blob: d73edc3be7421d62179e1df4e098034984a0c4e6 [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// This file contains miscellaneous helper code used by generated code --
// including lite types -- but which should not be used directly by users.
#ifndef GOOGLE_PROTOBUF_GENERATED_MESSAGE_UTIL_H__
#define GOOGLE_PROTOBUF_GENERATED_MESSAGE_UTIL_H__
#include <assert.h>
#include <algorithm>
#include <atomic>
#include <climits>
#include <cstddef>
#include <initializer_list>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "google/protobuf/stubs/common.h"
#include "absl/base/call_once.h"
#include "absl/base/casts.h"
#include "absl/base/optimization.h"
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "google/protobuf/any.h"
#include "google/protobuf/has_bits.h"
#include "google/protobuf/implicit_weak_message.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/port.h"
#include "google/protobuf/repeated_field.h"
#include "google/protobuf/repeated_ptr_field.h"
#include "google/protobuf/wire_format_lite.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Arena;
class Message;
namespace io {
class CodedInputStream;
}
namespace internal {
// This fastpath inlines a single branch instead of having to make the
// InitProtobufDefaults function call.
// It also generates less inlined code than a function-scope static initializer.
PROTOBUF_EXPORT extern std::atomic<bool> init_protobuf_defaults_state;
PROTOBUF_EXPORT void InitProtobufDefaultsSlow();
PROTOBUF_EXPORT inline void InitProtobufDefaults() {
if (ABSL_PREDICT_FALSE(
!init_protobuf_defaults_state.load(std::memory_order_acquire))) {
InitProtobufDefaultsSlow();
}
}
// This used by proto1
PROTOBUF_EXPORT inline const std::string& GetEmptyString() {
InitProtobufDefaults();
return GetEmptyStringAlreadyInited();
}
// Default empty Cord object. Don't use directly. Instead, call
// GetEmptyCordAlreadyInited() to get the reference.
union EmptyCord {
constexpr EmptyCord() : value() {}
~EmptyCord() {}
::absl::Cord value;
};
PROTOBUF_EXPORT extern const EmptyCord empty_cord_;
constexpr const ::absl::Cord& GetEmptyCordAlreadyInited() {
return empty_cord_.value;
}
// True if IsInitialized() is true for all elements of t. Type is expected
// to be a RepeatedPtrField<some message type>. It's useful to have this
// helper here to keep the protobuf compiler from ever having to emit loops in
// IsInitialized() methods. We want the C++ compiler to inline this or not
// as it sees fit.
template <typename Msg>
bool AllAreInitialized(const RepeatedPtrField<Msg>& t) {
for (int i = t.size(); --i >= 0;) {
if (!t.Get(i).IsInitialized()) return false;
}
return true;
}
// "Weak" variant of AllAreInitialized, used to implement implicit weak fields.
// This version operates on MessageLite to avoid introducing a dependency on the
// concrete message type.
template <class T>
bool AllAreInitializedWeak(const RepeatedPtrField<T>& t) {
for (int i = t.size(); --i >= 0;) {
if (!reinterpret_cast<const RepeatedPtrFieldBase&>(t)
.Get<ImplicitWeakTypeHandler<T> >(i)
.IsInitialized()) {
return false;
}
}
return true;
}
inline bool IsPresent(const void* base, uint32_t hasbit) {
const uint32_t* has_bits_array = static_cast<const uint32_t*>(base);
return (has_bits_array[hasbit / 32] & (1u << (hasbit & 31))) != 0;
}
inline bool IsOneofPresent(const void* base, uint32_t offset, uint32_t tag) {
const uint32_t* oneof = reinterpret_cast<const uint32_t*>(
static_cast<const uint8_t*>(base) + offset);
return *oneof == tag >> 3;
}
typedef void (*SpecialSerializer)(const uint8_t* base, uint32_t offset,
uint32_t tag, uint32_t has_offset,
io::CodedOutputStream* output);
PROTOBUF_EXPORT void ExtensionSerializer(const MessageLite* extendee,
const uint8_t* ptr, uint32_t offset,
uint32_t tag, uint32_t has_offset,
io::CodedOutputStream* output);
PROTOBUF_EXPORT void UnknownFieldSerializerLite(const uint8_t* base,
uint32_t offset, uint32_t tag,
uint32_t has_offset,
io::CodedOutputStream* output);
PROTOBUF_EXPORT MessageLite* DuplicateIfNonNullInternal(MessageLite* message);
PROTOBUF_EXPORT MessageLite* GetOwnedMessageInternal(Arena* message_arena,
MessageLite* submessage,
Arena* submessage_arena);
PROTOBUF_EXPORT void GenericSwap(MessageLite* m1, MessageLite* m2);
// We specialize GenericSwap for non-lite messages to benefit from reflection.
PROTOBUF_EXPORT void GenericSwap(Message* m1, Message* m2);
template <typename T>
T* DuplicateIfNonNull(T* message) {
// The casts must be reinterpret_cast<> because T might be a forward-declared
// type that the compiler doesn't know is related to MessageLite.
return reinterpret_cast<T*>(
DuplicateIfNonNullInternal(reinterpret_cast<MessageLite*>(message)));
}
template <typename T>
T* GetOwnedMessage(Arena* message_arena, T* submessage,
Arena* submessage_arena) {
// The casts must be reinterpret_cast<> because T might be a forward-declared
// type that the compiler doesn't know is related to MessageLite.
return reinterpret_cast<T*>(GetOwnedMessageInternal(
message_arena, reinterpret_cast<MessageLite*>(submessage),
submessage_arena));
}
PROTOBUF_EXPORT void DestroyMessage(const void* message);
PROTOBUF_EXPORT void DestroyString(const void* s);
// Destroy (not delete) the message
inline void OnShutdownDestroyMessage(const void* ptr) {
OnShutdownRun(DestroyMessage, ptr);
}
// Destroy the string (call std::string destructor)
inline void OnShutdownDestroyString(const std::string* ptr) {
OnShutdownRun(DestroyString, ptr);
}
// Helpers for deterministic serialization =============================
// Iterator base for MapSorterFlat and MapSorterPtr.
template <typename storage_type>
struct MapSorterIt {
storage_type* ptr;
MapSorterIt(storage_type* ptr) : ptr(ptr) {}
bool operator==(const MapSorterIt& other) const { return ptr == other.ptr; }
bool operator!=(const MapSorterIt& other) const { return !(*this == other); }
MapSorterIt& operator++() {
++ptr;
return *this;
}
MapSorterIt operator++(int) {
auto other = *this;
++ptr;
return other;
}
MapSorterIt operator+(int v) { return MapSorterIt{ptr + v}; }
};
// Defined outside of MapSorterFlat to only be templatized on the key.
template <typename KeyT>
struct MapSorterLessThan {
using storage_type = std::pair<KeyT, const void*>;
bool operator()(const storage_type& a, const storage_type& b) const {
return a.first < b.first;
}
};
// MapSorterFlat stores keys inline with pointers to map entries, so that
// keys can be compared without indirection. This type is used for maps with
// keys that are not strings.
template <typename MapT>
class MapSorterFlat {
public:
using value_type = typename MapT::value_type;
// To avoid code bloat we don't put `value_type` in `storage_type`. It is not
// necessary for the call to sort, and avoiding it prevents unnecessary
// separate instantiations of sort.
using storage_type = std::pair<typename MapT::key_type, const void*>;
// This const_iterator dereferenes to the map entry stored in the sorting
// array pairs. This is the same interface as the Map::const_iterator type,
// and allows generated code to use the same loop body with either form:
// for (const auto& entry : map) { ... }
// for (const auto& entry : MapSorterFlat(map)) { ... }
struct const_iterator : public MapSorterIt<storage_type> {
using pointer = const typename MapT::value_type*;
using reference = const typename MapT::value_type&;
using MapSorterIt<storage_type>::MapSorterIt;
pointer operator->() const {
return static_cast<const value_type*>(this->ptr->second);
}
reference operator*() const { return *this->operator->(); }
};
explicit MapSorterFlat(const MapT& m)
: size_(m.size()), items_(size_ ? new storage_type[size_] : nullptr) {
if (!size_) return;
storage_type* it = &items_[0];
for (const auto& entry : m) {
*it++ = {entry.first, &entry};
}
std::sort(&items_[0], &items_[size_],
MapSorterLessThan<typename MapT::key_type>{});
}
size_t size() const { return size_; }
const_iterator begin() const { return {items_.get()}; }
const_iterator end() const { return {items_.get() + size_}; }
private:
size_t size_;
std::unique_ptr<storage_type[]> items_;
};
// Defined outside of MapSorterPtr to only be templatized on the key.
template <typename KeyT>
struct MapSorterPtrLessThan {
bool operator()(const void* a, const void* b) const {
// The pointers point to the `std::pair<const Key, Value>` object.
// We cast directly to the key to read it.
return *reinterpret_cast<const KeyT*>(a) <
*reinterpret_cast<const KeyT*>(b);
}
};
// MapSorterPtr stores and sorts pointers to map entries. This type is used for
// maps with keys that are strings.
template <typename MapT>
class MapSorterPtr {
public:
using value_type = typename MapT::value_type;
// To avoid code bloat we don't put `value_type` in `storage_type`. It is not
// necessary for the call to sort, and avoiding it prevents unnecessary
// separate instantiations of sort.
using storage_type = const void*;
// This const_iterator dereferenes the map entry pointer stored in the sorting
// array. This is the same interface as the Map::const_iterator type, and
// allows generated code to use the same loop body with either form:
// for (const auto& entry : map) { ... }
// for (const auto& entry : MapSorterPtr(map)) { ... }
struct const_iterator : public MapSorterIt<storage_type> {
using pointer = const typename MapT::value_type*;
using reference = const typename MapT::value_type&;
using MapSorterIt<storage_type>::MapSorterIt;
pointer operator->() const {
return static_cast<const value_type*>(*this->ptr);
}
reference operator*() const { return *this->operator->(); }
};
explicit MapSorterPtr(const MapT& m)
: size_(m.size()), items_(size_ ? new storage_type[size_] : nullptr) {
if (!size_) return;
storage_type* it = &items_[0];
for (const auto& entry : m) {
*it++ = &entry;
}
static_assert(PROTOBUF_FIELD_OFFSET(typename MapT::value_type, first) == 0,
"Must hold for MapSorterPtrLessThan to work.");
std::sort(&items_[0], &items_[size_],
MapSorterPtrLessThan<typename MapT::key_type>{});
}
size_t size() const { return size_; }
const_iterator begin() const { return {items_.get()}; }
const_iterator end() const { return {items_.get() + size_}; }
private:
size_t size_;
std::unique_ptr<storage_type[]> items_;
};
struct WeakDescriptorDefaultTail {
const Message** target;
size_t size;
};
// Tag to distinguish overloads below:
// - if last argument is `BytesTag tag = BytesTag{}` then the overload is
// available to both string and byte fields.
// - if last argument is `BytesTag tag` then the overload is only available to
// byte fields.
// - if there is no BytesTag argument, then the overload is only available to
// string fields.
struct BytesTag {
explicit BytesTag() = default;
};
// Assigns to `dest` the content of `value`, optionally bounded by `size`.
// This overload set is used to implement `set_xxx()` methods for repeated
// string fields in generated code.
inline void AssignToString(std::string& dest, const std::string& value,
BytesTag tag = BytesTag{}) {
dest.assign(value);
}
inline void AssignToString(std::string& dest, std::string&& value,
BytesTag tag = BytesTag{}) {
dest.assign(std::move(value));
}
inline void AssignToString(std::string& dest, const char* value,
BytesTag tag = BytesTag{}) {
dest.assign(value);
}
inline void AssignToString(std::string& dest, const char* value,
std::size_t size) {
dest.assign(value, size);
}
inline void AssignToString(std::string& dest, const void* value,
std::size_t size, BytesTag tag) {
dest.assign(reinterpret_cast<const char*>(value), size);
}
inline void AssignToString(std::string& dest, absl::string_view value,
BytesTag tag = BytesTag{}) {
dest.assign(value.data(), value.size());
}
// Adds `value`, optionally bounded by `size`, as the last element of `dest`.
// This overload set is used to implement `add_xxx()` methods for repeated
// string fields in generated code.
template <typename Arg, typename... Args>
void AddToRepeatedPtrField(google::protobuf::RepeatedPtrField<std::string>& dest,
Arg&& value, Args... args) {
AssignToString(*dest.Add(), std::forward<Arg>(value), args...);
}
inline void AddToRepeatedPtrField(google::protobuf::RepeatedPtrField<std::string>& dest,
std::string&& value,
BytesTag tag = BytesTag{}) {
dest.Add(std::move(value));
}
constexpr absl::optional<uintptr_t> EncodePlacementArenaOffsets(
std::initializer_list<size_t> offsets) {
uintptr_t arena_bits = 0;
for (size_t offset : offsets) {
offset /= sizeof(Arena*);
if (offset >= sizeof(arena_bits) * 8) {
return absl::nullopt;
}
arena_bits |= uintptr_t{1} << offset;
}
return arena_bits;
}
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_GENERATED_MESSAGE_UTIL_H__