blob: f8bb7fc00a3ccf143beed18c9bb89a388cc7ad7d [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
/*
* upb_table Implementation
*
* Implementation is heavily inspired by Lua's ltable.c.
*/
#include <string.h>
#include "upb/base/internal/log2.h"
#include "upb/hash/int_table.h"
#include "upb/hash/str_table.h"
// Must be last.
#include "upb/port/def.inc"
#define UPB_MAXARRSIZE 16 // 2**16 = 64k.
// From Chromium.
#define ARRAY_SIZE(x) \
((sizeof(x) / sizeof(0 [x])) / ((size_t)(!(sizeof(x) % sizeof(0 [x])))))
static const double MAX_LOAD = 0.85;
/* The minimum utilization of the array part of a mixed hash/array table. This
* is a speed/memory-usage tradeoff (though it's not straightforward because of
* cache effects). The lower this is, the more memory we'll use. */
static const double MIN_DENSITY = 0.1;
static bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; }
static upb_value _upb_value_val(uint64_t val) {
upb_value ret;
_upb_value_setval(&ret, val);
return ret;
}
static int log2ceil(uint64_t v) {
int ret = 0;
bool pow2 = is_pow2(v);
while (v >>= 1) ret++;
ret = pow2 ? ret : ret + 1; // Ceiling.
return UPB_MIN(UPB_MAXARRSIZE, ret);
}
/* A type to represent the lookup key of either a strtable or an inttable. */
typedef union {
uintptr_t num;
struct {
const char* str;
size_t len;
} str;
} lookupkey_t;
static lookupkey_t strkey2(const char* str, size_t len) {
lookupkey_t k;
k.str.str = str;
k.str.len = len;
return k;
}
static lookupkey_t intkey(uintptr_t key) {
lookupkey_t k;
k.num = key;
return k;
}
typedef uint32_t hashfunc_t(upb_tabkey key);
typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2);
/* Base table (shared code) ***************************************************/
static uint32_t upb_inthash(uintptr_t key) { return (uint32_t)key; }
static const upb_tabent* upb_getentry(const upb_table* t, uint32_t hash) {
return t->entries + (hash & t->mask);
}
static bool upb_arrhas(upb_tabval key) { return key.val != (uint64_t)-1; }
static bool isfull(upb_table* t) { return t->count == t->max_count; }
static bool init(upb_table* t, uint8_t size_lg2, upb_Arena* a) {
size_t bytes;
t->count = 0;
t->size_lg2 = size_lg2;
t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0;
t->max_count = upb_table_size(t) * MAX_LOAD;
bytes = upb_table_size(t) * sizeof(upb_tabent);
if (bytes > 0) {
t->entries = upb_Arena_Malloc(a, bytes);
if (!t->entries) return false;
memset(t->entries, 0, bytes);
} else {
t->entries = NULL;
}
return true;
}
static upb_tabent* emptyent(upb_table* t, upb_tabent* e) {
upb_tabent* begin = t->entries;
upb_tabent* end = begin + upb_table_size(t);
for (e = e + 1; e < end; e++) {
if (upb_tabent_isempty(e)) return e;
}
for (e = begin; e < end; e++) {
if (upb_tabent_isempty(e)) return e;
}
UPB_ASSERT(false);
return NULL;
}
static upb_tabent* getentry_mutable(upb_table* t, uint32_t hash) {
return (upb_tabent*)upb_getentry(t, hash);
}
static const upb_tabent* findentry(const upb_table* t, lookupkey_t key,
uint32_t hash, eqlfunc_t* eql) {
const upb_tabent* e;
if (t->size_lg2 == 0) return NULL;
e = upb_getentry(t, hash);
if (upb_tabent_isempty(e)) return NULL;
while (1) {
if (eql(e->key, key)) return e;
if ((e = e->next) == NULL) return NULL;
}
}
static upb_tabent* findentry_mutable(upb_table* t, lookupkey_t key,
uint32_t hash, eqlfunc_t* eql) {
return (upb_tabent*)findentry(t, key, hash, eql);
}
static bool lookup(const upb_table* t, lookupkey_t key, upb_value* v,
uint32_t hash, eqlfunc_t* eql) {
const upb_tabent* e = findentry(t, key, hash, eql);
if (e) {
if (v) {
_upb_value_setval(v, e->val.val);
}
return true;
} else {
return false;
}
}
/* The given key must not already exist in the table. */
static void insert(upb_table* t, lookupkey_t key, upb_tabkey tabkey,
upb_value val, uint32_t hash, hashfunc_t* hashfunc,
eqlfunc_t* eql) {
upb_tabent* mainpos_e;
upb_tabent* our_e;
UPB_ASSERT(findentry(t, key, hash, eql) == NULL);
t->count++;
mainpos_e = getentry_mutable(t, hash);
our_e = mainpos_e;
if (upb_tabent_isempty(mainpos_e)) {
/* Our main position is empty; use it. */
our_e->next = NULL;
} else {
/* Collision. */
upb_tabent* new_e = emptyent(t, mainpos_e);
/* Head of collider's chain. */
upb_tabent* chain = getentry_mutable(t, hashfunc(mainpos_e->key));
if (chain == mainpos_e) {
/* Existing ent is in its main position (it has the same hash as us, and
* is the head of our chain). Insert to new ent and append to this chain.
*/
new_e->next = mainpos_e->next;
mainpos_e->next = new_e;
our_e = new_e;
} else {
/* Existing ent is not in its main position (it is a node in some other
* chain). This implies that no existing ent in the table has our hash.
* Evict it (updating its chain) and use its ent for head of our chain. */
*new_e = *mainpos_e; /* copies next. */
while (chain->next != mainpos_e) {
chain = (upb_tabent*)chain->next;
UPB_ASSERT(chain);
}
chain->next = new_e;
our_e = mainpos_e;
our_e->next = NULL;
}
}
our_e->key = tabkey;
our_e->val.val = val.val;
UPB_ASSERT(findentry(t, key, hash, eql) == our_e);
}
static bool rm(upb_table* t, lookupkey_t key, upb_value* val,
upb_tabkey* removed, uint32_t hash, eqlfunc_t* eql) {
upb_tabent* chain = getentry_mutable(t, hash);
if (upb_tabent_isempty(chain)) return false;
if (eql(chain->key, key)) {
/* Element to remove is at the head of its chain. */
t->count--;
if (val) _upb_value_setval(val, chain->val.val);
if (removed) *removed = chain->key;
if (chain->next) {
upb_tabent* move = (upb_tabent*)chain->next;
*chain = *move;
move->key = 0; /* Make the slot empty. */
} else {
chain->key = 0; /* Make the slot empty. */
}
return true;
} else {
/* Element to remove is either in a non-head position or not in the
* table. */
while (chain->next && !eql(chain->next->key, key)) {
chain = (upb_tabent*)chain->next;
}
if (chain->next) {
/* Found element to remove. */
upb_tabent* rm = (upb_tabent*)chain->next;
t->count--;
if (val) _upb_value_setval(val, chain->next->val.val);
if (removed) *removed = rm->key;
rm->key = 0; /* Make the slot empty. */
chain->next = rm->next;
return true;
} else {
/* Element to remove is not in the table. */
return false;
}
}
}
static size_t next(const upb_table* t, size_t i) {
do {
if (++i >= upb_table_size(t)) return SIZE_MAX - 1; /* Distinct from -1. */
} while (upb_tabent_isempty(&t->entries[i]));
return i;
}
static size_t begin(const upb_table* t) { return next(t, -1); }
/* upb_strtable ***************************************************************/
/* A simple "subclass" of upb_table that only adds a hash function for strings.
*/
static upb_tabkey strcopy(lookupkey_t k2, upb_Arena* a) {
uint32_t len = (uint32_t)k2.str.len;
char* str = upb_Arena_Malloc(a, k2.str.len + sizeof(uint32_t) + 1);
if (str == NULL) return 0;
memcpy(str, &len, sizeof(uint32_t));
if (k2.str.len) memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len);
str[sizeof(uint32_t) + k2.str.len] = '\0';
return (uintptr_t)str;
}
/* Adapted from ABSL's wyhash. */
static uint64_t UnalignedLoad64(const void* p) {
uint64_t val;
memcpy(&val, p, 8);
return val;
}
static uint32_t UnalignedLoad32(const void* p) {
uint32_t val;
memcpy(&val, p, 4);
return val;
}
#if defined(_MSC_VER) && defined(_M_X64)
#include <intrin.h>
#endif
/* Computes a * b, returning the low 64 bits of the result and storing the high
* 64 bits in |*high|. */
static uint64_t upb_umul128(uint64_t v0, uint64_t v1, uint64_t* out_high) {
#ifdef __SIZEOF_INT128__
__uint128_t p = v0;
p *= v1;
*out_high = (uint64_t)(p >> 64);
return (uint64_t)p;
#elif defined(_MSC_VER) && defined(_M_X64)
return _umul128(v0, v1, out_high);
#else
uint64_t a32 = v0 >> 32;
uint64_t a00 = v0 & 0xffffffff;
uint64_t b32 = v1 >> 32;
uint64_t b00 = v1 & 0xffffffff;
uint64_t high = a32 * b32;
uint64_t low = a00 * b00;
uint64_t mid1 = a32 * b00;
uint64_t mid2 = a00 * b32;
low += (mid1 << 32) + (mid2 << 32);
// Omit carry bit, for mixing we do not care about exact numerical precision.
high += (mid1 >> 32) + (mid2 >> 32);
*out_high = high;
return low;
#endif
}
static uint64_t WyhashMix(uint64_t v0, uint64_t v1) {
uint64_t high;
uint64_t low = upb_umul128(v0, v1, &high);
return low ^ high;
}
static uint64_t Wyhash(const void* data, size_t len, uint64_t seed,
const uint64_t salt[]) {
const uint8_t* ptr = (const uint8_t*)data;
uint64_t starting_length = (uint64_t)len;
uint64_t current_state = seed ^ salt[0];
if (len > 64) {
// If we have more than 64 bytes, we're going to handle chunks of 64
// bytes at a time. We're going to build up two separate hash states
// which we will then hash together.
uint64_t duplicated_state = current_state;
do {
uint64_t a = UnalignedLoad64(ptr);
uint64_t b = UnalignedLoad64(ptr + 8);
uint64_t c = UnalignedLoad64(ptr + 16);
uint64_t d = UnalignedLoad64(ptr + 24);
uint64_t e = UnalignedLoad64(ptr + 32);
uint64_t f = UnalignedLoad64(ptr + 40);
uint64_t g = UnalignedLoad64(ptr + 48);
uint64_t h = UnalignedLoad64(ptr + 56);
uint64_t cs0 = WyhashMix(a ^ salt[1], b ^ current_state);
uint64_t cs1 = WyhashMix(c ^ salt[2], d ^ current_state);
current_state = (cs0 ^ cs1);
uint64_t ds0 = WyhashMix(e ^ salt[3], f ^ duplicated_state);
uint64_t ds1 = WyhashMix(g ^ salt[4], h ^ duplicated_state);
duplicated_state = (ds0 ^ ds1);
ptr += 64;
len -= 64;
} while (len > 64);
current_state = current_state ^ duplicated_state;
}
// We now have a data `ptr` with at most 64 bytes and the current state
// of the hashing state machine stored in current_state.
while (len > 16) {
uint64_t a = UnalignedLoad64(ptr);
uint64_t b = UnalignedLoad64(ptr + 8);
current_state = WyhashMix(a ^ salt[1], b ^ current_state);
ptr += 16;
len -= 16;
}
// We now have a data `ptr` with at most 16 bytes.
uint64_t a = 0;
uint64_t b = 0;
if (len > 8) {
// When we have at least 9 and at most 16 bytes, set A to the first 64
// bits of the input and B to the last 64 bits of the input. Yes, they will
// overlap in the middle if we are working with less than the full 16
// bytes.
a = UnalignedLoad64(ptr);
b = UnalignedLoad64(ptr + len - 8);
} else if (len > 3) {
// If we have at least 4 and at most 8 bytes, set A to the first 32
// bits and B to the last 32 bits.
a = UnalignedLoad32(ptr);
b = UnalignedLoad32(ptr + len - 4);
} else if (len > 0) {
// If we have at least 1 and at most 3 bytes, read all of the provided
// bits into A, with some adjustments.
a = ((ptr[0] << 16) | (ptr[len >> 1] << 8) | ptr[len - 1]);
b = 0;
} else {
a = 0;
b = 0;
}
uint64_t w = WyhashMix(a ^ salt[1], b ^ current_state);
uint64_t z = salt[1] ^ starting_length;
return WyhashMix(w, z);
}
const uint64_t kWyhashSalt[5] = {
0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL, 0xA4093822299F31D0ULL,
0x082EFA98EC4E6C89ULL, 0x452821E638D01377ULL,
};
uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed) {
return Wyhash(p, n, seed, kWyhashSalt);
}
static uint32_t _upb_Hash_NoSeed(const char* p, size_t n) {
return _upb_Hash(p, n, 0);
}
static uint32_t strhash(upb_tabkey key) {
uint32_t len;
char* str = upb_tabstr(key, &len);
return _upb_Hash_NoSeed(str, len);
}
static bool streql(upb_tabkey k1, lookupkey_t k2) {
uint32_t len;
char* str = upb_tabstr(k1, &len);
return len == k2.str.len && (len == 0 || memcmp(str, k2.str.str, len) == 0);
}
bool upb_strtable_init(upb_strtable* t, size_t expected_size, upb_Arena* a) {
// Multiply by approximate reciprocal of MAX_LOAD (0.85), with pow2
// denominator.
size_t need_entries = (expected_size + 1) * 1204 / 1024;
UPB_ASSERT(need_entries >= expected_size * 0.85);
int size_lg2 = upb_Log2Ceiling(need_entries);
return init(&t->t, size_lg2, a);
}
void upb_strtable_clear(upb_strtable* t) {
size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent);
t->t.count = 0;
memset((char*)t->t.entries, 0, bytes);
}
bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a) {
upb_strtable new_table;
if (!init(&new_table.t, size_lg2, a)) return false;
intptr_t iter = UPB_STRTABLE_BEGIN;
upb_StringView key;
upb_value val;
while (upb_strtable_next2(t, &key, &val, &iter)) {
upb_strtable_insert(&new_table, key.data, key.size, val, a);
}
*t = new_table;
return true;
}
bool upb_strtable_insert(upb_strtable* t, const char* k, size_t len,
upb_value v, upb_Arena* a) {
lookupkey_t key;
upb_tabkey tabkey;
uint32_t hash;
if (isfull(&t->t)) {
/* Need to resize. New table of double the size, add old elements to it. */
if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) {
return false;
}
}
key = strkey2(k, len);
tabkey = strcopy(key, a);
if (tabkey == 0) return false;
hash = _upb_Hash_NoSeed(key.str.str, key.str.len);
insert(&t->t, key, tabkey, v, hash, &strhash, &streql);
return true;
}
bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len,
upb_value* v) {
uint32_t hash = _upb_Hash_NoSeed(key, len);
return lookup(&t->t, strkey2(key, len), v, hash, &streql);
}
bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len,
upb_value* val) {
uint32_t hash = _upb_Hash_NoSeed(key, len);
upb_tabkey tabkey;
return rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql);
}
/* Iteration */
void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t) {
i->t = t;
i->index = begin(&t->t);
}
void upb_strtable_next(upb_strtable_iter* i) {
i->index = next(&i->t->t, i->index);
}
bool upb_strtable_done(const upb_strtable_iter* i) {
if (!i->t) return true;
return i->index >= upb_table_size(&i->t->t) ||
upb_tabent_isempty(str_tabent(i));
}
upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i) {
upb_StringView key;
uint32_t len;
UPB_ASSERT(!upb_strtable_done(i));
key.data = upb_tabstr(str_tabent(i)->key, &len);
key.size = len;
return key;
}
upb_value upb_strtable_iter_value(const upb_strtable_iter* i) {
UPB_ASSERT(!upb_strtable_done(i));
return _upb_value_val(str_tabent(i)->val.val);
}
void upb_strtable_iter_setdone(upb_strtable_iter* i) {
i->t = NULL;
i->index = SIZE_MAX;
}
bool upb_strtable_iter_isequal(const upb_strtable_iter* i1,
const upb_strtable_iter* i2) {
if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true;
return i1->t == i2->t && i1->index == i2->index;
}
/* upb_inttable ***************************************************************/
/* For inttables we use a hybrid structure where small keys are kept in an
* array and large keys are put in the hash table. */
static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); }
static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1 == k2.num; }
static upb_tabval* mutable_array(upb_inttable* t) {
return (upb_tabval*)t->array;
}
static upb_tabval* inttable_val(upb_inttable* t, uintptr_t key) {
if (key < t->array_size) {
return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL;
} else {
upb_tabent* e =
findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql);
return e ? &e->val : NULL;
}
}
static const upb_tabval* inttable_val_const(const upb_inttable* t,
uintptr_t key) {
return inttable_val((upb_inttable*)t, key);
}
size_t upb_inttable_count(const upb_inttable* t) {
return t->t.count + t->array_count;
}
static void check(upb_inttable* t) {
UPB_UNUSED(t);
#if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG)
{
// This check is very expensive (makes inserts/deletes O(N)).
size_t count = 0;
intptr_t iter = UPB_INTTABLE_BEGIN;
uintptr_t key;
upb_value val;
while (upb_inttable_next(t, &key, &val, &iter)) {
UPB_ASSERT(upb_inttable_lookup(t, key, NULL));
}
UPB_ASSERT(count == upb_inttable_count(t));
}
#endif
}
bool upb_inttable_sizedinit(upb_inttable* t, size_t asize, int hsize_lg2,
upb_Arena* a) {
size_t array_bytes;
if (!init(&t->t, hsize_lg2, a)) return false;
/* Always make the array part at least 1 long, so that we know key 0
* won't be in the hash part, which simplifies things. */
t->array_size = UPB_MAX(1, asize);
t->array_count = 0;
array_bytes = t->array_size * sizeof(upb_value);
t->array = upb_Arena_Malloc(a, array_bytes);
if (!t->array) {
return false;
}
memset(mutable_array(t), 0xff, array_bytes);
check(t);
return true;
}
bool upb_inttable_init(upb_inttable* t, upb_Arena* a) {
return upb_inttable_sizedinit(t, 0, 4, a);
}
bool upb_inttable_insert(upb_inttable* t, uintptr_t key, upb_value val,
upb_Arena* a) {
upb_tabval tabval;
tabval.val = val.val;
UPB_ASSERT(
upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */
if (key < t->array_size) {
UPB_ASSERT(!upb_arrhas(t->array[key]));
t->array_count++;
mutable_array(t)[key].val = val.val;
} else {
if (isfull(&t->t)) {
/* Need to resize the hash part, but we re-use the array part. */
size_t i;
upb_table new_table;
if (!init(&new_table, t->t.size_lg2 + 1, a)) {
return false;
}
for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) {
const upb_tabent* e = &t->t.entries[i];
uint32_t hash;
upb_value v;
_upb_value_setval(&v, e->val.val);
hash = upb_inthash(e->key);
insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql);
}
UPB_ASSERT(t->t.count == new_table.count);
t->t = new_table;
}
insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql);
}
check(t);
return true;
}
bool upb_inttable_lookup(const upb_inttable* t, uintptr_t key, upb_value* v) {
const upb_tabval* table_v = inttable_val_const(t, key);
if (!table_v) return false;
if (v) _upb_value_setval(v, table_v->val);
return true;
}
bool upb_inttable_replace(upb_inttable* t, uintptr_t key, upb_value val) {
upb_tabval* table_v = inttable_val(t, key);
if (!table_v) return false;
table_v->val = val.val;
return true;
}
bool upb_inttable_remove(upb_inttable* t, uintptr_t key, upb_value* val) {
bool success;
if (key < t->array_size) {
if (upb_arrhas(t->array[key])) {
upb_tabval empty = UPB_TABVALUE_EMPTY_INIT;
t->array_count--;
if (val) {
_upb_value_setval(val, t->array[key].val);
}
mutable_array(t)[key] = empty;
success = true;
} else {
success = false;
}
} else {
success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql);
}
check(t);
return success;
}
void upb_inttable_compact(upb_inttable* t, upb_Arena* a) {
/* A power-of-two histogram of the table keys. */
size_t counts[UPB_MAXARRSIZE + 1] = {0};
/* The max key in each bucket. */
uintptr_t max[UPB_MAXARRSIZE + 1] = {0};
{
intptr_t iter = UPB_INTTABLE_BEGIN;
uintptr_t key;
upb_value val;
while (upb_inttable_next(t, &key, &val, &iter)) {
int bucket = log2ceil(key);
max[bucket] = UPB_MAX(max[bucket], key);
counts[bucket]++;
}
}
/* Find the largest power of two that satisfies the MIN_DENSITY
* definition (while actually having some keys). */
size_t arr_count = upb_inttable_count(t);
int size_lg2;
upb_inttable new_t;
for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) {
if (counts[size_lg2] == 0) {
/* We can halve again without losing any entries. */
continue;
} else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) {
break;
}
arr_count -= counts[size_lg2];
}
UPB_ASSERT(arr_count <= upb_inttable_count(t));
{
/* Insert all elements into new, perfectly-sized table. */
size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */
size_t hash_count = upb_inttable_count(t) - arr_count;
size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0;
int hashsize_lg2 = log2ceil(hash_size);
upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a);
{
intptr_t iter = UPB_INTTABLE_BEGIN;
uintptr_t key;
upb_value val;
while (upb_inttable_next(t, &key, &val, &iter)) {
upb_inttable_insert(&new_t, key, val, a);
}
}
UPB_ASSERT(new_t.array_size == arr_size);
UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2);
}
*t = new_t;
}
// Iteration.
bool upb_inttable_next(const upb_inttable* t, uintptr_t* key, upb_value* val,
intptr_t* iter) {
intptr_t i = *iter;
if ((size_t)(i + 1) <= t->array_size) {
while ((size_t)++i < t->array_size) {
upb_tabval ent = t->array[i];
if (upb_arrhas(ent)) {
*key = i;
*val = _upb_value_val(ent.val);
*iter = i;
return true;
}
}
i--; // Back up to exactly one position before the start of the table.
}
size_t tab_idx = next(&t->t, i - t->array_size);
if (tab_idx < upb_table_size(&t->t)) {
upb_tabent* ent = &t->t.entries[tab_idx];
*key = ent->key;
*val = _upb_value_val(ent->val.val);
*iter = tab_idx + t->array_size;
return true;
}
return false;
}
void upb_inttable_removeiter(upb_inttable* t, intptr_t* iter) {
intptr_t i = *iter;
if ((size_t)i < t->array_size) {
t->array_count--;
mutable_array(t)[i].val = -1;
} else {
upb_tabent* ent = &t->t.entries[i - t->array_size];
upb_tabent* prev = NULL;
// Linear search, not great.
upb_tabent* end = &t->t.entries[upb_table_size(&t->t)];
for (upb_tabent* e = t->t.entries; e != end; e++) {
if (e->next == ent) {
prev = e;
break;
}
}
if (prev) {
prev->next = ent->next;
}
t->t.count--;
ent->key = 0;
ent->next = NULL;
}
}
bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key,
upb_value* val, intptr_t* iter) {
size_t tab_idx = next(&t->t, *iter);
if (tab_idx < upb_table_size(&t->t)) {
upb_tabent* ent = &t->t.entries[tab_idx];
uint32_t len;
key->data = upb_tabstr(ent->key, &len);
key->size = len;
*val = _upb_value_val(ent->val.val);
*iter = tab_idx;
return true;
}
return false;
}
void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter) {
intptr_t i = *iter;
upb_tabent* ent = &t->t.entries[i];
upb_tabent* prev = NULL;
// Linear search, not great.
upb_tabent* end = &t->t.entries[upb_table_size(&t->t)];
for (upb_tabent* e = t->t.entries; e != end; e++) {
if (e->next == ent) {
prev = e;
break;
}
}
if (prev) {
prev->next = ent->next;
}
t->t.count--;
ent->key = 0;
ent->next = NULL;
}
void upb_strtable_setentryvalue(upb_strtable* t, intptr_t iter, upb_value v) {
upb_tabent* ent = &t->t.entries[iter];
ent->val.val = v.val;
}