT_EQ(me.Get(4), false); |
| } |
| |
| // Add contents of absl::Span which evaluates to const T on access. |
| TEST(RepeatedField, AddRange7) { |
| int ints[] = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}; |
| absl::Span<const int> span(ints); |
| auto p = span.begin(); |
| static_assert(std::is_convertible<decltype(p), const int*>::value, ""); |
| RepeatedField<int> me; |
| me.Add(span.begin(), span.end()); |
| |
| ASSERT_EQ(me.size(), 10); |
| for (int i = 0; i < 10; ++i) { |
| ASSERT_EQ(me.Get(i), i); |
| } |
| } |
| |
| TEST(RepeatedField, AddAndAssignRanges) { |
| RepeatedField<int> field; |
| |
| int vals[] = {2, 27, 2875, 609250}; |
| field.Assign(std::begin(vals), std::end(vals)); |
| |
| ASSERT_EQ(field.size(), 4); |
| EXPECT_EQ(field.Get(0), 2); |
| EXPECT_EQ(field.Get(1), 27); |
| EXPECT_EQ(field.Get(2), 2875); |
| EXPECT_EQ(field.Get(3), 609250); |
| |
| field.Add(std::begin(vals), std::end(vals)); |
| ASSERT_EQ(field.size(), 8); |
| EXPECT_EQ(field.Get(0), 2); |
| EXPECT_EQ(field.Get(1), 27); |
| EXPECT_EQ(field.Get(2), 2875); |
| EXPECT_EQ(field.Get(3), 609250); |
| EXPECT_EQ(field.Get(4), 2); |
| EXPECT_EQ(field.Get(5), 27); |
| EXPECT_EQ(field.Get(6), 2875); |
| EXPECT_EQ(field.Get(7), 609250); |
| } |
| |
| TEST(RepeatedField, CopyConstructIntegers) { |
| auto token = internal::InternalVisibilityForTesting{}; |
| using RepeatedType = RepeatedField<int>; |
| RepeatedType original; |
| original.Add(1); |
| original.Add(2); |
| |
| RepeatedType fields1(original); |
| ASSERT_EQ(2, fields1.size()); |
| EXPECT_EQ(1, fields1.Get(0)); |
| EXPECT_EQ(2, fields1.Get(1)); |
| |
| RepeatedType fields2(token, nullptr, original); |
| ASSERT_EQ(2, fields2.size()); |
| EXPECT_EQ(1, fields2.Get(0)); |
| EXPECT_EQ(2, fields2.Get(1)); |
| } |
| |
| TEST(RepeatedField, CopyConstructCords) { |
| auto token = internal::InternalVisibilityForTesting{}; |
| using RepeatedType = RepeatedField<absl::Cord>; |
| RepeatedType original; |
| original.Add(absl::Cord("hello")); |
| original.Add(absl::Cord("world and text to avoid SSO")); |
| |
| RepeatedType fields1(original); |
| ASSERT_EQ(2, fields1.size()); |
| EXPECT_EQ("hello", fields1.Get(0)); |
| EXPECT_EQ("world and text to avoid SSO", fields1.Get(1)); |
| |
| RepeatedType fields2(token, nullptr, original); |
| ASSERT_EQ(2, fields1.size()); |
| EXPECT_EQ("hello", fields1.Get(0)); |
| EXPECT_EQ("world and text to avoid SSO", fields2.Get(1)); |
| } |
| |
| TEST(RepeatedField, CopyConstructIntegersWithArena) { |
| auto token = internal::InternalVisibilityForTesting{}; |
| using RepeatedType = RepeatedField<int>; |
| RepeatedType original; |
| original.Add(1); |
| original.Add(2); |
| |
| Arena arena; |
| alignas(RepeatedType) char mem[sizeof(RepeatedType)]; |
| RepeatedType& fields1 = *new (mem) RepeatedType(token, &arena, original); |
| ASSERT_EQ(2, fields1.size()); |
| EXPECT_EQ(1, fields1.Get(0)); |
| EXPECT_EQ(2, fields1.Get(1)); |
| } |
| |
| TEST(RepeatedField, CopyConstructCordsWithArena) { |
| auto token = internal::InternalVisibilityForTesting{}; |
| using RepeatedType = RepeatedField<absl::Cord>; |
| RepeatedType original; |
| original.Add(absl::Cord("hello")); |
| original.Add(absl::Cord("world and text to avoid SSO")); |
| |
| Arena arena; |
| alignas(RepeatedType) char mem[sizeof(RepeatedType)]; |
| RepeatedType& fields1 = *new (mem) RepeatedType(token, &arena, original); |
| ASSERT_EQ(2, fields1.size()); |
| EXPECT_EQ("hello", fields1.Get(0)); |
| EXPECT_EQ("world and text to avoid SSO", fields1.Get(1)); |
| |
| // Contract requires dtor to be invoked for absl::Cord |
| fields1.~RepeatedType(); |
| } |
| |
| TEST(RepeatedField, IteratorConstruct) { |
| std::vector<int> values; |
| RepeatedField<int> empty(values.begin(), values.end()); |
| ASSERT_EQ(values.size(), empty.size()); |
| |
| values.push_back(1); |
| values.push_back(2); |
| |
| RepeatedField<int> field(values.begin(), values.end()); |
| ASSERT_EQ(values.size(), field.size()); |
| EXPECT_EQ(values[0], field.Get(0)); |
| EXPECT_EQ(values[1], field.Get(1)); |
| |
| RepeatedField<int> other(field.begin(), field.end()); |
| ASSERT_EQ(values.size(), other.size()); |
| EXPECT_EQ(values[0], other.Get(0)); |
| EXPECT_EQ(values[1], other.Get(1)); |
| } |
| |
| TEST(RepeatedField, CopyAssign) { |
| RepeatedField<int> source, destination; |
| source.Add(4); |
| source.Add(5); |
| destination.Add(1); |
| destination.Add(2); |
| destination.Add(3); |
| |
| destination = source; |
| |
| ASSERT_EQ(2, destination.size()); |
| EXPECT_EQ(4, destination.Get(0)); |
| EXPECT_EQ(5, destination.Get(1)); |
| } |
| |
| TEST(RepeatedField, SelfAssign) { |
| // Verify that assignment to self does not destroy data. |
| RepeatedField<int> source, *p; |
| p = &source; |
| source.Add(7); |
| source.Add(8); |
| |
| *p = source; |
| |
| ASSERT_EQ(2, source.size()); |
| EXPECT_EQ(7, source.Get(0)); |
| EXPECT_EQ(8, source.Get(1)); |
| } |
| |
| TEST(RepeatedField, MoveConstruct) { |
| { |
| RepeatedField<int> source; |
| source.Add(1); |
| source.Add(2); |
| RepeatedField<int> destination = std::move(source); |
| EXPECT_THAT(destination, ElementsAre(1, 2)); |
| // This property isn't guaranteed but it's useful to have a test that would |
| // catch changes in this area. |
| EXPECT_TRUE(source.empty()); |
| } |
| { |
| Arena arena; |
| RepeatedField<int>* source = Arena::Create<RepeatedField<int>>(&arena); |
| source->Add(1); |
| source->Add(2); |
| RepeatedField<int> destination = std::move(*source); |
| EXPECT_EQ(nullptr, destination.GetArena()); |
| EXPECT_THAT(destination, ElementsAre(1, 2)); |
| // This property isn't guaranteed but it's useful to have a test that would |
| // catch changes in this area. |
| EXPECT_THAT(*source, ElementsAre(1, 2)); |
| } |
| } |
| |
| TEST(RepeatedField, MoveAssign) { |
| { |
| RepeatedField<int> source; |
| source.Add(1); |
| source.Add(2); |
| RepeatedField<int> destination; |
| destination.Add(3); |
| destination = std::move(source); |
| EXPECT_THAT(destination, ElementsAre(1, 2)); |
| EXPECT_THAT(source, ElementsAre(3)); |
| } |
| { |
| Arena arena; |
| RepeatedField<int>* source = Arena::Create<RepeatedField<int>>(&arena); |
| source->Add(1); |
| source->Add(2); |
| RepeatedField<int>* destination = Arena::Create<RepeatedField<int>>(&arena); |
| destination->Add(3); |
| *destination = std::move(*source); |
| EXPECT_THAT(*destination, ElementsAre(1, 2)); |
| EXPECT_THAT(*source, ElementsAre(3)); |
| } |
| { |
| Arena source_arena; |
| RepeatedField<int>* source = |
| Arena::Create<RepeatedField<int>>(&source_arena); |
| source->Add(1); |
| source->Add(2); |
| Arena destination_arena; |
| RepeatedField<int>* destination = |
| Arena::Create<RepeatedField<int>>(&destination_arena); |
| destination->Add(3); |
| *destination = std::move(*source); |
| EXPECT_THAT(*destination, ElementsAre(1, 2)); |
| // This property isn't guaranteed but it's useful to have a test that would |
| // catch changes in this area. |
| EXPECT_THAT(*source, ElementsAre(1, 2)); |
| } |
| { |
| Arena arena; |
| RepeatedField<int>* source = Arena::Create<RepeatedField<int>>(&arena); |
| source->Add(1); |
| source->Add(2); |
| RepeatedField<int> destination; |
| destination.Add(3); |
| destination = std::move(*source); |
| EXPECT_THAT(destination, ElementsAre(1, 2)); |
| // This property isn't guaranteed but it's useful to have a test that would |
| // catch changes in this area. |
| EXPECT_THAT(*source, ElementsAre(1, 2)); |
| } |
| { |
| RepeatedField<int> source; |
| source.Add(1); |
| source.Add(2); |
| Arena arena; |
| RepeatedField<int>* destination = Arena::Create<RepeatedField<int>>(&arena); |
| destination->Add(3); |
| *destination = std::move(source); |
| EXPECT_THAT(*destination, ElementsAre(1, 2)); |
| // This property isn't guaranteed but it's useful to have a test that would |
| // catch changes in this area. |
| EXPECT_THAT(source, ElementsAre(1, 2)); |
| } |
| { |
| RepeatedField<int> field; |
| // An alias to defeat -Wself-move. |
| RepeatedField<int>& alias = field; |
| field.Add(1); |
| field.Add(2); |
| field = std::move(alias); |
| EXPECT_THAT(field, ElementsAre(1, 2)); |
| } |
| { |
| Arena arena; |
| RepeatedField<int>* field = Arena::Create<RepeatedField<int>>(&arena); |
| field->Add(1); |
| field->Add(2); |
| *field = std::move(*field); |
| EXPECT_THAT(*field, ElementsAre(1, 2)); |
| } |
| } |
| |
| TEST(RepeatedField, MutableDataIsMutable) { |
| RepeatedField<int> field; |
| field.Add(1); |
| EXPECT_EQ(1, field.Get(0)); |
| // The fact that this line compiles would be enough, but we'll check the |
| // value anyway. |
| *field.mutable_data() = 2; |
| EXPECT_EQ(2, field.Get(0)); |
| } |
| |
| TEST(RepeatedField, SubscriptOperators) { |
| RepeatedField<int> field; |
| field.Add(1); |
| EXPECT_EQ(1, field.Get(0)); |
| EXPECT_EQ(1, field[0]); |
| EXPECT_EQ(field.Mutable(0), &field[0]); |
| const RepeatedField<int>& const_field = field; |
| EXPECT_EQ(field.data(), &const_field[0]); |
| } |
| |
| TEST(RepeatedField, Truncate) { |
| RepeatedField<int> field; |
| |
| field.Add(12); |
| field.Add(34); |
| field.Add(56); |
| field.Add(78); |
| EXPECT_EQ(4, field.size()); |
| |
| field.Truncate(3); |
| EXPECT_EQ(3, field.size()); |
| |
| field.Add(90); |
| EXPECT_EQ(4, field.size()); |
| EXPECT_EQ(90, field.Get(3)); |
| |
| // Truncations that don't change the size are allowed, but growing is not |
| // allowed. |
| field.Truncate(field.size()); |
| #if GTEST_HAS_DEATH_TEST |
| EXPECT_DEBUG_DEATH(field.Truncate(field.size() + 1), "new_size"); |
| #endif |
| } |
| |
| TEST(RepeatedCordField, AddRemoveLast) { |
| RepeatedField<absl::Cord> field; |
| field.Add(absl::Cord("foo")); |
| field.RemoveLast(); |
| } |
| |
| TEST(RepeatedCordField, AddClear) { |
| RepeatedField<absl::Cord> field; |
| field.Add(absl::Cord("foo")); |
| field.Clear(); |
| } |
| |
| TEST(RepeatedCordField, Resize) { |
| RepeatedField<absl::Cord> field; |
| field.Resize(10, absl::Cord("foo")); |
| } |
| |
| TEST(RepeatedField, Cords) { |
| RepeatedField<absl::Cord> field; |
| |
| field.Add(absl::Cord("foo")); |
| field.Add(absl::Cord("bar")); |
| field.Add(absl::Cord("baz")); |
| field.Add(absl::Cord("moo")); |
| field.Add(absl::Cord("corge")); |
| |
| EXPECT_EQ("foo", std::string(field.Get(0))); |
| EXPECT_EQ("corge", std::string(field.Get(4))); |
| |
| // Test swap. Note: One of the swapped objects is using internal storage, |
| // the other is not. |
| RepeatedField<absl::Cord> field2; |
| field2.Add(absl::Cord("grault")); |
| field.Swap(&field2); |
| EXPECT_EQ(1, field.size()); |
| EXPECT_EQ("grault", std::string(field.Get(0))); |
| EXPECT_EQ(5, field2.size()); |
| EXPECT_EQ("foo", std::string(field2.Get(0))); |
| EXPECT_EQ("corge", std::string(field2.Get(4))); |
| |
| // Test SwapElements(). |
| field2.SwapElements(1, 3); |
| EXPECT_EQ("moo", std::string(field2.Get(1))); |
| EXPECT_EQ("bar", std::string(field2.Get(3))); |
| |
| // Make sure cords are cleared correctly. |
| field2.RemoveLast(); |
| EXPECT_TRUE(field2.Add()->empty()); |
| field2.Clear(); |
| EXPECT_TRUE(field2.Add()->empty()); |
| } |
| |
| TEST(RepeatedField, TruncateCords) { |
| RepeatedField<absl::Cord> field; |
| |
| field.Add(absl::Cord("foo")); |
| field.Add(absl::Cord("bar")); |
| field.Add(absl::Cord("baz")); |
| field.Add(absl::Cord("moo")); |
| EXPECT_EQ(4, field.size()); |
| |
| field.Truncate(3); |
| EXPECT_EQ(3, field.size()); |
| |
| field.Add(absl::Cord("corge")); |
| EXPECT_EQ(4, field.size()); |
| EXPECT_EQ("corge", std::string(field.Get(3))); |
| |
| // Truncating to the current size should be fine (no-op), but truncating |
| // to a larger size should crash. |
| field.Truncate(field.size()); |
| #if defined(GTEST_HAS_DEATH_TEST) && !defined(NDEBUG) |
| EXPECT_DEATH(field.Truncate(field.size() + 1), "new_size"); |
| #endif |
| } |
| |
| TEST(RepeatedField, ResizeCords) { |
| RepeatedField<absl::Cord> field; |
| field.Resize(2, absl::Cord("foo")); |
| EXPECT_EQ(2, field.size()); |
| field.Resize(5, absl::Cord("bar")); |
| EXPECT_EQ(5, field.size()); |
| field.Resize(4, absl::Cord("baz")); |
| ASSERT_EQ(4, field.size()); |
| EXPECT_EQ("foo", std::string(field.Get(0))); |
| EXPECT_EQ("foo", std::string(field.Get(1))); |
| EXPECT_EQ("bar", std::string(field.Get(2))); |
| EXPECT_EQ("bar", std::string(field.Get(3))); |
| field.Resize(0, absl::Cord("moo")); |
| EXPECT_TRUE(field.empty()); |
| } |
| |
| TEST(RepeatedField, ExtractSubrange) { |
| // Exhaustively test every subrange in arrays of all sizes from 0 through 9. |
| for (int sz = 0; sz < 10; ++sz) { |
| for (int num = 0; num <= sz; ++num) { |
| for (int start = 0; start < sz - num; ++start) { |
| // Create RepeatedField with sz elements having values 0 through sz-1. |
| RepeatedField<int32_t> field; |
| for (int i = 0; i < sz; ++i) field.Add(i); |
| EXPECT_EQ(field.size(), sz); |
| |
| // Create a catcher array and call ExtractSubrange. |
| int32_t catcher[10]; |
| for (int i = 0; i < 10; ++i) catcher[i] = -1; |
| field.ExtractSubrange(start, num, catcher); |
| |
| // Does the resulting array have the right size? |
| EXPECT_EQ(field.size(), sz - num); |
| |
| // Were the removed elements extracted into the catcher array? |
| for (int i = 0; i < num; ++i) EXPECT_EQ(catcher[i], start + i); |
| EXPECT_EQ(catcher[num], -1); |
| |
| // Does the resulting array contain the right values? |
| for (int i = 0; i < start; ++i) EXPECT_EQ(field.Get(i), i); |
| for (int i = start; i < field.size(); ++i) |
| EXPECT_EQ(field.Get(i), i + num); |
| } |
| } |
| } |
| } |
| |
| TEST(RepeatedField, TestSAddFromSelf) { |
| RepeatedField<int> field; |
| field.Add(0); |
| for (int i = 0; i < 1000; i++) { |
| field.Add(field[0]); |
| } |
| } |
| |
| // We have, or at least had bad callers that never triggered our DCHECKS |
| // Here we check we DO fail on bad Truncate calls under debug, and do nothing |
| // under opt compiles. |
| TEST(RepeatedField, HardenAgainstBadTruncate) { |
| RepeatedField<int> field; |
| for (int size = 0; size < 10; ++size) { |
| field.Truncate(size); |
| #if GTEST_HAS_DEATH_TEST |
| EXPECT_DEBUG_DEATH(field.Truncate(size + 1), "new_size <= old_size"); |
| EXPECT_DEBUG_DEATH(field.Truncate(size + 2), "new_size <= old_size"); |
| #elif defined(NDEBUG) |
| field.Truncate(size + 1); |
| field.Truncate(size + 1); |
| #endif |
| EXPECT_EQ(field.size(), size); |
| field.Add(1); |
| } |
| } |
| |
| #if defined(GTEST_HAS_DEATH_TEST) && (defined(ABSL_HAVE_ADDRESS_SANITIZER) || \ |
| defined(ABSL_HAVE_MEMORY_SANITIZER)) |
| |
| // This function verifies that the code dies under ASAN or MSAN trying to both |
| // read and write the reserved element directly beyond the last element. |
| void VerifyDeathOnWriteAndReadAccessBeyondEnd(RepeatedField<int64_t>& field) { |
| auto* end = field.Mutable(field.size() - 1) + 1; |
| #if defined(ABSL_HAVE_ADDRESS_SANITIZER) |
| EXPECT_DEATH(*end = 1, "container-overflow"); |
| EXPECT_DEATH(EXPECT_NE(*end, 1), "container-overflow"); |
| #elif defined(ABSL_HAVE_MEMORY_SANITIZER) |
| EXPECT_DEATH(EXPECT_NE(*end, 1), "use-of-uninitialized-value"); |
| #endif |
| |
| // Confirm we died a death of *SAN |
| EXPECT_EQ(field.AddAlreadyReserved(), end); |
| *end = 1; |
| EXPECT_EQ(*end, 1); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnAdd) { |
| RepeatedField<int64_t> field; |
| do { |
| field.Add(0); |
| } while (field.size() == field.Capacity()); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnAddAlreadyReserved) { |
| RepeatedField<int64_t> field; |
| field.Reserve(2); |
| field.AddAlreadyReserved(); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnAddNAlreadyReserved) { |
| RepeatedField<int64_t> field; |
| field.Reserve(10); |
| field.AddNAlreadyReserved(8); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnResize) { |
| RepeatedField<int64_t> field; |
| field.Add(0); |
| do { |
| field.Resize(field.size() + 1, 1); |
| } while (field.size() == field.Capacity()); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| |
| // Shrink size |
| field.Resize(field.size() - 1, 1); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnTruncate) { |
| RepeatedField<int64_t> field; |
| field.Add(0); |
| field.Add(1); |
| field.Truncate(1); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnReserve) { |
| RepeatedField<int64_t> field; |
| field.Add(1); |
| field.Reserve(field.Capacity() + 1); |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| TEST(RepeatedField, PoisonsMemoryOnAssign) { |
| RepeatedField<int64_t> src; |
| RepeatedField<int64_t> field; |
| src.Add(1); |
| src.Add(2); |
| field.Reserve(3); |
| field = src; |
| VerifyDeathOnWriteAndReadAccessBeyondEnd(field); |
| } |
| |
| #endif |
| |
| TEST(RepeatedField, Cleanups) { |
| Arena arena; |
| auto growth = internal::CleanupGrowth( |
| arena, [&] { Arena::Create<RepeatedField<int>>(&arena); }); |
| EXPECT_THAT(growth.cleanups, testing::IsEmpty()); |
| |
| void* ptr; |
| growth = internal::CleanupGrowth( |
| arena, [&] { ptr = Arena::Create<RepeatedField<absl::Cord>>(&arena); }); |
| EXPECT_THAT(growth.cleanups, testing::UnorderedElementsAre(ptr)); |
| } |
| |
| TEST(RepeatedField, InitialSooCapacity) { |
| if (sizeof(void*) == 8) { |
| EXPECT_EQ(RepeatedField<bool>().Capacity(), 3); |
| EXPECT_EQ(RepeatedField<int32_t>().Capacity(), 2); |
| EXPECT_EQ(RepeatedField<int64_t>().Capacity(), 1); |
| EXPECT_EQ(RepeatedField<absl::Cord>().Capacity(), 0); |
| } else { |
| EXPECT_EQ(RepeatedField<bool>().Capacity(), 0); |
| EXPECT_EQ(RepeatedField<int32_t>().Capacity(), 0); |
| EXPECT_EQ(RepeatedField<int64_t>().Capacity(), 0); |
| EXPECT_EQ(RepeatedField<absl::Cord>().Capacity(), 0); |
| } |
| } |
| |
| // =================================================================== |
| |
| // Iterator tests stolen from net/proto/proto-array_unittest. |
| |
| class RepeatedFieldIteratorTest : public testing::Test { |
| protected: |
| void SetUp() override { |
| for (int i = 0; i < 3; ++i) { |
| proto_array_.Add(i); |
| } |
| } |
| |
| RepeatedField<int> proto_array_; |
| }; |
| |
| TEST_F(RepeatedFieldIteratorTest, Convertible) { |
| RepeatedField<int>::iterator iter = proto_array_.begin(); |
| RepeatedField<int>::const_iterator c_iter = iter; |
| RepeatedField<int>::value_type value = *c_iter; |
| EXPECT_EQ(0, value); |
| } |
| |
| TEST_F(RepeatedFieldIteratorTest, MutableIteration) { |
| RepeatedField<int>::iterator iter = proto_array_.begin(); |
| EXPECT_EQ(0, *iter); |
| ++iter; |
| EXPECT_EQ(1, *iter++); |
| EXPECT_EQ(2, *iter); |
| ++iter; |
| EXPECT_TRUE(proto_array_.end() == iter); |
| |
| EXPECT_EQ(2, *(proto_array_.end() - 1)); |
| } |
| |
| TEST_F(RepeatedFieldIteratorTest, ConstIteration) { |
| const RepeatedField<int>& const_proto_array = proto_array_; |
| RepeatedField<int>::const_iterator iter = const_proto_array.begin(); |
| EXPECT_EQ(0, *iter); |
| ++iter; |
| EXPECT_EQ(1, *iter++); |
| EXPECT_EQ(2, *iter); |
| ++iter; |
| EXPECT_TRUE(const_proto_array.end() == iter); |
| EXPECT_EQ(2, *(const_proto_array.end() - 1)); |
| } |
| |
| TEST_F(RepeatedFieldIteratorTest, Mutation) { |
| RepeatedField<int>::iterator iter = proto_array_.begin(); |
| *iter = 7; |
| EXPECT_EQ(7, proto_array_.Get(0)); |
| } |
| |
| // ----------------------------------------------------------------------------- |
| // Unit-tests for the insert iterators |
| // `google::protobuf::RepeatedFieldBackInserter`, |
| // `google::protobuf::AllocatedRepeatedFieldBackInserter` |
| // Ported from util/gtl/proto-array-iterators_unittest. |
| |
| class RepeatedFieldInsertionIteratorsTest : public testing::Test { |
| protected: |
| std::list<double> halves; |
| std::list<int> fibonacci; |
| TestAllTypes protobuffer; |
| |
| void SetUp() override { |
| fibonacci.push_back(1); |
| fibonacci.push_back(1); |
| fibonacci.push_back(2); |
| fibonacci.push_back(3); |
| fibonacci.push_back(5); |
| fibonacci.push_back(8); |
| std::copy(fibonacci.begin(), fibonacci.end(), |
| RepeatedFieldBackInserter(protobuffer.mutable_repeated_int32())); |
| |
| halves.push_back(1.0); |
| halves.push_back(0.5); |
| halves.push_back(0.25); |
| halves.push_back(0.125); |
| halves.push_back(0.0625); |
| std::copy(halves.begin(), halves.end(), |
| RepeatedFieldBackInserter(protobuffer.mutable_repeated_double())); |
| } |
| }; |
| |
| TEST_F(RepeatedFieldInsertionIteratorsTest, Fibonacci) { |
| EXPECT_TRUE(std::equal(fibonacci.begin(), fibonacci.end(), |
| protobuffer.repeated_int32().begin())); |
| EXPECT_TRUE(std::equal(protobuffer.repeated_int32().begin(), |
| protobuffer.repeated_int32().end(), |
| fibonacci.begin())); |
| } |
| |
| TEST_F(RepeatedFieldInsertionIteratorsTest, Halves) { |
| EXPECT_TRUE(std::equal(halves.begin(), halves.end(), |
| protobuffer.repeated_double().begin())); |
| EXPECT_TRUE(std::equal(protobuffer.repeated_double().begin(), |
| protobuffer.repeated_double().end(), halves.begin())); |
| } |
| |
| } // namespace |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #include "google/protobuf/port_undef.inc" |