| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| // Author: kenton@google.com (Kenton Varda) and others |
| // |
| // Contains basic types and utilities used by the rest of the library. |
| |
| #ifndef GOOGLE_PROTOBUF_COMMON_H__ |
| #define GOOGLE_PROTOBUF_COMMON_H__ |
| |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <cstddef> |
| #include <string> |
| #include <string.h> |
| #if defined(__osf__) |
| // Tru64 lacks stdint.h, but has inttypes.h which defines a superset of |
| // what stdint.h would define. |
| #include <inttypes.h> |
| #elif !defined(_MSC_VER) |
| #include <stdint.h> |
| #endif |
| |
| #ifndef PROTOBUF_USE_EXCEPTIONS |
| #if defined(_MSC_VER) && defined(_CPPUNWIND) |
| #define PROTOBUF_USE_EXCEPTIONS 1 |
| #elif defined(__EXCEPTIONS) |
| #define PROTOBUF_USE_EXCEPTIONS 1 |
| #else |
| #define PROTOBUF_USE_EXCEPTIONS 0 |
| #endif |
| #endif |
| |
| #if PROTOBUF_USE_EXCEPTIONS |
| #include <exception> |
| #endif |
| |
| #if defined(_WIN32) && defined(GetMessage) |
| // Allow GetMessage to be used as a valid method name in protobuf classes. |
| // windows.h defines GetMessage() as a macro. Let's re-define it as an inline |
| // function. The inline function should be equivalent for C++ users. |
| inline BOOL GetMessage_Win32( |
| LPMSG lpMsg, HWND hWnd, |
| UINT wMsgFilterMin, UINT wMsgFilterMax) { |
| return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); |
| } |
| #undef GetMessage |
| inline BOOL GetMessage( |
| LPMSG lpMsg, HWND hWnd, |
| UINT wMsgFilterMin, UINT wMsgFilterMax) { |
| return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax); |
| } |
| #endif |
| |
| |
| namespace std {} |
| |
| namespace google { |
| namespace protobuf { |
| |
| #undef GOOGLE_DISALLOW_EVIL_CONSTRUCTORS |
| #define GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(TypeName) \ |
| TypeName(const TypeName&); \ |
| void operator=(const TypeName&) |
| |
| #if defined(_MSC_VER) && defined(PROTOBUF_USE_DLLS) |
| #ifdef LIBPROTOBUF_EXPORTS |
| #define LIBPROTOBUF_EXPORT __declspec(dllexport) |
| #else |
| #define LIBPROTOBUF_EXPORT __declspec(dllimport) |
| #endif |
| #ifdef LIBPROTOC_EXPORTS |
| #define LIBPROTOC_EXPORT __declspec(dllexport) |
| #else |
| #define LIBPROTOC_EXPORT __declspec(dllimport) |
| #endif |
| #else |
| #define LIBPROTOBUF_EXPORT |
| #define LIBPROTOC_EXPORT |
| #endif |
| |
| namespace internal { |
| |
| // Some of these constants are macros rather than const ints so that they can |
| // be used in #if directives. |
| |
| // The current version, represented as a single integer to make comparison |
| // easier: major * 10^6 + minor * 10^3 + micro |
| #define GOOGLE_PROTOBUF_VERSION 2006000 |
| |
| // The minimum library version which works with the current version of the |
| // headers. |
| #define GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION 2006000 |
| |
| // The minimum header version which works with the current version of |
| // the library. This constant should only be used by protoc's C++ code |
| // generator. |
| static const int kMinHeaderVersionForLibrary = 2006000; |
| |
| // The minimum protoc version which works with the current version of the |
| // headers. |
| #define GOOGLE_PROTOBUF_MIN_PROTOC_VERSION 2006000 |
| |
| // The minimum header version which works with the current version of |
| // protoc. This constant should only be used in VerifyVersion(). |
| static const int kMinHeaderVersionForProtoc = 2006000; |
| |
| // Verifies that the headers and libraries are compatible. Use the macro |
| // below to call this. |
| void LIBPROTOBUF_EXPORT VerifyVersion(int headerVersion, int minLibraryVersion, |
| const char* filename); |
| |
| // Converts a numeric version number to a string. |
| std::string LIBPROTOBUF_EXPORT VersionString(int version); |
| |
| } // namespace internal |
| |
| // Place this macro in your main() function (or somewhere before you attempt |
| // to use the protobuf library) to verify that the version you link against |
| // matches the headers you compiled against. If a version mismatch is |
| // detected, the process will abort. |
| #define GOOGLE_PROTOBUF_VERIFY_VERSION \ |
| ::google::protobuf::internal::VerifyVersion( \ |
| GOOGLE_PROTOBUF_VERSION, GOOGLE_PROTOBUF_MIN_LIBRARY_VERSION, \ |
| __FILE__) |
| |
| // =================================================================== |
| // from google3/base/port.h |
| |
| typedef unsigned int uint; |
| |
| #ifdef _MSC_VER |
| typedef __int8 int8; |
| typedef __int16 int16; |
| typedef __int32 int32; |
| typedef __int64 int64; |
| |
| typedef unsigned __int8 uint8; |
| typedef unsigned __int16 uint16; |
| typedef unsigned __int32 uint32; |
| typedef unsigned __int64 uint64; |
| #else |
| typedef int8_t int8; |
| typedef int16_t int16; |
| typedef int32_t int32; |
| typedef int64_t int64; |
| |
| typedef uint8_t uint8; |
| typedef uint16_t uint16; |
| typedef uint32_t uint32; |
| typedef uint64_t uint64; |
| #endif |
| |
| // long long macros to be used because gcc and vc++ use different suffixes, |
| // and different size specifiers in format strings |
| #undef GOOGLE_LONGLONG |
| #undef GOOGLE_ULONGLONG |
| #undef GOOGLE_LL_FORMAT |
| |
| #ifdef _MSC_VER |
| #define GOOGLE_LONGLONG(x) x##I64 |
| #define GOOGLE_ULONGLONG(x) x##UI64 |
| #define GOOGLE_LL_FORMAT "I64" // As in printf("%I64d", ...) |
| #else |
| #define GOOGLE_LONGLONG(x) x##LL |
| #define GOOGLE_ULONGLONG(x) x##ULL |
| #define GOOGLE_LL_FORMAT "ll" // As in "%lld". Note that "q" is poor form also. |
| #endif |
| |
| static const int32 kint32max = 0x7FFFFFFF; |
| static const int32 kint32min = -kint32max - 1; |
| static const int64 kint64max = GOOGLE_LONGLONG(0x7FFFFFFFFFFFFFFF); |
| static const int64 kint64min = -kint64max - 1; |
| static const uint32 kuint32max = 0xFFFFFFFFu; |
| static const uint64 kuint64max = GOOGLE_ULONGLONG(0xFFFFFFFFFFFFFFFF); |
| |
| // ------------------------------------------------------------------- |
| // Annotations: Some parts of the code have been annotated in ways that might |
| // be useful to some compilers or tools, but are not supported universally. |
| // You can #define these annotations yourself if the default implementation |
| // is not right for you. |
| |
| #ifndef GOOGLE_ATTRIBUTE_ALWAYS_INLINE |
| #if defined(__GNUC__) && (__GNUC__ > 3 ||(__GNUC__ == 3 && __GNUC_MINOR__ >= 1)) |
| // For functions we want to force inline. |
| // Introduced in gcc 3.1. |
| #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE __attribute__ ((always_inline)) |
| #else |
| // Other compilers will have to figure it out for themselves. |
| #define GOOGLE_ATTRIBUTE_ALWAYS_INLINE |
| #endif |
| #endif |
| |
| #ifndef GOOGLE_ATTRIBUTE_DEPRECATED |
| #ifdef __GNUC__ |
| // If the method/variable/type is used anywhere, produce a warning. |
| #define GOOGLE_ATTRIBUTE_DEPRECATED __attribute__((deprecated)) |
| #else |
| #define GOOGLE_ATTRIBUTE_DEPRECATED |
| #endif |
| #endif |
| |
| #ifndef GOOGLE_PREDICT_TRUE |
| #ifdef __GNUC__ |
| // Provided at least since GCC 3.0. |
| #define GOOGLE_PREDICT_TRUE(x) (__builtin_expect(!!(x), 1)) |
| #else |
| #define GOOGLE_PREDICT_TRUE |
| #endif |
| #endif |
| |
| // Delimits a block of code which may write to memory which is simultaneously |
| // written by other threads, but which has been determined to be thread-safe |
| // (e.g. because it is an idempotent write). |
| #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN |
| #define GOOGLE_SAFE_CONCURRENT_WRITES_BEGIN() |
| #endif |
| #ifndef GOOGLE_SAFE_CONCURRENT_WRITES_END |
| #define GOOGLE_SAFE_CONCURRENT_WRITES_END() |
| #endif |
| |
| // =================================================================== |
| // from google3/base/basictypes.h |
| |
| // The GOOGLE_ARRAYSIZE(arr) macro returns the # of elements in an array arr. |
| // The expression is a compile-time constant, and therefore can be |
| // used in defining new arrays, for example. |
| // |
| // GOOGLE_ARRAYSIZE catches a few type errors. If you see a compiler error |
| // |
| // "warning: division by zero in ..." |
| // |
| // when using GOOGLE_ARRAYSIZE, you are (wrongfully) giving it a pointer. |
| // You should only use GOOGLE_ARRAYSIZE on statically allocated arrays. |
| // |
| // The following comments are on the implementation details, and can |
| // be ignored by the users. |
| // |
| // ARRAYSIZE(arr) works by inspecting sizeof(arr) (the # of bytes in |
| // the array) and sizeof(*(arr)) (the # of bytes in one array |
| // element). If the former is divisible by the latter, perhaps arr is |
| // indeed an array, in which case the division result is the # of |
| // elements in the array. Otherwise, arr cannot possibly be an array, |
| // and we generate a compiler error to prevent the code from |
| // compiling. |
| // |
| // Since the size of bool is implementation-defined, we need to cast |
| // !(sizeof(a) & sizeof(*(a))) to size_t in order to ensure the final |
| // result has type size_t. |
| // |
| // This macro is not perfect as it wrongfully accepts certain |
| // pointers, namely where the pointer size is divisible by the pointee |
| // size. Since all our code has to go through a 32-bit compiler, |
| // where a pointer is 4 bytes, this means all pointers to a type whose |
| // size is 3 or greater than 4 will be (righteously) rejected. |
| // |
| // Kudos to Jorg Brown for this simple and elegant implementation. |
| |
| #undef GOOGLE_ARRAYSIZE |
| #define GOOGLE_ARRAYSIZE(a) \ |
| ((sizeof(a) / sizeof(*(a))) / \ |
| static_cast<size_t>(!(sizeof(a) % sizeof(*(a))))) |
| |
| namespace internal { |
| |
| // Use implicit_cast as a safe version of static_cast or const_cast |
| // for upcasting in the type hierarchy (i.e. casting a pointer to Foo |
| // to a pointer to SuperclassOfFoo or casting a pointer to Foo to |
| // a const pointer to Foo). |
| // When you use implicit_cast, the compiler checks that the cast is safe. |
| // Such explicit implicit_casts are necessary in surprisingly many |
| // situations where C++ demands an exact type match instead of an |
| // argument type convertable to a target type. |
| // |
| // The From type can be inferred, so the preferred syntax for using |
| // implicit_cast is the same as for static_cast etc.: |
| // |
| // implicit_cast<ToType>(expr) |
| // |
| // implicit_cast would have been part of the C++ standard library, |
| // but the proposal was submitted too late. It will probably make |
| // its way into the language in the future. |
| template<typename To, typename From> |
| inline To implicit_cast(From const &f) { |
| return f; |
| } |
| |
| // When you upcast (that is, cast a pointer from type Foo to type |
| // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts |
| // always succeed. When you downcast (that is, cast a pointer from |
| // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because |
| // how do you know the pointer is really of type SubclassOfFoo? It |
| // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, |
| // when you downcast, you should use this macro. In debug mode, we |
| // use dynamic_cast<> to double-check the downcast is legal (we die |
| // if it's not). In normal mode, we do the efficient static_cast<> |
| // instead. Thus, it's important to test in debug mode to make sure |
| // the cast is legal! |
| // This is the only place in the code we should use dynamic_cast<>. |
| // In particular, you SHOULDN'T be using dynamic_cast<> in order to |
| // do RTTI (eg code like this: |
| // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); |
| // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); |
| // You should design the code some other way not to need this. |
| |
| template<typename To, typename From> // use like this: down_cast<T*>(foo); |
| inline To down_cast(From* f) { // so we only accept pointers |
| // Ensures that To is a sub-type of From *. This test is here only |
| // for compile-time type checking, and has no overhead in an |
| // optimized build at run-time, as it will be optimized away |
| // completely. |
| if (false) { |
| implicit_cast<From*, To>(0); |
| } |
| |
| #if !defined(NDEBUG) && !defined(GOOGLE_PROTOBUF_NO_RTTI) |
| assert(f == NULL || dynamic_cast<To>(f) != NULL); // RTTI: debug mode only! |
| #endif |
| return static_cast<To>(f); |
| } |
| |
| } // namespace internal |
| |
| // We made these internal so that they would show up as such in the docs, |
| // but we don't want to stick "internal::" in front of them everywhere. |
| using internal::implicit_cast; |
| using internal::down_cast; |
| |
| // The COMPILE_ASSERT macro can be used to verify that a compile time |
| // expression is true. For example, you could use it to verify the |
| // size of a static array: |
| // |
| // COMPILE_ASSERT(ARRAYSIZE(content_type_names) == CONTENT_NUM_TYPES, |
| // content_type_names_incorrect_size); |
| // |
| // or to make sure a struct is smaller than a certain size: |
| // |
| // COMPILE_ASSERT(sizeof(foo) < 128, foo_too_large); |
| // |
| // The second argument to the macro is the name of the variable. If |
| // the expression is false, most compilers will issue a warning/error |
| // containing the name of the variable. |
| |
| namespace internal { |
| |
| template <bool> |
| struct CompileAssert { |
| }; |
| |
| } // namespace internal |
| |
| #undef GOOGLE_COMPILE_ASSERT |
| #define GOOGLE_COMPILE_ASSERT(expr, msg) \ |
| typedef ::google::protobuf::internal::CompileAssert<(bool(expr))> \ |
| msg[bool(expr) ? 1 : -1] |
| |
| |
| // Implementation details of COMPILE_ASSERT: |
| // |
| // - COMPILE_ASSERT works by defining an array type that has -1 |
| // elements (and thus is invalid) when the expression is false. |
| // |
| // - The simpler definition |
| // |
| // #define COMPILE_ASSERT(expr, msg) typedef char msg[(expr) ? 1 : -1] |
| // |
| // does not work, as gcc supports variable-length arrays whose sizes |
| // are determined at run-time (this is gcc's extension and not part |
| // of the C++ standard). As a result, gcc fails to reject the |
| // following code with the simple definition: |
| // |
| // int foo; |
| // COMPILE_ASSERT(foo, msg); // not supposed to compile as foo is |
| // // not a compile-time constant. |
| // |
| // - By using the type CompileAssert<(bool(expr))>, we ensures that |
| // expr is a compile-time constant. (Template arguments must be |
| // determined at compile-time.) |
| // |
| // - The outter parentheses in CompileAssert<(bool(expr))> are necessary |
| // to work around a bug in gcc 3.4.4 and 4.0.1. If we had written |
| // |
| // CompileAssert<bool(expr)> |
| // |
| // instead, these compilers will refuse to compile |
| // |
| // COMPILE_ASSERT(5 > 0, some_message); |
| // |
| // (They seem to think the ">" in "5 > 0" marks the end of the |
| // template argument list.) |
| // |
| // - The array size is (bool(expr) ? 1 : -1), instead of simply |
| // |
| // ((expr) ? 1 : -1). |
| // |
| // This is to avoid running into a bug in MS VC 7.1, which |
| // causes ((0.0) ? 1 : -1) to incorrectly evaluate to 1. |
| |
| // =================================================================== |
| // from google3/base/scoped_ptr.h |
| |
| namespace internal { |
| |
| // This is an implementation designed to match the anticipated future TR2 |
| // implementation of the scoped_ptr class, and its closely-related brethren, |
| // scoped_array, scoped_ptr_malloc, and make_scoped_ptr. |
| |
| template <class C> class scoped_ptr; |
| template <class C> class scoped_array; |
| |
| // A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T> |
| // automatically deletes the pointer it holds (if any). |
| // That is, scoped_ptr<T> owns the T object that it points to. |
| // Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object. |
| // |
| // The size of a scoped_ptr is small: |
| // sizeof(scoped_ptr<C>) == sizeof(C*) |
| template <class C> |
| class scoped_ptr { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to intializing with NULL. |
| // There is no way to create an uninitialized scoped_ptr. |
| // The input parameter must be allocated with new. |
| explicit scoped_ptr(C* p = NULL) : ptr_(p) { } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_ptr() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != ptr_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete ptr_; |
| ptr_ = p; |
| } |
| } |
| |
| // Accessors to get the owned object. |
| // operator* and operator-> will assert() if there is no current object. |
| C& operator*() const { |
| assert(ptr_ != NULL); |
| return *ptr_; |
| } |
| C* operator->() const { |
| assert(ptr_ != NULL); |
| return ptr_; |
| } |
| C* get() const { return ptr_; } |
| |
| // Comparison operators. |
| // These return whether two scoped_ptr refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return ptr_ == p; } |
| bool operator!=(C* p) const { return ptr_ != p; } |
| |
| // Swap two scoped pointers. |
| void swap(scoped_ptr& p2) { |
| C* tmp = ptr_; |
| ptr_ = p2.ptr_; |
| p2.ptr_ = tmp; |
| } |
| |
| // Release a pointer. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() { |
| C* retVal = ptr_; |
| ptr_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* ptr_; |
| |
| // Forbid comparison of scoped_ptr types. If C2 != C, it totally doesn't |
| // make sense, and if C2 == C, it still doesn't make sense because you should |
| // never have the same object owned by two different scoped_ptrs. |
| template <class C2> bool operator==(scoped_ptr<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const; |
| |
| // Disallow evil constructors |
| scoped_ptr(const scoped_ptr&); |
| void operator=(const scoped_ptr&); |
| }; |
| |
| // scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate |
| // with new [] and the destructor deletes objects with delete []. |
| // |
| // As with scoped_ptr<C>, a scoped_array<C> either points to an object |
| // or is NULL. A scoped_array<C> owns the object that it points to. |
| // |
| // Size: sizeof(scoped_array<C>) == sizeof(C*) |
| template <class C> |
| class scoped_array { |
| public: |
| |
| // The element type |
| typedef C element_type; |
| |
| // Constructor. Defaults to intializing with NULL. |
| // There is no way to create an uninitialized scoped_array. |
| // The input parameter must be allocated with new []. |
| explicit scoped_array(C* p = NULL) : array_(p) { } |
| |
| // Destructor. If there is a C object, delete it. |
| // We don't need to test ptr_ == NULL because C++ does that for us. |
| ~scoped_array() { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| } |
| |
| // Reset. Deletes the current owned object, if any. |
| // Then takes ownership of a new object, if given. |
| // this->reset(this->get()) works. |
| void reset(C* p = NULL) { |
| if (p != array_) { |
| enum { type_must_be_complete = sizeof(C) }; |
| delete[] array_; |
| array_ = p; |
| } |
| } |
| |
| // Get one element of the current object. |
| // Will assert() if there is no current object, or index i is negative. |
| C& operator[](std::ptrdiff_t i) const { |
| assert(i >= 0); |
| assert(array_ != NULL); |
| return array_[i]; |
| } |
| |
| // Get a pointer to the zeroth element of the current object. |
| // If there is no current object, return NULL. |
| C* get() const { |
| return array_; |
| } |
| |
| // Comparison operators. |
| // These return whether two scoped_array refer to the same object, not just to |
| // two different but equal objects. |
| bool operator==(C* p) const { return array_ == p; } |
| bool operator!=(C* p) const { return array_ != p; } |
| |
| // Swap two scoped arrays. |
| void swap(scoped_array& p2) { |
| C* tmp = array_; |
| array_ = p2.array_; |
| p2.array_ = tmp; |
| } |
| |
| // Release an array. |
| // The return value is the current pointer held by this object. |
| // If this object holds a NULL pointer, the return value is NULL. |
| // After this operation, this object will hold a NULL pointer, |
| // and will not own the object any more. |
| C* release() { |
| C* retVal = array_; |
| array_ = NULL; |
| return retVal; |
| } |
| |
| private: |
| C* array_; |
| |
| // Forbid comparison of different scoped_array types. |
| template <class C2> bool operator==(scoped_array<C2> const& p2) const; |
| template <class C2> bool operator!=(scoped_array<C2> const& p2) const; |
| |
| // Disallow evil constructors |
| scoped_array(const scoped_array&); |
| void operator=(const scoped_array&); |
| }; |
| |
| } // namespace internal |
| |
| // We made these internal so that they would show up as such in the docs, |
| // but we don't want to stick "internal::" in front of them everywhere. |
| using internal::scoped_ptr; |
| using internal::scoped_array; |
| |
| // =================================================================== |
| // emulates google3/base/logging.h |
| |
| enum LogLevel { |
| LOGLEVEL_INFO, // Informational. This is never actually used by |
| // libprotobuf. |
| LOGLEVEL_WARNING, // Warns about issues that, although not technically a |
| // problem now, could cause problems in the future. For |
| // example, a // warning will be printed when parsing a |
| // message that is near the message size limit. |
| LOGLEVEL_ERROR, // An error occurred which should never happen during |
| // normal use. |
| LOGLEVEL_FATAL, // An error occurred from which the library cannot |
| // recover. This usually indicates a programming error |
| // in the code which calls the library, especially when |
| // compiled in debug mode. |
| |
| #ifdef NDEBUG |
| LOGLEVEL_DFATAL = LOGLEVEL_ERROR |
| #else |
| LOGLEVEL_DFATAL = LOGLEVEL_FATAL |
| #endif |
| }; |
| |
| namespace internal { |
| |
| class LogFinisher; |
| |
| class LIBPROTOBUF_EXPORT LogMessage { |
| public: |
| LogMessage(LogLevel level, const char* filename, int line); |
| ~LogMessage(); |
| |
| LogMessage& operator<<(const std::string& value); |
| LogMessage& operator<<(const char* value); |
| LogMessage& operator<<(char value); |
| LogMessage& operator<<(int value); |
| LogMessage& operator<<(uint value); |
| LogMessage& operator<<(long value); |
| LogMessage& operator<<(unsigned long value); |
| LogMessage& operator<<(double value); |
| |
| private: |
| friend class LogFinisher; |
| void Finish(); |
| |
| LogLevel level_; |
| const char* filename_; |
| int line_; |
| std::string message_; |
| }; |
| |
| // Used to make the entire "LOG(BLAH) << etc." expression have a void return |
| // type and print a newline after each message. |
| class LIBPROTOBUF_EXPORT LogFinisher { |
| public: |
| void operator=(LogMessage& other); |
| }; |
| |
| } // namespace internal |
| |
| // Undef everything in case we're being mixed with some other Google library |
| // which already defined them itself. Presumably all Google libraries will |
| // support the same syntax for these so it should not be a big deal if they |
| // end up using our definitions instead. |
| #undef GOOGLE_LOG |
| #undef GOOGLE_LOG_IF |
| |
| #undef GOOGLE_CHECK |
| #undef GOOGLE_CHECK_OK |
| #undef GOOGLE_CHECK_EQ |
| #undef GOOGLE_CHECK_NE |
| #undef GOOGLE_CHECK_LT |
| #undef GOOGLE_CHECK_LE |
| #undef GOOGLE_CHECK_GT |
| #undef GOOGLE_CHECK_GE |
| #undef GOOGLE_CHECK_NOTNULL |
| |
| #undef GOOGLE_DLOG |
| #undef GOOGLE_DCHECK |
| #undef GOOGLE_DCHECK_EQ |
| #undef GOOGLE_DCHECK_NE |
| #undef GOOGLE_DCHECK_LT |
| #undef GOOGLE_DCHECK_LE |
| #undef GOOGLE_DCHECK_GT |
| #undef GOOGLE_DCHECK_GE |
| |
| #define GOOGLE_LOG(LEVEL) \ |
| ::google::protobuf::internal::LogFinisher() = \ |
| ::google::protobuf::internal::LogMessage( \ |
| ::google::protobuf::LOGLEVEL_##LEVEL, __FILE__, __LINE__) |
| #define GOOGLE_LOG_IF(LEVEL, CONDITION) \ |
| !(CONDITION) ? (void)0 : GOOGLE_LOG(LEVEL) |
| |
| #define GOOGLE_CHECK(EXPRESSION) \ |
| GOOGLE_LOG_IF(FATAL, !(EXPRESSION)) << "CHECK failed: " #EXPRESSION ": " |
| #define GOOGLE_CHECK_OK(A) GOOGLE_CHECK(A) |
| #define GOOGLE_CHECK_EQ(A, B) GOOGLE_CHECK((A) == (B)) |
| #define GOOGLE_CHECK_NE(A, B) GOOGLE_CHECK((A) != (B)) |
| #define GOOGLE_CHECK_LT(A, B) GOOGLE_CHECK((A) < (B)) |
| #define GOOGLE_CHECK_LE(A, B) GOOGLE_CHECK((A) <= (B)) |
| #define GOOGLE_CHECK_GT(A, B) GOOGLE_CHECK((A) > (B)) |
| #define GOOGLE_CHECK_GE(A, B) GOOGLE_CHECK((A) >= (B)) |
| |
| namespace internal { |
| template<typename T> |
| T* CheckNotNull(const char* /* file */, int /* line */, |
| const char* name, T* val) { |
| if (val == NULL) { |
| GOOGLE_LOG(FATAL) << name; |
| } |
| return val; |
| } |
| } // namespace internal |
| #define GOOGLE_CHECK_NOTNULL(A) \ |
| internal::CheckNotNull(__FILE__, __LINE__, "'" #A "' must not be NULL", (A)) |
| |
| #ifdef NDEBUG |
| |
| #define GOOGLE_DLOG GOOGLE_LOG_IF(INFO, false) |
| |
| #define GOOGLE_DCHECK(EXPRESSION) while(false) GOOGLE_CHECK(EXPRESSION) |
| #define GOOGLE_DCHECK_EQ(A, B) GOOGLE_DCHECK((A) == (B)) |
| #define GOOGLE_DCHECK_NE(A, B) GOOGLE_DCHECK((A) != (B)) |
| #define GOOGLE_DCHECK_LT(A, B) GOOGLE_DCHECK((A) < (B)) |
| #define GOOGLE_DCHECK_LE(A, B) GOOGLE_DCHECK((A) <= (B)) |
| #define GOOGLE_DCHECK_GT(A, B) GOOGLE_DCHECK((A) > (B)) |
| #define GOOGLE_DCHECK_GE(A, B) GOOGLE_DCHECK((A) >= (B)) |
| |
| #else // NDEBUG |
| |
| #define GOOGLE_DLOG GOOGLE_LOG |
| |
| #define GOOGLE_DCHECK GOOGLE_CHECK |
| #define GOOGLE_DCHECK_EQ GOOGLE_CHECK_EQ |
| #define GOOGLE_DCHECK_NE GOOGLE_CHECK_NE |
| #define GOOGLE_DCHECK_LT GOOGLE_CHECK_LT |
| #define GOOGLE_DCHECK_LE GOOGLE_CHECK_LE |
| #define GOOGLE_DCHECK_GT GOOGLE_CHECK_GT |
| #define GOOGLE_DCHECK_GE GOOGLE_CHECK_GE |
| |
| #endif // !NDEBUG |
| |
| typedef void LogHandler(LogLevel level, const char* filename, int line, |
| const std::string& message); |
| |
| // The protobuf library sometimes writes warning and error messages to |
| // stderr. These messages are primarily useful for developers, but may |
| // also help end users figure out a problem. If you would prefer that |
| // these messages be sent somewhere other than stderr, call SetLogHandler() |
| // to set your own handler. This returns the old handler. Set the handler |
| // to NULL to ignore log messages (but see also LogSilencer, below). |
| // |
| // Obviously, SetLogHandler is not thread-safe. You should only call it |
| // at initialization time, and probably not from library code. If you |
| // simply want to suppress log messages temporarily (e.g. because you |
| // have some code that tends to trigger them frequently and you know |
| // the warnings are not important to you), use the LogSilencer class |
| // below. |
| LIBPROTOBUF_EXPORT LogHandler* SetLogHandler(LogHandler* new_func); |
| |
| // Create a LogSilencer if you want to temporarily suppress all log |
| // messages. As long as any LogSilencer objects exist, non-fatal |
| // log messages will be discarded (the current LogHandler will *not* |
| // be called). Constructing a LogSilencer is thread-safe. You may |
| // accidentally suppress log messages occurring in another thread, but |
| // since messages are generally for debugging purposes only, this isn't |
| // a big deal. If you want to intercept log messages, use SetLogHandler(). |
| class LIBPROTOBUF_EXPORT LogSilencer { |
| public: |
| LogSilencer(); |
| ~LogSilencer(); |
| }; |
| |
| // =================================================================== |
| // emulates google3/base/callback.h |
| |
| // Abstract interface for a callback. When calling an RPC, you must provide |
| // a Closure to call when the procedure completes. See the Service interface |
| // in service.h. |
| // |
| // To automatically construct a Closure which calls a particular function or |
| // method with a particular set of parameters, use the NewCallback() function. |
| // Example: |
| // void FooDone(const FooResponse* response) { |
| // ... |
| // } |
| // |
| // void CallFoo() { |
| // ... |
| // // When done, call FooDone() and pass it a pointer to the response. |
| // Closure* callback = NewCallback(&FooDone, response); |
| // // Make the call. |
| // service->Foo(controller, request, response, callback); |
| // } |
| // |
| // Example that calls a method: |
| // class Handler { |
| // public: |
| // ... |
| // |
| // void FooDone(const FooResponse* response) { |
| // ... |
| // } |
| // |
| // void CallFoo() { |
| // ... |
| // // When done, call FooDone() and pass it a pointer to the response. |
| // Closure* callback = NewCallback(this, &Handler::FooDone, response); |
| // // Make the call. |
| // service->Foo(controller, request, response, callback); |
| // } |
| // }; |
| // |
| // Currently NewCallback() supports binding zero, one, or two arguments. |
| // |
| // Callbacks created with NewCallback() automatically delete themselves when |
| // executed. They should be used when a callback is to be called exactly |
| // once (usually the case with RPC callbacks). If a callback may be called |
| // a different number of times (including zero), create it with |
| // NewPermanentCallback() instead. You are then responsible for deleting the |
| // callback (using the "delete" keyword as normal). |
| // |
| // Note that NewCallback() is a bit touchy regarding argument types. Generally, |
| // the values you provide for the parameter bindings must exactly match the |
| // types accepted by the callback function. For example: |
| // void Foo(string s); |
| // NewCallback(&Foo, "foo"); // WON'T WORK: const char* != string |
| // NewCallback(&Foo, string("foo")); // WORKS |
| // Also note that the arguments cannot be references: |
| // void Foo(const string& s); |
| // string my_str; |
| // NewCallback(&Foo, my_str); // WON'T WORK: Can't use referecnes. |
| // However, correctly-typed pointers will work just fine. |
| class LIBPROTOBUF_EXPORT Closure { |
| public: |
| Closure() {} |
| virtual ~Closure(); |
| |
| virtual void Run() = 0; |
| |
| private: |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Closure); |
| }; |
| |
| namespace internal { |
| |
| class LIBPROTOBUF_EXPORT FunctionClosure0 : public Closure { |
| public: |
| typedef void (*FunctionType)(); |
| |
| FunctionClosure0(FunctionType function, bool self_deleting) |
| : function_(function), self_deleting_(self_deleting) {} |
| ~FunctionClosure0(); |
| |
| void Run() { |
| bool needs_delete = self_deleting_; // read in case callback deletes |
| function_(); |
| if (needs_delete) delete this; |
| } |
| |
| private: |
| FunctionType function_; |
| bool self_deleting_; |
| }; |
| |
| template <typename Class> |
| class MethodClosure0 : public Closure { |
| public: |
| typedef void (Class::*MethodType)(); |
| |
| MethodClosure0(Class* object, MethodType method, bool self_deleting) |
| : object_(object), method_(method), self_deleting_(self_deleting) {} |
| ~MethodClosure0() {} |
| |
| void Run() { |
| bool needs_delete = self_deleting_; // read in case callback deletes |
| (object_->*method_)(); |
| if (needs_delete) delete this; |
| } |
| |
| private: |
| Class* object_; |
| MethodType method_; |
| bool self_deleting_; |
| }; |
| |
| template <typename Arg1> |
| class FunctionClosure1 : public Closure { |
| public: |
| typedef void (*FunctionType)(Arg1 arg1); |
| |
| FunctionClosure1(FunctionType function, bool self_deleting, |
| Arg1 arg1) |
| : function_(function), self_deleting_(self_deleting), |
| arg1_(arg1) {} |
| ~FunctionClosure1() {} |
| |
| void Run() { |
| bool needs_delete = self_deleting_; // read in case callback deletes |
| function_(arg1_); |
| if (needs_delete) delete this; |
| } |
| |
| private: |
| FunctionType function_; |
| bool self_deleting_; |
| Arg1 arg1_; |
| }; |
| |
| template <typename Class, typename Arg1> |
| class MethodClosure1 : public Closure { |
| public: |
| typedef void (Class::*MethodType)(Arg1 arg1); |
| |
| MethodClosure1(Class* object, MethodType method, bool self_deleting, |
| Arg1 arg1) |
| : object_(object), method_(method), self_deleting_(self_deleting), |
| arg1_(arg1) {} |
| ~MethodClosure1() {} |
| |
| void Run() { |
| bool needs_delete = self_deleting_; // read in case callback deletes |
| (object_->*method_)(arg1_); |
| if (needs_delete) delete this; |
| } |
| |
| private: |
| Class* object_; |
| MethodType method_; |
| bool self_deleting_; |
| Arg1 arg1_; |
| }; |
| |
| template <typename Arg1, typename Arg2> |
| class FunctionClosure2 : public Closure { |
| public: |
| typedef void (*FunctionType)(Arg1 arg1, Arg2 arg2); |
| |
| FunctionClosure2(FunctionType function, bool self_deleting, |
| Arg1 arg1, Arg2 arg2) |
| : function_(function), self_deleting_(self_deleting), |
| arg1_(arg1), arg2_(arg2) {} |
| ~FunctionClosure2() {} |
| |
| void Run() { |
| bool needs_delete = self_deleting_; // read in case callback deletes |
| function_(arg1_, arg2_); |
| if (needs_delete) delete this; |
| } |
| |
| private: |
| FunctionType function_; |
| bool self_deleting_; |
| Arg1 arg1_; |
| Arg2 arg2_; |
| }; |
| |
| template <typename Class, typename Arg1, typename Arg2> |
| class MethodClosure2 : public Closure { |
| public: |
| typedef void (Class::*MethodType)(Arg1 arg1, Arg2 arg2); |
| |
| MethodClosure2(Class* object, MethodType method, bool self_deleting, |
| Arg1 arg1, Arg2 arg2) |
| : object_(object), method_(method), self_deleting_(self_deleting), |
| arg1_(arg1), arg2_(arg2) {} |
| ~MethodClosure2() {} |
| |
| void Run() { |
| bool needs_delete = self_deleting_; // read in case callback deletes |
| (object_->*method_)(arg1_, arg2_); |
| if (needs_delete) delete this; |
| } |
| |
| private: |
| Class* object_; |
| MethodType method_; |
| bool self_deleting_; |
| Arg1 arg1_; |
| Arg2 arg2_; |
| }; |
| |
| } // namespace internal |
| |
| // See Closure. |
| inline Closure* NewCallback(void (*function)()) { |
| return new internal::FunctionClosure0(function, true); |
| } |
| |
| // See Closure. |
| inline Closure* NewPermanentCallback(void (*function)()) { |
| return new internal::FunctionClosure0(function, false); |
| } |
| |
| // See Closure. |
| template <typename Class> |
| inline Closure* NewCallback(Class* object, void (Class::*method)()) { |
| return new internal::MethodClosure0<Class>(object, method, true); |
| } |
| |
| // See Closure. |
| template <typename Class> |
| inline Closure* NewPermanentCallback(Class* object, void (Class::*method)()) { |
| return new internal::MethodClosure0<Class>(object, method, false); |
| } |
| |
| // See Closure. |
| template <typename Arg1> |
| inline Closure* NewCallback(void (*function)(Arg1), |
| Arg1 arg1) { |
| return new internal::FunctionClosure1<Arg1>(function, true, arg1); |
| } |
| |
| // See Closure. |
| template <typename Arg1> |
| inline Closure* NewPermanentCallback(void (*function)(Arg1), |
| Arg1 arg1) { |
| return new internal::FunctionClosure1<Arg1>(function, false, arg1); |
| } |
| |
| // See Closure. |
| template <typename Class, typename Arg1> |
| inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1), |
| Arg1 arg1) { |
| return new internal::MethodClosure1<Class, Arg1>(object, method, true, arg1); |
| } |
| |
| // See Closure. |
| template <typename Class, typename Arg1> |
| inline Closure* NewPermanentCallback(Class* object, void (Class::*method)(Arg1), |
| Arg1 arg1) { |
| return new internal::MethodClosure1<Class, Arg1>(object, method, false, arg1); |
| } |
| |
| // See Closure. |
| template <typename Arg1, typename Arg2> |
| inline Closure* NewCallback(void (*function)(Arg1, Arg2), |
| Arg1 arg1, Arg2 arg2) { |
| return new internal::FunctionClosure2<Arg1, Arg2>( |
| function, true, arg1, arg2); |
| } |
| |
| // See Closure. |
| template <typename Arg1, typename Arg2> |
| inline Closure* NewPermanentCallback(void (*function)(Arg1, Arg2), |
| Arg1 arg1, Arg2 arg2) { |
| return new internal::FunctionClosure2<Arg1, Arg2>( |
| function, false, arg1, arg2); |
| } |
| |
| // See Closure. |
| template <typename Class, typename Arg1, typename Arg2> |
| inline Closure* NewCallback(Class* object, void (Class::*method)(Arg1, Arg2), |
| Arg1 arg1, Arg2 arg2) { |
| return new internal::MethodClosure2<Class, Arg1, Arg2>( |
| object, method, true, arg1, arg2); |
| } |
| |
| // See Closure. |
| template <typename Class, typename Arg1, typename Arg2> |
| inline Closure* NewPermanentCallback( |
| Class* object, void (Class::*method)(Arg1, Arg2), |
| Arg1 arg1, Arg2 arg2) { |
| return new internal::MethodClosure2<Class, Arg1, Arg2>( |
| object, method, false, arg1, arg2); |
| } |
| |
| // A function which does nothing. Useful for creating no-op callbacks, e.g.: |
| // Closure* nothing = NewCallback(&DoNothing); |
| void LIBPROTOBUF_EXPORT DoNothing(); |
| |
| // =================================================================== |
| // emulates google3/base/mutex.h |
| |
| namespace internal { |
| |
| // A Mutex is a non-reentrant (aka non-recursive) mutex. At most one thread T |
| // may hold a mutex at a given time. If T attempts to Lock() the same Mutex |
| // while holding it, T will deadlock. |
| class LIBPROTOBUF_EXPORT Mutex { |
| public: |
| // Create a Mutex that is not held by anybody. |
| Mutex(); |
| |
| // Destructor |
| ~Mutex(); |
| |
| // Block if necessary until this Mutex is free, then acquire it exclusively. |
| void Lock(); |
| |
| // Release this Mutex. Caller must hold it exclusively. |
| void Unlock(); |
| |
| // Crash if this Mutex is not held exclusively by this thread. |
| // May fail to crash when it should; will never crash when it should not. |
| void AssertHeld(); |
| |
| private: |
| struct Internal; |
| Internal* mInternal; |
| |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Mutex); |
| }; |
| |
| // MutexLock(mu) acquires mu when constructed and releases it when destroyed. |
| class LIBPROTOBUF_EXPORT MutexLock { |
| public: |
| explicit MutexLock(Mutex *mu) : mu_(mu) { this->mu_->Lock(); } |
| ~MutexLock() { this->mu_->Unlock(); } |
| private: |
| Mutex *const mu_; |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLock); |
| }; |
| |
| // TODO(kenton): Implement these? Hard to implement portably. |
| typedef MutexLock ReaderMutexLock; |
| typedef MutexLock WriterMutexLock; |
| |
| // MutexLockMaybe is like MutexLock, but is a no-op when mu is NULL. |
| class LIBPROTOBUF_EXPORT MutexLockMaybe { |
| public: |
| explicit MutexLockMaybe(Mutex *mu) : |
| mu_(mu) { if (this->mu_ != NULL) { this->mu_->Lock(); } } |
| ~MutexLockMaybe() { if (this->mu_ != NULL) { this->mu_->Unlock(); } } |
| private: |
| Mutex *const mu_; |
| GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MutexLockMaybe); |
| }; |
| |
| } // namespace internal |
| |
| // We made these internal so that they would show up as such in the docs, |
| // but we don't want to stick "internal::" in front of them everywhere. |
| using internal::Mutex; |
| using internal::MutexLock; |
| using internal::ReaderMutexLock; |
| using internal::WriterMutexLock; |
| using internal::MutexLockMaybe; |
| |
| // =================================================================== |
| // from google3/util/utf8/public/unilib.h |
| |
| namespace internal { |
| |
| // Checks if the buffer contains structurally-valid UTF-8. Implemented in |
| // structurally_valid.cc. |
| LIBPROTOBUF_EXPORT bool IsStructurallyValidUTF8(const char* buf, int len); |
| |
| } // namespace internal |
| |
| // =================================================================== |
| // from google3/util/endian/endian.h |
| LIBPROTOBUF_EXPORT uint32 ghtonl(uint32 x); |
| |
| // =================================================================== |
| // Shutdown support. |
| |
| // Shut down the entire protocol buffers library, deleting all static-duration |
| // objects allocated by the library or by generated .pb.cc files. |
| // |
| // There are two reasons you might want to call this: |
| // * You use a draconian definition of "memory leak" in which you expect |
| // every single malloc() to have a corresponding free(), even for objects |
| // which live until program exit. |
| // * You are writing a dynamically-loaded library which needs to clean up |
| // after itself when the library is unloaded. |
| // |
| // It is safe to call this multiple times. However, it is not safe to use |
| // any other part of the protocol buffers library after |
| // ShutdownProtobufLibrary() has been called. |
| LIBPROTOBUF_EXPORT void ShutdownProtobufLibrary(); |
| |
| namespace internal { |
| |
| // Register a function to be called when ShutdownProtocolBuffers() is called. |
| LIBPROTOBUF_EXPORT void OnShutdown(void (*func)()); |
| |
| } // namespace internal |
| |
| #if PROTOBUF_USE_EXCEPTIONS |
| class FatalException : public std::exception { |
| public: |
| FatalException(const char* filename, int line, const std::string& message) |
| : filename_(filename), line_(line), message_(message) {} |
| virtual ~FatalException() throw(); |
| |
| virtual const char* what() const throw(); |
| |
| const char* filename() const { return filename_; } |
| int line() const { return line_; } |
| const std::string& message() const { return message_; } |
| |
| private: |
| const char* filename_; |
| const int line_; |
| const std::string message_; |
| }; |
| #endif |
| |
| // This is at the end of the file instead of the beginning to work around a bug |
| // in some versions of MSVC. |
| using namespace std; // Don't do this at home, kids. |
| |
| } // namespace protobuf |
| } // namespace google |
| |
| #endif // GOOGLE_PROTOBUF_COMMON_H__ |