blob: acd1b159d3ecad2d444fc8724d0be6d636cd2894 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2022 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
//
// This file defines the internal class SerialArena
#ifndef GOOGLE_PROTOBUF_SERIAL_ARENA_H__
#define GOOGLE_PROTOBUF_SERIAL_ARENA_H__
#include <algorithm>
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <string>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/optimization.h"
#include "absl/base/prefetch.h"
#include "absl/log/absl_check.h"
#include "absl/numeric/bits.h"
#include "google/protobuf/arena_align.h"
#include "google/protobuf/arena_cleanup.h"
#include "google/protobuf/port.h"
#include "google/protobuf/string_block.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
namespace internal {
// Arena blocks are variable length malloc-ed objects. The following structure
// describes the common header for all blocks.
struct ArenaBlock {
// For the sentry block with zero-size where ptr_/limit_ both point to `this`.
constexpr ArenaBlock() : next(nullptr), size(0) {}
ArenaBlock(ArenaBlock* next, size_t size) : next(next), size(size) {
ABSL_DCHECK_GT(size, sizeof(ArenaBlock));
}
char* Pointer(size_t n) {
ABSL_DCHECK_LE(n, size);
return reinterpret_cast<char*>(this) + n;
}
char* Limit() { return Pointer(size & static_cast<size_t>(-8)); }
bool IsSentry() const { return size == 0; }
ArenaBlock* const next;
const size_t size;
// data follows
};
enum class AllocationClient { kDefault, kArray };
class ThreadSafeArena;
// Tag type used to invoke the constructor of the first SerialArena.
struct FirstSerialArena {
explicit FirstSerialArena() = default;
};
// A simple arena allocator. Calls to allocate functions must be properly
// serialized by the caller, hence this class cannot be used as a general
// purpose allocator in a multi-threaded program. It serves as a building block
// for ThreadSafeArena, which provides a thread-safe arena allocator.
//
// This class manages
// 1) Arena bump allocation + owning memory blocks.
// 2) Maintaining a cleanup list.
// It delegates the actual memory allocation back to ThreadSafeArena, which
// contains the information on block growth policy and backing memory allocation
// used.
class PROTOBUF_EXPORT SerialArena {
public:
static constexpr size_t kBlockHeaderSize =
ArenaAlignDefault::Ceil(sizeof(ArenaBlock));
void CleanupList() { cleanup_list_.Cleanup(*this); }
uint64_t SpaceAllocated() const {
return space_allocated_.load(std::memory_order_relaxed);
}
uint64_t SpaceUsed() const;
// See comments on `cached_blocks_` member for details.
PROTOBUF_ALWAYS_INLINE void* TryAllocateFromCachedBlock(size_t size) {
if (ABSL_PREDICT_FALSE(size < 16)) return nullptr;
// We round up to the next larger block in case the memory doesn't match
// the pattern we are looking for.
const size_t index = absl::bit_width(size - 1) - 4;
if (ABSL_PREDICT_FALSE(index >= cached_block_length_)) return nullptr;
auto& cached_head = cached_blocks_[index];
if (cached_head == nullptr) return nullptr;
void* ret = cached_head;
internal::UnpoisonMemoryRegion(ret, size);
cached_head = cached_head->next;
return ret;
}
// In kArray mode we look through cached blocks.
// We do not do this by default because most non-array allocations will not
// have the right size and will fail to find an appropriate cached block.
//
// TODO: Evaluate if we should use cached blocks for message types of
// the right size. We can statically know if the allocation size can benefit
// from it.
template <AllocationClient alloc_client = AllocationClient::kDefault>
void* AllocateAligned(size_t n) {
ABSL_DCHECK(internal::ArenaAlignDefault::IsAligned(n));
ABSL_DCHECK_GE(limit_, ptr());
if (alloc_client == AllocationClient::kArray) {
if (void* res = TryAllocateFromCachedBlock(n)) {
return res;
}
}
void* ptr;
if (ABSL_PREDICT_TRUE(MaybeAllocateAligned(n, &ptr))) {
return ptr;
}
return AllocateAlignedFallback(n);
}
private:
static PROTOBUF_ALWAYS_INLINE constexpr size_t AlignUpTo(size_t n, size_t a) {
// We are wasting space by over allocating align - 8 bytes. Compared to a
// dedicated function that takes current alignment in consideration. Such a
// scheme would only waste (align - 8)/2 bytes on average, but requires a
// dedicated function in the outline arena allocation functions. Possibly
// re-evaluate tradeoffs later.
return a <= 8 ? ArenaAlignDefault::Ceil(n) : ArenaAlignAs(a).Padded(n);
}
static PROTOBUF_ALWAYS_INLINE void* AlignTo(void* p, size_t a) {
return (a <= ArenaAlignDefault::align)
? ArenaAlignDefault::CeilDefaultAligned(p)
: ArenaAlignAs(a).CeilDefaultAligned(p);
}
// See comments on `cached_blocks_` member for details.
void ReturnArrayMemory(void* p, size_t size) {
// We only need to check for 32-bit platforms.
// In 64-bit platforms the minimum allocation size from Repeated*Field will
// be 16 guaranteed.
if (sizeof(void*) < 8) {
if (ABSL_PREDICT_FALSE(size < 16)) return;
} else {
PROTOBUF_ASSUME(size >= 16);
}
// We round down to the next smaller block in case the memory doesn't match
// the pattern we are looking for. eg, someone might have called Reserve()
// on the repeated field.
const size_t index = absl::bit_width(size) - 5;
if (ABSL_PREDICT_FALSE(index >= cached_block_length_)) {
// We can't put this object on the freelist so make this object the
// freelist. It is guaranteed it is larger than the one we have, and
// large enough to hold another allocation of `size`.
CachedBlock** new_list = static_cast<CachedBlock**>(p);
size_t new_size = size / sizeof(CachedBlock*);
std::copy(cached_blocks_, cached_blocks_ + cached_block_length_,
new_list);
// We need to unpoison this memory before filling it in case it has been
// poisoned by another sanitizer client.
internal::UnpoisonMemoryRegion(
new_list + cached_block_length_,
(new_size - cached_block_length_) * sizeof(CachedBlock*));
std::fill(new_list + cached_block_length_, new_list + new_size, nullptr);
cached_blocks_ = new_list;
// Make the size fit in uint8_t. This is the power of two, so we don't
// need anything larger.
cached_block_length_ =
static_cast<uint8_t>(std::min(size_t{64}, new_size));
return;
}
auto& cached_head = cached_blocks_[index];
auto* new_node = static_cast<CachedBlock*>(p);
new_node->next = cached_head;
cached_head = new_node;
internal::PoisonMemoryRegion(p, size);
}
public:
// Allocate space if the current region provides enough space.
bool MaybeAllocateAligned(size_t n, void** out) {
ABSL_DCHECK(internal::ArenaAlignDefault::IsAligned(n));
ABSL_DCHECK_GE(limit_, ptr());
char* ret = ptr();
// ret + n may point out of the block bounds, or ret may be nullptr.
// Both computations have undefined behavior when done on pointers,
// so do them on uintptr_t instead.
if (ABSL_PREDICT_FALSE(reinterpret_cast<uintptr_t>(ret) + n >
reinterpret_cast<uintptr_t>(limit_))) {
return false;
}
internal::UnpoisonMemoryRegion(ret, n);
*out = ret;
char* next = ret + n;
set_ptr(next);
MaybePrefetchData(next);
return true;
}
// If there is enough space in the current block, allocate space for one
// std::string object and register for destruction. The object has not been
// constructed and the memory returned is uninitialized.
PROTOBUF_ALWAYS_INLINE void* MaybeAllocateStringWithCleanup() {
void* p;
return MaybeAllocateString(p) ? p : nullptr;
}
PROTOBUF_ALWAYS_INLINE
void* AllocateAlignedWithCleanup(size_t n, size_t align,
void (*destructor)(void*)) {
n = ArenaAlignDefault::Ceil(n);
char* ret = ArenaAlignAs(align).CeilDefaultAligned(ptr());
// See the comment in MaybeAllocateAligned re uintptr_t.
if (ABSL_PREDICT_FALSE(reinterpret_cast<uintptr_t>(ret) + n >
reinterpret_cast<uintptr_t>(limit_))) {
return AllocateAlignedWithCleanupFallback(n, align, destructor);
}
internal::UnpoisonMemoryRegion(ret, n);
char* next = ret + n;
set_ptr(next);
AddCleanup(ret, destructor);
ABSL_DCHECK_GE(limit_, ptr());
MaybePrefetchData(next);
return ret;
}
PROTOBUF_ALWAYS_INLINE
void AddCleanup(void* elem, void (*destructor)(void*)) {
cleanup_list_.Add(elem, destructor, *this);
MaybePrefetchCleanup();
}
ABSL_ATTRIBUTE_RETURNS_NONNULL void* AllocateFromStringBlock();
std::vector<void*> PeekCleanupListForTesting();
private:
friend class ThreadSafeArena;
friend class cleanup::ChunkList;
// See comments for cached_blocks_.
struct CachedBlock {
// Simple linked list.
CachedBlock* next;
};
static constexpr ptrdiff_t kPrefetchDataDegree = ABSL_CACHELINE_SIZE * 16;
static constexpr ptrdiff_t kPrefetchCleanupDegree = ABSL_CACHELINE_SIZE * 6;
// Constructor is private as only New() should be used.
inline SerialArena(ArenaBlock* b, ThreadSafeArena& parent);
// Constructors to handle the first SerialArena.
inline explicit SerialArena(ThreadSafeArena& parent);
inline SerialArena(FirstSerialArena, ArenaBlock* b, ThreadSafeArena& parent);
bool MaybeAllocateString(void*& p);
ABSL_ATTRIBUTE_RETURNS_NONNULL void* AllocateFromStringBlockFallback();
// Prefetch the next prefetch_degree bytes after `prefetch_ptr` and
// up to `limit`, if `next` is within prefetch_degree bytes of `prefetch_ptr`.
PROTOBUF_ALWAYS_INLINE
static const char* MaybePrefetchImpl(const ptrdiff_t prefetch_degree,
const char* next, const char* limit,
const char* prefetch_ptr) {
if (ABSL_PREDICT_TRUE(prefetch_ptr - next > prefetch_degree))
return prefetch_ptr;
if (ABSL_PREDICT_TRUE(prefetch_ptr < limit)) {
prefetch_ptr = std::max(next, prefetch_ptr);
ABSL_DCHECK(prefetch_ptr != nullptr);
const char* end = std::min(limit, prefetch_ptr + prefetch_degree);
for (; prefetch_ptr < end; prefetch_ptr += ABSL_CACHELINE_SIZE) {
absl::PrefetchToLocalCacheForWrite(prefetch_ptr);
}
}
return prefetch_ptr;
}
PROTOBUF_ALWAYS_INLINE
void MaybePrefetchData(const char* next) {
ABSL_DCHECK(static_cast<const void*>(prefetch_ptr_) == nullptr ||
static_cast<const void*>(prefetch_ptr_) >= head());
prefetch_ptr_ =
MaybePrefetchImpl(kPrefetchDataDegree, next, limit_, prefetch_ptr_);
}
PROTOBUF_ALWAYS_INLINE
void MaybePrefetchCleanup() {
ABSL_DCHECK(static_cast<const void*>(cleanup_list_.prefetch_ptr_) ==
nullptr ||
static_cast<const void*>(cleanup_list_.prefetch_ptr_) >=
cleanup_list_.head_);
cleanup_list_.prefetch_ptr_ = MaybePrefetchImpl(
kPrefetchCleanupDegree, reinterpret_cast<char*>(cleanup_list_.next_),
reinterpret_cast<char*>(cleanup_list_.limit_),
cleanup_list_.prefetch_ptr_);
}
// Creates a new SerialArena inside mem using the remaining memory as for
// future allocations.
// The `parent` arena must outlive the serial arena, which is guaranteed
// because the parent manages the lifetime of the serial arenas.
static SerialArena* New(SizedPtr mem, ThreadSafeArena& parent);
// Free SerialArena returning the memory passed in to New.
template <typename Deallocator>
SizedPtr Free(Deallocator deallocator);
size_t FreeStringBlocks() {
// On the active block delete all strings skipping the unused instances.
size_t unused_bytes = string_block_unused_.load(std::memory_order_relaxed);
if (StringBlock* sb = string_block_.load(std::memory_order_relaxed)) {
return FreeStringBlocks(sb, unused_bytes);
}
return 0;
}
static size_t FreeStringBlocks(StringBlock* string_block, size_t unused);
// Adds 'used` to space_used_ in relaxed atomic order.
void AddSpaceUsed(size_t space_used) {
space_used_.store(space_used_.load(std::memory_order_relaxed) + space_used,
std::memory_order_relaxed);
}
// Adds 'allocated` to space_allocated_ in relaxed atomic order.
void AddSpaceAllocated(size_t space_allocated) {
space_allocated_.store(
space_allocated_.load(std::memory_order_relaxed) + space_allocated,
std::memory_order_relaxed);
}
// Helper getters/setters to handle relaxed operations on atomic variables.
ArenaBlock* head() { return head_.load(std::memory_order_relaxed); }
const ArenaBlock* head() const {
return head_.load(std::memory_order_relaxed);
}
char* ptr() { return ptr_.load(std::memory_order_relaxed); }
const char* ptr() const { return ptr_.load(std::memory_order_relaxed); }
void set_ptr(char* ptr) { return ptr_.store(ptr, std::memory_order_relaxed); }
PROTOBUF_ALWAYS_INLINE void set_range(char* ptr, char* limit) {
set_ptr(ptr);
prefetch_ptr_ = ptr;
limit_ = limit;
}
void* AllocateAlignedFallback(size_t n);
void* AllocateAlignedWithCleanupFallback(size_t n, size_t align,
void (*destructor)(void*));
void AddCleanupFallback(void* elem, void (*destructor)(void*));
inline void AllocateNewBlock(size_t n);
inline void Init(ArenaBlock* b, size_t offset);
// Members are declared here to track sizeof(SerialArena) and hotness
// centrally. They are (roughly) laid out in descending order of hotness.
// Next pointer to allocate from. Always 8-byte aligned. Points inside
// head_ (and head_->pos will always be non-canonical). We keep these
// here to reduce indirection.
std::atomic<char*> ptr_{nullptr};
// Limiting address up to which memory can be allocated from the head block.
char* limit_ = nullptr;
// Current prefetch positions. Data from `ptr_` up to but not including
// `prefetch_ptr_` is software prefetched.
const char* prefetch_ptr_ = nullptr;
// Chunked linked list for managing cleanup for arena elements.
cleanup::ChunkList cleanup_list_;
// The active string block.
std::atomic<StringBlock*> string_block_{nullptr};
// The number of unused bytes in string_block_.
// We allocate from `effective_size()` down to 0 inside `string_block_`.
// `unused == 0` means that `string_block_` is exhausted. (or null).
std::atomic<size_t> string_block_unused_{0};
std::atomic<ArenaBlock*> head_{nullptr}; // Head of linked list of blocks.
std::atomic<size_t> space_used_{0}; // Necessary for metrics.
std::atomic<size_t> space_allocated_{0};
ThreadSafeArena& parent_;
// Repeated*Field and Arena play together to reduce memory consumption by
// reusing blocks. Currently, natural growth of the repeated field types makes
// them allocate blocks of size `8 + 2^N, N>=3`.
// When the repeated field grows returns the previous block and we put it in
// this free list.
// `cached_blocks_[i]` points to the free list for blocks of size `8+2^(i+3)`.
// The array of freelists is grown when needed in `ReturnArrayMemory()`.
uint8_t cached_block_length_ = 0;
CachedBlock** cached_blocks_ = nullptr;
};
PROTOBUF_ALWAYS_INLINE bool SerialArena::MaybeAllocateString(void*& p) {
// Check how many unused instances are in the current block.
size_t unused_bytes = string_block_unused_.load(std::memory_order_relaxed);
if (ABSL_PREDICT_TRUE(unused_bytes != 0)) {
unused_bytes -= sizeof(std::string);
string_block_unused_.store(unused_bytes, std::memory_order_relaxed);
p = string_block_.load(std::memory_order_relaxed)->AtOffset(unused_bytes);
return true;
}
return false;
}
ABSL_ATTRIBUTE_RETURNS_NONNULL PROTOBUF_ALWAYS_INLINE void*
SerialArena::AllocateFromStringBlock() {
void* p;
if (ABSL_PREDICT_TRUE(MaybeAllocateString(p))) return p;
return AllocateFromStringBlockFallback();
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_SERIAL_ARENA_H__