blob: e1817a3916be9f2a9018989d46b422d16186bd3d [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: jschorr@google.com (Joseph Schorr)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include "google/protobuf/text_format.h"
#include <stdio.h>
#include <algorithm>
#include <atomic>
#include <climits>
#include <cmath>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "absl/container/btree_set.h"
#include "absl/log/absl_check.h"
#include "absl/strings/ascii.h"
#include "absl/strings/cord.h"
#include "absl/strings/escaping.h"
#include "absl/strings/match.h"
#include "absl/strings/numbers.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_join.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/any.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/descriptor.pb.h"
#include "google/protobuf/dynamic_message.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/strtod.h"
#include "google/protobuf/io/tokenizer.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
#include "google/protobuf/map_field.h"
#include "google/protobuf/message.h"
#include "google/protobuf/reflection_mode.h"
#include "google/protobuf/repeated_field.h"
#include "google/protobuf/unknown_field_set.h"
#include "google/protobuf/wire_format_lite.h"
#include "utf8_validity.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
using internal::FieldReporterLevel;
using internal::ReflectionMode;
using internal::ScopedReflectionMode;
namespace {
const absl::string_view kFieldValueReplacement = "[REDACTED]";
inline bool IsHexNumber(const std::string& str) {
return (str.length() >= 2 && str[0] == '0' &&
(str[1] == 'x' || str[1] == 'X'));
}
inline bool IsOctNumber(const std::string& str) {
return (str.length() >= 2 && str[0] == '0' &&
(str[1] >= '0' && str[1] < '8'));
}
// The number of fields that are redacted in AbslStringify.
std::atomic<int64_t> num_redacted_field{0};
inline void IncrementRedactedFieldCounter() {
num_redacted_field.fetch_add(1, std::memory_order_relaxed);
}
inline void TrimTrailingSpace(std::string& debug_string) {
// Single line mode currently might have an extra space at the end.
if (!debug_string.empty() && debug_string.back() == ' ') {
debug_string.pop_back();
}
}
} // namespace
namespace internal {
const char kDebugStringSilentMarker[] = "";
const char kDebugStringSilentMarkerForDetection[] = "\t ";
// Controls insertion of a marker making debug strings non-parseable, and
// redacting annotated fields in Protobuf's DebugString APIs.
PROTOBUF_EXPORT std::atomic<bool> enable_debug_string_safe_format{false};
int64_t GetRedactedFieldCount() {
return num_redacted_field.load(std::memory_order_relaxed);
}
enum class Option { kNone, kShort, kUTF8 };
std::string StringifyMessage(const Message& message, Option option,
FieldReporterLevel reporter_level,
bool enable_safe_format) {
// Indicate all scoped reflection calls are from DebugString function.
ScopedReflectionMode scope(ReflectionMode::kDebugString);
TextFormat::Printer printer;
internal::FieldReporterLevel reporter = reporter_level;
switch (option) {
case Option::kShort:
printer.SetSingleLineMode(true);
break;
case Option::kUTF8:
printer.SetUseUtf8StringEscaping(true);
break;
case Option::kNone:
break;
}
printer.SetExpandAny(true);
printer.SetRedactDebugString(enable_safe_format);
printer.SetRandomizeDebugString(enable_safe_format);
printer.SetReportSensitiveFields(reporter);
std::string result;
printer.PrintToString(message, &result);
if (option == Option::kShort) {
TrimTrailingSpace(result);
}
return result;
}
PROTOBUF_EXPORT std::string StringifyMessage(const Message& message) {
return StringifyMessage(message, Option::kNone,
FieldReporterLevel::kAbslStringify, true);
}
} // namespace internal
std::string Message::DebugString() const {
bool enable_safe_format =
internal::enable_debug_string_safe_format.load(std::memory_order_relaxed);
if (enable_safe_format) {
return StringifyMessage(*this, internal::Option::kNone,
FieldReporterLevel::kDebugString, true);
}
// Indicate all scoped reflection calls are from DebugString function.
ScopedReflectionMode scope(ReflectionMode::kDebugString);
std::string debug_string;
TextFormat::Printer printer;
printer.SetExpandAny(true);
printer.SetInsertSilentMarker(true);
printer.SetReportSensitiveFields(FieldReporterLevel::kDebugString);
printer.PrintToString(*this, &debug_string);
return debug_string;
}
std::string Message::ShortDebugString() const {
bool enable_safe_format =
internal::enable_debug_string_safe_format.load(std::memory_order_relaxed);
if (enable_safe_format) {
return StringifyMessage(*this, internal::Option::kShort,
FieldReporterLevel::kShortDebugString, true);
}
// Indicate all scoped reflection calls are from DebugString function.
ScopedReflectionMode scope(ReflectionMode::kDebugString);
std::string debug_string;
TextFormat::Printer printer;
printer.SetSingleLineMode(true);
printer.SetExpandAny(true);
printer.SetInsertSilentMarker(true);
printer.SetReportSensitiveFields(FieldReporterLevel::kShortDebugString);
printer.PrintToString(*this, &debug_string);
TrimTrailingSpace(debug_string);
return debug_string;
}
std::string Message::Utf8DebugString() const {
bool enable_safe_format =
internal::enable_debug_string_safe_format.load(std::memory_order_relaxed);
if (enable_safe_format) {
return StringifyMessage(*this, internal::Option::kUTF8,
FieldReporterLevel::kUtf8DebugString, true);
}
// Indicate all scoped reflection calls are from DebugString function.
ScopedReflectionMode scope(ReflectionMode::kDebugString);
std::string debug_string;
TextFormat::Printer printer;
printer.SetUseUtf8StringEscaping(true);
printer.SetExpandAny(true);
printer.SetInsertSilentMarker(true);
printer.SetReportSensitiveFields(FieldReporterLevel::kUtf8DebugString);
printer.PrintToString(*this, &debug_string);
return debug_string;
}
void Message::PrintDebugString() const { printf("%s", DebugString().c_str()); }
PROTOBUF_EXPORT std::string ShortFormat(const Message& message) {
return internal::StringifyMessage(message, internal::Option::kShort,
FieldReporterLevel::kShortFormat, true);
}
PROTOBUF_EXPORT std::string Utf8Format(const Message& message) {
return internal::StringifyMessage(message, internal::Option::kUTF8,
FieldReporterLevel::kUtf8Format, true);
}
// ===========================================================================
// Implementation of the parse information tree class.
void TextFormat::ParseInfoTree::RecordLocation(
const FieldDescriptor* field, TextFormat::ParseLocationRange range) {
locations_[field].push_back(range);
}
TextFormat::ParseInfoTree* TextFormat::ParseInfoTree::CreateNested(
const FieldDescriptor* field) {
// Owned by us in the map.
auto& vec = nested_[field];
vec.emplace_back(new TextFormat::ParseInfoTree());
return vec.back().get();
}
void CheckFieldIndex(const FieldDescriptor* field, int index) {
if (field == nullptr) {
return;
}
if (field->is_repeated() && index == -1) {
ABSL_DLOG(FATAL) << "Index must be in range of repeated field values. "
<< "Field: " << field->name();
} else if (!field->is_repeated() && index != -1) {
ABSL_DLOG(FATAL) << "Index must be -1 for singular fields."
<< "Field: " << field->name();
}
}
TextFormat::ParseLocationRange TextFormat::ParseInfoTree::GetLocationRange(
const FieldDescriptor* field, int index) const {
CheckFieldIndex(field, index);
if (index == -1) {
index = 0;
}
auto it = locations_.find(field);
if (it == locations_.end() ||
index >= static_cast<int64_t>(it->second.size())) {
return TextFormat::ParseLocationRange();
}
return it->second[static_cast<size_t>(index)];
}
TextFormat::ParseInfoTree* TextFormat::ParseInfoTree::GetTreeForNested(
const FieldDescriptor* field, int index) const {
CheckFieldIndex(field, index);
if (index == -1) {
index = 0;
}
auto it = nested_.find(field);
if (it == nested_.end() || index >= static_cast<int64_t>(it->second.size())) {
return nullptr;
}
return it->second[static_cast<size_t>(index)].get();
}
namespace {
// These functions implement the behavior of the "default" TextFormat::Finder,
// they are defined as standalone to be called when finder_ is nullptr.
const FieldDescriptor* DefaultFinderFindExtension(Message* message,
const std::string& name) {
const Descriptor* descriptor = message->GetDescriptor();
return descriptor->file()->pool()->FindExtensionByPrintableName(descriptor,
name);
}
const FieldDescriptor* DefaultFinderFindExtensionByNumber(
const Descriptor* descriptor, int number) {
return descriptor->file()->pool()->FindExtensionByNumber(descriptor, number);
}
const Descriptor* DefaultFinderFindAnyType(const Message& message,
const std::string& prefix,
const std::string& name) {
if (prefix != internal::kTypeGoogleApisComPrefix &&
prefix != internal::kTypeGoogleProdComPrefix) {
return nullptr;
}
return message.GetDescriptor()->file()->pool()->FindMessageTypeByName(name);
}
} // namespace
auto TextFormat::Parser::UnsetFieldsMetadata::GetUnsetFieldId(
const Message& message, const FieldDescriptor& fd) -> Id {
return {&message, &fd};
}
// ===========================================================================
// Internal class for parsing an ASCII representation of a Protocol Message.
// This class makes use of the Protocol Message compiler's tokenizer found
// in //third_party/protobuf/io/tokenizer.h. Note that class's Parse
// method is *not* thread-safe and should only be used in a single thread at
// a time.
// Makes code slightly more readable. The meaning of "DO(foo)" is
// "Execute foo and fail if it fails.", where failure is indicated by
// returning false. Borrowed from parser.cc (Thanks Kenton!).
#define DO(STATEMENT) \
if (STATEMENT) { \
} else { \
return false; \
}
class TextFormat::Parser::ParserImpl {
public:
// Determines if repeated values for non-repeated fields and
// oneofs are permitted, e.g., the string "foo: 1 foo: 2" for a
// required/optional field named "foo", or "baz: 1 bar: 2"
// where "baz" and "bar" are members of the same oneof.
enum SingularOverwritePolicy {
ALLOW_SINGULAR_OVERWRITES = 0, // the last value is retained
FORBID_SINGULAR_OVERWRITES = 1, // an error is issued
};
ParserImpl(const Descriptor* root_message_type,
io::ZeroCopyInputStream* input_stream,
io::ErrorCollector* error_collector,
const TextFormat::Finder* finder, ParseInfoTree* parse_info_tree,
SingularOverwritePolicy singular_overwrite_policy,
bool allow_case_insensitive_field, bool allow_unknown_field,
bool allow_unknown_extension, bool allow_unknown_enum,
bool allow_field_number, bool allow_relaxed_whitespace,
bool allow_partial, int recursion_limit,
UnsetFieldsMetadata* no_op_fields)
: error_collector_(error_collector),
finder_(finder),
parse_info_tree_(parse_info_tree),
tokenizer_error_collector_(this),
tokenizer_(input_stream, &tokenizer_error_collector_),
root_message_type_(root_message_type),
singular_overwrite_policy_(singular_overwrite_policy),
allow_case_insensitive_field_(allow_case_insensitive_field),
allow_unknown_field_(allow_unknown_field),
allow_unknown_extension_(allow_unknown_extension),
allow_unknown_enum_(allow_unknown_enum),
allow_field_number_(allow_field_number),
allow_partial_(allow_partial),
initial_recursion_limit_(recursion_limit),
recursion_limit_(recursion_limit),
had_silent_marker_(false),
had_errors_(false),
no_op_fields_(no_op_fields) {
// For backwards-compatibility with proto1, we need to allow the 'f' suffix
// for floats.
tokenizer_.set_allow_f_after_float(true);
// '#' starts a comment.
tokenizer_.set_comment_style(io::Tokenizer::SH_COMMENT_STYLE);
if (allow_relaxed_whitespace) {
tokenizer_.set_require_space_after_number(false);
tokenizer_.set_allow_multiline_strings(true);
}
// Consume the starting token.
tokenizer_.Next();
}
ParserImpl(const ParserImpl&) = delete;
ParserImpl& operator=(const ParserImpl&) = delete;
~ParserImpl() {}
// Parses the ASCII representation specified in input and saves the
// information into the output pointer (a Message). Returns
// false if an error occurs (an error will also be logged to
// ABSL_LOG(ERROR)).
bool Parse(Message* output) {
// Consume fields until we cannot do so anymore.
while (true) {
if (LookingAtType(io::Tokenizer::TYPE_END)) {
// Ensures recursion limit properly unwinded, but only for success
// cases. This implicitly avoids the check when `Parse` returns false
// via `DO(...)`.
ABSL_DCHECK(had_errors_ || recursion_limit_ == initial_recursion_limit_)
<< "Recursion limit at end of parse should be "
<< initial_recursion_limit_ << ", but was " << recursion_limit_
<< ". Difference of " << initial_recursion_limit_ - recursion_limit_
<< " stack frames not accounted for stack unwind.";
return !had_errors_;
}
DO(ConsumeField(output));
}
}
bool ParseField(const FieldDescriptor* field, Message* output) {
bool suc;
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
suc = ConsumeFieldMessage(output, output->GetReflection(), field);
} else {
suc = ConsumeFieldValue(output, output->GetReflection(), field);
}
return suc && LookingAtType(io::Tokenizer::TYPE_END);
}
void ReportError(int line, int col, absl::string_view message) {
had_errors_ = true;
if (error_collector_ == nullptr) {
if (line >= 0) {
ABSL_LOG(ERROR) << "Error parsing text-format "
<< root_message_type_->full_name() << ": " << (line + 1)
<< ":" << (col + 1) << ": " << message;
} else {
ABSL_LOG(ERROR) << "Error parsing text-format "
<< root_message_type_->full_name() << ": " << message;
}
} else {
error_collector_->RecordError(line, col, message);
}
}
void ReportWarning(int line, int col, const absl::string_view message) {
if (error_collector_ == nullptr) {
if (line >= 0) {
ABSL_LOG_EVERY_POW_2(WARNING)
<< "Warning parsing text-format " << root_message_type_->full_name()
<< ": " << (line + 1) << ":" << (col + 1) << " (N = " << COUNTER
<< "): " << message;
} else {
ABSL_LOG_EVERY_POW_2(WARNING)
<< "Warning parsing text-format " << root_message_type_->full_name()
<< " (N = " << COUNTER << "): " << message;
}
} else {
error_collector_->RecordWarning(line, col, message);
}
}
private:
static constexpr int32_t kint32max = std::numeric_limits<int32_t>::max();
static constexpr uint32_t kuint32max = std::numeric_limits<uint32_t>::max();
static constexpr int64_t kint64min = std::numeric_limits<int64_t>::min();
static constexpr int64_t kint64max = std::numeric_limits<int64_t>::max();
static constexpr uint64_t kuint64max = std::numeric_limits<uint64_t>::max();
// Reports an error with the given message with information indicating
// the position (as derived from the current token).
void ReportError(absl::string_view message) {
ReportError(tokenizer_.current().line, tokenizer_.current().column,
message);
}
// Reports a warning with the given message with information indicating
// the position (as derived from the current token).
void ReportWarning(absl::string_view message) {
ReportWarning(tokenizer_.current().line, tokenizer_.current().column,
message);
}
// Consumes the specified message with the given starting delimiter.
// This method checks to see that the end delimiter at the conclusion of
// the consumption matches the starting delimiter passed in here.
bool ConsumeMessage(Message* message, const std::string delimiter) {
while (!LookingAt(">") && !LookingAt("}")) {
DO(ConsumeField(message));
}
// Confirm that we have a valid ending delimiter.
DO(Consume(delimiter));
return true;
}
// Consume either "<" or "{".
bool ConsumeMessageDelimiter(std::string* delimiter) {
if (TryConsume("<")) {
*delimiter = ">";
} else {
DO(Consume("{"));
*delimiter = "}";
}
return true;
}
// Consumes the current field (as returned by the tokenizer) on the
// passed in message.
bool ConsumeField(Message* message) {
const Reflection* reflection = message->GetReflection();
const Descriptor* descriptor = message->GetDescriptor();
std::string field_name;
bool reserved_field = false;
const FieldDescriptor* field = nullptr;
int start_line = tokenizer_.current().line;
int start_column = tokenizer_.current().column;
const FieldDescriptor* any_type_url_field;
const FieldDescriptor* any_value_field;
if (internal::GetAnyFieldDescriptors(*message, &any_type_url_field,
&any_value_field) &&
TryConsume("[")) {
std::string full_type_name, prefix;
DO(ConsumeAnyTypeUrl(&full_type_name, &prefix));
std::string prefix_and_full_type_name =
absl::StrCat(prefix, full_type_name);
DO(ConsumeBeforeWhitespace("]"));
TryConsumeWhitespace();
// ':' is optional between message labels and values.
if (TryConsumeBeforeWhitespace(":")) {
TryConsumeWhitespace();
}
std::string serialized_value;
const Descriptor* value_descriptor =
finder_ ? finder_->FindAnyType(*message, prefix, full_type_name)
: DefaultFinderFindAnyType(*message, prefix, full_type_name);
if (value_descriptor == nullptr) {
ReportError(absl::StrCat("Could not find type \"",
prefix_and_full_type_name,
"\" stored in google.protobuf.Any."));
return false;
}
DO(ConsumeAnyValue(value_descriptor, &serialized_value));
if (singular_overwrite_policy_ == FORBID_SINGULAR_OVERWRITES) {
// Fail if any_type_url_field has already been specified.
if ((!any_type_url_field->is_repeated() &&
reflection->HasField(*message, any_type_url_field)) ||
(!any_value_field->is_repeated() &&
reflection->HasField(*message, any_value_field))) {
ReportError("Non-repeated Any specified multiple times.");
return false;
}
}
reflection->SetString(message, any_type_url_field,
std::move(prefix_and_full_type_name));
reflection->SetString(message, any_value_field,
std::move(serialized_value));
return true;
}
if (TryConsume("[")) {
// Extension.
DO(ConsumeFullTypeName(&field_name));
DO(ConsumeBeforeWhitespace("]"));
TryConsumeWhitespace();
field = finder_ ? finder_->FindExtension(message, field_name)
: DefaultFinderFindExtension(message, field_name);
if (field == nullptr) {
if (!allow_unknown_field_ && !allow_unknown_extension_) {
ReportError(absl::StrCat("Extension \"", field_name,
"\" is not defined or "
"is not an extension of \"",
descriptor->full_name(), "\"."));
return false;
} else {
ReportWarning(absl::StrCat(
"Ignoring extension \"", field_name,
"\" which is not defined or is not an extension of \"",
descriptor->full_name(), "\"."));
}
}
} else {
DO(ConsumeIdentifierBeforeWhitespace(&field_name));
TryConsumeWhitespace();
int32_t field_number;
if (allow_field_number_ && absl::SimpleAtoi(field_name, &field_number)) {
if (descriptor->IsExtensionNumber(field_number)) {
field = finder_
? finder_->FindExtensionByNumber(descriptor, field_number)
: DefaultFinderFindExtensionByNumber(descriptor,
field_number);
} else if (descriptor->IsReservedNumber(field_number)) {
reserved_field = true;
} else {
field = descriptor->FindFieldByNumber(field_number);
}
} else {
field = descriptor->FindFieldByName(field_name);
// Group-like delimited fields will accept both the capitalized type
// names as well.
if (field == nullptr) {
std::string lower_field_name = field_name;
absl::AsciiStrToLower(&lower_field_name);
field = descriptor->FindFieldByName(lower_field_name);
// If the case-insensitive match worked but the field is NOT a group,
if (field != nullptr && !internal::cpp::IsGroupLike(*field)) {
field = nullptr;
}
if (field != nullptr && field->message_type()->name() != field_name) {
field = nullptr;
}
}
if (field == nullptr && allow_case_insensitive_field_) {
std::string lower_field_name = field_name;
absl::AsciiStrToLower(&lower_field_name);
field = descriptor->FindFieldByLowercaseName(lower_field_name);
}
if (field == nullptr) {
reserved_field = descriptor->IsReservedName(field_name);
}
}
if (field == nullptr && !reserved_field) {
if (!allow_unknown_field_) {
ReportError(absl::StrCat("Message type \"", descriptor->full_name(),
"\" has no field named \"", field_name,
"\"."));
return false;
} else {
ReportWarning(absl::StrCat("Message type \"", descriptor->full_name(),
"\" has no field named \"", field_name,
"\"."));
}
}
}
// Skips unknown or reserved fields.
if (field == nullptr) {
ABSL_CHECK(allow_unknown_field_ || allow_unknown_extension_ ||
reserved_field);
// Try to guess the type of this field.
// If this field is not a message, there should be a ":" between the
// field name and the field value and also the field value should not
// start with "{" or "<" which indicates the beginning of a message body.
// If there is no ":" or there is a "{" or "<" after ":", this field has
// to be a message or the input is ill-formed.
if (TryConsumeBeforeWhitespace(":")) {
TryConsumeWhitespace();
if (!LookingAt("{") && !LookingAt("<")) {
return SkipFieldValue();
}
}
return SkipFieldMessage();
}
if (field->options().deprecated()) {
ReportWarning(absl::StrCat("text format contains deprecated field \"",
field_name, "\""));
}
if (singular_overwrite_policy_ == FORBID_SINGULAR_OVERWRITES) {
// Fail if the field is not repeated and it has already been specified.
if (!field->is_repeated() && reflection->HasField(*message, field)) {
ReportError(absl::StrCat("Non-repeated field \"", field_name,
"\" is specified multiple times."));
return false;
}
// Fail if the field is a member of a oneof and another member has already
// been specified.
const OneofDescriptor* oneof = field->containing_oneof();
if (oneof != nullptr && reflection->HasOneof(*message, oneof)) {
const FieldDescriptor* other_field =
reflection->GetOneofFieldDescriptor(*message, oneof);
ReportError(absl::StrCat("Field \"", field_name,
"\" is specified along with "
"field \"",
other_field->name(),
"\", another member "
"of oneof \"",
oneof->name(), "\"."));
return false;
}
}
// Perform special handling for embedded message types.
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// ':' is optional here.
bool consumed_semicolon = TryConsumeBeforeWhitespace(":");
if (consumed_semicolon) {
TryConsumeWhitespace();
}
if (consumed_semicolon && field->options().weak() &&
LookingAtType(io::Tokenizer::TYPE_STRING)) {
// we are getting a bytes string for a weak field.
std::string tmp;
DO(ConsumeString(&tmp));
MessageFactory* factory =
finder_ ? finder_->FindExtensionFactory(field) : nullptr;
reflection->MutableMessage(message, field, factory)
->ParseFromString(tmp);
goto label_skip_parsing;
}
} else {
// ':' is required here.
DO(ConsumeBeforeWhitespace(":"));
TryConsumeWhitespace();
}
if (field->is_repeated() && TryConsume("[")) {
// Short repeated format, e.g. "foo: [1, 2, 3]".
if (!TryConsume("]")) {
// "foo: []" is treated as empty.
while (true) {
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
// Perform special handling for embedded message types.
DO(ConsumeFieldMessage(message, reflection, field));
} else {
DO(ConsumeFieldValue(message, reflection, field));
}
if (TryConsume("]")) {
break;
}
DO(Consume(","));
}
}
} else if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
DO(ConsumeFieldMessage(message, reflection, field));
} else {
DO(ConsumeFieldValue(message, reflection, field));
}
label_skip_parsing:
// For historical reasons, fields may optionally be separated by commas or
// semicolons.
TryConsume(";") || TryConsume(",");
// If a parse info tree exists, add the location for the parsed
// field.
if (parse_info_tree_ != nullptr) {
int end_line = tokenizer_.previous().line;
int end_column = tokenizer_.previous().end_column;
RecordLocation(parse_info_tree_, field,
ParseLocationRange(ParseLocation(start_line, start_column),
ParseLocation(end_line, end_column)));
}
return true;
}
// Skips the next field including the field's name and value.
bool SkipField() {
std::string field_name;
if (TryConsume("[")) {
// Extension name or type URL.
DO(ConsumeTypeUrlOrFullTypeName(&field_name));
DO(ConsumeBeforeWhitespace("]"));
} else {
DO(ConsumeIdentifierBeforeWhitespace(&field_name));
}
TryConsumeWhitespace();
// Try to guess the type of this field.
// If this field is not a message, there should be a ":" between the
// field name and the field value and also the field value should not
// start with "{" or "<" which indicates the beginning of a message body.
// If there is no ":" or there is a "{" or "<" after ":", this field has
// to be a message or the input is ill-formed.
if (TryConsumeBeforeWhitespace(":")) {
TryConsumeWhitespace();
if (!LookingAt("{") && !LookingAt("<")) {
DO(SkipFieldValue());
} else {
DO(SkipFieldMessage());
}
} else {
DO(SkipFieldMessage());
}
// For historical reasons, fields may optionally be separated by commas or
// semicolons.
TryConsume(";") || TryConsume(",");
return true;
}
bool ConsumeFieldMessage(Message* message, const Reflection* reflection,
const FieldDescriptor* field) {
if (--recursion_limit_ < 0) {
ReportError(
absl::StrCat("Message is too deep, the parser exceeded the "
"configured recursion limit of ",
initial_recursion_limit_, "."));
return false;
}
// If the parse information tree is not nullptr, create a nested one
// for the nested message.
ParseInfoTree* parent = parse_info_tree_;
if (parent != nullptr) {
parse_info_tree_ = CreateNested(parent, field);
}
std::string delimiter;
DO(ConsumeMessageDelimiter(&delimiter));
MessageFactory* factory =
finder_ ? finder_->FindExtensionFactory(field) : nullptr;
if (field->is_repeated()) {
DO(ConsumeMessage(reflection->AddMessage(message, field, factory),
delimiter));
} else {
DO(ConsumeMessage(reflection->MutableMessage(message, field, factory),
delimiter));
}
++recursion_limit_;
// Reset the parse information tree.
parse_info_tree_ = parent;
return true;
}
// Skips the whole body of a message including the beginning delimiter and
// the ending delimiter.
bool SkipFieldMessage() {
if (--recursion_limit_ < 0) {
ReportError(
absl::StrCat("Message is too deep, the parser exceeded the "
"configured recursion limit of ",
initial_recursion_limit_, "."));
return false;
}
std::string delimiter;
DO(ConsumeMessageDelimiter(&delimiter));
while (!LookingAt(">") && !LookingAt("}")) {
DO(SkipField());
}
DO(Consume(delimiter));
++recursion_limit_;
return true;
}
bool ConsumeFieldValue(Message* message, const Reflection* reflection,
const FieldDescriptor* field) {
// Define an easy to use macro for setting fields. This macro checks
// to see if the field is repeated (in which case we need to use the Add
// methods or not (in which case we need to use the Set methods).
// When checking for no-op operations, We verify that both the existing value in
// the message and the new value are the default. If the existing field value is
// not the default, setting it to the default should not be treated as a no-op.
// The pointer of this is kept in no_op_fields_ for bookkeeping.
#define SET_FIELD(CPPTYPE, CPPTYPELCASE, VALUE) \
if (field->is_repeated()) { \
reflection->Add##CPPTYPE(message, field, VALUE); \
} else { \
if (no_op_fields_ && !field->has_presence() && \
field->default_value_##CPPTYPELCASE() == \
reflection->Get##CPPTYPE(*message, field) && \
field->default_value_##CPPTYPELCASE() == VALUE) { \
no_op_fields_->ids_.insert( \
UnsetFieldsMetadata::GetUnsetFieldId(*message, *field)); \
} else { \
reflection->Set##CPPTYPE(message, field, std::move(VALUE)); \
} \
}
switch (field->cpp_type()) {
case FieldDescriptor::CPPTYPE_INT32: {
int64_t value;
DO(ConsumeSignedInteger(&value, kint32max));
SET_FIELD(Int32, int32, static_cast<int32_t>(value));
break;
}
case FieldDescriptor::CPPTYPE_UINT32: {
uint64_t value;
DO(ConsumeUnsignedInteger(&value, kuint32max));
SET_FIELD(UInt32, uint32, static_cast<uint32_t>(value));
break;
}
case FieldDescriptor::CPPTYPE_INT64: {
int64_t value;
DO(ConsumeSignedInteger(&value, kint64max));
SET_FIELD(Int64, int64, value);
break;
}
case FieldDescriptor::CPPTYPE_UINT64: {
uint64_t value;
DO(ConsumeUnsignedInteger(&value, kuint64max));
SET_FIELD(UInt64, uint64, value);
break;
}
case FieldDescriptor::CPPTYPE_FLOAT: {
double value;
DO(ConsumeDouble(&value));
SET_FIELD(Float, float, io::SafeDoubleToFloat(value));
break;
}
case FieldDescriptor::CPPTYPE_DOUBLE: {
double value;
DO(ConsumeDouble(&value));
SET_FIELD(Double, double, value);
break;
}
case FieldDescriptor::CPPTYPE_STRING: {
std::string value;
DO(ConsumeString(&value));
SET_FIELD(String, string, std::move(value));
break;
}
case FieldDescriptor::CPPTYPE_BOOL: {
if (LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
uint64_t value;
DO(ConsumeUnsignedInteger(&value, 1));
SET_FIELD(Bool, bool, static_cast<bool>(value));
} else {
std::string value;
DO(ConsumeIdentifier(&value));
if (value == "true" || value == "True" || value == "t") {
SET_FIELD(Bool, bool, true);
} else if (value == "false" || value == "False" || value == "f") {
SET_FIELD(Bool, bool, false);
} else {
ReportError(absl::StrCat("Invalid value for boolean field \"",
field->name(), "\". Value: \"", value,
"\"."));
return false;
}
}
break;
}
case FieldDescriptor::CPPTYPE_ENUM: {
std::string value;
int64_t int_value = kint64max;
const EnumDescriptor* enum_type = field->enum_type();
const EnumValueDescriptor* enum_value = nullptr;
if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
DO(ConsumeIdentifier(&value));
// Find the enumeration value.
enum_value = enum_type->FindValueByName(value);
} else if (LookingAt("-") ||
LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
DO(ConsumeSignedInteger(&int_value, kint32max));
value = absl::StrCat(int_value); // for error reporting
enum_value = enum_type->FindValueByNumber(int_value);
} else {
ReportError(absl::StrCat("Expected integer or identifier, got: ",
tokenizer_.current().text));
return false;
}
if (enum_value == nullptr) {
if (int_value != kint64max &&
!field->legacy_enum_field_treated_as_closed()) {
SET_FIELD(EnumValue, int64, int_value);
return true;
} else if (!allow_unknown_enum_) {
ReportError(absl::StrCat("Unknown enumeration value of \"", value,
"\" for field \"", field->name(), "\"."));
return false;
} else {
ReportWarning(absl::StrCat("Unknown enumeration value of \"", value,
"\" for field \"", field->name(),
"\"."));
return true;
}
}
SET_FIELD(Enum, enum, enum_value);
break;
}
case FieldDescriptor::CPPTYPE_MESSAGE: {
// We should never get here. Put here instead of a default
// so that if new types are added, we get a nice compiler warning.
ABSL_LOG(FATAL) << "Reached an unintended state: CPPTYPE_MESSAGE";
break;
}
}
#undef SET_FIELD
return true;
}
bool SkipFieldValue() {
if (--recursion_limit_ < 0) {
ReportError(
absl::StrCat("Message is too deep, the parser exceeded the "
"configured recursion limit of ",
initial_recursion_limit_, "."));
return false;
}
if (LookingAtType(io::Tokenizer::TYPE_STRING)) {
while (LookingAtType(io::Tokenizer::TYPE_STRING)) {
tokenizer_.Next();
}
++recursion_limit_;
return true;
}
if (TryConsume("[")) {
if (!TryConsume("]")) {
while (true) {
if (!LookingAt("{") && !LookingAt("<")) {
DO(SkipFieldValue());
} else {
DO(SkipFieldMessage());
}
if (TryConsume("]")) {
break;
}
DO(Consume(","));
}
}
++recursion_limit_;
return true;
}
// Possible field values other than string:
// 12345 => TYPE_INTEGER
// -12345 => TYPE_SYMBOL + TYPE_INTEGER
// 1.2345 => TYPE_FLOAT
// -1.2345 => TYPE_SYMBOL + TYPE_FLOAT
// inf => TYPE_IDENTIFIER
// -inf => TYPE_SYMBOL + TYPE_IDENTIFIER
// TYPE_INTEGER => TYPE_IDENTIFIER
// Divides them into two group, one with TYPE_SYMBOL
// and the other without:
// Group one:
// 12345 => TYPE_INTEGER
// 1.2345 => TYPE_FLOAT
// inf => TYPE_IDENTIFIER
// TYPE_INTEGER => TYPE_IDENTIFIER
// Group two:
// -12345 => TYPE_SYMBOL + TYPE_INTEGER
// -1.2345 => TYPE_SYMBOL + TYPE_FLOAT
// -inf => TYPE_SYMBOL + TYPE_IDENTIFIER
// As we can see, the field value consists of an optional '-' and one of
// TYPE_INTEGER, TYPE_FLOAT and TYPE_IDENTIFIER.
bool has_minus = TryConsume("-");
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER) &&
!LookingAtType(io::Tokenizer::TYPE_FLOAT) &&
!LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
std::string text = tokenizer_.current().text;
ReportError(
absl::StrCat("Cannot skip field value, unexpected token: ", text));
++recursion_limit_;
return false;
}
// Combination of '-' and TYPE_IDENTIFIER may result in an invalid field
// value while other combinations all generate valid values.
// We check if the value of this combination is valid here.
// TYPE_IDENTIFIER after a '-' should be one of the float values listed
// below:
// inf, inff, infinity, nan
if (has_minus && LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
std::string text = tokenizer_.current().text;
absl::AsciiStrToLower(&text);
if (text != "inf" &&
text != "infinity" && text != "nan") {
ReportError(absl::StrCat("Invalid float number: ", text));
++recursion_limit_;
return false;
}
}
tokenizer_.Next();
++recursion_limit_;
return true;
}
// Returns true if the current token's text is equal to that specified.
bool LookingAt(const std::string& text) {
return tokenizer_.current().text == text;
}
// Returns true if the current token's type is equal to that specified.
bool LookingAtType(io::Tokenizer::TokenType token_type) {
return tokenizer_.current().type == token_type;
}
// Consumes an identifier and saves its value in the identifier parameter.
// Returns false if the token is not of type IDENTIFIER.
bool ConsumeIdentifier(std::string* identifier) {
if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
*identifier = tokenizer_.current().text;
tokenizer_.Next();
return true;
}
// If allow_field_number_ or allow_unknown_field_ is true, we should able
// to parse integer identifiers.
if ((allow_field_number_ || allow_unknown_field_ ||
allow_unknown_extension_) &&
LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
*identifier = tokenizer_.current().text;
tokenizer_.Next();
return true;
}
ReportError(
absl::StrCat("Expected identifier, got: ", tokenizer_.current().text));
return false;
}
// Similar to `ConsumeIdentifier`, but any following whitespace token may
// be reported.
bool ConsumeIdentifierBeforeWhitespace(std::string* identifier) {
tokenizer_.set_report_whitespace(true);
bool result = ConsumeIdentifier(identifier);
tokenizer_.set_report_whitespace(false);
return result;
}
// Consume a string of form "<id1>.<id2>....<idN>".
bool ConsumeFullTypeName(std::string* name) {
DO(ConsumeIdentifier(name));
while (TryConsume(".")) {
std::string part;
DO(ConsumeIdentifier(&part));
absl::StrAppend(name, ".", part);
}
return true;
}
bool ConsumeTypeUrlOrFullTypeName(std::string* name) {
DO(ConsumeIdentifier(name));
while (true) {
std::string connector;
if (TryConsume(".")) {
connector = ".";
} else if (TryConsume("/")) {
connector = "/";
} else {
break;
}
std::string part;
DO(ConsumeIdentifier(&part));
*name += connector;
*name += part;
}
return true;
}
// Consumes a string and saves its value in the text parameter.
// Returns false if the token is not of type STRING.
bool ConsumeString(std::string* text) {
if (!LookingAtType(io::Tokenizer::TYPE_STRING)) {
ReportError(
absl::StrCat("Expected string, got: ", tokenizer_.current().text));
return false;
}
text->clear();
while (LookingAtType(io::Tokenizer::TYPE_STRING)) {
io::Tokenizer::ParseStringAppend(tokenizer_.current().text, text);
tokenizer_.Next();
}
return true;
}
// Consumes a uint64_t and saves its value in the value parameter.
// Returns false if the token is not of type INTEGER.
bool ConsumeUnsignedInteger(uint64_t* value, uint64_t max_value) {
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
ReportError(
absl::StrCat("Expected integer, got: ", tokenizer_.current().text));
return false;
}
if (!io::Tokenizer::ParseInteger(tokenizer_.current().text, max_value,
value)) {
ReportError(absl::StrCat("Integer out of range (",
tokenizer_.current().text, ")"));
return false;
}
tokenizer_.Next();
return true;
}
// Consumes an int64_t and saves its value in the value parameter.
// Note that since the tokenizer does not support negative numbers,
// we actually may consume an additional token (for the minus sign) in this
// method. Returns false if the token is not an integer
// (signed or otherwise).
bool ConsumeSignedInteger(int64_t* value, uint64_t max_value) {
bool negative = false;
if (TryConsume("-")) {
negative = true;
// Two's complement always allows one more negative integer than
// positive.
++max_value;
}
uint64_t unsigned_value;
DO(ConsumeUnsignedInteger(&unsigned_value, max_value));
if (negative) {
if ((static_cast<uint64_t>(kint64max) + 1) == unsigned_value) {
*value = kint64min;
} else {
*value = -static_cast<int64_t>(unsigned_value);
}
} else {
*value = static_cast<int64_t>(unsigned_value);
}
return true;
}
// Consumes a double and saves its value in the value parameter.
// Accepts decimal numbers only, rejects hex or oct numbers.
bool ConsumeUnsignedDecimalAsDouble(double* value, uint64_t max_value) {
if (!LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
ReportError(
absl::StrCat("Expected integer, got: ", tokenizer_.current().text));
return false;
}
const std::string& text = tokenizer_.current().text;
if (IsHexNumber(text) || IsOctNumber(text)) {
ReportError(absl::StrCat("Expect a decimal number, got: ", text));
return false;
}
uint64_t uint64_value;
if (io::Tokenizer::ParseInteger(text, max_value, &uint64_value)) {
*value = static_cast<double>(uint64_value);
} else {
// Uint64 overflow, attempt to parse as a double instead.
*value = io::Tokenizer::ParseFloat(text);
}
tokenizer_.Next();
return true;
}
// Consumes a double and saves its value in the value parameter.
// Note that since the tokenizer does not support negative numbers,
// we actually may consume an additional token (for the minus sign) in this
// method. Returns false if the token is not a double
// (signed or otherwise).
bool ConsumeDouble(double* value) {
bool negative = false;
if (TryConsume("-")) {
negative = true;
}
// A double can actually be an integer, according to the tokenizer.
// Therefore, we must check both cases here.
if (LookingAtType(io::Tokenizer::TYPE_INTEGER)) {
// We have found an integer value for the double.
DO(ConsumeUnsignedDecimalAsDouble(value, kuint64max));
} else if (LookingAtType(io::Tokenizer::TYPE_FLOAT)) {
// We have found a float value for the double.
*value = io::Tokenizer::ParseFloat(tokenizer_.current().text);
// Mark the current token as consumed.
tokenizer_.Next();
} else if (LookingAtType(io::Tokenizer::TYPE_IDENTIFIER)) {
std::string text = tokenizer_.current().text;
absl::AsciiStrToLower(&text);
if (text == "inf" ||
text == "infinity") {
*value = std::numeric_limits<double>::infinity();
tokenizer_.Next();
} else if (text == "nan") {
*value = std::numeric_limits<double>::quiet_NaN();
tokenizer_.Next();
} else {
ReportError(absl::StrCat("Expected double, got: ", text));
return false;
}
} else {
ReportError(
absl::StrCat("Expected double, got: ", tokenizer_.current().text));
return false;
}
if (negative) {
*value = -*value;
}
return true;
}
// Consumes Any::type_url value, of form "type.googleapis.com/full.type.Name"
// or "type.googleprod.com/full.type.Name"
bool ConsumeAnyTypeUrl(std::string* full_type_name, std::string* prefix) {
// TODO Extend Consume() to consume multiple tokens at once, so that
// this code can be written as just DO(Consume(kGoogleApisTypePrefix)).
DO(ConsumeIdentifier(prefix));
while (TryConsume(".")) {
std::string url;
DO(ConsumeIdentifier(&url));
absl::StrAppend(prefix, ".", url);
}
DO(Consume("/"));
absl::StrAppend(prefix, "/");
DO(ConsumeFullTypeName(full_type_name));
return true;
}
// A helper function for reconstructing Any::value. Consumes a text of
// full_type_name, then serializes it into serialized_value.
bool ConsumeAnyValue(const Descriptor* value_descriptor,
std::string* serialized_value) {
DynamicMessageFactory factory;
const Message* value_prototype = factory.GetPrototype(value_descriptor);
if (value_prototype == nullptr) {
return false;
}
std::unique_ptr<Message> value(value_prototype->New());
std::string sub_delimiter;
DO(ConsumeMessageDelimiter(&sub_delimiter));
DO(ConsumeMessage(value.get(), sub_delimiter));
if (allow_partial_) {
value->AppendPartialToString(serialized_value);
} else {
if (!value->IsInitialized()) {
ReportError(absl::StrCat(
"Value of type \"", value_descriptor->full_name(),
"\" stored in google.protobuf.Any has missing required fields"));
return false;
}
value->AppendToString(serialized_value);
}
return true;
}
// Consumes a token and confirms that it matches that specified in the
// value parameter. Returns false if the token found does not match that
// which was specified.
bool Consume(const std::string& value) {
const std::string& current_value = tokenizer_.current().text;
if (current_value != value) {
ReportError(absl::StrCat("Expected \"", value, "\", found \"",
current_value, "\"."));
return false;
}
tokenizer_.Next();
return true;
}
// Similar to `Consume`, but the following token may be tokenized as
// TYPE_WHITESPACE.
bool ConsumeBeforeWhitespace(const std::string& value) {
// Report whitespace after this token, but only once.
tokenizer_.set_report_whitespace(true);
bool result = Consume(value);
tokenizer_.set_report_whitespace(false);
return result;
}
// Attempts to consume the supplied value. Returns false if the token found
// does not match the value specified.
bool TryConsume(const std::string& value) {
if (tokenizer_.current().text == value) {
tokenizer_.Next();
return true;
} else {
return false;
}
}
// Similar to `TryConsume`, but the following token may be tokenized as
// TYPE_WHITESPACE.
bool TryConsumeBeforeWhitespace(const std::string& value) {
// Report whitespace after this token, but only once.
tokenizer_.set_report_whitespace(true);
bool result = TryConsume(value);
tokenizer_.set_report_whitespace(false);
return result;
}
bool TryConsumeWhitespace() {
had_silent_marker_ = false;
if (LookingAtType(io::Tokenizer::TYPE_WHITESPACE)) {
if (tokenizer_.current().text ==
absl::StrCat(" ", internal::kDebugStringSilentMarkerForDetection)) {
had_silent_marker_ = true;
}
tokenizer_.Next();
return true;
}
return false;
}
// An internal instance of the Tokenizer's error collector, used to
// collect any base-level parse errors and feed them to the ParserImpl.
class ParserErrorCollector : public io::ErrorCollector {
public:
explicit ParserErrorCollector(TextFormat::Parser::ParserImpl* parser)
: parser_(parser) {}
ParserErrorCollector(const ParserErrorCollector&) = delete;
ParserErrorCollector& operator=(const ParserErrorCollector&) = delete;
~ParserErrorCollector() override {}
void RecordError(int line, int column, absl::string_view message) override {
parser_->ReportError(line, column, message);
}
void RecordWarning(int line, int column,
absl::string_view message) override {
parser_->ReportWarning(line, column, message);
}
private:
TextFormat::Parser::ParserImpl* parser_;
};
io::ErrorCollector* error_collector_;
const TextFormat::Finder* finder_;
ParseInfoTree* parse_info_tree_;
ParserErrorCollector tokenizer_error_collector_;
io::Tokenizer tokenizer_;
const Descriptor* root_message_type_;
SingularOverwritePolicy singular_overwrite_policy_;
const bool allow_case_insensitive_field_;
const bool allow_unknown_field_;
const bool allow_unknown_extension_;
const bool allow_unknown_enum_;
const bool allow_field_number_;
const bool allow_partial_;
const int initial_recursion_limit_;
int recursion_limit_;
bool had_silent_marker_;
bool had_errors_;
UnsetFieldsMetadata* no_op_fields_{};
};
// ===========================================================================
// Internal class for writing text to the io::ZeroCopyOutputStream. Adapted
// from the Printer found in //third_party/protobuf/io/printer.h
class TextFormat::Printer::TextGenerator
: public TextFormat::BaseTextGenerator {
public:
explicit TextGenerator(io::ZeroCopyOutputStream* output,
int initial_indent_level)
: output_(output),
buffer_(nullptr),
buffer_size_(0),
at_start_of_line_(true),
failed_(false),
insert_silent_marker_(false),
indent_level_(initial_indent_level),
initial_indent_level_(initial_indent_level) {}
explicit TextGenerator(io::ZeroCopyOutputStream* output,
bool insert_silent_marker, int initial_indent_level)
: output_(output),
buffer_(nullptr),
buffer_size_(0),
at_start_of_line_(true),
failed_(false),
insert_silent_marker_(insert_silent_marker),
indent_level_(initial_indent_level),
initial_indent_level_(initial_indent_level) {}
TextGenerator(const TextGenerator&) = delete;
TextGenerator& operator=(const TextGenerator&) = delete;
~TextGenerator() override {
// Only BackUp() if we're sure we've successfully called Next() at least
// once.
if (!failed_) {
output_->BackUp(buffer_size_);
}
}
// Indent text by two spaces. After calling Indent(), two spaces will be
// inserted at the beginning of each line of text. Indent() may be called
// multiple times to produce deeper indents.
void Indent() override { ++indent_level_; }
// Reduces the current indent level by two spaces, or crashes if the indent
// level is zero.
void Outdent() override {
if (indent_level_ == 0 || indent_level_ < initial_indent_level_) {
ABSL_DLOG(FATAL) << " Outdent() without matching Indent().";
return;
}
--indent_level_;
}
size_t GetCurrentIndentationSize() const override {
return 2 * indent_level_;
}
// Print text to the output stream.
void Print(const char* text, size_t size) override {
if (indent_level_ > 0) {
size_t pos = 0; // The number of bytes we've written so far.
for (size_t i = 0; i < size; i++) {
if (text[i] == '\n') {
// Saw newline. If there is more text, we may need to insert an
// indent here. So, write what we have so far, including the '\n'.
Write(text + pos, i - pos + 1);
pos = i + 1;
// Setting this true will cause the next Write() to insert an indent
// first.
at_start_of_line_ = true;
}
}
// Write the rest.
Write(text + pos, size - pos);
} else {
Write(text, size);
if (size > 0 && text[size - 1] == '\n') {
at_start_of_line_ = true;
}
}
}
// True if any write to the underlying stream failed. (We don't just
// crash in this case because this is an I/O failure, not a programming
// error.)
bool failed() const { return failed_; }
void PrintMaybeWithMarker(MarkerToken, absl::string_view text) override {
Print(text.data(), text.size());
if (ConsumeInsertSilentMarker()) {
PrintLiteral(internal::kDebugStringSilentMarker);
}
}
void PrintMaybeWithMarker(MarkerToken, absl::string_view text_head,
absl::string_view text_tail) override {
Print(text_head.data(), text_head.size());
if (ConsumeInsertSilentMarker()) {
PrintLiteral(internal::kDebugStringSilentMarker);
}
Print(text_tail.data(), text_tail.size());
}
private:
void Write(const char* data, size_t size) {
if (failed_) return;
if (size == 0) return;
if (at_start_of_line_) {
// Insert an indent.
at_start_of_line_ = false;
WriteIndent();
if (failed_) return;
}
while (static_cast<int64_t>(size) > buffer_size_) {
// Data exceeds space in the buffer. Copy what we can and request a
// new buffer.
if (buffer_size_ > 0) {
memcpy(buffer_, data, buffer_size_);
data += buffer_size_;
size -= buffer_size_;
}
void* void_buffer = nullptr;
failed_ = !output_->Next(&void_buffer, &buffer_size_);
if (failed_) return;
buffer_ = reinterpret_cast<char*>(void_buffer);
}
// Buffer is big enough to receive the data; copy it.
memcpy(buffer_, data, size);
buffer_ += size;
buffer_size_ -= size;
}
void WriteIndent() {
if (indent_level_ == 0) {
return;
}
ABSL_DCHECK(!failed_);
int size = GetCurrentIndentationSize();
while (size > buffer_size_) {
// Data exceeds space in the buffer. Write what we can and request a new
// buffer.
if (buffer_size_ > 0) {
memset(buffer_, ' ', buffer_size_);
}
size -= buffer_size_;
void* void_buffer;
failed_ = !output_->Next(&void_buffer, &buffer_size_);
if (failed_) return;
buffer_ = reinterpret_cast<char*>(void_buffer);
}
// Buffer is big enough to receive the data; copy it.
memset(buffer_, ' ', size);
buffer_ += size;
buffer_size_ -= size;
}
// Return the current value of insert_silent_marker_. If it is true, set it
// to false as we assume that a silent marker is inserted after a call to this
// function.
bool ConsumeInsertSilentMarker() {
if (insert_silent_marker_) {
insert_silent_marker_ = false;
return true;
}
return false;
}
io::ZeroCopyOutputStream* const output_;
char* buffer_;
int buffer_size_;
bool at_start_of_line_;
bool failed_;
// This flag is false when inserting silent marker is disabled or a silent
// marker has been inserted.
bool insert_silent_marker_;
int indent_level_;
int initial_indent_level_;
};
// ===========================================================================
// An internal field value printer that may insert a silent marker in
// DebugStrings.
class TextFormat::Printer::DebugStringFieldValuePrinter
: public TextFormat::FastFieldValuePrinter {
public:
void PrintMessageStart(const Message& /*message*/, int /*field_index*/,
int /*field_count*/, bool single_line_mode,
BaseTextGenerator* generator) const override {
if (single_line_mode) {
generator->PrintMaybeWithMarker(MarkerToken(), " ", "{ ");
} else {
generator->PrintMaybeWithMarker(MarkerToken(), " ", "{\n");
}
}
};
namespace {
// Returns true if `ch` needs to be escaped in TextFormat, independent of any
// UTF-8 validity issues.
bool DefinitelyNeedsEscape(unsigned char ch) {
if (ch >= 0x80) {
return false; // High byte; no escapes necessary if UTF-8 is valid.
}
if (!absl::ascii_isprint(ch)) {
return true; // Unprintable characters need escape.
}
switch (ch) {
case '\"':
case '\'':
case '\\':
// These characters need escapes despite being printable.
return true;
}
return false;
}
// Returns true if this is a high byte that requires UTF-8 validation. If the
// UTF-8 validation fails, we must escape the byte.
bool NeedsUtf8Validation(unsigned char ch) { return ch > 127; }
// Returns the number of bytes in the prefix of `val` that do not need escaping.
// This is like utf8_range::SpanStructurallyValid(), except that it also
// terminates at any ASCII char that needs to be escaped in TextFormat (any char
// that has `DefinitelyNeedsEscape(ch) == true`).
//
// If we could get a variant of utf8_range::SpanStructurallyValid() that could
// terminate on any of these chars, that might be more efficient, but it would
// be much more complicated to modify that heavily SIMD code.
size_t SkipPassthroughBytes(absl::string_view val) {
for (size_t i = 0; i < val.size(); i++) {
unsigned char uc = val[i];
if (DefinitelyNeedsEscape(uc)) return i;
if (NeedsUtf8Validation(uc)) {
// Find the end of this region of consecutive high bytes, so that we only
// give high bytes to the UTF-8 checker. This avoids needing to perform
// a second scan of the ASCII characters looking for characters that
// need escaping.
//
// We assume that high bytes are less frequent than plain, printable ASCII
// bytes, so we accept the double-scan of high bytes.
size_t end = i + 1;
for (; end < val.size(); end++) {
if (!NeedsUtf8Validation(val[end])) break;
}
size_t n = end - i;
size_t ok = utf8_range::SpanStructurallyValid(val.substr(i, n));
if (ok != n) return i + ok;
i += ok - 1;
}
}
return val.size();
}
} // namespace
void TextFormat::Printer::HardenedPrintString(
absl::string_view src, TextFormat::BaseTextGenerator* generator) {
// Print as UTF-8, while guarding against any invalid UTF-8 in the string
// field.
//
// If in the future we have a guaranteed invariant that invalid UTF-8 will
// never be present, we could avoid the UTF-8 check here.
generator->PrintLiteral("\"");
while (!src.empty()) {
size_t n = SkipPassthroughBytes(src);
if (n != 0) {
generator->PrintString(src.substr(0, n));
src.remove_prefix(n);
if (src.empty()) break;
}
// If repeated calls to CEscape() and PrintString() are expensive, we could
// consider batching them, at the cost of some complexity.
generator->PrintString(absl::CEscape(src.substr(0, 1)));
src.remove_prefix(1);
}
generator->PrintLiteral("\"");
}
// ===========================================================================
// An internal field value printer that escape UTF8 strings.
class TextFormat::Printer::FastFieldValuePrinterUtf8Escaping
: public TextFormat::Printer::DebugStringFieldValuePrinter {
public:
void PrintString(const std::string& val,
TextFormat::BaseTextGenerator* generator) const override {
TextFormat::Printer::HardenedPrintString(val, generator);
}
void PrintBytes(const std::string& val,
TextFormat::BaseTextGenerator* generator) const override {
return FastFieldValuePrinter::PrintString(val, generator);
}
};
// ===========================================================================
// Implementation of the default Finder for extensions.
TextFormat::Finder::~Finder() {}
const FieldDescriptor* TextFormat::Finder::FindExtension(
Message* message, const std::string& name) const {
return DefaultFinderFindExtension(message, name);
}
const FieldDescriptor* TextFormat::Finder::FindExtensionByNumber(
const Descriptor* descriptor, int number) const {
return DefaultFinderFindExtensionByNumber(descriptor, number);
}
const Descriptor* TextFormat::Finder::FindAnyType(
const Message& message, const std::string& prefix,
const std::string& name) const {
return DefaultFinderFindAnyType(message, prefix, name);
}
MessageFactory* TextFormat::Finder::FindExtensionFactory(
const FieldDescriptor* /*field*/) const {
return nullptr;
}
// ===========================================================================
TextFormat::Parser::Parser()
: error_collector_(nullptr),
finder_(nullptr),
parse_info_tree_(nullptr),
allow_partial_(false),
allow_case_insensitive_field_(false),
allow_unknown_field_(false),
allow_unknown_extension_(false),
allow_unknown_enum_(false),
allow_field_number_(false),
allow_relaxed_whitespace_(false),
allow_singular_overwrites_(false),
recursion_limit_(std::numeric_limits<int>::max()) {}
TextFormat::Parser::~Parser() {}
namespace {
template <typename T>
bool CheckParseInputSize(T& input, io::ErrorCollector* error_collector) {
if (input.size() > INT_MAX) {
error_collector->RecordError(
-1, 0,
absl::StrCat(
"Input size too large: ", static_cast<int64_t>(input.size()),
" bytes", " > ", INT_MAX, " bytes."));
return false;
}
return true;
}
} // namespace
bool TextFormat::Parser::Parse(io::ZeroCopyInputStream* input,
Message* output) {
output->Clear();
ParserImpl::SingularOverwritePolicy overwrites_policy =
allow_singular_overwrites_ ? ParserImpl::ALLOW_SINGULAR_OVERWRITES
: ParserImpl::FORBID_SINGULAR_OVERWRITES;
ParserImpl parser(output->GetDescriptor(), input, error_collector_, finder_,
parse_info_tree_, overwrites_policy,
allow_case_insensitive_field_, allow_unknown_field_,
allow_unknown_extension_, allow_unknown_enum_,
allow_field_number_, allow_relaxed_whitespace_,
allow_partial_, recursion_limit_, no_op_fields_);
return MergeUsingImpl(input, output, &parser);
}
bool TextFormat::Parser::ParseFromString(absl::string_view input,
Message* output) {
DO(CheckParseInputSize(input, error_collector_));
io::ArrayInputStream input_stream(input.data(), input.size());
return Parse(&input_stream, output);
}
bool TextFormat::Parser::ParseFromCord(const absl::Cord& input,
Message* output) {
DO(CheckParseInputSize(input, error_collector_));
io::CordInputStream input_stream(&input);
return Parse(&input_stream, output);
}
bool TextFormat::Parser::Merge(io::ZeroCopyInputStream* input,
Message* output) {
ParserImpl parser(output->GetDescriptor(), input, error_collector_, finder_,
parse_info_tree_, ParserImpl::ALLOW_SINGULAR_OVERWRITES,
allow_case_insensitive_field_, allow_unknown_field_,
allow_unknown_extension_, allow_unknown_enum_,
allow_field_number_, allow_relaxed_whitespace_,
allow_partial_, recursion_limit_, no_op_fields_);
return MergeUsingImpl(input, output, &parser);
}
bool TextFormat::Parser::MergeFromString(absl::string_view input,
Message* output) {
DO(CheckParseInputSize(input, error_collector_));
io::ArrayInputStream input_stream(input.data(), input.size());
return Merge(&input_stream, output);
}
bool TextFormat::Parser::MergeUsingImpl(io::ZeroCopyInputStream* /* input */,
Message* output,
ParserImpl* parser_impl) {
if (!parser_impl->Parse(output)) return false;
if (!allow_partial_ && !output->IsInitialized()) {
std::vector<std::string> missing_fields;
output->FindInitializationErrors(&missing_fields);
parser_impl->ReportError(-1, 0,
absl::StrCat("Message missing required fields: ",
absl::StrJoin(missing_fields, ", ")));
return false;
}
return true;
}
bool TextFormat::Parser::ParseFieldValueFromString(absl::string_view input,
const FieldDescriptor* field,
Message* output) {
io::ArrayInputStream input_stream(input.data(), input.size());
ParserImpl parser(output->GetDescriptor(), &input_stream, error_collector_,
finder_, parse_info_tree_,
ParserImpl::ALLOW_SINGULAR_OVERWRITES,
allow_case_insensitive_field_, allow_unknown_field_,
allow_unknown_extension_, allow_unknown_enum_,
allow_field_number_, allow_relaxed_whitespace_,
allow_partial_, recursion_limit_, no_op_fields_);
return parser.ParseField(field, output);
}
/* static */ bool TextFormat::Parse(io::ZeroCopyInputStream* input,
Message* output) {
return Parser().Parse(input, output);
}
/* static */ bool TextFormat::Merge(io::ZeroCopyInputStream* input,
Message* output) {
return Parser().Merge(input, output);
}
/* static */ bool TextFormat::ParseFromString(absl::string_view input,
Message* output) {
return Parser().ParseFromString(input, output);
}
/* static */ bool TextFormat::ParseFromCord(const absl::Cord& input,
Message* output) {
return Parser().ParseFromCord(input, output);
}
/* static */ bool TextFormat::MergeFromString(absl::string_view input,
Message* output) {
return Parser().MergeFromString(input, output);
}
#undef DO
// ===========================================================================
TextFormat::BaseTextGenerator::~BaseTextGenerator() {}
namespace {
// A BaseTextGenerator that writes to a string.
class StringBaseTextGenerator : public TextFormat::BaseTextGenerator {
public:
void Print(const char* text, size_t size) override {
output_.append(text, size);
}
std::string Consume() && { return std::move(output_); }
private:
std::string output_;
};
} // namespace
// The default implementation for FieldValuePrinter. We just delegate the
// implementation to the default FastFieldValuePrinter to avoid duplicating the
// logic.
TextFormat::FieldValuePrinter::FieldValuePrinter() {}
TextFormat::FieldValuePrinter::~FieldValuePrinter() {}
#define FORWARD_IMPL(fn, ...) \
StringBaseTextGenerator generator; \
delegate_.fn(__VA_ARGS__, &generator); \
return std::move(generator).Consume()
std::string TextFormat::FieldValuePrinter::PrintBool(bool val) const {
FORWARD_IMPL(PrintBool, val);
}
std::string TextFormat::FieldValuePrinter::PrintInt32(int32_t val) const {
FORWARD_IMPL(PrintInt32, val);
}
std::string TextFormat::FieldValuePrinter::PrintUInt32(uint32_t val) const {
FORWARD_IMPL(PrintUInt32, val);
}
std::string TextFormat::FieldValuePrinter::PrintInt64(int64_t val) const {
FORWARD_IMPL(PrintInt64, val);
}
std::string TextFormat::FieldValuePrinter::PrintUInt64(uint64_t val) const {
FORWARD_IMPL(PrintUInt64, val);
}
std::string TextFormat::FieldValuePrinter::PrintFloat(float val) const {
FORWARD_IMPL(PrintFloat, val);
}
std::string TextFormat::FieldValuePrinter::PrintDouble(double val) const {
FORWARD_IMPL(PrintDouble, val);
}
std::string TextFormat::FieldValuePrinter::PrintString(
const std::string& val) const {
FORWARD_IMPL(PrintString, val);
}
std::string TextFormat::FieldValuePrinter::PrintBytes(
const std::string& val) const {
return PrintString(val);
}
std::string TextFormat::FieldValuePrinter::PrintEnum(
int32_t val, const std::string& name) const {
FORWARD_IMPL(PrintEnum, val, name);
}
std::string TextFormat::FieldValuePrinter::PrintFieldName(
const Message& message, const Reflection* reflection,
const FieldDescriptor* field) const {
FORWARD_IMPL(PrintFieldName, message, reflection, field);
}
std::string TextFormat::FieldValuePrinter::PrintMessageStart(
const Message& message, int field_index, int field_count,
bool single_line_mode) const {
FORWARD_IMPL(PrintMessageStart, message, field_index, field_count,
single_line_mode);
}
std::string TextFormat::FieldValuePrinter::PrintMessageEnd(
const Message& message, int field_index, int field_count,
bool single_line_mode) const {
FORWARD_IMPL(PrintMessageEnd, message, field_index, field_count,
single_line_mode);
}
#undef FORWARD_IMPL
TextFormat::FastFieldValuePrinter::FastFieldValuePrinter() {}
TextFormat::FastFieldValuePrinter::~FastFieldValuePrinter() {}
void TextFormat::FastFieldValuePrinter::PrintBool(
bool val, BaseTextGenerator* generator) const {
if (val) {
generator->PrintLiteral("true");
} else {
generator->PrintLiteral("false");
}
}
void TextFormat::FastFieldValuePrinter::PrintInt32(
int32_t val, BaseTextGenerator* generator) const {
generator->PrintString(absl::StrCat(val));
}
void TextFormat::FastFieldValuePrinter::PrintUInt32(
uint32_t val, BaseTextGenerator* generator) const {
generator->PrintString(absl::StrCat(val));
}
void TextFormat::FastFieldValuePrinter::PrintInt64(
int64_t val, BaseTextGenerator* generator) const {
generator->PrintString(absl::StrCat(val));
}
void TextFormat::FastFieldValuePrinter::PrintUInt64(
uint64_t val, BaseTextGenerator* generator) const {
generator->PrintString(absl::StrCat(val));
}
void TextFormat::FastFieldValuePrinter::PrintFloat(
float val, BaseTextGenerator* generator) const {
generator->PrintString(!std::isnan(val) ? io::SimpleFtoa(val) : "nan");
}
void TextFormat::FastFieldValuePrinter::PrintDouble(
double val, BaseTextGenerator* generator) const {
generator->PrintString(!std::isnan(val) ? io::SimpleDtoa(val) : "nan");
}
void TextFormat::FastFieldValuePrinter::PrintEnum(
int32_t /*val*/, const std::string& name,
BaseTextGenerator* generator) const {
generator->PrintString(name);
}
void TextFormat::FastFieldValuePrinter::PrintString(
const std::string& val, BaseTextGenerator* generator) const {
generator->PrintLiteral("\"");
if (!val.empty()) {
generator->PrintString(absl::CEscape(val));
}
generator->PrintLiteral("\"");
}
void TextFormat::FastFieldValuePrinter::PrintBytes(
const std::string& val, BaseTextGenerator* generator) const {
PrintString(val, generator);
}
void TextFormat::FastFieldValuePrinter::PrintFieldName(
const Message& message, int /*field_index*/, int /*field_count*/,
const Reflection* reflection, const FieldDescriptor* field,
BaseTextGenerator* generator) const {
PrintFieldName(message, reflection, field, generator);
}
void TextFormat::FastFieldValuePrinter::PrintFieldName(
const Message& /*message*/, const Reflection* /*reflection*/,
const FieldDescriptor* field, BaseTextGenerator* generator) const {
if (field->is_extension()) {
generator->PrintLiteral("[");
generator->PrintString(field->PrintableNameForExtension());
generator->PrintLiteral("]");
} else if (internal::cpp::IsGroupLike(*field)) {
// Groups must be serialized with their original capitalization.
generator->PrintString(field->message_type()->name());
} else {
generator->PrintString(field->name());
}
}
void TextFormat::FastFieldValuePrinter::PrintMessageStart(
const Message& /*message*/, int /*field_index*/, int /*field_count*/,
bool single_line_mode, BaseTextGenerator* generator) const {
if (single_line_mode) {
generator->PrintLiteral(" { ");
} else {
generator->PrintLiteral(" {\n");
}
}
bool TextFormat::FastFieldValuePrinter::PrintMessageContent(
const Message& /*message*/, int /*field_index*/, int /*field_count*/,
bool /*single_line_mode*/, BaseTextGenerator* /*generator*/) const {
return false; // Use the default printing function.
}
void TextFormat::FastFieldValuePrinter::PrintMessageEnd(
const Message& /*message*/, int /*field_index*/, int /*field_count*/,
bool single_line_mode, BaseTextGenerator* generator) const {
if (single_line_mode) {
generator->PrintLiteral("} ");
} else {
generator->PrintLiteral("}\n");
}
}
namespace {
// A legacy compatibility wrapper. Takes ownership of the delegate.
class FieldValuePrinterWrapper : public TextFormat::FastFieldValuePrinter {
public:
explicit FieldValuePrinterWrapper(
const TextFormat::FieldValuePrinter* delegate)
: delegate_(delegate) {}
void SetDelegate(const TextFormat::FieldValuePrinter* delegate) {
delegate_.reset(delegate);
}
void PrintBool(bool val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintBool(val));
}
void PrintInt32(int32_t val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintInt32(val));
}
void PrintUInt32(uint32_t val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintUInt32(val));
}
void PrintInt64(int64_t val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintInt64(val));
}
void PrintUInt64(uint64_t val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintUInt64(val));
}
void PrintFloat(float val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintFloat(val));
}
void PrintDouble(double val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintDouble(val));
}
void PrintString(const std::string& val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintString(val));
}
void PrintBytes(const std::string& val,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintBytes(val));
}
void PrintEnum(int32_t val, const std::string& name,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintEnum(val, name));
}
void PrintFieldName(const Message& message, int /*field_index*/,
int /*field_count*/, const Reflection* reflection,
const FieldDescriptor* field,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(
delegate_->PrintFieldName(message, reflection, field));
}
void PrintFieldName(const Message& message, const Reflection* reflection,
const FieldDescriptor* field,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(
delegate_->PrintFieldName(message, reflection, field));
}
void PrintMessageStart(
const Message& message, int field_index, int field_count,
bool single_line_mode,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintMessageStart(
message, field_index, field_count, single_line_mode));
}
void PrintMessageEnd(
const Message& message, int field_index, int field_count,
bool single_line_mode,
TextFormat::BaseTextGenerator* generator) const override {
generator->PrintString(delegate_->PrintMessageEnd(
message, field_index, field_count, single_line_mode));
}
private:
std::unique_ptr<const TextFormat::FieldValuePrinter> delegate_;
};
} // namespace
TextFormat::Printer::Printer()
: initial_indent_level_(0),
single_line_mode_(false),
use_field_number_(false),
use_short_repeated_primitives_(false),
insert_silent_marker_(false),
redact_debug_string_(false),
randomize_debug_string_(false),
report_sensitive_fields_(internal::FieldReporterLevel::kNoReport),
hide_unknown_fields_(false),
print_message_fields_in_index_order_(false),
expand_any_(false),
truncate_string_field_longer_than_(0LL),
finder_(nullptr) {
SetUseUtf8StringEscaping(false);
}
void TextFormat::Printer::SetUseUtf8StringEscaping(bool as_utf8) {
SetDefaultFieldValuePrinter(as_utf8 ? new FastFieldValuePrinterUtf8Escaping()
: new DebugStringFieldValuePrinter());
}
void TextFormat::Printer::SetDefaultFieldValuePrinter(
const FieldValuePrinter* printer) {
default_field_value_printer_.reset(new FieldValuePrinterWrapper(printer));
}
void TextFormat::Printer::SetDefaultFieldValuePrinter(
const FastFieldValuePrinter* printer) {
default_field_value_printer_.reset(printer);
}
bool TextFormat::Printer::RegisterFieldValuePrinter(
const FieldDescriptor* field, const FieldValuePrinter* printer) {
if (field == nullptr || printer == nullptr) {
return false;
}
std::unique_ptr<FieldValuePrinterWrapper> wrapper(
new FieldValuePrinterWrapper(nullptr));
auto pair = custom_printers_.emplace(field, nullptr);
if (pair.second) {
wrapper->SetDelegate(printer);
pair.first->second = std::move(wrapper);
return true;
} else {
return false;
}
}
bool TextFormat::Printer::RegisterFieldValuePrinter(
const FieldDescriptor* field, const FastFieldValuePrinter* printer) {
if (field == nullptr || printer == nullptr) {
return false;
}
auto pair = custom_printers_.emplace(field, nullptr);
if (pair.second) {
pair.first->second.reset(printer);
return true;
} else {
return false;
}
}
bool TextFormat::Printer::RegisterMessagePrinter(
const Descriptor* descriptor, const MessagePrinter* printer) {
if (descriptor == nullptr || printer == nullptr) {
return false;
}
auto pair = custom_message_printers_.emplace(descriptor, nullptr);
if (pair.second) {
pair.first->second.reset(printer);
return true;
} else {
return false;
}
}
bool TextFormat::Printer::PrintToString(const Message& message,
std::string* output) const {
ABSL_DCHECK(output) << "output specified is nullptr";
output->clear();
io::StringOutputStream output_stream(output);
return Print(message, &output_stream,
internal::FieldReporterLevel::kMemberPrintToString);
}
bool TextFormat::Printer::PrintUnknownFieldsToString(
const UnknownFieldSet& unknown_fields, std::string* output) const {
ABSL_DCHECK(output) << "output specified is nullptr";
output->clear();
io::StringOutputStream output_stream(output);
return PrintUnknownFields(unknown_fields, &output_stream);
}
bool TextFormat::Printer::Print(const Message& message,
io::ZeroCopyOutputStream* output) const {
return Print(message, output, internal::FieldReporterLevel::kPrintWithStream);
}
bool TextFormat::Printer::Print(const Message& message,
io::ZeroCopyOutputStream* output,
internal::FieldReporterLevel reporter) const {
TextGenerator generator(output, insert_silent_marker_, initial_indent_level_);
Print(message, &generator);
// Output false if the generator failed internally.
return !generator.failed();
}
// Maximum recursion depth for heuristically printing out length-prefixed
// unknown fields as messages.
static constexpr int kUnknownFieldRecursionLimit = 10;
bool TextFormat::Printer::PrintUnknownFields(
const UnknownFieldSet& unknown_fields,
io::ZeroCopyOutputStream* output) const {
TextGenerator generator(output, initial_indent_level_);
PrintUnknownFields(unknown_fields, &generator, kUnknownFieldRecursionLimit);
// Output false if the generator failed internally.
return !generator.failed();
}
namespace {
// Comparison functor for sorting FieldDescriptors by field index.
// Normal fields have higher precedence than extensions.
struct FieldIndexSorter {
bool operator()(const FieldDescriptor* left,
const FieldDescriptor* right) const {
if (left->is_extension() && right->is_extension()) {
return left->number() < right->number();
} else if (left->is_extension()) {
return false;
} else if (right->is_extension()) {
return true;
} else {
return left->index() < right->index();
}
}
};
} // namespace
bool TextFormat::Printer::PrintAny(const Message& message,
BaseTextGenerator* generator) const {
const FieldDescriptor* type_url_field;
const FieldDescriptor* value_field;
if (!internal::GetAnyFieldDescriptors(message, &type_url_field,
&value_field)) {
return false;
}
const Reflection* reflection = message.GetReflection();
// Extract the full type name from the type_url field.
const std::string& type_url = reflection->GetString(message, type_url_field);
std::string url_prefix;
std::string full_type_name;
if (!internal::ParseAnyTypeUrl(type_url, &url_prefix, &full_type_name)) {
return false;
}
// Print the "value" in text.
const Descriptor* value_descriptor =
finder_ ? finder_->FindAnyType(message, url_prefix, full_type_name)
: DefaultFinderFindAnyType(message, url_prefix, full_type_name);
if (value_descriptor == nullptr) {
ABSL_LOG(WARNING) << "Can't print proto content: proto type " << type_url
<< " not found";
return false;
}
DynamicMessageFactory factory;
std::unique_ptr<Message> value_message(
factory.GetPrototype(value_descriptor)->New());
std::string serialized_value = reflection->GetString(message, value_field);
if (!value_message->ParseFromString(serialized_value)) {
ABSL_LOG(WARNING) << type_url << ": failed to parse contents";
return false;
}
generator->PrintLiteral("[");
generator->PrintString(type_url);
generator->PrintLiteral("]");
const FastFieldValuePrinter* printer = GetFieldPrinter(value_field);
printer->PrintMessageStart(message, -1, 0, single_line_mode_, generator);
generator->Indent();
Print(*value_message, generator);
generator->Outdent();
printer->PrintMessageEnd(message, -1, 0, single_line_mode_, generator);
return true;
}
void TextFormat::Printer::Print(const Message& message,
BaseTextGenerator* generator) const {
const Reflection* reflection = message.GetReflection();
if (!reflection) {
// This message does not provide any way to describe its structure.
// Parse it again in an UnknownFieldSet, and display this instead.
UnknownFieldSet unknown_fields;
{
std::string serialized = message.SerializeAsString();
io::ArrayInputStream input(serialized.data(), serialized.size());
unknown_fields.ParseFromZeroCopyStream(&input);
}
PrintUnknownFields(unknown_fields, generator, kUnknownFieldRecursionLimit);
return;
}
const Descriptor* descriptor = message.GetDescriptor();
auto itr = custom_message_printers_.find(descriptor);
if (itr != custom_message_printers_.end()) {
itr->second->Print(message, single_line_mode_, generator);
return;
}
PrintMessage(message, generator);
}
void TextFormat::Printer::PrintMessage(const Message& message,
BaseTextGenerator* generator) const {
if (generator == nullptr) {
return;
}
const Descriptor* descriptor = message.GetDescriptor();
if (descriptor->full_name() == internal::kAnyFullTypeName && expand_any_ &&
PrintAny(message, generator)) {
return;
}
const Reflection* reflection = message.GetReflection();
std::vector<const FieldDescriptor*> fields;
if (descriptor->options().map_entry()) {
fields.push_back(descriptor->field(0));
fields.push_back(descriptor->field(1));
} else {
reflection->ListFields(message, &fields);
}
if (print_message_fields_in_index_order_) {
std::sort(fields.begin(), fields.end(), FieldIndexSorter());
}
for (const FieldDescriptor* field : fields) {
PrintField(message, reflection, field, generator);
}
if (!hide_unknown_fields_) {
PrintUnknownFields(reflection->GetUnknownFields(message), generator,
kUnknownFieldRecursionLimit);
}
}
void TextFormat::Printer::PrintFieldValueToString(const Message& message,
const FieldDescriptor* field,
int index,
std::string* output) const {
ABSL_DCHECK(output) << "output specified is nullptr";
output->clear();
io::StringOutputStream output_stream(output);
TextGenerator generator(&output_stream, initial_indent_level_);
PrintFieldValue(message, message.GetReflection(), field, index, &generator);
}
class MapEntryMessageComparator {
public:
explicit MapEntryMessageComparator(const Descriptor* descriptor)
: field_(descriptor->field(0)) {}
bool operator()(const Message* a, const Message* b) {
const Reflection* reflection = a->GetReflection();
switch (field_->cpp_type()) {
case FieldDescriptor::CPPTYPE_BOOL: {
bool first = reflection->GetBool(*a, field_);
bool second = reflection->GetBool(*b, field_);
return first < second;
}
case FieldDescriptor::CPPTYPE_INT32: {
int32_t first = reflection->GetInt32(*a, field_);
int32_t second = reflection->GetInt32(*b, field_);
return first < second;
}
case FieldDescriptor::CPPTYPE_INT64: {
int64_t first = reflection->GetInt64(*a, field_);
int64_t second = reflection->GetInt64(*b, field_);
return first < second;
}
case FieldDescriptor::CPPTYPE_UINT32: {
uint32_t first = reflection->GetUInt32(*a, field_);
uint32_t second = reflection->GetUInt32(*b, field_);
return first < second;
}
case FieldDescriptor::CPPTYPE_UINT64: {
uint64_t first = reflection->GetUInt64(*a, field_);
uint64_t second = reflection->GetUInt64(*b, field_);
return first < second;
}
case FieldDescriptor::CPPTYPE_STRING: {
std::string first = reflection->GetString(*a, field_);
std::string second = reflection->GetString(*b, field_);
return first < second;
}
default:
ABSL_DLOG(FATAL) << "Invalid key for map field.";
return true;
}
}
private:
const FieldDescriptor* field_;
};
namespace internal {
class MapFieldPrinterHelper {
public:
// DynamicMapSorter::Sort cannot be used because it enforces syncing with
// repeated field.
static bool SortMap(const Message& message, const Reflection* reflection,
const FieldDescriptor* field,
std::vector<const Message*>* sorted_map_field);
static void CopyKey(const MapKey& key, Message* message,
const FieldDescriptor* field_desc);
static void CopyValue(const MapValueRef& value, Message* message,
const FieldDescriptor* field_desc);
};
// Returns true if elements contained in sorted_map_field need to be released.
bool MapFieldPrinterHelper::SortMap(
const Message& message, const Reflection* reflection,
const FieldDescriptor* field,
std::vector<const Message*>* sorted_map_field) {
bool need_release = false;
const MapFieldBase& base = *reflection->GetMapData(message, field);
if (base.IsRepeatedFieldValid()) {
const RepeatedPtrField<Message>& map_field =
reflection->GetRepeatedPtrFieldInternal<Message>(message, field);
for (int i = 0; i < map_field.size(); ++i) {
sorted_map_field->push_back(
const_cast<RepeatedPtrField<Message>*>(&map_field)->Mutable(i));
}
} else {
// TODO: For performance, instead of creating map entry message
// for each element, just store map keys and sort them.
const Descriptor* map_entry_desc = field->message_type();
const Message* prototype =
reflection->GetMessageFactory()->GetPrototype(map_entry_desc);
for (MapIterator iter =
reflection->MapBegin(const_cast<Message*>(&message), field);
iter != reflection->MapEnd(const_cast<Message*>(&message), field);
++iter) {
Message* map_entry_message = prototype->New();
CopyKey(iter.GetKey(), map_entry_message, map_entry_desc->field(0));
CopyValue(iter.GetValueRef(), map_entry_message,
map_entry_desc->field(1));
sorted_map_field->push_back(map_entry_message);
}
need_release = true;
}
MapEntryMessageComparator comparator(field->message_type());
std::stable_sort(sorted_map_field->begin(), sorted_map_field->end(),
comparator);
return need_release;
}
void MapFieldPrinterHelper::CopyKey(const MapKey& key, Message* message,
const FieldDescriptor* field_desc) {
const Reflection* reflection = message->GetReflection();
switch (field_desc->cpp_type()) {
case FieldDescriptor::CPPTYPE_DOUBLE:
case FieldDescriptor::CPPTYPE_FLOAT:
case FieldDescriptor::CPPTYPE_ENUM:
case FieldDescriptor::CPPTYPE_MESSAGE:
ABSL_LOG(ERROR) << "Not supported.";
break;
case FieldDescriptor::CPPTYPE_STRING:
reflection->SetString(message, field_desc,
std::string(key.GetStringValue()));
return;
case FieldDescriptor::CPPTYPE_INT64:
reflection->SetInt64(message, field_desc, key.GetInt64Value());
return;
case FieldDescriptor::CPPTYPE_INT32:
reflection->SetInt32(message, field_desc, key.GetInt32Value());
return;
case FieldDescriptor::CPPTYPE_UINT64:
reflection->SetUInt64(message, field_desc, key.GetUInt64Value());
return;
case FieldDescriptor::CPPTYPE_UINT32:
reflection->SetUInt32(message, field_desc, key.GetUInt32Value());
return;
case FieldDescriptor::CPPTYPE_BOOL:
reflection->SetBool(message, field_desc, key.GetBoolValue());
return;
}
}
void MapFieldPrinterHelper::CopyValue(const MapValueRef& value,
Message* message,
const FieldDescriptor* field_desc) {
const Reflection* reflection = message->GetReflection();
switch (field_desc->cpp_type()) {
case FieldDescriptor::CPPTYPE_DOUBLE:
reflection->SetDouble(message, field_desc, value.GetDoubleValue());
return;
case FieldDescriptor::CPPTYPE_FLOAT:
reflection->SetFloat(message, field_desc, value.GetFloatValue());
return;
case FieldDescriptor::CPPTYPE_ENUM:
reflection->SetEnumValue(message, field_desc, value.GetEnumValue());
return;
case FieldDescriptor::CPPTYPE_MESSAGE: {
Message* sub_message = value.GetMessageValue().New();
sub_message->CopyFrom(value.GetMessageValue());
reflection->SetAllocatedMessage(message, sub_message, field_desc);
return;
}
case FieldDescriptor::CPPTYPE_STRING:
reflection->SetString(message, field_desc,
std::string(value.GetStringValue()));
return;
case FieldDescriptor::CPPTYPE_INT64:
reflection->SetInt64(message, field_desc, value.GetInt64Value());
return;
case FieldDescriptor::CPPTYPE_INT32:
reflection->SetInt32(message, field_desc, value.GetInt32Value());
return;
case FieldDescriptor::CPPTYPE_UINT64:
reflection->SetUInt64(message, field_desc, value.GetUInt64Value());
return;
case FieldDescriptor::CPPTYPE_UINT32:
reflection->SetUInt32(message, field_desc, value.GetUInt32Value());
return;
case FieldDescriptor::CPPTYPE_BOOL:
reflection->SetBool(message, field_desc, value.GetBoolValue());
return;
}
}
} // namespace internal
void TextFormat::Printer::PrintField(const Message& message,
const Reflection* reflection,
const FieldDescriptor* field,
BaseTextGenerator* generator) const {
if (use_short_repeated_primitives_ && field->is_repeated() &&
field->cpp_type() != FieldDescriptor::CPPTYPE_STRING &&
field->cpp_type() != FieldDescriptor::CPPTYPE_MESSAGE) {
PrintShortRepeatedField(message, reflection, field, generator);
return;
}
int count = 0;
if (field->is_repeated()) {
count = reflection->FieldSize(message, field);
} else if (reflection->HasField(message, field) ||
field->containing_type()->options().map_entry()) {
count = 1;
}
std::vector<const Message*> sorted_map_field;
bool need_release = false;
bool is_map = field->is_map();
if (is_map) {
need_release = internal::MapFieldPrinterHelper::SortMap(
message, reflection, field, &sorted_map_field);
}
for (int j = 0; j < count; ++j) {
const int field_index = field->is_repeated() ? j : -1;
PrintFieldName(message, field_index, count, reflection, field, generator);
if (field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE) {
if (TryRedactFieldValue(message, field, generator,
/*insert_value_separator=*/true)) {
break;
}
const FastFieldValuePrinter* printer = GetFieldPrinter(field);
const Message& sub_message =
field->is_repeated()
? (is_map ? *sorted_map_field[j]
: reflection->GetRepeatedMessage(message, field, j))
: reflection->GetMessage(message, field);
printer->PrintMessageStart(sub_message, field_index, count,
single_line_mode_, generator);
generator->Indent();
if (!printer->PrintMessageContent(sub_message, field_index, count,
single_line_mode_, generator)) {
Print(sub_message, generator);
}
generator->Outdent();
printer->PrintMessageEnd(sub_message, field_index, count,
single_line_mode_, generator);
} else {
generator->PrintMaybeWithMarker(MarkerToken(), ": ");
// Write the field value.
PrintFieldValue(message, reflection, field, field_index, generator);
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
}
}
if (need_release) {
for (const Message* message_to_delete : sorted_map_field) {
delete message_to_delete;
}
}
}
void TextFormat::Printer::PrintShortRepeatedField(
const Message& message, const Reflection* reflection,
const FieldDescriptor* field, BaseTextGenerator* generator) const {
// Print primitive repeated field in short form.
int size = reflection->FieldSize(message, field);
PrintFieldName(message, /*field_index=*/-1, /*field_count=*/size, reflection,
field, generator);
generator->PrintMaybeWithMarker(MarkerToken(), ": ", "[");
for (int i = 0; i < size; i++) {
if (i > 0) generator->PrintLiteral(", ");
PrintFieldValue(message, reflection, field, i, generator);
}
if (single_line_mode_) {
generator->PrintLiteral("] ");
} else {
generator->PrintLiteral("]\n");
}
}
void TextFormat::Printer::PrintFieldName(const Message& message,
int field_index, int field_count,
const Reflection* reflection,
const FieldDescriptor* field,
BaseTextGenerator* generator) const {
// if use_field_number_ is true, prints field number instead
// of field name.
if (use_field_number_) {
generator->PrintString(absl::StrCat(field->number()));
return;
}
const FastFieldValuePrinter* printer = GetFieldPrinter(field);
printer->PrintFieldName(message, field_index, field_count, reflection, field,
generator);
}
void TextFormat::Printer::PrintFieldValue(const Message& message,
const Reflection* reflection,
const FieldDescriptor* field,
int index,
BaseTextGenerator* generator) const {
ABSL_DCHECK(field->is_repeated() || (index == -1))
<< "Index must be -1 for non-repeated fields";
const FastFieldValuePrinter* printer = GetFieldPrinter(field);
if (TryRedactFieldValue(message, field, generator,
/*insert_value_separator=*/false)) {
return;
}
switch (field->cpp_type()) {
#define OUTPUT_FIELD(CPPTYPE, METHOD) \
case FieldDescriptor::CPPTYPE_##CPPTYPE: \
printer->Print##METHOD( \
field->is_repeated() \
? reflection->GetRepeated##METHOD(message, field, index) \
: reflection->Get##METHOD(message, field), \
generator); \
break
OUTPUT_FIELD(INT32, Int32);
OUTPUT_FIELD(INT64, Int64);
OUTPUT_FIELD(UINT32, UInt32);
OUTPUT_FIELD(UINT64, UInt64);
OUTPUT_FIELD(FLOAT, Float);
OUTPUT_FIELD(DOUBLE, Double);
OUTPUT_FIELD(BOOL, Bool);
#undef OUTPUT_FIELD
case FieldDescriptor::CPPTYPE_STRING: {
std::string scratch;
const std::string& value =
field->is_repeated()
? reflection->GetRepeatedStringReference(message, field, index,
&scratch)
: reflection->GetStringReference(message, field, &scratch);
const std::string* value_to_print = &value;
std::string truncated_value;
if (truncate_string_field_longer_than_ > 0 &&
static_cast<size_t>(truncate_string_field_longer_than_) <
value.size()) {
truncated_value = value.substr(0, truncate_string_field_longer_than_) +
"...<truncated>...";
value_to_print = &truncated_value;
}
if (field->type() == FieldDescriptor::TYPE_STRING) {
printer->PrintString(*value_to_print, generator);
} else {
ABSL_DCHECK_EQ(field->type(), FieldDescriptor::TYPE_BYTES);
printer->PrintBytes(*value_to_print, generator);
}
break;
}
case FieldDescriptor::CPPTYPE_ENUM: {
int enum_value =
field->is_repeated()
? reflection->GetRepeatedEnumValue(message, field, index)
: reflection->GetEnumValue(message, field);
const EnumValueDescriptor* enum_desc =
field->enum_type()->FindValueByNumber(enum_value);
if (enum_desc != nullptr) {
printer->PrintEnum(enum_value, internal::NameOfEnumAsString(enum_desc),
generator);
} else {
// Ordinarily, enum_desc should not be null, because proto2 has the
// invariant that set enum field values must be in-range, but with the
// new integer-based API for enums (or the RepeatedField<int> loophole),
// it is possible for the user to force an unknown integer value. So we
// simply use the integer value itself as the enum value name in this
// case.
printer->PrintEnum(enum_value, absl::StrCat(enum_value), generator);
}
break;
}
case FieldDescriptor::CPPTYPE_MESSAGE:
Print(field->is_repeated()
? reflection->GetRepeatedMessage(message, field, index)
: reflection->GetMessage(message, field),
generator);
break;
}
}
/* static */ bool TextFormat::Print(const Message& message,
io::ZeroCopyOutputStream* output) {
return Printer().Print(message, output);
}
/* static */ bool TextFormat::PrintUnknownFields(
const UnknownFieldSet& unknown_fields, io::ZeroCopyOutputStream* output) {
return Printer().PrintUnknownFields(unknown_fields, output);
}
/* static */ bool TextFormat::PrintToString(const Message& message,
std::string* output) {
auto printer = Printer();
return printer.PrintToString(message, output);
}
/* static */ bool TextFormat::PrintUnknownFieldsToString(
const UnknownFieldSet& unknown_fields, std::string* output) {
return Printer().PrintUnknownFieldsToString(unknown_fields, output);
}
/* static */ void TextFormat::PrintFieldValueToString(
const Message& message, const FieldDescriptor* field, int index,
std::string* output) {
return Printer().PrintFieldValueToString(message, field, index, output);
}
/* static */ bool TextFormat::ParseFieldValueFromString(
absl::string_view input, const FieldDescriptor* field, Message* message) {
return Parser().ParseFieldValueFromString(input, field, message);
}
template <typename... T>
PROTOBUF_NOINLINE void TextFormat::OutOfLinePrintString(
BaseTextGenerator* generator, const T&... values) {
generator->PrintString(absl::StrCat(values...));
}
void TextFormat::Printer::PrintUnknownFields(
const UnknownFieldSet& unknown_fields, BaseTextGenerator* generator,
int recursion_budget) const {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
switch (field.type()) {
case UnknownField::TYPE_VARINT:
OutOfLinePrintString(generator, field.number());
generator->PrintMaybeWithMarker(MarkerToken(), ": ");
if (redact_debug_string_) {
OutOfLinePrintString(generator, "UNKNOWN_VARINT ");
OutOfLinePrintString(generator, kFieldValueReplacement);
} else {
OutOfLinePrintString(generator, field.varint());
}
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
break;
case UnknownField::TYPE_FIXED32: {
OutOfLinePrintString(generator, field.number());
if (redact_debug_string_) {
generator->PrintMaybeWithMarker(MarkerToken(), ": ",
"UNKNOWN_FIXED32 ");
OutOfLinePrintString(generator, kFieldValueReplacement);
} else {
generator->PrintMaybeWithMarker(MarkerToken(), ": ", "0x");
OutOfLinePrintString(generator,
absl::Hex(field.fixed32(), absl::kZeroPad8));
}
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
break;
}
case UnknownField::TYPE_FIXED64: {
OutOfLinePrintString(generator, field.number());
if (redact_debug_string_) {
generator->PrintMaybeWithMarker(MarkerToken(), ": ",
"UNKNOWN_FIXED64 ");
OutOfLinePrintString(generator, kFieldValueReplacement);
} else {
generator->PrintMaybeWithMarker(MarkerToken(), ": ", "0x");
OutOfLinePrintString(generator,
absl::Hex(field.fixed64(), absl::kZeroPad16));
}
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
break;
}
case UnknownField::TYPE_LENGTH_DELIMITED: {
OutOfLinePrintString(generator, field.number());
const absl::string_view value = field.length_delimited();
// We create a CodedInputStream so that we can adhere to our recursion
// budget when we attempt to parse the data. UnknownFieldSet parsing is
// recursive because of groups.
io::CodedInputStream input_stream(
reinterpret_cast<const uint8_t*>(value.data()), value.size());
input_stream.SetRecursionLimit(recursion_budget);
UnknownFieldSet embedded_unknown_fields;
if (!value.empty() && recursion_budget > 0 &&
embedded_unknown_fields.ParseFromCodedStream(&input_stream)) {
// This field is parseable as a Message.
// So it is probably an embedded message.
if (redact_debug_string_) {
generator->PrintMaybeWithMarker(MarkerToken(), ": ",
"UNKNOWN_MESSAGE ");
OutOfLinePrintString(generator, kFieldValueReplacement);
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
break;
}
if (single_line_mode_) {
generator->PrintMaybeWithMarker(MarkerToken(), " ", "{ ");
} else {
generator->PrintMaybeWithMarker(MarkerToken(), " ", "{\n");
generator->Indent();
}
PrintUnknownFields(embedded_unknown_fields, generator,
recursion_budget - 1);
if (single_line_mode_) {
generator->PrintLiteral("} ");
} else {
generator->Outdent();
generator->PrintLiteral("}\n");
}
} else {
// This field is not parseable as a Message (or we ran out of
// recursion budget). So it is probably just a plain string.
if (redact_debug_string_) {
generator->PrintMaybeWithMarker(MarkerToken(), ": ",
"UNKNOWN_STRING ");
OutOfLinePrintString(generator, kFieldValueReplacement);
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
break;
}
generator->PrintMaybeWithMarker(MarkerToken(), ": ", "\"");
generator->PrintString(absl::CEscape(value));
if (single_line_mode_) {
generator->PrintLiteral("\" ");
} else {
generator->PrintLiteral("\"\n");
}
}
break;
}
case UnknownField::TYPE_GROUP:
OutOfLinePrintString(generator, field.number());
if (redact_debug_string_) {
generator->PrintMaybeWithMarker(MarkerToken(), ": ",
"UNKNOWN_GROUP ");
OutOfLinePrintString(generator, kFieldValueReplacement);
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
break;
}
if (single_line_mode_) {
generator->PrintMaybeWithMarker(MarkerToken(), " ", "{ ");
} else {
generator->PrintMaybeWithMarker(MarkerToken(), " ", "{\n");
generator->Indent();
}
// For groups, we recurse without checking the budget. This is OK,
// because if the groups were too deeply nested then we would have
// already rejected the message when we originally parsed it.
PrintUnknownFields(field.group(), generator, recursion_budget - 1);
if (single_line_mode_) {
generator->PrintLiteral("} ");
} else {
generator->Outdent();
generator->PrintLiteral("}\n");
}
break;
}
}
}
namespace internal {
// Check if the field is sensitive and should be redacted.
bool ShouldRedactField(const FieldDescriptor* field) {
if (field->options().debug_redact()) return true;
return false;
}
} // namespace internal
bool TextFormat::Printer::TryRedactFieldValue(
const Message& message, const FieldDescriptor* field,
BaseTextGenerator* generator, bool insert_value_separator) const {
if (internal::ShouldRedactField(field)) {
if (redact_debug_string_) {
IncrementRedactedFieldCounter();
if (insert_value_separator) {
generator->PrintMaybeWithMarker(MarkerToken(), ": ");
}
generator->PrintString(kFieldValueReplacement);
if (insert_value_separator) {
if (single_line_mode_) {
generator->PrintLiteral(" ");
} else {
generator->PrintLiteral("\n");
}
}
return true;
}
}
return false;
}
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"