|  | #region Copyright notice and license | 
|  | // Protocol Buffers - Google's data interchange format | 
|  | // Copyright 2008 Google Inc.  All rights reserved. | 
|  | // https://developers.google.com/protocol-buffers/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  | #endregion | 
|  |  | 
|  | using System; | 
|  | using System.Buffers.Binary; | 
|  | using System.Diagnostics; | 
|  | using System.Runtime.CompilerServices; | 
|  | using System.Runtime.InteropServices; | 
|  | #if GOOGLE_PROTOBUF_SIMD | 
|  | using System.Runtime.Intrinsics; | 
|  | using System.Runtime.Intrinsics.Arm; | 
|  | using System.Runtime.Intrinsics.X86; | 
|  | #endif | 
|  | using System.Security; | 
|  | using System.Text; | 
|  |  | 
|  | namespace Google.Protobuf | 
|  | { | 
|  | /// <summary> | 
|  | /// Primitives for encoding protobuf wire format. | 
|  | /// </summary> | 
|  | [SecuritySafeCritical] | 
|  | internal static class WritingPrimitives | 
|  | { | 
|  | #if NET5_0 | 
|  | internal static Encoding Utf8Encoding => Encoding.UTF8; // allows JIT to devirtualize | 
|  | #else | 
|  | internal static readonly Encoding Utf8Encoding = Encoding.UTF8; // "Local" copy of Encoding.UTF8, for efficiency. (Yes, it makes a difference.) | 
|  | #endif | 
|  |  | 
|  | #region Writing of values (not including tags) | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a double field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteDouble(ref Span<byte> buffer, ref WriterInternalState state, double value) | 
|  | { | 
|  | WriteRawLittleEndian64(ref buffer, ref state, (ulong)BitConverter.DoubleToInt64Bits(value)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a float field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static unsafe void WriteFloat(ref Span<byte> buffer, ref WriterInternalState state, float value) | 
|  | { | 
|  | const int length = sizeof(float); | 
|  | if (buffer.Length - state.position >= length) | 
|  | { | 
|  | // if there's enough space in the buffer, write the float directly into the buffer | 
|  | var floatSpan = buffer.Slice(state.position, length); | 
|  | Unsafe.WriteUnaligned(ref MemoryMarshal.GetReference(floatSpan), value); | 
|  |  | 
|  | if (!BitConverter.IsLittleEndian) | 
|  | { | 
|  | floatSpan.Reverse(); | 
|  | } | 
|  | state.position += length; | 
|  | } | 
|  | else | 
|  | { | 
|  | WriteFloatSlowPath(ref buffer, ref state, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  | private static unsafe void WriteFloatSlowPath(ref Span<byte> buffer, ref WriterInternalState state, float value) | 
|  | { | 
|  | const int length = sizeof(float); | 
|  |  | 
|  | // TODO(jtattermusch): deduplicate the code. Populating the span is the same as for the fastpath. | 
|  | Span<byte> floatSpan = stackalloc byte[length]; | 
|  | Unsafe.WriteUnaligned(ref MemoryMarshal.GetReference(floatSpan), value); | 
|  | if (!BitConverter.IsLittleEndian) | 
|  | { | 
|  | floatSpan.Reverse(); | 
|  | } | 
|  |  | 
|  | WriteRawByte(ref buffer, ref state, floatSpan[0]); | 
|  | WriteRawByte(ref buffer, ref state, floatSpan[1]); | 
|  | WriteRawByte(ref buffer, ref state, floatSpan[2]); | 
|  | WriteRawByte(ref buffer, ref state, floatSpan[3]); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a uint64 field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteUInt64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) | 
|  | { | 
|  | WriteRawVarint64(ref buffer, ref state, value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an int64 field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteInt64(ref Span<byte> buffer, ref WriterInternalState state, long value) | 
|  | { | 
|  | WriteRawVarint64(ref buffer, ref state, (ulong)value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an int32 field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteInt32(ref Span<byte> buffer, ref WriterInternalState state, int value) | 
|  | { | 
|  | if (value >= 0) | 
|  | { | 
|  | WriteRawVarint32(ref buffer, ref state, (uint)value); | 
|  | } | 
|  | else | 
|  | { | 
|  | // Must sign-extend. | 
|  | WriteRawVarint64(ref buffer, ref state, (ulong)value); | 
|  | } | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a fixed64 field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteFixed64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) | 
|  | { | 
|  | WriteRawLittleEndian64(ref buffer, ref state, value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a fixed32 field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteFixed32(ref Span<byte> buffer, ref WriterInternalState state, uint value) | 
|  | { | 
|  | WriteRawLittleEndian32(ref buffer, ref state, value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a bool field value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteBool(ref Span<byte> buffer, ref WriterInternalState state, bool value) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, value ? (byte)1 : (byte)0); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a string field value, without a tag, to the stream. | 
|  | /// The data is length-prefixed. | 
|  | /// </summary> | 
|  | public static void WriteString(ref Span<byte> buffer, ref WriterInternalState state, string value) | 
|  | { | 
|  | const int MaxBytesPerChar = 3; | 
|  | const int MaxSmallStringLength = 128 / MaxBytesPerChar; | 
|  |  | 
|  | // The string is small enough that the length will always be a 1 byte varint. | 
|  | // Also there is enough space to write length + bytes to buffer. | 
|  | // Write string directly to the buffer, and then write length. | 
|  | // This saves calling GetByteCount on the string. We get the string length from GetBytes. | 
|  | if (value.Length <= MaxSmallStringLength && buffer.Length - state.position - 1 >= value.Length * MaxBytesPerChar) | 
|  | { | 
|  | int indexOfLengthDelimiter = state.position++; | 
|  | buffer[indexOfLengthDelimiter] = (byte)WriteStringToBuffer(buffer, ref state, value); | 
|  | return; | 
|  | } | 
|  |  | 
|  | int length = Utf8Encoding.GetByteCount(value); | 
|  | WriteLength(ref buffer, ref state, length); | 
|  |  | 
|  | // Optimise the case where we have enough space to write | 
|  | // the string directly to the buffer, which should be common. | 
|  | if (buffer.Length - state.position >= length) | 
|  | { | 
|  | if (length == value.Length) // Must be all ASCII... | 
|  | { | 
|  | WriteAsciiStringToBuffer(buffer, ref state, value, length); | 
|  | } | 
|  | else | 
|  | { | 
|  | WriteStringToBuffer(buffer, ref state, value); | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | // Opportunity for future optimization: | 
|  | // Large strings that don't fit into the current buffer segment | 
|  | // can probably be optimized by using Utf8Encoding.GetEncoder() | 
|  | // but more benchmarks would need to be added as evidence. | 
|  | byte[] bytes = Utf8Encoding.GetBytes(value); | 
|  | WriteRawBytes(ref buffer, ref state, bytes); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Calling this method with non-ASCII content will break. | 
|  | // Content must be verified to be all ASCII before using this method. | 
|  | private static void WriteAsciiStringToBuffer(Span<byte> buffer, ref WriterInternalState state, string value, int length) | 
|  | { | 
|  | ref char sourceChars = ref MemoryMarshal.GetReference(value.AsSpan()); | 
|  | ref byte destinationBytes = ref MemoryMarshal.GetReference(buffer.Slice(state.position)); | 
|  |  | 
|  | int currentIndex = 0; | 
|  | // If 64bit, process 4 chars at a time. | 
|  | // The logic inside this check will be elided by JIT in 32bit programs. | 
|  | if (IntPtr.Size == 8) | 
|  | { | 
|  | // Need at least 4 chars available to use this optimization. | 
|  | if (length >= 4) | 
|  | { | 
|  | ref byte sourceBytes = ref Unsafe.As<char, byte>(ref sourceChars); | 
|  |  | 
|  | // Process 4 chars at a time until there are less than 4 remaining. | 
|  | // We already know all characters are ASCII so there is no need to validate the source. | 
|  | int lastIndexWhereCanReadFourChars = value.Length - 4; | 
|  | do | 
|  | { | 
|  | NarrowFourUtf16CharsToAsciiAndWriteToBuffer( | 
|  | ref Unsafe.AddByteOffset(ref destinationBytes, (IntPtr)currentIndex), | 
|  | Unsafe.ReadUnaligned<ulong>(ref Unsafe.AddByteOffset(ref sourceBytes, (IntPtr)(currentIndex * 2)))); | 
|  |  | 
|  | } while ((currentIndex += 4) <= lastIndexWhereCanReadFourChars); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Process any remaining, 1 char at a time. | 
|  | // Avoid bounds checking with ref + Unsafe | 
|  | for (; currentIndex < length; currentIndex++) | 
|  | { | 
|  | Unsafe.AddByteOffset(ref destinationBytes, (IntPtr)currentIndex) = (byte)Unsafe.AddByteOffset(ref sourceChars, (IntPtr)(currentIndex * 2)); | 
|  | } | 
|  |  | 
|  | state.position += length; | 
|  | } | 
|  |  | 
|  | // Copied with permission from https://github.com/dotnet/runtime/blob/1cdafd27e4afd2c916af5df949c13f8b373c4335/src/libraries/System.Private.CoreLib/src/System/Text/ASCIIUtility.cs#L1119-L1171 | 
|  | // | 
|  | /// <summary> | 
|  | /// Given a QWORD which represents a buffer of 4 ASCII chars in machine-endian order, | 
|  | /// narrows each WORD to a BYTE, then writes the 4-byte result to the output buffer | 
|  | /// also in machine-endian order. | 
|  | /// </summary> | 
|  | [MethodImpl(MethodImplOptions.AggressiveInlining)] | 
|  | private static void NarrowFourUtf16CharsToAsciiAndWriteToBuffer(ref byte outputBuffer, ulong value) | 
|  | { | 
|  | #if GOOGLE_PROTOBUF_SIMD | 
|  | if (Sse2.X64.IsSupported) | 
|  | { | 
|  | // Narrows a vector of words [ w0 w1 w2 w3 ] to a vector of bytes | 
|  | // [ b0 b1 b2 b3 b0 b1 b2 b3 ], then writes 4 bytes (32 bits) to the destination. | 
|  |  | 
|  | Vector128<short> vecWide = Sse2.X64.ConvertScalarToVector128UInt64(value).AsInt16(); | 
|  | Vector128<uint> vecNarrow = Sse2.PackUnsignedSaturate(vecWide, vecWide).AsUInt32(); | 
|  | Unsafe.WriteUnaligned<uint>(ref outputBuffer, Sse2.ConvertToUInt32(vecNarrow)); | 
|  | } | 
|  | else if (AdvSimd.IsSupported) | 
|  | { | 
|  | // Narrows a vector of words [ w0 w1 w2 w3 ] to a vector of bytes | 
|  | // [ b0 b1 b2 b3 * * * * ], then writes 4 bytes (32 bits) to the destination. | 
|  |  | 
|  | Vector128<short> vecWide = Vector128.CreateScalarUnsafe(value).AsInt16(); | 
|  | Vector64<byte> lower = AdvSimd.ExtractNarrowingSaturateUnsignedLower(vecWide); | 
|  | Unsafe.WriteUnaligned<uint>(ref outputBuffer, lower.AsUInt32().ToScalar()); | 
|  | } | 
|  | else | 
|  | #endif | 
|  | { | 
|  | // Fallback to non-SIMD approach when SIMD is not available. | 
|  | // This could happen either because the APIs are not available, or hardware doesn't support it. | 
|  | // Processing 4 chars at a time in this fallback is still faster than casting one char at a time. | 
|  | if (BitConverter.IsLittleEndian) | 
|  | { | 
|  | outputBuffer = (byte)value; | 
|  | value >>= 16; | 
|  | Unsafe.Add(ref outputBuffer, 1) = (byte)value; | 
|  | value >>= 16; | 
|  | Unsafe.Add(ref outputBuffer, 2) = (byte)value; | 
|  | value >>= 16; | 
|  | Unsafe.Add(ref outputBuffer, 3) = (byte)value; | 
|  | } | 
|  | else | 
|  | { | 
|  | Unsafe.Add(ref outputBuffer, 3) = (byte)value; | 
|  | value >>= 16; | 
|  | Unsafe.Add(ref outputBuffer, 2) = (byte)value; | 
|  | value >>= 16; | 
|  | Unsafe.Add(ref outputBuffer, 1) = (byte)value; | 
|  | value >>= 16; | 
|  | outputBuffer = (byte)value; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | private static int WriteStringToBuffer(Span<byte> buffer, ref WriterInternalState state, string value) | 
|  | { | 
|  | #if NETSTANDARD1_1 | 
|  | // slowpath when Encoding.GetBytes(Char*, Int32, Byte*, Int32) is not available | 
|  | byte[] bytes = Utf8Encoding.GetBytes(value); | 
|  | WriteRawBytes(ref buffer, ref state, bytes); | 
|  | return bytes.Length; | 
|  | #else | 
|  | ReadOnlySpan<char> source = value.AsSpan(); | 
|  | int bytesUsed; | 
|  | unsafe | 
|  | { | 
|  | fixed (char* sourceChars = &MemoryMarshal.GetReference(source)) | 
|  | fixed (byte* destinationBytes = &MemoryMarshal.GetReference(buffer)) | 
|  | { | 
|  | bytesUsed = Utf8Encoding.GetBytes( | 
|  | sourceChars, | 
|  | source.Length, | 
|  | destinationBytes + state.position, | 
|  | buffer.Length - state.position); | 
|  | } | 
|  | } | 
|  | state.position += bytesUsed; | 
|  | return bytesUsed; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Write a byte string, without a tag, to the stream. | 
|  | /// The data is length-prefixed. | 
|  | /// </summary> | 
|  | public static void WriteBytes(ref Span<byte> buffer, ref WriterInternalState state, ByteString value) | 
|  | { | 
|  | WriteLength(ref buffer, ref state, value.Length); | 
|  | WriteRawBytes(ref buffer, ref state, value.Span); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a uint32 value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteUInt32(ref Span<byte> buffer, ref WriterInternalState state, uint value) | 
|  | { | 
|  | WriteRawVarint32(ref buffer, ref state, value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an enum value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteEnum(ref Span<byte> buffer, ref WriterInternalState state, int value) | 
|  | { | 
|  | WriteInt32(ref buffer, ref state, value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an sfixed32 value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteSFixed32(ref Span<byte> buffer, ref WriterInternalState state, int value) | 
|  | { | 
|  | WriteRawLittleEndian32(ref buffer, ref state, (uint)value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an sfixed64 value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteSFixed64(ref Span<byte> buffer, ref WriterInternalState state, long value) | 
|  | { | 
|  | WriteRawLittleEndian64(ref buffer, ref state, (ulong)value); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an sint32 value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteSInt32(ref Span<byte> buffer, ref WriterInternalState state, int value) | 
|  | { | 
|  | WriteRawVarint32(ref buffer, ref state, EncodeZigZag32(value)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an sint64 value, without a tag, to the stream. | 
|  | /// </summary> | 
|  | public static void WriteSInt64(ref Span<byte> buffer, ref WriterInternalState state, long value) | 
|  | { | 
|  | WriteRawVarint64(ref buffer, ref state, EncodeZigZag64(value)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes a length (in bytes) for length-delimited data. | 
|  | /// </summary> | 
|  | /// <remarks> | 
|  | /// This method simply writes a rawint, but exists for clarity in calling code. | 
|  | /// </remarks> | 
|  | public static void WriteLength(ref Span<byte> buffer, ref WriterInternalState state, int length) | 
|  | { | 
|  | WriteRawVarint32(ref buffer, ref state, (uint)length); | 
|  | } | 
|  |  | 
|  | #endregion | 
|  |  | 
|  | #region Writing primitives | 
|  | /// <summary> | 
|  | /// Writes a 32 bit value as a varint. The fast route is taken when | 
|  | /// there's enough buffer space left to whizz through without checking | 
|  | /// for each byte; otherwise, we resort to calling WriteRawByte each time. | 
|  | /// </summary> | 
|  | public static void WriteRawVarint32(ref Span<byte> buffer, ref WriterInternalState state, uint value) | 
|  | { | 
|  | // Optimize for the common case of a single byte value | 
|  | if (value < 128 && state.position < buffer.Length) | 
|  | { | 
|  | buffer[state.position++] = (byte)value; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Fast path when capacity is available | 
|  | while (state.position < buffer.Length) | 
|  | { | 
|  | if (value > 127) | 
|  | { | 
|  | buffer[state.position++] = (byte)((value & 0x7F) | 0x80); | 
|  | value >>= 7; | 
|  | } | 
|  | else | 
|  | { | 
|  | buffer[state.position++] = (byte)value; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (value > 127) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, (byte)((value & 0x7F) | 0x80)); | 
|  | value >>= 7; | 
|  | } | 
|  |  | 
|  | WriteRawByte(ref buffer, ref state, (byte)value); | 
|  | } | 
|  |  | 
|  | public static void WriteRawVarint64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) | 
|  | { | 
|  | // Optimize for the common case of a single byte value | 
|  | if (value < 128 && state.position < buffer.Length) | 
|  | { | 
|  | buffer[state.position++] = (byte)value; | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Fast path when capacity is available | 
|  | while (state.position < buffer.Length) | 
|  | { | 
|  | if (value > 127) | 
|  | { | 
|  | buffer[state.position++] = (byte)((value & 0x7F) | 0x80); | 
|  | value >>= 7; | 
|  | } | 
|  | else | 
|  | { | 
|  | buffer[state.position++] = (byte)value; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (value > 127) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, (byte)((value & 0x7F) | 0x80)); | 
|  | value >>= 7; | 
|  | } | 
|  |  | 
|  | WriteRawByte(ref buffer, ref state, (byte)value); | 
|  | } | 
|  |  | 
|  | public static void WriteRawLittleEndian32(ref Span<byte> buffer, ref WriterInternalState state, uint value) | 
|  | { | 
|  | const int length = sizeof(uint); | 
|  | if (state.position + length > buffer.Length) | 
|  | { | 
|  | WriteRawLittleEndian32SlowPath(ref buffer, ref state, value); | 
|  | } | 
|  | else | 
|  | { | 
|  | BinaryPrimitives.WriteUInt32LittleEndian(buffer.Slice(state.position), value); | 
|  | state.position += length; | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  | private static void WriteRawLittleEndian32SlowPath(ref Span<byte> buffer, ref WriterInternalState state, uint value) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, (byte)value); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 8)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 16)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 24)); | 
|  | } | 
|  |  | 
|  | public static void WriteRawLittleEndian64(ref Span<byte> buffer, ref WriterInternalState state, ulong value) | 
|  | { | 
|  | const int length = sizeof(ulong); | 
|  | if (state.position + length > buffer.Length) | 
|  | { | 
|  | WriteRawLittleEndian64SlowPath(ref buffer, ref state, value); | 
|  | } | 
|  | else | 
|  | { | 
|  | BinaryPrimitives.WriteUInt64LittleEndian(buffer.Slice(state.position), value); | 
|  | state.position += length; | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  | public static void WriteRawLittleEndian64SlowPath(ref Span<byte> buffer, ref WriterInternalState state, ulong value) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, (byte)value); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 8)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 16)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 24)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 32)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 40)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 48)); | 
|  | WriteRawByte(ref buffer, ref state, (byte)(value >> 56)); | 
|  | } | 
|  |  | 
|  | private static void WriteRawByte(ref Span<byte> buffer, ref WriterInternalState state, byte value) | 
|  | { | 
|  | if (state.position == buffer.Length) | 
|  | { | 
|  | WriteBufferHelper.RefreshBuffer(ref buffer, ref state); | 
|  | } | 
|  |  | 
|  | buffer[state.position++] = value; | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes out an array of bytes. | 
|  | /// </summary> | 
|  | public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, byte[] value) | 
|  | { | 
|  | WriteRawBytes(ref buffer, ref state, new ReadOnlySpan<byte>(value)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes out part of an array of bytes. | 
|  | /// </summary> | 
|  | public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, byte[] value, int offset, int length) | 
|  | { | 
|  | WriteRawBytes(ref buffer, ref state, new ReadOnlySpan<byte>(value, offset, length)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes out part of an array of bytes. | 
|  | /// </summary> | 
|  | public static void WriteRawBytes(ref Span<byte> buffer, ref WriterInternalState state, ReadOnlySpan<byte> value) | 
|  | { | 
|  | if (buffer.Length - state.position >= value.Length) | 
|  | { | 
|  | // We have room in the current buffer. | 
|  | value.CopyTo(buffer.Slice(state.position, value.Length)); | 
|  | state.position += value.Length; | 
|  | } | 
|  | else | 
|  | { | 
|  | // When writing to a CodedOutputStream backed by a Stream, we could avoid | 
|  | // copying the data twice (first copying to the current buffer and | 
|  | // and later writing from the current buffer to the underlying Stream) | 
|  | // in some circumstances by writing the data directly to the underlying Stream. | 
|  | // Current this is not being done to avoid specialcasing the code for | 
|  | // CodedOutputStream vs IBufferWriter<byte>. | 
|  | int bytesWritten = 0; | 
|  | while (buffer.Length - state.position < value.Length - bytesWritten) | 
|  | { | 
|  | int length = buffer.Length - state.position; | 
|  | value.Slice(bytesWritten, length).CopyTo(buffer.Slice(state.position, length)); | 
|  | bytesWritten += length; | 
|  | state.position += length; | 
|  | WriteBufferHelper.RefreshBuffer(ref buffer, ref state); | 
|  | } | 
|  |  | 
|  | // copy the remaining data | 
|  | int remainderLength = value.Length - bytesWritten; | 
|  | value.Slice(bytesWritten, remainderLength).CopyTo(buffer.Slice(state.position, remainderLength)); | 
|  | state.position += remainderLength; | 
|  | } | 
|  | } | 
|  | #endregion | 
|  |  | 
|  | #region Raw tag writing | 
|  | /// <summary> | 
|  | /// Encodes and writes a tag. | 
|  | /// </summary> | 
|  | public static void WriteTag(ref Span<byte> buffer, ref WriterInternalState state, int fieldNumber, WireFormat.WireType type) | 
|  | { | 
|  | WriteRawVarint32(ref buffer, ref state, WireFormat.MakeTag(fieldNumber, type)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes an already-encoded tag. | 
|  | /// </summary> | 
|  | public static void WriteTag(ref Span<byte> buffer, ref WriterInternalState state, uint tag) | 
|  | { | 
|  | WriteRawVarint32(ref buffer, ref state, tag); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes the given single-byte tag directly to the stream. | 
|  | /// </summary> | 
|  | public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, b1); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes the given two-byte tag directly to the stream. | 
|  | /// </summary> | 
|  | public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2) | 
|  | { | 
|  | if (state.position + 2 > buffer.Length) | 
|  | { | 
|  | WriteRawTagSlowPath(ref buffer, ref state, b1, b2); | 
|  | } | 
|  | else | 
|  | { | 
|  | buffer[state.position++] = b1; | 
|  | buffer[state.position++] = b2; | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  | private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, b1); | 
|  | WriteRawByte(ref buffer, ref state, b2); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes the given three-byte tag directly to the stream. | 
|  | /// </summary> | 
|  | public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3) | 
|  | { | 
|  | if (state.position + 3 > buffer.Length) | 
|  | { | 
|  | WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3); | 
|  | } | 
|  | else | 
|  | { | 
|  | buffer[state.position++] = b1; | 
|  | buffer[state.position++] = b2; | 
|  | buffer[state.position++] = b3; | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  | private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, b1); | 
|  | WriteRawByte(ref buffer, ref state, b2); | 
|  | WriteRawByte(ref buffer, ref state, b3); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes the given four-byte tag directly to the stream. | 
|  | /// </summary> | 
|  | public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4) | 
|  | { | 
|  | if (state.position + 4 > buffer.Length) | 
|  | { | 
|  | WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3, b4); | 
|  | } | 
|  | else | 
|  | { | 
|  | buffer[state.position++] = b1; | 
|  | buffer[state.position++] = b2; | 
|  | buffer[state.position++] = b3; | 
|  | buffer[state.position++] = b4; | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  |  | 
|  | private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, b1); | 
|  | WriteRawByte(ref buffer, ref state, b2); | 
|  | WriteRawByte(ref buffer, ref state, b3); | 
|  | WriteRawByte(ref buffer, ref state, b4); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Writes the given five-byte tag directly to the stream. | 
|  | /// </summary> | 
|  | public static void WriteRawTag(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4, byte b5) | 
|  | { | 
|  | if (state.position + 5 > buffer.Length) | 
|  | { | 
|  | WriteRawTagSlowPath(ref buffer, ref state, b1, b2, b3, b4, b5); | 
|  | } | 
|  | else | 
|  | { | 
|  | buffer[state.position++] = b1; | 
|  | buffer[state.position++] = b2; | 
|  | buffer[state.position++] = b3; | 
|  | buffer[state.position++] = b4; | 
|  | buffer[state.position++] = b5; | 
|  | } | 
|  | } | 
|  |  | 
|  | [MethodImpl(MethodImplOptions.NoInlining)] | 
|  | private static void WriteRawTagSlowPath(ref Span<byte> buffer, ref WriterInternalState state, byte b1, byte b2, byte b3, byte b4, byte b5) | 
|  | { | 
|  | WriteRawByte(ref buffer, ref state, b1); | 
|  | WriteRawByte(ref buffer, ref state, b2); | 
|  | WriteRawByte(ref buffer, ref state, b3); | 
|  | WriteRawByte(ref buffer, ref state, b4); | 
|  | WriteRawByte(ref buffer, ref state, b5); | 
|  | } | 
|  | #endregion | 
|  |  | 
|  | /// <summary> | 
|  | /// Encode a 32-bit value with ZigZag encoding. | 
|  | /// </summary> | 
|  | /// <remarks> | 
|  | /// ZigZag encodes signed integers into values that can be efficiently | 
|  | /// encoded with varint.  (Otherwise, negative values must be | 
|  | /// sign-extended to 64 bits to be varint encoded, thus always taking | 
|  | /// 10 bytes on the wire.) | 
|  | /// </remarks> | 
|  | public static uint EncodeZigZag32(int n) | 
|  | { | 
|  | // Note:  the right-shift must be arithmetic | 
|  | return (uint)((n << 1) ^ (n >> 31)); | 
|  | } | 
|  |  | 
|  | /// <summary> | 
|  | /// Encode a 64-bit value with ZigZag encoding. | 
|  | /// </summary> | 
|  | /// <remarks> | 
|  | /// ZigZag encodes signed integers into values that can be efficiently | 
|  | /// encoded with varint.  (Otherwise, negative values must be | 
|  | /// sign-extended to 64 bits to be varint encoded, thus always taking | 
|  | /// 10 bytes on the wire.) | 
|  | /// </remarks> | 
|  | public static ulong EncodeZigZag64(long n) | 
|  | { | 
|  | return (ulong)((n << 1) ^ (n >> 63)); | 
|  | } | 
|  | } | 
|  | } |