blob: 9f2d1c14f0517294aadcca98e90868b572a4cf1b [file] [log] [blame]
// Protocol Buffers - Google's data interchange format
// Copyright 2023 Google LLC. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
#include "upb/io/tokenizer.h"
#include "upb/io/string.h"
#include "upb/lex/strtod.h"
#include "upb/lex/unicode.h"
// Must be included last.
#include "upb/port/def.inc"
typedef enum {
// Started a line comment.
kUpb_CommentType_Line,
// Started a block comment.
kUpb_CommentType_Block,
// Consumed a slash, then realized it wasn't a comment. current_ has
// been filled in with a slash token. The caller should return it.
kUpb_CommentType_SlashNot,
// We do not appear to be starting a comment here.
kUpb_CommentType_None,
} upb_CommentType;
static bool upb_Tokenizer_IsUnprintable(char c) { return '\0' < c && c < ' '; }
// Since we count columns we need to interpret tabs somehow. We'll take
// the standard 8-character definition for lack of any way to do better.
static const int kUpb_Tokenizer_TabWidth = 8;
// Given a char, interpret it as a numeric digit and return its value.
// This supports any number base up to 36.
// Represents integer values of digits.
// Uses 36 to indicate an invalid character since we support
// bases up to 36.
static const int8_t kUpb_Tokenizer_AsciiToInt[256] = {
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 00-0F
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 10-1F
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // ' '-'/'
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, // '0'-'9'
36, 36, 36, 36, 36, 36, 36, // ':'-'@'
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'A'-'P'
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, // 'Q'-'Z'
36, 36, 36, 36, 36, 36, // '['-'`'
10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, // 'a'-'p'
26, 27, 28, 29, 30, 31, 32, 33, 34, 35, // 'q'-'z'
36, 36, 36, 36, 36, // '{'-DEL
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 80-8F
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // 90-9F
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // A0-AF
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // B0-BF
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // C0-CF
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // D0-DF
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // E0-EF
36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, // F0-FF
};
static int DigitValue(char digit) {
return kUpb_Tokenizer_AsciiToInt[digit & 0xFF];
}
static bool upb_Tokenizer_IsLetter(char c) {
return ('a' <= c && c <= 'z') || ('A' <= c && c <= 'Z') || (c == '_');
}
static bool upb_Tokenizer_IsDigit(char c) { return '0' <= c && c <= '9'; }
static bool upb_Tokenizer_IsOctalDigit(char c) { return '0' <= c && c <= '7'; }
static bool upb_Tokenizer_IsHexDigit(char c) {
return ('0' <= c && c <= '9') || ('a' <= c && c <= 'f') ||
('A' <= c && c <= 'F');
}
static bool upb_Tokenizer_IsAlphanumeric(char c) {
return upb_Tokenizer_IsLetter(c) || upb_Tokenizer_IsDigit(c);
}
static bool upb_Tokenizer_IsWhitespaceNoNewline(char c) {
return c == ' ' || c == '\t' || c == '\r' || c == '\v' || c == '\f';
}
static bool upb_Tokenizer_IsWhitespace(char c) {
return c == '\n' || upb_Tokenizer_IsWhitespaceNoNewline(c);
}
static bool upb_Tokenizer_IsEscape(char c) {
return c == 'a' || c == 'b' || c == 'f' || c == 'n' || c == 'r' || c == 't' ||
c == 'v' || c == '\\' || c == '?' || c == '\'' || c == '\"';
}
static char TranslateEscape(char c) {
switch (c) {
case 'a':
return '\a';
case 'b':
return '\b';
case 'f':
return '\f';
case 'n':
return '\n';
case 'r':
return '\r';
case 't':
return '\t';
case 'v':
return '\v';
case '\\':
return '\\';
case '?':
return '\?'; // Trigraphs = :(
case '\'':
return '\'';
case '"':
return '\"';
// We expect escape sequences to have been validated separately.
default:
return '?';
}
}
// ===================================================================
struct upb_Tokenizer {
upb_TokenType token_type; // The type of the current token.
// The exact text of the current token as it appeared in the input.
// e.g. tokens of TYPE_STRING will still be escaped and in quotes.
upb_String token_text;
// "line" and "column" specify the position of the first character of
// the token within the input stream. They are zero-based.
int token_line;
int token_column;
int token_end_column;
upb_ZeroCopyInputStream* input;
upb_Arena* arena;
upb_Status* status;
char current_char; // == buffer_[buffer_pos_], updated by NextChar().
const char* buffer; // Current buffer returned from input_.
size_t buffer_size; // Size of buffer_.
size_t buffer_pos; // Current position within the buffer.
bool read_error; // Did we previously encounter a read error?
// Line and column number of current_char_ within the whole input stream.
int line;
// By "column number", the proto compiler refers to a count of the number
// of bytes before a given byte, except that a tab character advances to
// the next multiple of 8 bytes. Note in particular that column numbers
// are zero-based, while many user interfaces use one-based column numbers.
int column;
// Cached values from before the most recent call to Next()
upb_TokenType previous_type;
int previous_line;
int previous_column;
int previous_end_column;
// String to which text should be appended as we advance through it.
// Call RecordTo(&str) to start recording and StopRecording() to stop.
// E.g. StartToken() calls RecordTo(&current_.text). record_start_ is the
// position within the current buffer where recording started.
upb_String* record_target;
int record_start;
int options;
jmp_buf err;
};
// Convenience methods to return an error at the current line and column.
UPB_NORETURN static void ReportError(upb_Tokenizer* t, const char* msg) {
upb_Status_SetErrorFormat(t->status, "%d:%d: %s", t->line, t->column, msg);
UPB_LONGJMP(t->err, 1);
}
UPB_NORETURN UPB_PRINTF(2, 3) static void ReportErrorFormat(upb_Tokenizer* t,
const char* fmt,
...) {
va_list args;
va_start(args, fmt);
char msg[128];
vsnprintf(msg, sizeof(msg), fmt, args);
ReportError(t, msg);
}
// Read a new buffer from the input.
static void Refresh(upb_Tokenizer* t) {
if (t->read_error) {
t->current_char = '\0';
return;
}
// If we're in a token, append the rest of the buffer to it.
if (t->record_target != NULL && t->record_start < t->buffer_size) {
upb_String_Append(t->record_target, t->buffer + t->record_start,
t->buffer_size - t->record_start);
t->record_start = 0;
}
t->buffer = NULL;
t->buffer_pos = 0;
upb_Status status;
const void* data =
upb_ZeroCopyInputStream_Next(t->input, &t->buffer_size, &status);
if (t->buffer_size > 0) {
t->buffer = data;
t->current_char = t->buffer[0];
} else {
// end of stream (or read error)
t->buffer_size = 0;
t->read_error = true;
t->current_char = '\0';
}
}
// Consume this character and advance to the next one.
static void NextChar(upb_Tokenizer* t) {
// Update our line and column counters based on the character being
// consumed.
if (t->current_char == '\n') {
t->line++;
t->column = 0;
} else if (t->current_char == '\t') {
t->column += kUpb_Tokenizer_TabWidth - t->column % kUpb_Tokenizer_TabWidth;
} else {
t->column++;
}
// Advance to the next character.
t->buffer_pos++;
if (t->buffer_pos < t->buffer_size) {
t->current_char = t->buffer[t->buffer_pos];
} else {
Refresh(t);
}
}
static void RecordTo(upb_Tokenizer* t, upb_String* target) {
t->record_target = target;
t->record_start = t->buffer_pos;
}
static void StopRecording(upb_Tokenizer* t) {
if (t->buffer_pos > t->record_start) {
upb_String_Append(t->record_target, t->buffer + t->record_start,
t->buffer_pos - t->record_start);
}
t->record_target = NULL;
t->record_start = -1;
}
// Called when the current character is the first character of a new
// token (not including whitespace or comments).
static void StartToken(upb_Tokenizer* t) {
t->token_type = kUpb_TokenType_Start;
upb_String_Clear(&t->token_text);
t->token_line = t->line;
t->token_column = t->column;
RecordTo(t, &t->token_text);
}
// Called when the current character is the first character after the
// end of the last token. After this returns, current_.text will
// contain all text consumed since StartToken() was called.
static void EndToken(upb_Tokenizer* t) {
StopRecording(t);
t->token_end_column = t->column;
}
// -----------------------------------------------------------------
// These helper methods make the parsing code more readable.
// The "character classes" referred to are defined at the top of the file.
// The method returns true if c is a member of this "class", like "Letter"
// or "Digit".
// Returns true if the current character is of the given character
// class, but does not consume anything.
static bool LookingAt(const upb_Tokenizer* t, bool (*f)(char)) {
return f(t->current_char);
}
// If the current character is in the given class, consume it and return true.
// Otherwise return false.
static bool TryConsumeOne(upb_Tokenizer* t, bool (*f)(char)) {
if (f(t->current_char)) {
NextChar(t);
return true;
} else {
return false;
}
}
// Like above, but try to consume the specific character indicated.
static bool TryConsume(upb_Tokenizer* t, char c) {
if (t->current_char == c) {
NextChar(t);
return true;
} else {
return false;
}
}
// Consume zero or more of the given character class.
static void ConsumeZeroOrMore(upb_Tokenizer* t, bool (*f)(char)) {
while (f(t->current_char)) {
NextChar(t);
}
}
// Consume one or more of the given character class or log the given
// error message.
static void ConsumeOneOrMore(upb_Tokenizer* t, bool (*f)(char),
const char* err_msg) {
if (!f(t->current_char)) {
ReportError(t, err_msg);
}
do {
NextChar(t);
} while (f(t->current_char));
}
// -----------------------------------------------------------------
// The following four methods are used to consume tokens of specific
// types. They are actually used to consume all characters *after*
// the first, since the calling function consumes the first character
// in order to decide what kind of token is being read.
// Read and consume a string, ending when the given delimiter is consumed.
static void ConsumeString(upb_Tokenizer* t, char delimiter) {
while (true) {
switch (t->current_char) {
case '\0':
ReportError(t, "Unexpected end of string.");
case '\n':
ReportError(t, "String literals cannot cross line boundaries.");
case '\\': {
// An escape sequence.
NextChar(t);
if (TryConsumeOne(t, upb_Tokenizer_IsEscape)) {
// Valid escape sequence.
} else if (TryConsumeOne(t, upb_Tokenizer_IsOctalDigit)) {
// Possibly followed by two more octal digits, but these will
// just be consumed by the main loop anyway so we don't need
// to do so explicitly here.
} else if (TryConsume(t, 'x')) {
if (!TryConsumeOne(t, upb_Tokenizer_IsHexDigit)) {
ReportError(t, "Expected hex digits for escape sequence.");
}
// Possibly followed by another hex digit, but again we don't care.
} else if (TryConsume(t, 'u')) {
if (!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit)) {
ReportError(t, "Expected four hex digits for \\u escape sequence.");
}
} else if (TryConsume(t, 'U')) {
// We expect 8 hex digits; but only the range up to 0x10ffff is
// legal.
if (!TryConsume(t, '0') || !TryConsume(t, '0') ||
!(TryConsume(t, '0') || TryConsume(t, '1')) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit) ||
!TryConsumeOne(t, upb_Tokenizer_IsHexDigit)) {
ReportError(t,
"Expected eight hex digits up to 10ffff for \\U escape "
"sequence");
}
} else {
ReportError(t, "Invalid escape sequence in string literal.");
}
break;
}
default: {
if (t->current_char == delimiter) {
NextChar(t);
return;
}
NextChar(t);
break;
}
}
}
}
// Read and consume a number, returning TYPE_FLOAT or TYPE_INTEGER depending
// on what was read. This needs to know if the first character was a zero in
// order to correctly recognize hex and octal numbers. It also needs to know
// whether the first character was a '.' to parse floating point correctly.
static upb_TokenType ConsumeNumber(upb_Tokenizer* t, bool started_with_zero,
bool started_with_dot) {
bool is_float = false;
if (started_with_zero && (TryConsume(t, 'x') || TryConsume(t, 'X'))) {
// A hex number (started with "0x").
ConsumeOneOrMore(t, upb_Tokenizer_IsHexDigit,
"\"0x\" must be followed by hex digits.");
} else if (started_with_zero && LookingAt(t, upb_Tokenizer_IsDigit)) {
// An octal number (had a leading zero).
ConsumeZeroOrMore(t, upb_Tokenizer_IsOctalDigit);
if (LookingAt(t, upb_Tokenizer_IsDigit)) {
ReportError(t, "Numbers starting with leading zero must be in octal.");
}
} else {
// A decimal number.
if (started_with_dot) {
is_float = true;
ConsumeZeroOrMore(t, upb_Tokenizer_IsDigit);
} else {
ConsumeZeroOrMore(t, upb_Tokenizer_IsDigit);
if (TryConsume(t, '.')) {
is_float = true;
ConsumeZeroOrMore(t, upb_Tokenizer_IsDigit);
}
}
if (TryConsume(t, 'e') || TryConsume(t, 'E')) {
is_float = true;
if (!TryConsume(t, '-')) TryConsume(t, '+');
ConsumeOneOrMore(t, upb_Tokenizer_IsDigit,
"\"e\" must be followed by exponent.");
}
if (t->options & kUpb_TokenizerOption_AllowFAfterFloat) {
if (TryConsume(t, 'f') || TryConsume(t, 'F')) is_float = true;
}
}
if (LookingAt(t, upb_Tokenizer_IsLetter)) {
ReportError(t, "Need space between number and identifier.");
}
if (t->current_char == '.') {
if (is_float) {
ReportError(
t, "Already saw decimal point or exponent; can't have another one.");
} else {
ReportError(t, "Hex and octal numbers must be integers.");
}
}
return is_float ? kUpb_TokenType_Float : kUpb_TokenType_Integer;
}
// Consume the rest of a line.
static void ConsumeLineComment(upb_Tokenizer* t, upb_String* content) {
if (content != NULL) RecordTo(t, content);
while (t->current_char != '\0' && t->current_char != '\n') {
NextChar(t);
}
TryConsume(t, '\n');
if (content != NULL) StopRecording(t);
}
static void ConsumeBlockComment(upb_Tokenizer* t, upb_String* content) {
const int start_line = t->line;
const int start_column = t->column - 2;
if (content != NULL) RecordTo(t, content);
while (true) {
while (t->current_char != '\0' && t->current_char != '*' &&
t->current_char != '/' && t->current_char != '\n') {
NextChar(t);
}
if (TryConsume(t, '\n')) {
if (content != NULL) StopRecording(t);
// Consume leading whitespace and asterisk;
ConsumeZeroOrMore(t, upb_Tokenizer_IsWhitespaceNoNewline);
if (TryConsume(t, '*')) {
if (TryConsume(t, '/')) {
// End of comment.
break;
}
}
if (content != NULL) RecordTo(t, content);
} else if (TryConsume(t, '*') && TryConsume(t, '/')) {
// End of comment.
if (content != NULL) {
StopRecording(t);
// Strip trailing "*/".
upb_String_Erase(content, upb_String_Size(content) - 2, 2);
}
break;
} else if (TryConsume(t, '/') && t->current_char == '*') {
// Note: We didn't consume the '*' because if there is a '/' after it
// we want to interpret that as the end of the comment.
ReportError(
t, "\"/*\" inside block comment. Block comments cannot be nested.");
} else if (t->current_char == '\0') {
ReportErrorFormat(
t, "End-of-file inside block comment.\n%d:%d: Comment started here.",
start_line, start_column);
}
}
}
// If we're at the start of a new comment, consume it and return what kind
// of comment it is.
static upb_CommentType TryConsumeCommentStart(upb_Tokenizer* t) {
const bool style_sh = t->options & kUpb_TokenizerOption_CommentStyleShell;
const bool style_cpp = !style_sh;
if (style_cpp && TryConsume(t, '/')) {
if (TryConsume(t, '/')) {
return kUpb_CommentType_Line;
} else if (TryConsume(t, '*')) {
return kUpb_CommentType_Block;
} else {
// Oops, it was just a slash. Return it.
t->token_type = kUpb_TokenType_Symbol;
upb_String_Assign(&t->token_text, "/", 1);
t->token_line = t->line;
t->token_column = t->column - 1;
t->token_end_column = t->column;
return kUpb_CommentType_SlashNot;
}
} else if (style_sh && TryConsume(t, '#')) {
return kUpb_CommentType_Line;
} else {
return kUpb_CommentType_None;
}
}
// If we're looking at a TYPE_WHITESPACE token and `report_whitespace` is true,
// consume it and return true.
static bool TryConsumeWhitespace(upb_Tokenizer* t) {
if (t->options & kUpb_TokenizerOption_ReportNewlines) {
if (TryConsumeOne(t, upb_Tokenizer_IsWhitespaceNoNewline)) {
ConsumeZeroOrMore(t, upb_Tokenizer_IsWhitespaceNoNewline);
t->token_type = kUpb_TokenType_Whitespace;
return true;
}
return false;
}
if (TryConsumeOne(t, upb_Tokenizer_IsWhitespace)) {
ConsumeZeroOrMore(t, upb_Tokenizer_IsWhitespace);
t->token_type = kUpb_TokenType_Whitespace;
return (t->options & kUpb_TokenizerOption_ReportWhitespace) != 0;
}
return false;
}
// If we're looking at a TYPE_NEWLINE token and `report_newlines` is true,
// consume it and return true.
static bool TryConsumeNewline(upb_Tokenizer* t) {
if (t->options & kUpb_TokenizerOption_ReportNewlines) {
if (TryConsume(t, '\n')) {
t->token_type = kUpb_TokenType_Newline;
return true;
}
}
return false;
}
// -------------------------------------------------------------------
int upb_Tokenizer_Column(const upb_Tokenizer* t) { return t->token_column; }
int upb_Tokenizer_EndColumn(const upb_Tokenizer* t) {
return t->token_end_column;
}
int upb_Tokenizer_Line(const upb_Tokenizer* t) { return t->token_line; }
int upb_Tokenizer_TextSize(const upb_Tokenizer* t) {
return t->token_text.size_;
}
const char* upb_Tokenizer_TextData(const upb_Tokenizer* t) {
return t->token_text.data_;
}
upb_TokenType upb_Tokenizer_Type(const upb_Tokenizer* t) {
return t->token_type;
}
bool upb_Tokenizer_Next(upb_Tokenizer* t, upb_Status* status) {
t->status = status;
t->previous_type = t->token_type;
t->previous_line = t->token_line;
t->previous_column = t->token_column;
t->previous_end_column = t->token_end_column;
if (UPB_SETJMP(t->err)) return false;
while (!t->read_error) {
StartToken(t);
bool report_token = TryConsumeWhitespace(t) || TryConsumeNewline(t);
EndToken(t);
if (report_token) return true;
switch (TryConsumeCommentStart(t)) {
case kUpb_CommentType_Line:
ConsumeLineComment(t, NULL);
continue;
case kUpb_CommentType_Block:
ConsumeBlockComment(t, NULL);
continue;
case kUpb_CommentType_SlashNot:
return true;
case kUpb_CommentType_None:
break;
}
// Check for EOF before continuing.
if (t->read_error) break;
if (LookingAt(t, upb_Tokenizer_IsUnprintable) || t->current_char == '\0') {
ReportError(t, "Invalid control characters encountered in text.");
}
// Reading some sort of token.
StartToken(t);
if (TryConsumeOne(t, upb_Tokenizer_IsLetter)) {
ConsumeZeroOrMore(t, upb_Tokenizer_IsAlphanumeric);
t->token_type = kUpb_TokenType_Identifier;
} else if (TryConsume(t, '0')) {
t->token_type = ConsumeNumber(t, true, false);
} else if (TryConsume(t, '.')) {
// This could be the beginning of a floating-point number, or it could
// just be a '.' symbol.
if (TryConsumeOne(t, upb_Tokenizer_IsDigit)) {
// It's a floating-point number.
if (t->previous_type == kUpb_TokenType_Identifier &&
t->token_line == t->previous_line &&
t->token_column == t->previous_end_column) {
// We don't accept syntax like "blah.123".
t->column -= 2;
ReportError(t, "Need space between identifier and decimal point.");
}
t->token_type = ConsumeNumber(t, false, true);
} else {
t->token_type = kUpb_TokenType_Symbol;
}
} else if (TryConsumeOne(t, upb_Tokenizer_IsDigit)) {
t->token_type = ConsumeNumber(t, false, false);
} else if (TryConsume(t, '\"')) {
ConsumeString(t, '\"');
t->token_type = kUpb_TokenType_String;
} else if (TryConsume(t, '\'')) {
ConsumeString(t, '\'');
t->token_type = kUpb_TokenType_String;
} else {
// Check if the high order bit is set.
if (t->current_char & 0x80) {
ReportErrorFormat(t, "Interpreting non ascii codepoint %d.",
(uint8_t)t->current_char);
}
NextChar(t);
t->token_type = kUpb_TokenType_Symbol;
}
EndToken(t);
return true;
}
// EOF
t->token_type = kUpb_TokenType_End;
upb_String_Clear(&t->token_text);
t->token_line = t->line;
t->token_column = t->column;
t->token_end_column = t->column;
upb_Status_Clear(status);
return false;
}
// -------------------------------------------------------------------
// Token-parsing helpers. Remember that these don't need to report
// errors since any errors should already have been reported while
// tokenizing. Also, these can assume that whatever text they
// are given is text that the tokenizer actually parsed as a token
// of the given type.
bool upb_Parse_Integer(const char* text, uint64_t max_value, uint64_t* output) {
// We can't just use strtoull() because (a) it accepts negative numbers,
// (b) We want additional range checks, (c) it reports overflows via errno.
const char* ptr = text;
int base = 10;
uint64_t overflow_if_mul_base = (UINT64_MAX / 10) + 1;
if (ptr[0] == '0') {
if (ptr[1] == 'x' || ptr[1] == 'X') {
// This is hex.
base = 16;
overflow_if_mul_base = (UINT64_MAX / 16) + 1;
ptr += 2;
} else {
// This is octal.
base = 8;
overflow_if_mul_base = (UINT64_MAX / 8) + 1;
}
}
uint64_t result = 0;
// For all the leading '0's, and also the first non-zero character, we
// don't need to multiply.
while (*ptr != '\0') {
int digit = DigitValue(*ptr++);
if (digit >= base) {
// The token provided by Tokenizer is invalid. i.e., 099 is an invalid
// token, but Tokenizer still think it's integer.
return false;
}
if (digit != 0) {
result = digit;
break;
}
}
for (; *ptr != '\0'; ptr++) {
int digit = DigitValue(*ptr);
if (digit < 0 || digit >= base) {
// The token provided by Tokenizer is invalid. i.e., 099 is an invalid
// token, but Tokenizer still think it's integer.
return false;
}
if (result >= overflow_if_mul_base) {
// We know the multiply we're about to do will overflow, so exit now.
return false;
}
// We know that result * base won't overflow, but adding digit might...
result = result * base + digit;
// C++ guarantees defined "wrap" semantics when unsigned integer
// operations overflow, making this a fast way to check if adding
// digit made result overflow, and thus, wrap around.
if (result < (uint64_t)base) return false;
}
if (result > max_value) return false;
*output = result;
return true;
}
double upb_Parse_Float(const char* text) {
char* end;
double result = _upb_NoLocaleStrtod(text, &end);
// "1e" is not a valid float, but if the tokenizer reads it, it will
// report an error but still return it as a valid token. We need to
// accept anything the tokenizer could possibly return, error or not.
if (*end == 'e' || *end == 'E') {
++end;
if (*end == '-' || *end == '+') ++end;
}
// If the Tokenizer had allow_f_after_float_ enabled, the float may be
// suffixed with the letter 'f'.
if (*end == 'f' || *end == 'F') {
++end;
}
if ((end - text) != strlen(text) || *text == '-') {
fprintf(stderr,
"upb_Parse_Float() passed text that could not have"
" been tokenized as a float: %s\n",
text);
UPB_ASSERT(0);
}
return result;
}
// Append a Unicode code point to a string as UTF8.
static void AppendUTF8(uint32_t code_point, upb_String* output) {
char temp[24];
int len = upb_Unicode_ToUTF8(code_point, temp);
if (len == 0) {
// ConsumeString permits hex values up to 0x1FFFFF,
// and FetchUnicodePoint doesn't perform a range check.
// Unicode code points end at 0x10FFFF, so this is out-of-range.
len = snprintf(temp, sizeof temp, "\\U%08x", code_point);
}
upb_String_Append(output, temp, len);
}
// Try to read <len> hex digits from ptr, and stuff the numeric result into
// *result. Returns true if that many digits were successfully consumed.
static bool ReadHexDigits(const char* ptr, int len, uint32_t* result) {
*result = 0;
if (len == 0) return false;
for (const char* end = ptr + len; ptr < end; ++ptr) {
if (*ptr == '\0') return false;
*result = (*result << 4) + DigitValue(*ptr);
}
return true;
}
// Convert the escape sequence parameter to a number of expected hex digits.
static int UnicodeLength(char key) {
if (key == 'u') return 4;
if (key == 'U') return 8;
return 0;
}
// Given a pointer to the 'u' or 'U' starting a Unicode escape sequence, attempt
// to parse that sequence. On success, returns a pointer to the first char
// beyond that sequence, and fills in *code_point. On failure, returns ptr
// itself.
static const char* FetchUnicodePoint(const char* ptr, uint32_t* code_point) {
const char* p = ptr;
// Fetch the code point.
const int len = UnicodeLength(*p++);
if (!ReadHexDigits(p, len, code_point)) return ptr;
p += len;
// Check if the code point we read is a "head surrogate." If so, then we
// expect it to be immediately followed by another code point which is a valid
// "trail surrogate," and together they form a UTF-16 pair which decodes into
// a single Unicode point. Trail surrogates may only use \u, not \U.
if (upb_Unicode_IsHigh(*code_point) && *p == '\\' && *(p + 1) == 'u') {
uint32_t trail_surrogate;
if (ReadHexDigits(p + 2, 4, &trail_surrogate) &&
upb_Unicode_IsLow(trail_surrogate)) {
*code_point = upb_Unicode_FromPair(*code_point, trail_surrogate);
p += 6;
}
// If this failed, then we just emit the head surrogate as a code point.
// It's bogus, but so is the string.
}
return p;
}
// The text string must begin and end with single or double quote characters.
upb_StringView upb_Parse_String(const char* text, upb_Arena* arena) {
const size_t size = strlen(text);
upb_String output;
upb_String_Init(&output, arena);
// Reminder: text[0] is always a quote character.
// (If text is empty, it's invalid, so we'll just return).
if (size == 0) {
fprintf(stderr,
"Tokenizer::ParseStringAppend() passed text that could not"
" have been tokenized as a string: %s",
text);
UPB_ASSERT(0);
return upb_StringView_FromDataAndSize(NULL, 0);
}
// Reserve room for new string.
const size_t new_len = size + upb_String_Size(&output);
upb_String_Reserve(&output, new_len);
// Loop through the string copying characters to "output" and
// interpreting escape sequences. Note that any invalid escape
// sequences or other errors were already reported while tokenizing.
// In this case we do not need to produce valid results.
for (const char* ptr = text + 1; *ptr != '\0'; ptr++) {
if (*ptr == '\\' && ptr[1] != '\0') {
// An escape sequence.
++ptr;
if (upb_Tokenizer_IsOctalDigit(*ptr)) {
// An octal escape. May one, two, or three digits.
int code = DigitValue(*ptr);
if (upb_Tokenizer_IsOctalDigit(ptr[1])) {
++ptr;
code = code * 8 + DigitValue(*ptr);
}
if (upb_Tokenizer_IsOctalDigit(ptr[1])) {
++ptr;
code = code * 8 + DigitValue(*ptr);
}
upb_String_PushBack(&output, (char)code);
} else if (*ptr == 'x') {
// A hex escape. May zero, one, or two digits. (The zero case
// will have been caught as an error earlier.)
int code = 0;
if (upb_Tokenizer_IsHexDigit(ptr[1])) {
++ptr;
code = DigitValue(*ptr);
}
if (upb_Tokenizer_IsHexDigit(ptr[1])) {
++ptr;
code = code * 16 + DigitValue(*ptr);
}
upb_String_PushBack(&output, (char)code);
} else if (*ptr == 'u' || *ptr == 'U') {
uint32_t unicode;
const char* end = FetchUnicodePoint(ptr, &unicode);
if (end == ptr) {
// Failure: Just dump out what we saw, don't try to parse it.
upb_String_PushBack(&output, *ptr);
} else {
AppendUTF8(unicode, &output);
ptr = end - 1; // Because we're about to ++ptr.
}
} else {
// Some other escape code.
upb_String_PushBack(&output, TranslateEscape(*ptr));
}
} else if (*ptr == text[0] && ptr[1] == '\0') {
// Ignore final quote matching the starting quote.
} else {
upb_String_PushBack(&output, *ptr);
}
}
return upb_StringView_FromDataAndSize(upb_String_Data(&output),
upb_String_Size(&output));
}
static bool AllInClass(bool (*f)(char), const char* text, int size) {
for (int i = 0; i < size; i++) {
if (!f(text[i])) return false;
}
return true;
}
bool upb_Tokenizer_IsIdentifier(const char* data, int size) {
// Mirrors IDENTIFIER definition in Tokenizer::Next() above.
if (size == 0) return false;
if (!upb_Tokenizer_IsLetter(data[0])) return false;
if (!AllInClass(upb_Tokenizer_IsAlphanumeric, data + 1, size - 1))
return false;
return true;
}
upb_Tokenizer* upb_Tokenizer_New(const void* data, size_t size,
upb_ZeroCopyInputStream* input, int options,
upb_Arena* arena) {
upb_Tokenizer* t = upb_Arena_Malloc(arena, sizeof(upb_Tokenizer));
if (!t) return NULL;
t->input = input;
t->arena = arena;
t->buffer = data;
t->buffer_size = size;
t->buffer_pos = 0;
t->read_error = false;
t->line = 0;
t->column = 0;
t->record_target = NULL;
t->record_start = -1;
// ReportNewlines implies ReportWhitespace.
if (options & kUpb_TokenizerOption_ReportNewlines) {
options |= kUpb_TokenizerOption_ReportWhitespace;
}
t->options = options;
upb_String_Init(&t->token_text, arena);
t->token_type = kUpb_TokenType_Start;
t->token_line = 0;
t->token_column = 0;
t->token_end_column = 0;
t->previous_type = kUpb_TokenType_Start;
t->previous_line = 0;
t->previous_column = 0;
t->previous_end_column = 0;
if (size) {
t->current_char = t->buffer[0];
} else {
Refresh(t);
}
return t;
}
void upb_Tokenizer_Fini(upb_Tokenizer* t) {
// If we had any buffer left unread, return it to the underlying stream
// so that someone else can read it.
if (t->buffer_size > t->buffer_pos) {
upb_ZeroCopyInputStream_BackUp(t->input, t->buffer_size - t->buffer_pos);
}
}