blob: f7e656c0715c7f5eb812bd8c85f4044dd599a8cd [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
#include "google/protobuf/wire_format.h"
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/optimization.h"
#include "absl/log/absl_check.h"
#include "absl/log/absl_log.h"
#include "absl/strings/cord.h"
#include "google/protobuf/descriptor.h"
#include "google/protobuf/descriptor.pb.h"
#include "google/protobuf/dynamic_message.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/map_field.h"
#include "google/protobuf/message.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/parse_context.h"
#include "google/protobuf/unknown_field_set.h"
#include "google/protobuf/wire_format_lite.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
const size_t kMapEntryTagByteSize = 2;
namespace google {
namespace protobuf {
namespace internal {
// Forward declare static functions
static size_t MapValueRefDataOnlyByteSize(const FieldDescriptor* field,
const MapValueConstRef& value);
// ===================================================================
bool UnknownFieldSetFieldSkipper::SkipField(io::CodedInputStream* input,
uint32_t tag) {
return WireFormat::SkipField(input, tag, unknown_fields_);
}
bool UnknownFieldSetFieldSkipper::SkipMessage(io::CodedInputStream* input) {
return WireFormat::SkipMessage(input, unknown_fields_);
}
void UnknownFieldSetFieldSkipper::SkipUnknownEnum(int field_number, int value) {
unknown_fields_->AddVarint(field_number, value);
}
bool WireFormat::SkipField(io::CodedInputStream* input, uint32_t tag,
UnknownFieldSet* unknown_fields) {
int number = WireFormatLite::GetTagFieldNumber(tag);
// Field number 0 is illegal.
if (number == 0) return false;
switch (WireFormatLite::GetTagWireType(tag)) {
case WireFormatLite::WIRETYPE_VARINT: {
uint64_t value;
if (!input->ReadVarint64(&value)) return false;
if (unknown_fields != nullptr) unknown_fields->AddVarint(number, value);
return true;
}
case WireFormatLite::WIRETYPE_FIXED64: {
uint64_t value;
if (!input->ReadLittleEndian64(&value)) return false;
if (unknown_fields != nullptr) unknown_fields->AddFixed64(number, value);
return true;
}
case WireFormatLite::WIRETYPE_LENGTH_DELIMITED: {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
if (unknown_fields == nullptr) {
if (!input->Skip(length)) return false;
} else {
if (!input->ReadString(unknown_fields->AddLengthDelimited(number),
length)) {
return false;
}
}
return true;
}
case WireFormatLite::WIRETYPE_START_GROUP: {
if (!input->IncrementRecursionDepth()) return false;
if (!SkipMessage(input, (unknown_fields == nullptr)
? nullptr
: unknown_fields->AddGroup(number))) {
return false;
}
input->DecrementRecursionDepth();
// Check that the ending tag matched the starting tag.
if (!input->LastTagWas(
WireFormatLite::MakeTag(WireFormatLite::GetTagFieldNumber(tag),
WireFormatLite::WIRETYPE_END_GROUP))) {
return false;
}
return true;
}
case WireFormatLite::WIRETYPE_END_GROUP: {
return false;
}
case WireFormatLite::WIRETYPE_FIXED32: {
uint32_t value;
if (!input->ReadLittleEndian32(&value)) return false;
if (unknown_fields != nullptr) unknown_fields->AddFixed32(number, value);
return true;
}
default: {
return false;
}
}
}
bool WireFormat::SkipMessage(io::CodedInputStream* input,
UnknownFieldSet* unknown_fields) {
while (true) {
uint32_t tag = input->ReadTag();
if (tag == 0) {
// End of input. This is a valid place to end, so return true.
return true;
}
WireFormatLite::WireType wire_type = WireFormatLite::GetTagWireType(tag);
if (wire_type == WireFormatLite::WIRETYPE_END_GROUP) {
// Must be the end of the message.
return true;
}
if (!SkipField(input, tag, unknown_fields)) return false;
}
}
bool WireFormat::ReadPackedEnumPreserveUnknowns(io::CodedInputStream* input,
uint32_t field_number,
bool (*is_valid)(int),
UnknownFieldSet* unknown_fields,
RepeatedField<int>* values) {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
io::CodedInputStream::Limit limit = input->PushLimit(length);
while (input->BytesUntilLimit() > 0) {
int value;
if (!WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
input, &value)) {
return false;
}
if (is_valid == nullptr || is_valid(value)) {
values->Add(value);
} else {
unknown_fields->AddVarint(field_number, value);
}
}
input->PopLimit(limit);
return true;
}
uint8_t* WireFormat::InternalSerializeUnknownFieldsToArray(
const UnknownFieldSet& unknown_fields, uint8_t* target,
io::EpsCopyOutputStream* stream) {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
target = stream->EnsureSpace(target);
switch (field.type()) {
case UnknownField::TYPE_VARINT:
target = WireFormatLite::WriteUInt64ToArray(field.number(),
field.varint(), target);
break;
case UnknownField::TYPE_FIXED32:
target = WireFormatLite::WriteFixed32ToArray(field.number(),
field.fixed32(), target);
break;
case UnknownField::TYPE_FIXED64:
target = WireFormatLite::WriteFixed64ToArray(field.number(),
field.fixed64(), target);
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
target = stream->WriteString(field.number(), field.length_delimited(),
target);
break;
case UnknownField::TYPE_GROUP:
target = WireFormatLite::WriteTagToArray(
field.number(), WireFormatLite::WIRETYPE_START_GROUP, target);
target = InternalSerializeUnknownFieldsToArray(field.group(), target,
stream);
target = stream->EnsureSpace(target);
target = WireFormatLite::WriteTagToArray(
field.number(), WireFormatLite::WIRETYPE_END_GROUP, target);
break;
}
}
return target;
}
uint8_t* WireFormat::InternalSerializeUnknownMessageSetItemsToArray(
const UnknownFieldSet& unknown_fields, uint8_t* target,
io::EpsCopyOutputStream* stream) {
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
// The only unknown fields that are allowed to exist in a MessageSet are
// messages, which are length-delimited.
if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) {
target = stream->EnsureSpace(target);
// Start group.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetItemStartTag, target);
// Write type ID.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetTypeIdTag, target);
target =
io::CodedOutputStream::WriteVarint32ToArray(field.number(), target);
// Write message.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetMessageTag, target);
target = field.InternalSerializeLengthDelimitedNoTag(target, stream);
target = stream->EnsureSpace(target);
// End group.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetItemEndTag, target);
}
}
return target;
}
size_t WireFormat::ComputeUnknownFieldsSize(
const UnknownFieldSet& unknown_fields) {
size_t size = 0;
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
switch (field.type()) {
case UnknownField::TYPE_VARINT:
size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag(
field.number(), WireFormatLite::WIRETYPE_VARINT));
size += io::CodedOutputStream::VarintSize64(field.varint());
break;
case UnknownField::TYPE_FIXED32:
size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag(
field.number(), WireFormatLite::WIRETYPE_FIXED32));
size += sizeof(int32_t);
break;
case UnknownField::TYPE_FIXED64:
size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag(
field.number(), WireFormatLite::WIRETYPE_FIXED64));
size += sizeof(int64_t);
break;
case UnknownField::TYPE_LENGTH_DELIMITED:
size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag(
field.number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED));
size += io::CodedOutputStream::VarintSize32(
field.length_delimited().size());
size += field.length_delimited().size();
break;
case UnknownField::TYPE_GROUP:
size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag(
field.number(), WireFormatLite::WIRETYPE_START_GROUP));
size += ComputeUnknownFieldsSize(field.group());
size += io::CodedOutputStream::VarintSize32(WireFormatLite::MakeTag(
field.number(), WireFormatLite::WIRETYPE_END_GROUP));
break;
}
}
return size;
}
size_t WireFormat::ComputeUnknownMessageSetItemsSize(
const UnknownFieldSet& unknown_fields) {
size_t size = 0;
for (int i = 0; i < unknown_fields.field_count(); i++) {
const UnknownField& field = unknown_fields.field(i);
// The only unknown fields that are allowed to exist in a MessageSet are
// messages, which are length-delimited.
if (field.type() == UnknownField::TYPE_LENGTH_DELIMITED) {
size += WireFormatLite::kMessageSetItemTagsSize;
size += io::CodedOutputStream::VarintSize32(field.number());
int field_size = field.GetLengthDelimitedSize();
size += io::CodedOutputStream::VarintSize32(field_size);
size += field_size;
}
}
return size;
}
// ===================================================================
bool WireFormat::ParseAndMergePartial(io::CodedInputStream* input,
Message* message) {
const Descriptor* descriptor = message->GetDescriptor();
const Reflection* message_reflection = message->GetReflection();
while (true) {
uint32_t tag = input->ReadTag();
if (tag == 0) {
// End of input. This is a valid place to end, so return true.
return true;
}
if (WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_END_GROUP) {
// Must be the end of the message.
return true;
}
const FieldDescriptor* field = nullptr;
if (descriptor != nullptr) {
int field_number = WireFormatLite::GetTagFieldNumber(tag);
field = descriptor->FindFieldByNumber(field_number);
// If that failed, check if the field is an extension.
if (field == nullptr && descriptor->IsExtensionNumber(field_number)) {
if (input->GetExtensionPool() == nullptr) {
field = message_reflection->FindKnownExtensionByNumber(field_number);
} else {
field = input->GetExtensionPool()->FindExtensionByNumber(
descriptor, field_number);
}
}
// If that failed, but we're a MessageSet, and this is the tag for a
// MessageSet item, then parse that.
if (field == nullptr && descriptor->options().message_set_wire_format() &&
tag == WireFormatLite::kMessageSetItemStartTag) {
if (!ParseAndMergeMessageSetItem(input, message)) {
return false;
}
continue; // Skip ParseAndMergeField(); already taken care of.
}
}
if (!ParseAndMergeField(tag, field, message, input)) {
return false;
}
}
}
bool WireFormat::SkipMessageSetField(io::CodedInputStream* input,
uint32_t field_number,
UnknownFieldSet* unknown_fields) {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
return input->ReadString(unknown_fields->AddLengthDelimited(field_number),
length);
}
bool WireFormat::ParseAndMergeMessageSetField(uint32_t field_number,
const FieldDescriptor* field,
Message* message,
io::CodedInputStream* input) {
const Reflection* message_reflection = message->GetReflection();
if (field == nullptr) {
// We store unknown MessageSet extensions as groups.
return SkipMessageSetField(
input, field_number, message_reflection->MutableUnknownFields(message));
} else if (field->is_repeated() ||
field->type() != FieldDescriptor::TYPE_MESSAGE) {
// This shouldn't happen as we only allow optional message extensions to
// MessageSet.
ABSL_LOG(ERROR) << "Extensions of MessageSets must be optional messages.";
return false;
} else {
Message* sub_message = message_reflection->MutableMessage(
message, field, input->GetExtensionFactory());
return WireFormatLite::ReadMessage(input, sub_message);
}
}
bool WireFormat::ParseAndMergeField(
uint32_t tag,
const FieldDescriptor* field, // May be nullptr for unknown
Message* message, io::CodedInputStream* input) {
const Reflection* message_reflection = message->GetReflection();
enum { UNKNOWN, NORMAL_FORMAT, PACKED_FORMAT } value_format;
if (field == nullptr) {
value_format = UNKNOWN;
} else if (WireFormatLite::GetTagWireType(tag) ==
WireTypeForFieldType(field->type())) {
value_format = NORMAL_FORMAT;
} else if (field->is_packable() &&
WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
value_format = PACKED_FORMAT;
} else {
// We don't recognize this field. Either the field number is unknown
// or the wire type doesn't match. Put it in our unknown field set.
value_format = UNKNOWN;
}
if (value_format == UNKNOWN) {
return SkipField(input, tag,
message_reflection->MutableUnknownFields(message));
} else if (value_format == PACKED_FORMAT) {
uint32_t length;
if (!input->ReadVarint32(&length)) return false;
io::CodedInputStream::Limit limit = input->PushLimit(length);
switch (field->type()) {
#define HANDLE_PACKED_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
while (input->BytesUntilLimit() > 0) { \
CPPTYPE value; \
if (!WireFormatLite::ReadPrimitive<CPPTYPE, \
WireFormatLite::TYPE_##TYPE>(input, \
&value)) \
return false; \
message_reflection->Add##CPPTYPE_METHOD(message, field, value); \
} \
break; \
}
HANDLE_PACKED_TYPE(INT32, int32_t, Int32)
HANDLE_PACKED_TYPE(INT64, int64_t, Int64)
HANDLE_PACKED_TYPE(SINT32, int32_t, Int32)
HANDLE_PACKED_TYPE(SINT64, int64_t, Int64)
HANDLE_PACKED_TYPE(UINT32, uint32_t, UInt32)
HANDLE_PACKED_TYPE(UINT64, uint64_t, UInt64)
HANDLE_PACKED_TYPE(FIXED32, uint32_t, UInt32)
HANDLE_PACKED_TYPE(FIXED64, uint64_t, UInt64)
HANDLE_PACKED_TYPE(SFIXED32, int32_t, Int32)
HANDLE_PACKED_TYPE(SFIXED64, int64_t, Int64)
HANDLE_PACKED_TYPE(FLOAT, float, Float)
HANDLE_PACKED_TYPE(DOUBLE, double, Double)
HANDLE_PACKED_TYPE(BOOL, bool, Bool)
#undef HANDLE_PACKED_TYPE
case FieldDescriptor::TYPE_ENUM: {
while (input->BytesUntilLimit() > 0) {
int value;
if (!WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
input, &value))
return false;
if (!field->legacy_enum_field_treated_as_closed()) {
message_reflection->AddEnumValue(message, field, value);
} else {
const EnumValueDescriptor* enum_value =
field->enum_type()->FindValueByNumber(value);
if (enum_value != nullptr) {
message_reflection->AddEnum(message, field, enum_value);
} else {
// The enum value is not one of the known values. Add it to the
// UnknownFieldSet.
int64_t sign_extended_value = static_cast<int64_t>(value);
message_reflection->MutableUnknownFields(message)->AddVarint(
WireFormatLite::GetTagFieldNumber(tag), sign_extended_value);
}
}
}
break;
}
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_BYTES:
// Can't have packed fields of these types: these should be caught by
// the protocol compiler.
return false;
break;
}
input->PopLimit(limit);
} else {
// Non-packed value (value_format == NORMAL_FORMAT)
switch (field->type()) {
#define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
CPPTYPE value; \
if (!WireFormatLite::ReadPrimitive<CPPTYPE, WireFormatLite::TYPE_##TYPE>( \
input, &value)) \
return false; \
if (field->is_repeated()) { \
message_reflection->Add##CPPTYPE_METHOD(message, field, value); \
} else { \
message_reflection->Set##CPPTYPE_METHOD(message, field, value); \
} \
break; \
}
HANDLE_TYPE(INT32, int32_t, Int32)
HANDLE_TYPE(INT64, int64_t, Int64)
HANDLE_TYPE(SINT32, int32_t, Int32)
HANDLE_TYPE(SINT64, int64_t, Int64)
HANDLE_TYPE(UINT32, uint32_t, UInt32)
HANDLE_TYPE(UINT64, uint64_t, UInt64)
HANDLE_TYPE(FIXED32, uint32_t, UInt32)
HANDLE_TYPE(FIXED64, uint64_t, UInt64)
HANDLE_TYPE(SFIXED32, int32_t, Int32)
HANDLE_TYPE(SFIXED64, int64_t, Int64)
HANDLE_TYPE(FLOAT, float, Float)
HANDLE_TYPE(DOUBLE, double, Double)
HANDLE_TYPE(BOOL, bool, Bool)
#undef HANDLE_TYPE
case FieldDescriptor::TYPE_ENUM: {
int value;
if (!WireFormatLite::ReadPrimitive<int, WireFormatLite::TYPE_ENUM>(
input, &value))
return false;
if (field->is_repeated()) {
message_reflection->AddEnumValue(message, field, value);
} else {
message_reflection->SetEnumValue(message, field, value);
}
break;
}
// Handle strings separately so that we can optimize the ctype=CORD case.
case FieldDescriptor::TYPE_STRING: {
bool strict_utf8_check = field->requires_utf8_validation();
std::string value;
if (!WireFormatLite::ReadString(input, &value)) return false;
if (strict_utf8_check) {
if (!WireFormatLite::VerifyUtf8String(value.data(), value.length(),
WireFormatLite::PARSE,
field->full_name())) {
return false;
}
} else {
VerifyUTF8StringNamedField(value.data(), value.length(), PARSE,
field->full_name());
}
if (field->is_repeated()) {
message_reflection->AddString(message, field, value);
} else {
message_reflection->SetString(message, field, value);
}
break;
}
case FieldDescriptor::TYPE_BYTES: {
if (field->cpp_string_type() == FieldDescriptor::CppStringType::kCord) {
absl::Cord value;
if (!WireFormatLite::ReadBytes(input, &value)) return false;
message_reflection->SetString(message, field, value);
break;
}
std::string value;
if (!WireFormatLite::ReadBytes(input, &value)) return false;
if (field->is_repeated()) {
message_reflection->AddString(message, field, value);
} else {
message_reflection->SetString(message, field, value);
}
break;
}
case FieldDescriptor::TYPE_GROUP: {
Message* sub_message;
if (field->is_repeated()) {
sub_message = message_reflection->AddMessage(
message, field, input->GetExtensionFactory());
} else {
sub_message = message_reflection->MutableMessage(
message, field, input->GetExtensionFactory());
}
if (!WireFormatLite::ReadGroup(WireFormatLite::GetTagFieldNumber(tag),
input, sub_message))
return false;
break;
}
case FieldDescriptor::TYPE_MESSAGE: {
Message* sub_message;
if (field->is_repeated()) {
sub_message = message_reflection->AddMessage(
message, field, input->GetExtensionFactory());
} else {
sub_message = message_reflection->MutableMessage(
message, field, input->GetExtensionFactory());
}
if (!WireFormatLite::ReadMessage(input, sub_message)) return false;
break;
}
}
}
return true;
}
bool WireFormat::ParseAndMergeMessageSetItem(io::CodedInputStream* input,
Message* message) {
struct MSReflective {
bool ParseField(int type_id, io::CodedInputStream* input) {
const FieldDescriptor* field =
message_reflection->FindKnownExtensionByNumber(type_id);
return ParseAndMergeMessageSetField(type_id, field, message, input);
}
bool SkipField(uint32_t tag, io::CodedInputStream* input) {
return WireFormat::SkipField(input, tag, nullptr);
}
const Reflection* message_reflection;
Message* message;
};
return ParseMessageSetItemImpl(
input, MSReflective{message->GetReflection(), message});
}
struct WireFormat::MessageSetParser {
const char* ParseElement(const char* ptr, internal::ParseContext* ctx) {
// Parse a MessageSetItem
auto metadata = reflection->MutableInternalMetadata(msg);
enum class State { kNoTag, kHasType, kHasPayload, kDone };
State state = State::kNoTag;
std::string payload;
uint32_t type_id = 0;
while (!ctx->Done(&ptr)) {
// We use 64 bit tags in order to allow typeid's that span the whole
// range of 32 bit numbers.
uint32_t tag = static_cast<uint8_t>(*ptr++);
if (tag == WireFormatLite::kMessageSetTypeIdTag) {
uint64_t tmp;
ptr = ParseBigVarint(ptr, &tmp);
// We should fail parsing if type id is 0 after cast to uint32.
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr &&
static_cast<uint32_t>(tmp) != 0);
if (state == State::kNoTag) {
type_id = static_cast<uint32_t>(tmp);
state = State::kHasType;
} else if (state == State::kHasPayload) {
type_id = static_cast<uint32_t>(tmp);
const FieldDescriptor* field;
if (ctx->data().pool == nullptr) {
field = reflection->FindKnownExtensionByNumber(type_id);
} else {
field =
ctx->data().pool->FindExtensionByNumber(descriptor, type_id);
}
if (field == nullptr || field->message_type() == nullptr) {
WriteLengthDelimited(
type_id, payload,
metadata->mutable_unknown_fields<UnknownFieldSet>());
} else {
Message* value =
field->is_repeated()
? reflection->AddMessage(msg, field, ctx->data().factory)
: reflection->MutableMessage(msg, field,
ctx->data().factory);
const char* p;
// We can't use regular parse from string as we have to track
// proper recursion depth and descriptor pools. Spawn a new
// ParseContext inheriting those attributes.
ParseContext tmp_ctx(ParseContext::kSpawn, *ctx, &p, payload);
GOOGLE_PROTOBUF_PARSER_ASSERT(value->_InternalParse(p, &tmp_ctx) &&
tmp_ctx.EndedAtLimit());
}
state = State::kDone;
}
continue;
} else if (tag == WireFormatLite::kMessageSetMessageTag) {
if (state == State::kNoTag) {
int32_t size = ReadSize(&ptr);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
ptr = ctx->ReadString(ptr, size, &payload);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
state = State::kHasPayload;
} else if (state == State::kHasType) {
// We're now parsing the payload
const FieldDescriptor* field = nullptr;
if (descriptor->IsExtensionNumber(type_id)) {
if (ctx->data().pool == nullptr) {
field = reflection->FindKnownExtensionByNumber(type_id);
} else {
field =
ctx->data().pool->FindExtensionByNumber(descriptor, type_id);
}
}
ptr = WireFormat::_InternalParseAndMergeField(
msg, ptr, ctx, static_cast<uint64_t>(type_id) * 8 + 2, reflection,
field);
state = State::kDone;
} else {
int32_t size = ReadSize(&ptr);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
ptr = ctx->Skip(ptr, size);
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
}
} else {
// An unknown field in MessageSetItem.
ptr = ReadTag(ptr - 1, &tag);
if (tag == 0 || (tag & 7) == WireFormatLite::WIRETYPE_END_GROUP) {
ctx->SetLastTag(tag);
return ptr;
}
// Skip field.
ptr = internal::UnknownFieldParse(
tag, static_cast<std::string*>(nullptr), ptr, ctx);
}
GOOGLE_PROTOBUF_PARSER_ASSERT(ptr);
}
return ptr;
}
const char* ParseMessageSet(const char* ptr, internal::ParseContext* ctx) {
while (!ctx->Done(&ptr)) {
uint32_t tag;
ptr = ReadTag(ptr, &tag);
if (ABSL_PREDICT_FALSE(ptr == nullptr)) return nullptr;
if (tag == 0 || (tag & 7) == WireFormatLite::WIRETYPE_END_GROUP) {
ctx->SetLastTag(tag);
break;
}
if (tag == WireFormatLite::kMessageSetItemStartTag) {
// A message set item starts
ptr = ctx->ParseGroupInlined(
ptr, tag, [&](const char* ptr) { return ParseElement(ptr, ctx); });
} else {
// Parse other fields as normal extensions.
int field_number = WireFormatLite::GetTagFieldNumber(tag);
const FieldDescriptor* field = nullptr;
if (descriptor->IsExtensionNumber(field_number)) {
if (ctx->data().pool == nullptr) {
field = reflection->FindKnownExtensionByNumber(field_number);
} else {
field = ctx->data().pool->FindExtensionByNumber(descriptor,
field_number);
}
}
ptr = WireFormat::_InternalParseAndMergeField(msg, ptr, ctx, tag,
reflection, field);
}
if (ABSL_PREDICT_FALSE(ptr == nullptr)) return nullptr;
}
return ptr;
}
Message* msg;
const Descriptor* descriptor;
const Reflection* reflection;
};
static const char* HandleMessage(Message* msg, const char* ptr,
internal::ParseContext* ctx, uint64_t tag,
const Reflection* reflection,
const FieldDescriptor* field) {
Message* sub_message;
if (field->is_repeated()) {
sub_message = reflection->AddMessage(msg, field, ctx->data().factory);
} else {
sub_message = reflection->MutableMessage(msg, field, ctx->data().factory);
}
if (WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_START_GROUP) {
return ctx->ParseGroup(sub_message, ptr, tag);
} else {
ABSL_DCHECK(WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_LENGTH_DELIMITED);
}
ptr = ctx->ParseMessage(sub_message, ptr);
// For map entries, if the value is an unknown enum we have to push it
// into the unknown field set and remove it from the list.
if (ptr != nullptr && field->is_map()) {
auto* value_field = field->message_type()->map_value();
auto* enum_type = value_field->enum_type();
if (enum_type != nullptr &&
!internal::cpp::HasPreservingUnknownEnumSemantics(value_field) &&
enum_type->FindValueByNumber(sub_message->GetReflection()->GetEnumValue(
*sub_message, value_field)) == nullptr) {
reflection->MutableUnknownFields(msg)->AddLengthDelimited(
field->number(), sub_message->SerializeAsString());
reflection->RemoveLast(msg, field);
}
}
return ptr;
}
const char* WireFormat::_InternalParse(Message* msg, const char* ptr,
internal::ParseContext* ctx) {
const Descriptor* descriptor = msg->GetDescriptor();
const Reflection* reflection = msg->GetReflection();
ABSL_DCHECK(descriptor);
ABSL_DCHECK(reflection);
if (descriptor->options().message_set_wire_format()) {
MessageSetParser message_set{msg, descriptor, reflection};
return message_set.ParseMessageSet(ptr, ctx);
}
while (!ctx->Done(&ptr)) {
uint32_t tag;
ptr = ReadTag(ptr, &tag);
if (ABSL_PREDICT_FALSE(ptr == nullptr)) return nullptr;
if (tag == 0 || (tag & 7) == WireFormatLite::WIRETYPE_END_GROUP) {
ctx->SetLastTag(tag);
break;
}
const FieldDescriptor* field = nullptr;
int field_number = WireFormatLite::GetTagFieldNumber(tag);
field = descriptor->FindFieldByNumber(field_number);
// If that failed, check if the field is an extension.
if (field == nullptr && descriptor->IsExtensionNumber(field_number)) {
if (ctx->data().pool == nullptr) {
field = reflection->FindKnownExtensionByNumber(field_number);
} else {
field =
ctx->data().pool->FindExtensionByNumber(descriptor, field_number);
}
}
ptr = _InternalParseAndMergeField(msg, ptr, ctx, tag, reflection, field);
if (ABSL_PREDICT_FALSE(ptr == nullptr)) return nullptr;
}
return ptr;
}
const char* WireFormat::_InternalParseAndMergeField(
Message* msg, const char* ptr, internal::ParseContext* ctx, uint64_t tag,
const Reflection* reflection, const FieldDescriptor* field) {
if (field == nullptr) {
// unknown field set parser takes 64bit tags, because message set type ids
// span the full 32 bit range making the tag span [0, 2^35) range.
return internal::UnknownFieldParse(
tag, reflection->MutableUnknownFields(msg), ptr, ctx);
}
if (WireFormatLite::GetTagWireType(tag) !=
WireTypeForFieldType(field->type())) {
if (field->is_packable() && WireFormatLite::GetTagWireType(tag) ==
WireFormatLite::WIRETYPE_LENGTH_DELIMITED) {
switch (field->type()) {
#define HANDLE_PACKED_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
ptr = internal::Packed##CPPTYPE_METHOD##Parser( \
reflection->MutableRepeatedFieldInternal<CPPTYPE>(msg, field), ptr, \
ctx); \
return ptr; \
}
HANDLE_PACKED_TYPE(INT32, int32_t, Int32)
HANDLE_PACKED_TYPE(INT64, int64_t, Int64)
HANDLE_PACKED_TYPE(SINT32, int32_t, SInt32)
HANDLE_PACKED_TYPE(SINT64, int64_t, SInt64)
HANDLE_PACKED_TYPE(UINT32, uint32_t, UInt32)
HANDLE_PACKED_TYPE(UINT64, uint64_t, UInt64)
HANDLE_PACKED_TYPE(FIXED32, uint32_t, Fixed32)
HANDLE_PACKED_TYPE(FIXED64, uint64_t, Fixed64)
HANDLE_PACKED_TYPE(SFIXED32, int32_t, SFixed32)
HANDLE_PACKED_TYPE(SFIXED64, int64_t, SFixed64)
HANDLE_PACKED_TYPE(FLOAT, float, Float)
HANDLE_PACKED_TYPE(DOUBLE, double, Double)
HANDLE_PACKED_TYPE(BOOL, bool, Bool)
#undef HANDLE_PACKED_TYPE
case FieldDescriptor::TYPE_ENUM: {
auto rep_enum =
reflection->MutableRepeatedFieldInternal<int>(msg, field);
if (!field->legacy_enum_field_treated_as_closed()) {
ptr = internal::PackedEnumParser(rep_enum, ptr, ctx);
} else {
return ctx->ReadPackedVarint(
ptr, [rep_enum, field, reflection, msg](int32_t val) {
if (field->enum_type()->FindValueByNumber(val) != nullptr) {
rep_enum->Add(val);
} else {
WriteVarint(field->number(), val,
reflection->MutableUnknownFields(msg));
}
});
}
return ptr;
}
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_BYTES:
ABSL_LOG(FATAL) << "Can't reach";
return nullptr;
}
} else {
// mismatched wiretype;
return internal::UnknownFieldParse(
tag, reflection->MutableUnknownFields(msg), ptr, ctx);
}
}
// Non-packed value
bool utf8_check = false;
bool strict_utf8_check = false;
switch (field->type()) {
#define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
CPPTYPE value; \
ptr = VarintParse(ptr, &value); \
if (ptr == nullptr) return nullptr; \
if (field->is_repeated()) { \
reflection->Add##CPPTYPE_METHOD(msg, field, value); \
} else { \
reflection->Set##CPPTYPE_METHOD(msg, field, value); \
} \
return ptr; \
}
HANDLE_TYPE(BOOL, uint64_t, Bool)
HANDLE_TYPE(INT32, uint32_t, Int32)
HANDLE_TYPE(INT64, uint64_t, Int64)
HANDLE_TYPE(UINT32, uint32_t, UInt32)
HANDLE_TYPE(UINT64, uint64_t, UInt64)
case FieldDescriptor::TYPE_SINT32: {
int32_t value = ReadVarintZigZag32(&ptr);
if (ptr == nullptr) return nullptr;
if (field->is_repeated()) {
reflection->AddInt32(msg, field, value);
} else {
reflection->SetInt32(msg, field, value);
}
return ptr;
}
case FieldDescriptor::TYPE_SINT64: {
int64_t value = ReadVarintZigZag64(&ptr);
if (ptr == nullptr) return nullptr;
if (field->is_repeated()) {
reflection->AddInt64(msg, field, value);
} else {
reflection->SetInt64(msg, field, value);
}
return ptr;
}
#undef HANDLE_TYPE
#define HANDLE_TYPE(TYPE, CPPTYPE, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
CPPTYPE value; \
value = UnalignedLoad<CPPTYPE>(ptr); \
ptr += sizeof(CPPTYPE); \
if (field->is_repeated()) { \
reflection->Add##CPPTYPE_METHOD(msg, field, value); \
} else { \
reflection->Set##CPPTYPE_METHOD(msg, field, value); \
} \
return ptr; \
}
HANDLE_TYPE(FIXED32, uint32_t, UInt32)
HANDLE_TYPE(FIXED64, uint64_t, UInt64)
HANDLE_TYPE(SFIXED32, int32_t, Int32)
HANDLE_TYPE(SFIXED64, int64_t, Int64)
HANDLE_TYPE(FLOAT, float, Float)
HANDLE_TYPE(DOUBLE, double, Double)
#undef HANDLE_TYPE
case FieldDescriptor::TYPE_ENUM: {
uint32_t value;
ptr = VarintParse(ptr, &value);
if (ptr == nullptr) return nullptr;
if (field->is_repeated()) {
reflection->AddEnumValue(msg, field, value);
} else {
reflection->SetEnumValue(msg, field, value);
}
return ptr;
}
// Handle strings separately so that we can optimize the ctype=CORD case.
case FieldDescriptor::TYPE_STRING:
utf8_check = true;
strict_utf8_check = field->requires_utf8_validation();
ABSL_FALLTHROUGH_INTENDED;
case FieldDescriptor::TYPE_BYTES: {
int size = ReadSize(&ptr);
if (ptr == nullptr) return nullptr;
if (field->cpp_string_type() == FieldDescriptor::CppStringType::kCord) {
absl::Cord value;
ptr = ctx->ReadCord(ptr, size, &value);
if (ptr == nullptr) return nullptr;
reflection->SetString(msg, field, value);
return ptr;
}
std::string value;
ptr = ctx->ReadString(ptr, size, &value);
if (ptr == nullptr) return nullptr;
if (utf8_check) {
if (strict_utf8_check) {
if (!WireFormatLite::VerifyUtf8String(value.data(), value.length(),
WireFormatLite::PARSE,
field->full_name())) {
return nullptr;
}
} else {
VerifyUTF8StringNamedField(value.data(), value.length(), PARSE,
field->full_name());
}
}
if (field->is_repeated()) {
reflection->AddString(msg, field, std::move(value));
} else {
reflection->SetString(msg, field, std::move(value));
}
return ptr;
}
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_GROUP:
return HandleMessage(msg, ptr, ctx, tag, reflection, field);
}
// GCC 8 complains about control reaching end of non-void function here.
// Let's keep it happy by returning a nullptr.
return nullptr;
}
// ===================================================================
uint8_t* WireFormat::_InternalSerialize(const Message& message, uint8_t* target,
io::EpsCopyOutputStream* stream) {
const Descriptor* descriptor = message.GetDescriptor();
const Reflection* message_reflection = message.GetReflection();
std::vector<const FieldDescriptor*> fields;
// Fields of map entry should always be serialized.
if (descriptor->options().map_entry()) {
for (int i = 0; i < descriptor->field_count(); i++) {
fields.push_back(descriptor->field(i));
}
} else {
message_reflection->ListFields(message, &fields);
}
for (auto field : fields) {
target = InternalSerializeField(field, message, target, stream);
}
if (descriptor->options().message_set_wire_format()) {
return InternalSerializeUnknownMessageSetItemsToArray(
message_reflection->GetUnknownFields(message), target, stream);
} else {
return InternalSerializeUnknownFieldsToArray(
message_reflection->GetUnknownFields(message), target, stream);
}
}
uint8_t* SerializeMapKeyWithCachedSizes(const FieldDescriptor* field,
const MapKey& value, uint8_t* target,
io::EpsCopyOutputStream* stream) {
target = stream->EnsureSpace(target);
switch (field->type()) {
case FieldDescriptor::TYPE_DOUBLE:
case FieldDescriptor::TYPE_FLOAT:
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_BYTES:
case FieldDescriptor::TYPE_ENUM:
ABSL_LOG(FATAL) << "Unsupported";
break;
#define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \
case FieldDescriptor::TYPE_##FieldType: \
target = WireFormatLite::Write##CamelFieldType##ToArray( \
1, value.Get##CamelCppType##Value(), target); \
break;
CASE_TYPE(INT64, Int64, Int64)
CASE_TYPE(UINT64, UInt64, UInt64)
CASE_TYPE(INT32, Int32, Int32)
CASE_TYPE(FIXED64, Fixed64, UInt64)
CASE_TYPE(FIXED32, Fixed32, UInt32)
CASE_TYPE(BOOL, Bool, Bool)
CASE_TYPE(UINT32, UInt32, UInt32)
CASE_TYPE(SFIXED32, SFixed32, Int32)
CASE_TYPE(SFIXED64, SFixed64, Int64)
CASE_TYPE(SINT32, SInt32, Int32)
CASE_TYPE(SINT64, SInt64, Int64)
#undef CASE_TYPE
case FieldDescriptor::TYPE_STRING:
target = stream->WriteString(1, value.GetStringValue(), target);
break;
}
return target;
}
static uint8_t* SerializeMapValueRefWithCachedSizes(
const FieldDescriptor* field, const MapValueConstRef& value,
uint8_t* target, io::EpsCopyOutputStream* stream) {
target = stream->EnsureSpace(target);
switch (field->type()) {
#define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \
case FieldDescriptor::TYPE_##FieldType: \
target = WireFormatLite::Write##CamelFieldType##ToArray( \
2, value.Get##CamelCppType##Value(), target); \
break;
CASE_TYPE(INT64, Int64, Int64)
CASE_TYPE(UINT64, UInt64, UInt64)
CASE_TYPE(INT32, Int32, Int32)
CASE_TYPE(FIXED64, Fixed64, UInt64)
CASE_TYPE(FIXED32, Fixed32, UInt32)
CASE_TYPE(BOOL, Bool, Bool)
CASE_TYPE(UINT32, UInt32, UInt32)
CASE_TYPE(SFIXED32, SFixed32, Int32)
CASE_TYPE(SFIXED64, SFixed64, Int64)
CASE_TYPE(SINT32, SInt32, Int32)
CASE_TYPE(SINT64, SInt64, Int64)
CASE_TYPE(ENUM, Enum, Enum)
CASE_TYPE(DOUBLE, Double, Double)
CASE_TYPE(FLOAT, Float, Float)
#undef CASE_TYPE
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES:
target = stream->WriteString(2, value.GetStringValue(), target);
break;
case FieldDescriptor::TYPE_MESSAGE: {
auto& msg = value.GetMessageValue();
target = WireFormatLite::InternalWriteMessage(2, msg, msg.GetCachedSize(),
target, stream);
} break;
case FieldDescriptor::TYPE_GROUP:
target = WireFormatLite::InternalWriteGroup(2, value.GetMessageValue(),
target, stream);
break;
}
return target;
}
class MapKeySorter {
public:
static std::vector<MapKey> SortKey(const Message& message,
const Reflection* reflection,
const FieldDescriptor* field) {
std::vector<MapKey> sorted_key_list;
for (MapIterator it =
reflection->MapBegin(const_cast<Message*>(&message), field);
it != reflection->MapEnd(const_cast<Message*>(&message), field);
++it) {
sorted_key_list.push_back(it.GetKey());
}
MapKeyComparator comparator;
std::sort(sorted_key_list.begin(), sorted_key_list.end(), comparator);
return sorted_key_list;
}
private:
class MapKeyComparator {
public:
bool operator()(const MapKey& a, const MapKey& b) const {
ABSL_DCHECK(a.type() == b.type());
switch (a.type()) {
#define CASE_TYPE(CppType, CamelCppType) \
case FieldDescriptor::CPPTYPE_##CppType: { \
return a.Get##CamelCppType##Value() < b.Get##CamelCppType##Value(); \
}
CASE_TYPE(STRING, String)
CASE_TYPE(INT64, Int64)
CASE_TYPE(INT32, Int32)
CASE_TYPE(UINT64, UInt64)
CASE_TYPE(UINT32, UInt32)
CASE_TYPE(BOOL, Bool)
#undef CASE_TYPE
default:
ABSL_DLOG(FATAL) << "Invalid key for map field.";
return true;
}
}
};
};
static uint8_t* InternalSerializeMapEntry(const FieldDescriptor* field,
const MapKey& key,
const MapValueConstRef& value,
uint8_t* target,
io::EpsCopyOutputStream* stream) {
const FieldDescriptor* key_field = field->message_type()->field(0);
const FieldDescriptor* value_field = field->message_type()->field(1);
size_t size = kMapEntryTagByteSize;
size += MapKeyDataOnlyByteSize(key_field, key);
size += MapValueRefDataOnlyByteSize(value_field, value);
target = stream->EnsureSpace(target);
target = WireFormatLite::WriteTagToArray(
field->number(), WireFormatLite::WIRETYPE_LENGTH_DELIMITED, target);
target = io::CodedOutputStream::WriteVarint32ToArray(size, target);
target = SerializeMapKeyWithCachedSizes(key_field, key, target, stream);
target =
SerializeMapValueRefWithCachedSizes(value_field, value, target, stream);
return target;
}
uint8_t* WireFormat::InternalSerializeField(const FieldDescriptor* field,
const Message& message,
uint8_t* target,
io::EpsCopyOutputStream* stream) {
const Reflection* message_reflection = message.GetReflection();
if (field->is_extension() &&
field->containing_type()->options().message_set_wire_format() &&
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!field->is_repeated()) {
return InternalSerializeMessageSetItem(field, message, target, stream);
}
// For map fields, we can use either repeated field reflection or map
// reflection. Our choice has some subtle effects. If we use repeated field
// reflection here, then the repeated field representation becomes
// authoritative for this field: any existing references that came from map
// reflection remain valid for reading, but mutations to them are lost and
// will be overwritten next time we call map reflection!
//
// So far this mainly affects Python, which keeps long-term references to map
// values around, and always uses map reflection. See: b/35918691
//
// Here we choose to use map reflection API as long as the internal
// map is valid. In this way, the serialization doesn't change map field's
// internal state and existing references that came from map reflection remain
// valid for both reading and writing.
if (field->is_map()) {
const MapFieldBase* map_field =
message_reflection->GetMapData(message, field);
if (map_field->IsMapValid()) {
if (stream->IsSerializationDeterministic()) {
std::vector<MapKey> sorted_key_list =
MapKeySorter::SortKey(message, message_reflection, field);
for (std::vector<MapKey>::iterator it = sorted_key_list.begin();
it != sorted_key_list.end(); ++it) {
MapValueConstRef map_value;
message_reflection->LookupMapValue(message, field, *it, &map_value);
target =
InternalSerializeMapEntry(field, *it, map_value, target, stream);
}
} else {
for (MapIterator it = message_reflection->MapBegin(
const_cast<Message*>(&message), field);
it !=
message_reflection->MapEnd(const_cast<Message*>(&message), field);
++it) {
target = InternalSerializeMapEntry(field, it.GetKey(),
it.GetValueRef(), target, stream);
}
}
return target;
}
}
int count = 0;
if (field->is_repeated()) {
count = message_reflection->FieldSize(message, field);
} else if (field->containing_type()->options().map_entry()) {
// Map entry fields always need to be serialized.
count = 1;
} else if (message_reflection->HasField(message, field)) {
count = 1;
}
// map_entries is for maps that'll be deterministically serialized.
std::vector<const Message*> map_entries;
if (count > 1 && field->is_map() && stream->IsSerializationDeterministic()) {
map_entries =
DynamicMapSorter::Sort(message, count, message_reflection, field);
}
if (field->is_packed()) {
if (count == 0) return target;
target = stream->EnsureSpace(target);
switch (field->type()) {
#define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
auto r = \
message_reflection->GetRepeatedFieldInternal<CPPTYPE>(message, field); \
target = stream->Write##TYPE_METHOD##Packed( \
field->number(), r, FieldDataOnlyByteSize(field, message), target); \
break; \
}
HANDLE_PRIMITIVE_TYPE(INT32, int32_t, Int32, Int32)
HANDLE_PRIMITIVE_TYPE(INT64, int64_t, Int64, Int64)
HANDLE_PRIMITIVE_TYPE(SINT32, int32_t, SInt32, Int32)
HANDLE_PRIMITIVE_TYPE(SINT64, int64_t, SInt64, Int64)
HANDLE_PRIMITIVE_TYPE(UINT32, uint32_t, UInt32, UInt32)
HANDLE_PRIMITIVE_TYPE(UINT64, uint64_t, UInt64, UInt64)
HANDLE_PRIMITIVE_TYPE(ENUM, int, Enum, Enum)
#undef HANDLE_PRIMITIVE_TYPE
#define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
auto r = \
message_reflection->GetRepeatedFieldInternal<CPPTYPE>(message, field); \
target = stream->WriteFixedPacked(field->number(), r, target); \
break; \
}
HANDLE_PRIMITIVE_TYPE(FIXED32, uint32_t, Fixed32, UInt32)
HANDLE_PRIMITIVE_TYPE(FIXED64, uint64_t, Fixed64, UInt64)
HANDLE_PRIMITIVE_TYPE(SFIXED32, int32_t, SFixed32, Int32)
HANDLE_PRIMITIVE_TYPE(SFIXED64, int64_t, SFixed64, Int64)
HANDLE_PRIMITIVE_TYPE(FLOAT, float, Float, Float)
HANDLE_PRIMITIVE_TYPE(DOUBLE, double, Double, Double)
HANDLE_PRIMITIVE_TYPE(BOOL, bool, Bool, Bool)
#undef HANDLE_PRIMITIVE_TYPE
default:
ABSL_LOG(FATAL) << "Invalid descriptor";
}
return target;
}
auto get_message_from_field = [&message, &map_entries, message_reflection](
const FieldDescriptor* field, int j) {
if (!field->is_repeated()) {
return &message_reflection->GetMessage(message, field);
}
if (!map_entries.empty()) {
return map_entries[j];
}
return &message_reflection->GetRepeatedMessage(message, field, j);
};
for (int j = 0; j < count; j++) {
target = stream->EnsureSpace(target);
switch (field->type()) {
#define HANDLE_PRIMITIVE_TYPE(TYPE, CPPTYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: { \
const CPPTYPE value = \
field->is_repeated() \
? message_reflection->GetRepeated##CPPTYPE_METHOD(message, field, \
j) \
: message_reflection->Get##CPPTYPE_METHOD(message, field); \
target = WireFormatLite::Write##TYPE_METHOD##ToArray(field->number(), \
value, target); \
break; \
}
HANDLE_PRIMITIVE_TYPE(INT32, int32_t, Int32, Int32)
HANDLE_PRIMITIVE_TYPE(INT64, int64_t, Int64, Int64)
HANDLE_PRIMITIVE_TYPE(SINT32, int32_t, SInt32, Int32)
HANDLE_PRIMITIVE_TYPE(SINT64, int64_t, SInt64, Int64)
HANDLE_PRIMITIVE_TYPE(UINT32, uint32_t, UInt32, UInt32)
HANDLE_PRIMITIVE_TYPE(UINT64, uint64_t, UInt64, UInt64)
HANDLE_PRIMITIVE_TYPE(FIXED32, uint32_t, Fixed32, UInt32)
HANDLE_PRIMITIVE_TYPE(FIXED64, uint64_t, Fixed64, UInt64)
HANDLE_PRIMITIVE_TYPE(SFIXED32, int32_t, SFixed32, Int32)
HANDLE_PRIMITIVE_TYPE(SFIXED64, int64_t, SFixed64, Int64)
HANDLE_PRIMITIVE_TYPE(FLOAT, float, Float, Float)
HANDLE_PRIMITIVE_TYPE(DOUBLE, double, Double, Double)
HANDLE_PRIMITIVE_TYPE(BOOL, bool, Bool, Bool)
#undef HANDLE_PRIMITIVE_TYPE
case FieldDescriptor::TYPE_GROUP: {
auto* msg = get_message_from_field(field, j);
target = WireFormatLite::InternalWriteGroup(field->number(), *msg,
target, stream);
} break;
case FieldDescriptor::TYPE_MESSAGE: {
auto* msg = get_message_from_field(field, j);
target = WireFormatLite::InternalWriteMessage(
field->number(), *msg, msg->GetCachedSize(), target, stream);
} break;
case FieldDescriptor::TYPE_ENUM: {
const EnumValueDescriptor* value =
field->is_repeated()
? message_reflection->GetRepeatedEnum(message, field, j)
: message_reflection->GetEnum(message, field);
target = WireFormatLite::WriteEnumToArray(field->number(),
value->number(), target);
break;
}
// Handle strings separately so that we can get string references
// instead of copying.
case FieldDescriptor::TYPE_STRING: {
bool strict_utf8_check = field->requires_utf8_validation();
std::string scratch;
const std::string& value =
field->is_repeated()
? message_reflection->GetRepeatedStringReference(message, field,
j, &scratch)
: message_reflection->GetStringReference(message, field,
&scratch);
if (strict_utf8_check) {
WireFormatLite::VerifyUtf8String(value.data(), value.length(),
WireFormatLite::SERIALIZE,
field->full_name());
} else {
VerifyUTF8StringNamedField(value.data(), value.length(), SERIALIZE,
field->full_name());
}
target = stream->WriteString(field->number(), value, target);
break;
}
case FieldDescriptor::TYPE_BYTES: {
if (field->cpp_string_type() == FieldDescriptor::CppStringType::kCord) {
absl::Cord value = message_reflection->GetCord(message, field);
target = stream->WriteString(field->number(), value, target);
break;
}
std::string scratch;
const std::string& value =
field->is_repeated()
? message_reflection->GetRepeatedStringReference(message, field,
j, &scratch)
: message_reflection->GetStringReference(message, field,
&scratch);
target = stream->WriteString(field->number(), value, target);
break;
}
}
}
return target;
}
uint8_t* WireFormat::InternalSerializeMessageSetItem(
const FieldDescriptor* field, const Message& message, uint8_t* target,
io::EpsCopyOutputStream* stream) {
const Reflection* message_reflection = message.GetReflection();
target = stream->EnsureSpace(target);
// Start group.
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetItemStartTag, target);
// Write type ID.
target = WireFormatLite::WriteUInt32ToArray(
WireFormatLite::kMessageSetTypeIdNumber, field->number(), target);
// Write message.
auto& msg = message_reflection->GetMessage(message, field);
target = WireFormatLite::InternalWriteMessage(
WireFormatLite::kMessageSetMessageNumber, msg, msg.GetCachedSize(),
target, stream);
// End group.
target = stream->EnsureSpace(target);
target = io::CodedOutputStream::WriteTagToArray(
WireFormatLite::kMessageSetItemEndTag, target);
return target;
}
// ===================================================================
size_t WireFormat::ByteSize(const Message& message) {
const Descriptor* descriptor = message.GetDescriptor();
const Reflection* message_reflection = message.GetReflection();
size_t our_size = 0;
std::vector<const FieldDescriptor*> fields;
// Fields of map entry should always be serialized.
if (descriptor->options().map_entry()) {
for (int i = 0; i < descriptor->field_count(); i++) {
fields.push_back(descriptor->field(i));
}
} else {
message_reflection->ListFields(message, &fields);
}
for (const FieldDescriptor* field : fields) {
our_size += FieldByteSize(field, message);
}
if (descriptor->options().message_set_wire_format()) {
our_size += ComputeUnknownMessageSetItemsSize(
message_reflection->GetUnknownFields(message));
} else {
our_size +=
ComputeUnknownFieldsSize(message_reflection->GetUnknownFields(message));
}
return our_size;
}
size_t WireFormat::FieldByteSize(const FieldDescriptor* field,
const Message& message) {
const Reflection* message_reflection = message.GetReflection();
if (field->is_extension() &&
field->containing_type()->options().message_set_wire_format() &&
field->cpp_type() == FieldDescriptor::CPPTYPE_MESSAGE &&
!field->is_repeated()) {
return MessageSetItemByteSize(field, message);
}
size_t count = 0;
if (field->is_repeated()) {
if (field->is_map()) {
const MapFieldBase* map_field =
message_reflection->GetMapData(message, field);
if (map_field->IsMapValid()) {
count = FromIntSize(map_field->size());
} else {
count = FromIntSize(message_reflection->FieldSize(message, field));
}
} else {
count = FromIntSize(message_reflection->FieldSize(message, field));
}
} else if (field->containing_type()->options().map_entry()) {
// Map entry fields always need to be serialized.
count = 1;
} else if (message_reflection->HasField(message, field)) {
count = 1;
}
const size_t data_size = FieldDataOnlyByteSize(field, message);
size_t our_size = data_size;
if (field->is_packed()) {
if (data_size > 0) {
// Packed fields get serialized like a string, not their native type.
// Technically this doesn't really matter; the size only changes if it's
// a GROUP
our_size += TagSize(field->number(), FieldDescriptor::TYPE_STRING);
our_size += io::CodedOutputStream::VarintSize32(data_size);
}
} else {
our_size += count * TagSize(field->number(), field->type());
}
return our_size;
}
size_t MapKeyDataOnlyByteSize(const FieldDescriptor* field,
const MapKey& value) {
ABSL_DCHECK_EQ(FieldDescriptor::TypeToCppType(field->type()), value.type());
switch (field->type()) {
case FieldDescriptor::TYPE_DOUBLE:
case FieldDescriptor::TYPE_FLOAT:
case FieldDescriptor::TYPE_GROUP:
case FieldDescriptor::TYPE_MESSAGE:
case FieldDescriptor::TYPE_BYTES:
case FieldDescriptor::TYPE_ENUM:
ABSL_LOG(FATAL) << "Unsupported";
return 0;
#define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \
case FieldDescriptor::TYPE_##FieldType: \
return WireFormatLite::CamelFieldType##Size( \
value.Get##CamelCppType##Value());
#define FIXED_CASE_TYPE(FieldType, CamelFieldType) \
case FieldDescriptor::TYPE_##FieldType: \
return WireFormatLite::k##CamelFieldType##Size;
CASE_TYPE(INT32, Int32, Int32);
CASE_TYPE(INT64, Int64, Int64);
CASE_TYPE(UINT32, UInt32, UInt32);
CASE_TYPE(UINT64, UInt64, UInt64);
CASE_TYPE(SINT32, SInt32, Int32);
CASE_TYPE(SINT64, SInt64, Int64);
CASE_TYPE(STRING, String, String);
FIXED_CASE_TYPE(FIXED32, Fixed32);
FIXED_CASE_TYPE(FIXED64, Fixed64);
FIXED_CASE_TYPE(SFIXED32, SFixed32);
FIXED_CASE_TYPE(SFIXED64, SFixed64);
FIXED_CASE_TYPE(BOOL, Bool);
#undef CASE_TYPE
#undef FIXED_CASE_TYPE
}
ABSL_LOG(FATAL) << "Cannot get here";
return 0;
}
static size_t MapValueRefDataOnlyByteSize(const FieldDescriptor* field,
const MapValueConstRef& value) {
switch (field->type()) {
case FieldDescriptor::TYPE_GROUP:
ABSL_LOG(FATAL) << "Unsupported";
return 0;
#define CASE_TYPE(FieldType, CamelFieldType, CamelCppType) \
case FieldDescriptor::TYPE_##FieldType: \
return WireFormatLite::CamelFieldType##Size( \
value.Get##CamelCppType##Value());
#define FIXED_CASE_TYPE(FieldType, CamelFieldType) \
case FieldDescriptor::TYPE_##FieldType: \
return WireFormatLite::k##CamelFieldType##Size;
CASE_TYPE(INT32, Int32, Int32);
CASE_TYPE(INT64, Int64, Int64);
CASE_TYPE(UINT32, UInt32, UInt32);
CASE_TYPE(UINT64, UInt64, UInt64);
CASE_TYPE(SINT32, SInt32, Int32);
CASE_TYPE(SINT64, SInt64, Int64);
CASE_TYPE(STRING, String, String);
CASE_TYPE(BYTES, Bytes, String);
CASE_TYPE(ENUM, Enum, Enum);
CASE_TYPE(MESSAGE, Message, Message);
FIXED_CASE_TYPE(FIXED32, Fixed32);
FIXED_CASE_TYPE(FIXED64, Fixed64);
FIXED_CASE_TYPE(SFIXED32, SFixed32);
FIXED_CASE_TYPE(SFIXED64, SFixed64);
FIXED_CASE_TYPE(DOUBLE, Double);
FIXED_CASE_TYPE(FLOAT, Float);
FIXED_CASE_TYPE(BOOL, Bool);
#undef CASE_TYPE
#undef FIXED_CASE_TYPE
}
ABSL_LOG(FATAL) << "Cannot get here";
return 0;
}
size_t WireFormat::FieldDataOnlyByteSize(const FieldDescriptor* field,
const Message& message) {
const Reflection* message_reflection = message.GetReflection();
size_t data_size = 0;
if (field->is_map()) {
const MapFieldBase* map_field =
message_reflection->GetMapData(message, field);
if (map_field->IsMapValid()) {
MapIterator iter(const_cast<Message*>(&message), field);
MapIterator end(const_cast<Message*>(&message), field);
const FieldDescriptor* key_field = field->message_type()->field(0);
const FieldDescriptor* value_field = field->message_type()->field(1);
for (map_field->MapBegin(&iter), map_field->MapEnd(&end); iter != end;
++iter) {
size_t size = kMapEntryTagByteSize;
size += MapKeyDataOnlyByteSize(key_field, iter.GetKey());
size += MapValueRefDataOnlyByteSize(value_field, iter.GetValueRef());
data_size += WireFormatLite::LengthDelimitedSize(size);
}
return data_size;
}
}
size_t count = 0;
if (field->is_repeated()) {
count =
internal::FromIntSize(message_reflection->FieldSize(message, field));
} else if (field->containing_type()->options().map_entry()) {
// Map entry fields always need to be serialized.
count = 1;
} else if (message_reflection->HasField(message, field)) {
count = 1;
}
switch (field->type()) {
#define HANDLE_TYPE(TYPE, TYPE_METHOD, CPPTYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: \
if (field->is_repeated()) { \
for (size_t j = 0; j < count; j++) { \
data_size += WireFormatLite::TYPE_METHOD##Size( \
message_reflection->GetRepeated##CPPTYPE_METHOD(message, field, \
j)); \
} \
} else { \
data_size += WireFormatLite::TYPE_METHOD##Size( \
message_reflection->Get##CPPTYPE_METHOD(message, field)); \
} \
break;
#define HANDLE_FIXED_TYPE(TYPE, TYPE_METHOD) \
case FieldDescriptor::TYPE_##TYPE: \
data_size += count * WireFormatLite::k##TYPE_METHOD##Size; \
break;
HANDLE_TYPE(INT32, Int32, Int32)
HANDLE_TYPE(INT64, Int64, Int64)
HANDLE_TYPE(SINT32, SInt32, Int32)
HANDLE_TYPE(SINT64, SInt64, Int64)
HANDLE_TYPE(UINT32, UInt32, UInt32)
HANDLE_TYPE(UINT64, UInt64, UInt64)
HANDLE_FIXED_TYPE(FIXED32, Fixed32)
HANDLE_FIXED_TYPE(FIXED64, Fixed64)
HANDLE_FIXED_TYPE(SFIXED32, SFixed32)
HANDLE_FIXED_TYPE(SFIXED64, SFixed64)
HANDLE_FIXED_TYPE(FLOAT, Float)
HANDLE_FIXED_TYPE(DOUBLE, Double)
HANDLE_FIXED_TYPE(BOOL, Bool)
HANDLE_TYPE(GROUP, Group, Message)
case FieldDescriptor::TYPE_MESSAGE: {
if (field->is_repeated()) {
for (size_t j = 0; j < count; ++j) {
data_size += WireFormatLite::MessageSize(
message_reflection->GetRepeatedMessage(message, field, j));
}
break;
}
if (field->is_extension()) {
data_size += WireFormatLite::LengthDelimitedSize(
message_reflection->GetExtensionSet(message).GetMessageByteSizeLong(
field->number()));
break;
}
data_size += WireFormatLite::MessageSize(
message_reflection->GetMessage(message, field));
break;
}
#undef HANDLE_TYPE
#undef HANDLE_FIXED_TYPE
case FieldDescriptor::TYPE_ENUM: {
if (field->is_repeated()) {
for (size_t j = 0; j < count; j++) {
data_size += WireFormatLite::EnumSize(
message_reflection->GetRepeatedEnum(message, field, j)->number());
}
} else {
data_size += WireFormatLite::EnumSize(
message_reflection->GetEnum(message, field)->number());
}
break;
}
// Handle strings separately so that we can get string references
// instead of copying.
case FieldDescriptor::TYPE_STRING:
case FieldDescriptor::TYPE_BYTES: {
if (field->cpp_string_type() == FieldDescriptor::CppStringType::kCord) {
for (size_t j = 0; j < count; j++) {
absl::Cord value = message_reflection->GetCord(message, field);
data_size += WireFormatLite::StringSize(value);
}
break;
}
for (size_t j = 0; j < count; j++) {
std::string scratch;
const std::string& value =
field->is_repeated()
? message_reflection->GetRepeatedStringReference(message, field,
j, &scratch)
: message_reflection->GetStringReference(message, field,
&scratch);
data_size += WireFormatLite::StringSize(value);
}
break;
}
}
return data_size;
}
size_t WireFormat::MessageSetItemByteSize(const FieldDescriptor* field,
const Message& message) {
const Reflection* message_reflection = message.GetReflection();
size_t our_size = WireFormatLite::kMessageSetItemTagsSize;
// type_id
our_size += io::CodedOutputStream::VarintSize32(field->number());
// message
size_t message_size;
const Message& sub_message = message_reflection->GetMessage(message, field);
message_size = sub_message.ByteSizeLong();
our_size += io::CodedOutputStream::VarintSize32(message_size);
our_size += message_size;
return our_size;
}
// Compute the size of the UnknownFieldSet on the wire.
size_t ComputeUnknownFieldsSize(const InternalMetadata& metadata,
size_t total_size, CachedSize* cached_size) {
total_size += WireFormat::ComputeUnknownFieldsSize(
metadata.unknown_fields<UnknownFieldSet>(
UnknownFieldSet::default_instance));
cached_size->Set(ToCachedSize(total_size));
return total_size;
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"