|  | // Protocol Buffers - Google's data interchange format | 
|  | // Copyright 2014 Google Inc.  All rights reserved. | 
|  | // https://developers.google.com/protocol-buffers/ | 
|  | // | 
|  | // Redistribution and use in source and binary forms, with or without | 
|  | // modification, are permitted provided that the following conditions are | 
|  | // met: | 
|  | // | 
|  | //     * Redistributions of source code must retain the above copyright | 
|  | // notice, this list of conditions and the following disclaimer. | 
|  | //     * Redistributions in binary form must reproduce the above | 
|  | // copyright notice, this list of conditions and the following disclaimer | 
|  | // in the documentation and/or other materials provided with the | 
|  | // distribution. | 
|  | //     * Neither the name of Google Inc. nor the names of its | 
|  | // contributors may be used to endorse or promote products derived from | 
|  | // this software without specific prior written permission. | 
|  | // | 
|  | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | 
|  | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | 
|  | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | 
|  | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | 
|  | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | 
|  | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | 
|  | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | 
|  | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | 
|  | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | 
|  | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | 
|  | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | 
|  |  | 
|  | #include "protobuf.h" | 
|  |  | 
|  | // This function is equivalent to rb_str_cat(), but unlike the real | 
|  | // rb_str_cat(), it doesn't leak memory in some versions of Ruby. | 
|  | // For more information, see: | 
|  | //   https://bugs.ruby-lang.org/issues/11328 | 
|  | VALUE noleak_rb_str_cat(VALUE rb_str, const char *str, long len) { | 
|  | char *p; | 
|  | size_t oldlen = RSTRING_LEN(rb_str); | 
|  | rb_str_modify_expand(rb_str, len); | 
|  | p = RSTRING_PTR(rb_str); | 
|  | memcpy(p + oldlen, str, len); | 
|  | rb_str_set_len(rb_str, oldlen + len); | 
|  | return rb_str; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Parsing. | 
|  | // ----------------------------------------------------------------------------- | 
|  |  | 
|  | #define DEREF(msg, ofs, type) *(type*)(((uint8_t *)msg) + ofs) | 
|  |  | 
|  | // Creates a handlerdata that simply contains the offset for this field. | 
|  | static const void* newhandlerdata(upb_handlers* h, uint32_t ofs) { | 
|  | size_t* hd_ofs = ALLOC(size_t); | 
|  | *hd_ofs = ofs; | 
|  | upb_handlers_addcleanup(h, hd_ofs, free); | 
|  | return hd_ofs; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | size_t ofs; | 
|  | const upb_msgdef *md; | 
|  | } submsg_handlerdata_t; | 
|  |  | 
|  | // Creates a handlerdata that contains offset and submessage type information. | 
|  | static const void *newsubmsghandlerdata(upb_handlers* h, uint32_t ofs, | 
|  | const upb_fielddef* f) { | 
|  | submsg_handlerdata_t *hd = ALLOC(submsg_handlerdata_t); | 
|  | hd->ofs = ofs; | 
|  | hd->md = upb_fielddef_msgsubdef(f); | 
|  | upb_handlers_addcleanup(h, hd, free); | 
|  | return hd; | 
|  | } | 
|  |  | 
|  | typedef struct { | 
|  | size_t ofs;              // union data slot | 
|  | size_t case_ofs;         // oneof_case field | 
|  | uint32_t oneof_case_num; // oneof-case number to place in oneof_case field | 
|  | const upb_msgdef *md;    // msgdef, for oneof submessage handler | 
|  | } oneof_handlerdata_t; | 
|  |  | 
|  | static const void *newoneofhandlerdata(upb_handlers *h, | 
|  | uint32_t ofs, | 
|  | uint32_t case_ofs, | 
|  | const upb_fielddef *f) { | 
|  | oneof_handlerdata_t *hd = ALLOC(oneof_handlerdata_t); | 
|  | hd->ofs = ofs; | 
|  | hd->case_ofs = case_ofs; | 
|  | // We reuse the field tag number as a oneof union discriminant tag. Note that | 
|  | // we don't expose these numbers to the user, so the only requirement is that | 
|  | // we have some unique ID for each union case/possibility. The field tag | 
|  | // numbers are already present and are easy to use so there's no reason to | 
|  | // create a separate ID space. In addition, using the field tag number here | 
|  | // lets us easily look up the field in the oneof accessor. | 
|  | hd->oneof_case_num = upb_fielddef_number(f); | 
|  | if (upb_fielddef_type(f) == UPB_TYPE_MESSAGE) { | 
|  | hd->md = upb_fielddef_msgsubdef(f); | 
|  | } else { | 
|  | hd->md = NULL; | 
|  | } | 
|  | upb_handlers_addcleanup(h, hd, free); | 
|  | return hd; | 
|  | } | 
|  |  | 
|  | // A handler that starts a repeated field.  Gets the Repeated*Field instance for | 
|  | // this field (such an instance always exists even in an empty message). | 
|  | static void *startseq_handler(void* closure, const void* hd) { | 
|  | MessageHeader* msg = closure; | 
|  | const size_t *ofs = hd; | 
|  | return (void*)DEREF(msg, *ofs, VALUE); | 
|  | } | 
|  |  | 
|  | // Handlers that append primitive values to a repeated field. | 
|  | #define DEFINE_APPEND_HANDLER(type, ctype)                 \ | 
|  | static bool append##type##_handler(void *closure, const void *hd, \ | 
|  | ctype val) {                   \ | 
|  | VALUE ary = (VALUE)closure;                                     \ | 
|  | RepeatedField_push_native(ary, &val);                           \ | 
|  | return true;                                                    \ | 
|  | } | 
|  |  | 
|  | DEFINE_APPEND_HANDLER(bool,   bool) | 
|  | DEFINE_APPEND_HANDLER(int32,  int32_t) | 
|  | DEFINE_APPEND_HANDLER(uint32, uint32_t) | 
|  | DEFINE_APPEND_HANDLER(float,  float) | 
|  | DEFINE_APPEND_HANDLER(int64,  int64_t) | 
|  | DEFINE_APPEND_HANDLER(uint64, uint64_t) | 
|  | DEFINE_APPEND_HANDLER(double, double) | 
|  |  | 
|  | // Appends a string to a repeated field. | 
|  | static void* appendstr_handler(void *closure, | 
|  | const void *hd, | 
|  | size_t size_hint) { | 
|  | VALUE ary = (VALUE)closure; | 
|  | VALUE str = rb_str_new2(""); | 
|  | rb_enc_associate(str, kRubyStringUtf8Encoding); | 
|  | RepeatedField_push(ary, str); | 
|  | return (void*)str; | 
|  | } | 
|  |  | 
|  | // Appends a 'bytes' string to a repeated field. | 
|  | static void* appendbytes_handler(void *closure, | 
|  | const void *hd, | 
|  | size_t size_hint) { | 
|  | VALUE ary = (VALUE)closure; | 
|  | VALUE str = rb_str_new2(""); | 
|  | rb_enc_associate(str, kRubyString8bitEncoding); | 
|  | RepeatedField_push(ary, str); | 
|  | return (void*)str; | 
|  | } | 
|  |  | 
|  | // Sets a non-repeated string field in a message. | 
|  | static void* str_handler(void *closure, | 
|  | const void *hd, | 
|  | size_t size_hint) { | 
|  | MessageHeader* msg = closure; | 
|  | const size_t *ofs = hd; | 
|  | VALUE str = rb_str_new2(""); | 
|  | rb_enc_associate(str, kRubyStringUtf8Encoding); | 
|  | DEREF(msg, *ofs, VALUE) = str; | 
|  | return (void*)str; | 
|  | } | 
|  |  | 
|  | // Sets a non-repeated 'bytes' field in a message. | 
|  | static void* bytes_handler(void *closure, | 
|  | const void *hd, | 
|  | size_t size_hint) { | 
|  | MessageHeader* msg = closure; | 
|  | const size_t *ofs = hd; | 
|  | VALUE str = rb_str_new2(""); | 
|  | rb_enc_associate(str, kRubyString8bitEncoding); | 
|  | DEREF(msg, *ofs, VALUE) = str; | 
|  | return (void*)str; | 
|  | } | 
|  |  | 
|  | static size_t stringdata_handler(void* closure, const void* hd, | 
|  | const char* str, size_t len, | 
|  | const upb_bufhandle* handle) { | 
|  | VALUE rb_str = (VALUE)closure; | 
|  | noleak_rb_str_cat(rb_str, str, len); | 
|  | return len; | 
|  | } | 
|  |  | 
|  | // Appends a submessage to a repeated field (a regular Ruby array for now). | 
|  | static void *appendsubmsg_handler(void *closure, const void *hd) { | 
|  | VALUE ary = (VALUE)closure; | 
|  | const submsg_handlerdata_t *submsgdata = hd; | 
|  | VALUE subdesc = | 
|  | get_def_obj((void*)submsgdata->md); | 
|  | VALUE subklass = Descriptor_msgclass(subdesc); | 
|  | MessageHeader* submsg; | 
|  |  | 
|  | VALUE submsg_rb = rb_class_new_instance(0, NULL, subklass); | 
|  | RepeatedField_push(ary, submsg_rb); | 
|  |  | 
|  | TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); | 
|  | return submsg; | 
|  | } | 
|  |  | 
|  | // Sets a non-repeated submessage field in a message. | 
|  | static void *submsg_handler(void *closure, const void *hd) { | 
|  | MessageHeader* msg = closure; | 
|  | const submsg_handlerdata_t* submsgdata = hd; | 
|  | VALUE subdesc = | 
|  | get_def_obj((void*)submsgdata->md); | 
|  | VALUE subklass = Descriptor_msgclass(subdesc); | 
|  | VALUE submsg_rb; | 
|  | MessageHeader* submsg; | 
|  |  | 
|  | if (DEREF(msg, submsgdata->ofs, VALUE) == Qnil) { | 
|  | DEREF(msg, submsgdata->ofs, VALUE) = | 
|  | rb_class_new_instance(0, NULL, subklass); | 
|  | } | 
|  |  | 
|  | submsg_rb = DEREF(msg, submsgdata->ofs, VALUE); | 
|  | TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); | 
|  | return submsg; | 
|  | } | 
|  |  | 
|  | // Handler data for startmap/endmap handlers. | 
|  | typedef struct { | 
|  | size_t ofs; | 
|  | upb_fieldtype_t key_field_type; | 
|  | upb_fieldtype_t value_field_type; | 
|  |  | 
|  | // We know that we can hold this reference because the handlerdata has the | 
|  | // same lifetime as the upb_handlers struct, and the upb_handlers struct holds | 
|  | // a reference to the upb_msgdef, which in turn has references to its subdefs. | 
|  | const upb_def* value_field_subdef; | 
|  | } map_handlerdata_t; | 
|  |  | 
|  | // Temporary frame for map parsing: at the beginning of a map entry message, a | 
|  | // submsg handler allocates a frame to hold (i) a reference to the Map object | 
|  | // into which this message will be inserted and (ii) storage slots to | 
|  | // temporarily hold the key and value for this map entry until the end of the | 
|  | // submessage. When the submessage ends, another handler is called to insert the | 
|  | // value into the map. | 
|  | typedef struct { | 
|  | VALUE map; | 
|  | char key_storage[NATIVE_SLOT_MAX_SIZE]; | 
|  | char value_storage[NATIVE_SLOT_MAX_SIZE]; | 
|  | } map_parse_frame_t; | 
|  |  | 
|  | // Handler to begin a map entry: allocates a temporary frame. This is the | 
|  | // 'startsubmsg' handler on the msgdef that contains the map field. | 
|  | static void *startmapentry_handler(void *closure, const void *hd) { | 
|  | MessageHeader* msg = closure; | 
|  | const map_handlerdata_t* mapdata = hd; | 
|  | VALUE map_rb = DEREF(msg, mapdata->ofs, VALUE); | 
|  |  | 
|  | map_parse_frame_t* frame = ALLOC(map_parse_frame_t); | 
|  | frame->map = map_rb; | 
|  |  | 
|  | native_slot_init(mapdata->key_field_type, &frame->key_storage); | 
|  | native_slot_init(mapdata->value_field_type, &frame->value_storage); | 
|  |  | 
|  | return frame; | 
|  | } | 
|  |  | 
|  | // Handler to end a map entry: inserts the value defined during the message into | 
|  | // the map. This is the 'endmsg' handler on the map entry msgdef. | 
|  | static bool endmap_handler(void *closure, const void *hd, upb_status* s) { | 
|  | map_parse_frame_t* frame = closure; | 
|  | const map_handlerdata_t* mapdata = hd; | 
|  |  | 
|  | VALUE key = native_slot_get( | 
|  | mapdata->key_field_type, Qnil, | 
|  | &frame->key_storage); | 
|  |  | 
|  | VALUE value_field_typeclass = Qnil; | 
|  | VALUE value; | 
|  |  | 
|  | if (mapdata->value_field_type == UPB_TYPE_MESSAGE || | 
|  | mapdata->value_field_type == UPB_TYPE_ENUM) { | 
|  | value_field_typeclass = get_def_obj(mapdata->value_field_subdef); | 
|  | } | 
|  |  | 
|  | value = native_slot_get( | 
|  | mapdata->value_field_type, value_field_typeclass, | 
|  | &frame->value_storage); | 
|  |  | 
|  | Map_index_set(frame->map, key, value); | 
|  | free(frame); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Allocates a new map_handlerdata_t given the map entry message definition. If | 
|  | // the offset of the field within the parent message is also given, that is | 
|  | // added to the handler data as well. Note that this is called *twice* per map | 
|  | // field: once in the parent message handler setup when setting the startsubmsg | 
|  | // handler and once in the map entry message handler setup when setting the | 
|  | // key/value and endmsg handlers. The reason is that there is no easy way to | 
|  | // pass the handlerdata down to the sub-message handler setup. | 
|  | static map_handlerdata_t* new_map_handlerdata( | 
|  | size_t ofs, | 
|  | const upb_msgdef* mapentry_def, | 
|  | Descriptor* desc) { | 
|  | const upb_fielddef* key_field; | 
|  | const upb_fielddef* value_field; | 
|  | map_handlerdata_t* hd = ALLOC(map_handlerdata_t); | 
|  | hd->ofs = ofs; | 
|  | key_field = upb_msgdef_itof(mapentry_def, MAP_KEY_FIELD); | 
|  | assert(key_field != NULL); | 
|  | hd->key_field_type = upb_fielddef_type(key_field); | 
|  | value_field = upb_msgdef_itof(mapentry_def, MAP_VALUE_FIELD); | 
|  | assert(value_field != NULL); | 
|  | hd->value_field_type = upb_fielddef_type(value_field); | 
|  | hd->value_field_subdef = upb_fielddef_subdef(value_field); | 
|  |  | 
|  | return hd; | 
|  | } | 
|  |  | 
|  | // Handlers that set primitive values in oneofs. | 
|  | #define DEFINE_ONEOF_HANDLER(type, ctype)                           \ | 
|  | static bool oneof##type##_handler(void *closure, const void *hd,  \ | 
|  | ctype val) {                   \ | 
|  | const oneof_handlerdata_t *oneofdata = hd;                      \ | 
|  | DEREF(closure, oneofdata->case_ofs, uint32_t) =                 \ | 
|  | oneofdata->oneof_case_num;                                  \ | 
|  | DEREF(closure, oneofdata->ofs, ctype) = val;                    \ | 
|  | return true;                                                    \ | 
|  | } | 
|  |  | 
|  | DEFINE_ONEOF_HANDLER(bool,   bool) | 
|  | DEFINE_ONEOF_HANDLER(int32,  int32_t) | 
|  | DEFINE_ONEOF_HANDLER(uint32, uint32_t) | 
|  | DEFINE_ONEOF_HANDLER(float,  float) | 
|  | DEFINE_ONEOF_HANDLER(int64,  int64_t) | 
|  | DEFINE_ONEOF_HANDLER(uint64, uint64_t) | 
|  | DEFINE_ONEOF_HANDLER(double, double) | 
|  |  | 
|  | #undef DEFINE_ONEOF_HANDLER | 
|  |  | 
|  | // Handlers for strings in a oneof. | 
|  | static void *oneofstr_handler(void *closure, | 
|  | const void *hd, | 
|  | size_t size_hint) { | 
|  | MessageHeader* msg = closure; | 
|  | const oneof_handlerdata_t *oneofdata = hd; | 
|  | VALUE str = rb_str_new2(""); | 
|  | rb_enc_associate(str, kRubyStringUtf8Encoding); | 
|  | DEREF(msg, oneofdata->case_ofs, uint32_t) = | 
|  | oneofdata->oneof_case_num; | 
|  | DEREF(msg, oneofdata->ofs, VALUE) = str; | 
|  | return (void*)str; | 
|  | } | 
|  |  | 
|  | static void *oneofbytes_handler(void *closure, | 
|  | const void *hd, | 
|  | size_t size_hint) { | 
|  | MessageHeader* msg = closure; | 
|  | const oneof_handlerdata_t *oneofdata = hd; | 
|  | VALUE str = rb_str_new2(""); | 
|  | rb_enc_associate(str, kRubyString8bitEncoding); | 
|  | DEREF(msg, oneofdata->case_ofs, uint32_t) = | 
|  | oneofdata->oneof_case_num; | 
|  | DEREF(msg, oneofdata->ofs, VALUE) = str; | 
|  | return (void*)str; | 
|  | } | 
|  |  | 
|  | // Handler for a submessage field in a oneof. | 
|  | static void *oneofsubmsg_handler(void *closure, | 
|  | const void *hd) { | 
|  | MessageHeader* msg = closure; | 
|  | const oneof_handlerdata_t *oneofdata = hd; | 
|  | uint32_t oldcase = DEREF(msg, oneofdata->case_ofs, uint32_t); | 
|  |  | 
|  | VALUE subdesc = | 
|  | get_def_obj((void*)oneofdata->md); | 
|  | VALUE subklass = Descriptor_msgclass(subdesc); | 
|  | VALUE submsg_rb; | 
|  | MessageHeader* submsg; | 
|  |  | 
|  | if (oldcase != oneofdata->oneof_case_num || | 
|  | DEREF(msg, oneofdata->ofs, VALUE) == Qnil) { | 
|  | DEREF(msg, oneofdata->ofs, VALUE) = | 
|  | rb_class_new_instance(0, NULL, subklass); | 
|  | } | 
|  | // Set the oneof case *after* allocating the new class instance -- otherwise, | 
|  | // if the Ruby GC is invoked as part of a call into the VM, it might invoke | 
|  | // our mark routines, and our mark routines might see the case value | 
|  | // indicating a VALUE is present and expect a valid VALUE. See comment in | 
|  | // layout_set() for more detail: basically, the change to the value and the | 
|  | // case must be atomic w.r.t. the Ruby VM. | 
|  | DEREF(msg, oneofdata->case_ofs, uint32_t) = | 
|  | oneofdata->oneof_case_num; | 
|  |  | 
|  | submsg_rb = DEREF(msg, oneofdata->ofs, VALUE); | 
|  | TypedData_Get_Struct(submsg_rb, MessageHeader, &Message_type, submsg); | 
|  | return submsg; | 
|  | } | 
|  |  | 
|  | // Set up handlers for a repeated field. | 
|  | static void add_handlers_for_repeated_field(upb_handlers *h, | 
|  | const upb_fielddef *f, | 
|  | size_t offset) { | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  | upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); | 
|  | upb_handlers_setstartseq(h, f, startseq_handler, &attr); | 
|  | upb_handlerattr_uninit(&attr); | 
|  |  | 
|  | switch (upb_fielddef_type(f)) { | 
|  |  | 
|  | #define SET_HANDLER(utype, ltype)                                 \ | 
|  | case utype:                                                     \ | 
|  | upb_handlers_set##ltype(h, f, append##ltype##_handler, NULL); \ | 
|  | break; | 
|  |  | 
|  | SET_HANDLER(UPB_TYPE_BOOL,   bool); | 
|  | SET_HANDLER(UPB_TYPE_INT32,  int32); | 
|  | SET_HANDLER(UPB_TYPE_UINT32, uint32); | 
|  | SET_HANDLER(UPB_TYPE_ENUM,   int32); | 
|  | SET_HANDLER(UPB_TYPE_FLOAT,  float); | 
|  | SET_HANDLER(UPB_TYPE_INT64,  int64); | 
|  | SET_HANDLER(UPB_TYPE_UINT64, uint64); | 
|  | SET_HANDLER(UPB_TYPE_DOUBLE, double); | 
|  |  | 
|  | #undef SET_HANDLER | 
|  |  | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: { | 
|  | bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; | 
|  | upb_handlers_setstartstr(h, f, is_bytes ? | 
|  | appendbytes_handler : appendstr_handler, | 
|  | NULL); | 
|  | upb_handlers_setstring(h, f, stringdata_handler, NULL); | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_MESSAGE: { | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  | upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, 0, f)); | 
|  | upb_handlers_setstartsubmsg(h, f, appendsubmsg_handler, &attr); | 
|  | upb_handlerattr_uninit(&attr); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Set up handlers for a singular field. | 
|  | static void add_handlers_for_singular_field(upb_handlers *h, | 
|  | const upb_fielddef *f, | 
|  | size_t offset) { | 
|  | switch (upb_fielddef_type(f)) { | 
|  | case UPB_TYPE_BOOL: | 
|  | case UPB_TYPE_INT32: | 
|  | case UPB_TYPE_UINT32: | 
|  | case UPB_TYPE_ENUM: | 
|  | case UPB_TYPE_FLOAT: | 
|  | case UPB_TYPE_INT64: | 
|  | case UPB_TYPE_UINT64: | 
|  | case UPB_TYPE_DOUBLE: | 
|  | upb_shim_set(h, f, offset, -1); | 
|  | break; | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: { | 
|  | bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  | upb_handlerattr_sethandlerdata(&attr, newhandlerdata(h, offset)); | 
|  | upb_handlers_setstartstr(h, f, | 
|  | is_bytes ? bytes_handler : str_handler, | 
|  | &attr); | 
|  | upb_handlers_setstring(h, f, stringdata_handler, &attr); | 
|  | upb_handlerattr_uninit(&attr); | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_MESSAGE: { | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  | upb_handlerattr_sethandlerdata(&attr, newsubmsghandlerdata(h, offset, f)); | 
|  | upb_handlers_setstartsubmsg(h, f, submsg_handler, &attr); | 
|  | upb_handlerattr_uninit(&attr); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Adds handlers to a map field. | 
|  | static void add_handlers_for_mapfield(upb_handlers* h, | 
|  | const upb_fielddef* fielddef, | 
|  | size_t offset, | 
|  | Descriptor* desc) { | 
|  | const upb_msgdef* map_msgdef = upb_fielddef_msgsubdef(fielddef); | 
|  | map_handlerdata_t* hd = new_map_handlerdata(offset, map_msgdef, desc); | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  |  | 
|  | upb_handlers_addcleanup(h, hd, free); | 
|  | upb_handlerattr_sethandlerdata(&attr, hd); | 
|  | upb_handlers_setstartsubmsg(h, fielddef, startmapentry_handler, &attr); | 
|  | upb_handlerattr_uninit(&attr); | 
|  | } | 
|  |  | 
|  | // Adds handlers to a map-entry msgdef. | 
|  | static void add_handlers_for_mapentry(const upb_msgdef* msgdef, | 
|  | upb_handlers* h, | 
|  | Descriptor* desc) { | 
|  | const upb_fielddef* key_field = map_entry_key(msgdef); | 
|  | const upb_fielddef* value_field = map_entry_value(msgdef); | 
|  | map_handlerdata_t* hd = new_map_handlerdata(0, msgdef, desc); | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  |  | 
|  | upb_handlers_addcleanup(h, hd, free); | 
|  | upb_handlerattr_sethandlerdata(&attr, hd); | 
|  | upb_handlers_setendmsg(h, endmap_handler, &attr); | 
|  |  | 
|  | add_handlers_for_singular_field( | 
|  | h, key_field, | 
|  | offsetof(map_parse_frame_t, key_storage)); | 
|  | add_handlers_for_singular_field( | 
|  | h, value_field, | 
|  | offsetof(map_parse_frame_t, value_storage)); | 
|  | } | 
|  |  | 
|  | // Set up handlers for a oneof field. | 
|  | static void add_handlers_for_oneof_field(upb_handlers *h, | 
|  | const upb_fielddef *f, | 
|  | size_t offset, | 
|  | size_t oneof_case_offset) { | 
|  |  | 
|  | upb_handlerattr attr = UPB_HANDLERATTR_INITIALIZER; | 
|  | upb_handlerattr_sethandlerdata( | 
|  | &attr, newoneofhandlerdata(h, offset, oneof_case_offset, f)); | 
|  |  | 
|  | switch (upb_fielddef_type(f)) { | 
|  |  | 
|  | #define SET_HANDLER(utype, ltype)                                 \ | 
|  | case utype:                                                     \ | 
|  | upb_handlers_set##ltype(h, f, oneof##ltype##_handler, &attr); \ | 
|  | break; | 
|  |  | 
|  | SET_HANDLER(UPB_TYPE_BOOL,   bool); | 
|  | SET_HANDLER(UPB_TYPE_INT32,  int32); | 
|  | SET_HANDLER(UPB_TYPE_UINT32, uint32); | 
|  | SET_HANDLER(UPB_TYPE_ENUM,   int32); | 
|  | SET_HANDLER(UPB_TYPE_FLOAT,  float); | 
|  | SET_HANDLER(UPB_TYPE_INT64,  int64); | 
|  | SET_HANDLER(UPB_TYPE_UINT64, uint64); | 
|  | SET_HANDLER(UPB_TYPE_DOUBLE, double); | 
|  |  | 
|  | #undef SET_HANDLER | 
|  |  | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: { | 
|  | bool is_bytes = upb_fielddef_type(f) == UPB_TYPE_BYTES; | 
|  | upb_handlers_setstartstr(h, f, is_bytes ? | 
|  | oneofbytes_handler : oneofstr_handler, | 
|  | &attr); | 
|  | upb_handlers_setstring(h, f, stringdata_handler, NULL); | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_MESSAGE: { | 
|  | upb_handlers_setstartsubmsg(h, f, oneofsubmsg_handler, &attr); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | upb_handlerattr_uninit(&attr); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void add_handlers_for_message(const void *closure, upb_handlers *h) { | 
|  | const upb_msgdef* msgdef = upb_handlers_msgdef(h); | 
|  | Descriptor* desc = ruby_to_Descriptor(get_def_obj((void*)msgdef)); | 
|  | upb_msg_field_iter i; | 
|  |  | 
|  | // If this is a mapentry message type, set up a special set of handlers and | 
|  | // bail out of the normal (user-defined) message type handling. | 
|  | if (upb_msgdef_mapentry(msgdef)) { | 
|  | add_handlers_for_mapentry(msgdef, h, desc); | 
|  | return; | 
|  | } | 
|  |  | 
|  | // Ensure layout exists. We may be invoked to create handlers for a given | 
|  | // message if we are included as a submsg of another message type before our | 
|  | // class is actually built, so to work around this, we just create the layout | 
|  | // (and handlers, in the class-building function) on-demand. | 
|  | if (desc->layout == NULL) { | 
|  | desc->layout = create_layout(desc->msgdef); | 
|  | } | 
|  |  | 
|  | for (upb_msg_field_begin(&i, desc->msgdef); | 
|  | !upb_msg_field_done(&i); | 
|  | upb_msg_field_next(&i)) { | 
|  | const upb_fielddef *f = upb_msg_iter_field(&i); | 
|  | size_t offset = desc->layout->fields[upb_fielddef_index(f)].offset + | 
|  | sizeof(MessageHeader); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(f)) { | 
|  | size_t oneof_case_offset = | 
|  | desc->layout->fields[upb_fielddef_index(f)].case_offset + | 
|  | sizeof(MessageHeader); | 
|  | add_handlers_for_oneof_field(h, f, offset, oneof_case_offset); | 
|  | } else if (is_map_field(f)) { | 
|  | add_handlers_for_mapfield(h, f, offset, desc); | 
|  | } else if (upb_fielddef_isseq(f)) { | 
|  | add_handlers_for_repeated_field(h, f, offset); | 
|  | } else { | 
|  | add_handlers_for_singular_field(h, f, offset); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Creates upb handlers for populating a message. | 
|  | static const upb_handlers *new_fill_handlers(Descriptor* desc, | 
|  | const void* owner) { | 
|  | // TODO(cfallin, haberman): once upb gets a caching/memoization layer for | 
|  | // handlers, reuse subdef handlers so that e.g. if we already parse | 
|  | // B-with-field-of-type-C, we don't have to rebuild the whole hierarchy to | 
|  | // parse A-with-field-of-type-B-with-field-of-type-C. | 
|  | return upb_handlers_newfrozen(desc->msgdef, owner, | 
|  | add_handlers_for_message, NULL); | 
|  | } | 
|  |  | 
|  | // Constructs the handlers for filling a message's data into an in-memory | 
|  | // object. | 
|  | const upb_handlers* get_fill_handlers(Descriptor* desc) { | 
|  | if (!desc->fill_handlers) { | 
|  | desc->fill_handlers = | 
|  | new_fill_handlers(desc, &desc->fill_handlers); | 
|  | } | 
|  | return desc->fill_handlers; | 
|  | } | 
|  |  | 
|  | // Constructs the upb decoder method for parsing messages of this type. | 
|  | // This is called from the message class creation code. | 
|  | const upb_pbdecodermethod *new_fillmsg_decodermethod(Descriptor* desc, | 
|  | const void* owner) { | 
|  | const upb_handlers* handlers = get_fill_handlers(desc); | 
|  | upb_pbdecodermethodopts opts; | 
|  | upb_pbdecodermethodopts_init(&opts, handlers); | 
|  |  | 
|  | return upb_pbdecodermethod_new(&opts, owner); | 
|  | } | 
|  |  | 
|  | static const upb_pbdecodermethod *msgdef_decodermethod(Descriptor* desc) { | 
|  | if (desc->fill_method == NULL) { | 
|  | desc->fill_method = new_fillmsg_decodermethod( | 
|  | desc, &desc->fill_method); | 
|  | } | 
|  | return desc->fill_method; | 
|  | } | 
|  |  | 
|  | static const upb_json_parsermethod *msgdef_jsonparsermethod(Descriptor* desc) { | 
|  | if (desc->json_fill_method == NULL) { | 
|  | desc->json_fill_method = | 
|  | upb_json_parsermethod_new(desc->msgdef, &desc->json_fill_method); | 
|  | } | 
|  | return desc->json_fill_method; | 
|  | } | 
|  |  | 
|  |  | 
|  | // Stack-allocated context during an encode/decode operation. Contains the upb | 
|  | // environment and its stack-based allocator, an initial buffer for allocations | 
|  | // to avoid malloc() when possible, and a template for Ruby exception messages | 
|  | // if any error occurs. | 
|  | #define STACK_ENV_STACKBYTES 4096 | 
|  | typedef struct { | 
|  | upb_env env; | 
|  | const char* ruby_error_template; | 
|  | char allocbuf[STACK_ENV_STACKBYTES]; | 
|  | } stackenv; | 
|  |  | 
|  | static void stackenv_init(stackenv* se, const char* errmsg); | 
|  | static void stackenv_uninit(stackenv* se); | 
|  |  | 
|  | // Callback invoked by upb if any error occurs during parsing or serialization. | 
|  | static bool env_error_func(void* ud, const upb_status* status) { | 
|  | stackenv* se = ud; | 
|  | // Free the env -- rb_raise will longjmp up the stack past the encode/decode | 
|  | // function so it would not otherwise have been freed. | 
|  | stackenv_uninit(se); | 
|  |  | 
|  | // TODO(haberman): have a way to verify that this is actually a parse error, | 
|  | // instead of just throwing "parse error" unconditionally. | 
|  | rb_raise(cParseError, se->ruby_error_template, upb_status_errmsg(status)); | 
|  | // Never reached: rb_raise() always longjmp()s up the stack, past all of our | 
|  | // code, back to Ruby. | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static void stackenv_init(stackenv* se, const char* errmsg) { | 
|  | se->ruby_error_template = errmsg; | 
|  | upb_env_init2(&se->env, se->allocbuf, sizeof(se->allocbuf), NULL); | 
|  | upb_env_seterrorfunc(&se->env, env_error_func, se); | 
|  | } | 
|  |  | 
|  | static void stackenv_uninit(stackenv* se) { | 
|  | upb_env_uninit(&se->env); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call-seq: | 
|  | *     MessageClass.decode(data) => message | 
|  | * | 
|  | * Decodes the given data (as a string containing bytes in protocol buffers wire | 
|  | * format) under the interpretration given by this message class's definition | 
|  | * and returns a message object with the corresponding field values. | 
|  | */ | 
|  | VALUE Message_decode(VALUE klass, VALUE data) { | 
|  | VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); | 
|  | Descriptor* desc = ruby_to_Descriptor(descriptor); | 
|  | VALUE msgklass = Descriptor_msgclass(descriptor); | 
|  | VALUE msg_rb; | 
|  | MessageHeader* msg; | 
|  |  | 
|  | if (TYPE(data) != T_STRING) { | 
|  | rb_raise(rb_eArgError, "Expected string for binary protobuf data."); | 
|  | } | 
|  |  | 
|  | msg_rb = rb_class_new_instance(0, NULL, msgklass); | 
|  | TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); | 
|  |  | 
|  | { | 
|  | const upb_pbdecodermethod* method = msgdef_decodermethod(desc); | 
|  | const upb_handlers* h = upb_pbdecodermethod_desthandlers(method); | 
|  | stackenv se; | 
|  | upb_sink sink; | 
|  | upb_pbdecoder* decoder; | 
|  | stackenv_init(&se, "Error occurred during parsing: %s"); | 
|  |  | 
|  | upb_sink_reset(&sink, h, msg); | 
|  | decoder = upb_pbdecoder_create(&se.env, method, &sink); | 
|  | upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), | 
|  | upb_pbdecoder_input(decoder)); | 
|  |  | 
|  | stackenv_uninit(&se); | 
|  | } | 
|  |  | 
|  | return msg_rb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call-seq: | 
|  | *     MessageClass.decode_json(data) => message | 
|  | * | 
|  | * Decodes the given data (as a string containing bytes in protocol buffers wire | 
|  | * format) under the interpretration given by this message class's definition | 
|  | * and returns a message object with the corresponding field values. | 
|  | */ | 
|  | VALUE Message_decode_json(VALUE klass, VALUE data) { | 
|  | VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); | 
|  | Descriptor* desc = ruby_to_Descriptor(descriptor); | 
|  | VALUE msgklass = Descriptor_msgclass(descriptor); | 
|  | VALUE msg_rb; | 
|  | MessageHeader* msg; | 
|  |  | 
|  | if (TYPE(data) != T_STRING) { | 
|  | rb_raise(rb_eArgError, "Expected string for JSON data."); | 
|  | } | 
|  | // TODO(cfallin): Check and respect string encoding. If not UTF-8, we need to | 
|  | // convert, because string handlers pass data directly to message string | 
|  | // fields. | 
|  |  | 
|  | msg_rb = rb_class_new_instance(0, NULL, msgklass); | 
|  | TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); | 
|  |  | 
|  | { | 
|  | const upb_json_parsermethod* method = msgdef_jsonparsermethod(desc); | 
|  | stackenv se; | 
|  | upb_sink sink; | 
|  | upb_json_parser* parser; | 
|  | stackenv_init(&se, "Error occurred during parsing: %s"); | 
|  |  | 
|  | upb_sink_reset(&sink, get_fill_handlers(desc), msg); | 
|  | parser = upb_json_parser_create(&se.env, method, &sink); | 
|  | upb_bufsrc_putbuf(RSTRING_PTR(data), RSTRING_LEN(data), | 
|  | upb_json_parser_input(parser)); | 
|  |  | 
|  | stackenv_uninit(&se); | 
|  | } | 
|  |  | 
|  | return msg_rb; | 
|  | } | 
|  |  | 
|  | // ----------------------------------------------------------------------------- | 
|  | // Serializing. | 
|  | // ----------------------------------------------------------------------------- | 
|  | // | 
|  | // The code below also comes from upb's prototype Ruby binding, developed by | 
|  | // haberman@. | 
|  |  | 
|  | /* stringsink *****************************************************************/ | 
|  |  | 
|  | // This should probably be factored into a common upb component. | 
|  |  | 
|  | typedef struct { | 
|  | upb_byteshandler handler; | 
|  | upb_bytessink sink; | 
|  | char *ptr; | 
|  | size_t len, size; | 
|  | } stringsink; | 
|  |  | 
|  | static void *stringsink_start(void *_sink, const void *hd, size_t size_hint) { | 
|  | stringsink *sink = _sink; | 
|  | sink->len = 0; | 
|  | return sink; | 
|  | } | 
|  |  | 
|  | static size_t stringsink_string(void *_sink, const void *hd, const char *ptr, | 
|  | size_t len, const upb_bufhandle *handle) { | 
|  | stringsink *sink = _sink; | 
|  | size_t new_size = sink->size; | 
|  |  | 
|  | UPB_UNUSED(hd); | 
|  | UPB_UNUSED(handle); | 
|  |  | 
|  | while (sink->len + len > new_size) { | 
|  | new_size *= 2; | 
|  | } | 
|  |  | 
|  | if (new_size != sink->size) { | 
|  | sink->ptr = realloc(sink->ptr, new_size); | 
|  | sink->size = new_size; | 
|  | } | 
|  |  | 
|  | memcpy(sink->ptr + sink->len, ptr, len); | 
|  | sink->len += len; | 
|  |  | 
|  | return len; | 
|  | } | 
|  |  | 
|  | void stringsink_init(stringsink *sink) { | 
|  | upb_byteshandler_init(&sink->handler); | 
|  | upb_byteshandler_setstartstr(&sink->handler, stringsink_start, NULL); | 
|  | upb_byteshandler_setstring(&sink->handler, stringsink_string, NULL); | 
|  |  | 
|  | upb_bytessink_reset(&sink->sink, &sink->handler, sink); | 
|  |  | 
|  | sink->size = 32; | 
|  | sink->ptr = malloc(sink->size); | 
|  | sink->len = 0; | 
|  | } | 
|  |  | 
|  | void stringsink_uninit(stringsink *sink) { | 
|  | free(sink->ptr); | 
|  | } | 
|  |  | 
|  | /* msgvisitor *****************************************************************/ | 
|  |  | 
|  | // TODO: If/when we support proto2 semantics in addition to the current proto3 | 
|  | // semantics, which means that we have true field presence, we will want to | 
|  | // modify msgvisitor so that it emits all present fields rather than all | 
|  | // non-default-value fields. | 
|  | // | 
|  | // Likewise, when implementing JSON serialization, we may need to have a | 
|  | // 'verbose' mode that outputs all fields and a 'concise' mode that outputs only | 
|  | // those with non-default values. | 
|  |  | 
|  | static void putmsg(VALUE msg, const Descriptor* desc, | 
|  | upb_sink *sink, int depth); | 
|  |  | 
|  | static upb_selector_t getsel(const upb_fielddef *f, upb_handlertype_t type) { | 
|  | upb_selector_t ret; | 
|  | bool ok = upb_handlers_getselector(f, type, &ret); | 
|  | UPB_ASSERT_VAR(ok, ok); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void putstr(VALUE str, const upb_fielddef *f, upb_sink *sink) { | 
|  | upb_sink subsink; | 
|  |  | 
|  | if (str == Qnil) return; | 
|  |  | 
|  | assert(BUILTIN_TYPE(str) == RUBY_T_STRING); | 
|  |  | 
|  | // Ensure that the string has the correct encoding. We also check at field-set | 
|  | // time, but the user may have mutated the string object since then. | 
|  | native_slot_validate_string_encoding(upb_fielddef_type(f), str); | 
|  |  | 
|  | upb_sink_startstr(sink, getsel(f, UPB_HANDLER_STARTSTR), RSTRING_LEN(str), | 
|  | &subsink); | 
|  | upb_sink_putstring(&subsink, getsel(f, UPB_HANDLER_STRING), RSTRING_PTR(str), | 
|  | RSTRING_LEN(str), NULL); | 
|  | upb_sink_endstr(sink, getsel(f, UPB_HANDLER_ENDSTR)); | 
|  | } | 
|  |  | 
|  | static void putsubmsg(VALUE submsg, const upb_fielddef *f, upb_sink *sink, | 
|  | int depth) { | 
|  | upb_sink subsink; | 
|  | VALUE descriptor; | 
|  | Descriptor* subdesc; | 
|  |  | 
|  | if (submsg == Qnil) return; | 
|  |  | 
|  | descriptor = rb_ivar_get(submsg, descriptor_instancevar_interned); | 
|  | subdesc = ruby_to_Descriptor(descriptor); | 
|  |  | 
|  | upb_sink_startsubmsg(sink, getsel(f, UPB_HANDLER_STARTSUBMSG), &subsink); | 
|  | putmsg(submsg, subdesc, &subsink, depth + 1); | 
|  | upb_sink_endsubmsg(sink, getsel(f, UPB_HANDLER_ENDSUBMSG)); | 
|  | } | 
|  |  | 
|  | static void putary(VALUE ary, const upb_fielddef *f, upb_sink *sink, | 
|  | int depth) { | 
|  | upb_sink subsink; | 
|  | upb_fieldtype_t type = upb_fielddef_type(f); | 
|  | upb_selector_t sel = 0; | 
|  | int size; | 
|  |  | 
|  | if (ary == Qnil) return; | 
|  |  | 
|  | upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); | 
|  |  | 
|  | if (upb_fielddef_isprimitive(f)) { | 
|  | sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); | 
|  | } | 
|  |  | 
|  | size = NUM2INT(RepeatedField_length(ary)); | 
|  | for (int i = 0; i < size; i++) { | 
|  | void* memory = RepeatedField_index_native(ary, i); | 
|  | switch (type) { | 
|  | #define T(upbtypeconst, upbtype, ctype)                         \ | 
|  | case upbtypeconst:                                            \ | 
|  | upb_sink_put##upbtype(&subsink, sel, *((ctype *)memory));   \ | 
|  | break; | 
|  |  | 
|  | T(UPB_TYPE_FLOAT,  float,  float) | 
|  | T(UPB_TYPE_DOUBLE, double, double) | 
|  | T(UPB_TYPE_BOOL,   bool,   int8_t) | 
|  | case UPB_TYPE_ENUM: | 
|  | T(UPB_TYPE_INT32,  int32,  int32_t) | 
|  | T(UPB_TYPE_UINT32, uint32, uint32_t) | 
|  | T(UPB_TYPE_INT64,  int64,  int64_t) | 
|  | T(UPB_TYPE_UINT64, uint64, uint64_t) | 
|  |  | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | putstr(*((VALUE *)memory), f, &subsink); | 
|  | break; | 
|  | case UPB_TYPE_MESSAGE: | 
|  | putsubmsg(*((VALUE *)memory), f, &subsink, depth); | 
|  | break; | 
|  |  | 
|  | #undef T | 
|  |  | 
|  | } | 
|  | } | 
|  | upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); | 
|  | } | 
|  |  | 
|  | static void put_ruby_value(VALUE value, | 
|  | const upb_fielddef *f, | 
|  | VALUE type_class, | 
|  | int depth, | 
|  | upb_sink *sink) { | 
|  | upb_selector_t sel = 0; | 
|  | if (upb_fielddef_isprimitive(f)) { | 
|  | sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); | 
|  | } | 
|  |  | 
|  | switch (upb_fielddef_type(f)) { | 
|  | case UPB_TYPE_INT32: | 
|  | upb_sink_putint32(sink, sel, NUM2INT(value)); | 
|  | break; | 
|  | case UPB_TYPE_INT64: | 
|  | upb_sink_putint64(sink, sel, NUM2LL(value)); | 
|  | break; | 
|  | case UPB_TYPE_UINT32: | 
|  | upb_sink_putuint32(sink, sel, NUM2UINT(value)); | 
|  | break; | 
|  | case UPB_TYPE_UINT64: | 
|  | upb_sink_putuint64(sink, sel, NUM2ULL(value)); | 
|  | break; | 
|  | case UPB_TYPE_FLOAT: | 
|  | upb_sink_putfloat(sink, sel, NUM2DBL(value)); | 
|  | break; | 
|  | case UPB_TYPE_DOUBLE: | 
|  | upb_sink_putdouble(sink, sel, NUM2DBL(value)); | 
|  | break; | 
|  | case UPB_TYPE_ENUM: { | 
|  | if (TYPE(value) == T_SYMBOL) { | 
|  | value = rb_funcall(type_class, rb_intern("resolve"), 1, value); | 
|  | } | 
|  | upb_sink_putint32(sink, sel, NUM2INT(value)); | 
|  | break; | 
|  | } | 
|  | case UPB_TYPE_BOOL: | 
|  | upb_sink_putbool(sink, sel, value == Qtrue); | 
|  | break; | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | putstr(value, f, sink); | 
|  | break; | 
|  | case UPB_TYPE_MESSAGE: | 
|  | putsubmsg(value, f, sink, depth); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void putmap(VALUE map, const upb_fielddef *f, upb_sink *sink, | 
|  | int depth) { | 
|  | Map* self; | 
|  | upb_sink subsink; | 
|  | const upb_fielddef* key_field; | 
|  | const upb_fielddef* value_field; | 
|  | Map_iter it; | 
|  |  | 
|  | if (map == Qnil) return; | 
|  | self = ruby_to_Map(map); | 
|  |  | 
|  | upb_sink_startseq(sink, getsel(f, UPB_HANDLER_STARTSEQ), &subsink); | 
|  |  | 
|  | assert(upb_fielddef_type(f) == UPB_TYPE_MESSAGE); | 
|  | key_field = map_field_key(f); | 
|  | value_field = map_field_value(f); | 
|  |  | 
|  | for (Map_begin(map, &it); !Map_done(&it); Map_next(&it)) { | 
|  | VALUE key = Map_iter_key(&it); | 
|  | VALUE value = Map_iter_value(&it); | 
|  | upb_status status; | 
|  |  | 
|  | upb_sink entry_sink; | 
|  | upb_sink_startsubmsg(&subsink, getsel(f, UPB_HANDLER_STARTSUBMSG), | 
|  | &entry_sink); | 
|  | upb_sink_startmsg(&entry_sink); | 
|  |  | 
|  | put_ruby_value(key, key_field, Qnil, depth + 1, &entry_sink); | 
|  | put_ruby_value(value, value_field, self->value_type_class, depth + 1, | 
|  | &entry_sink); | 
|  |  | 
|  | upb_sink_endmsg(&entry_sink, &status); | 
|  | upb_sink_endsubmsg(&subsink, getsel(f, UPB_HANDLER_ENDSUBMSG)); | 
|  | } | 
|  |  | 
|  | upb_sink_endseq(sink, getsel(f, UPB_HANDLER_ENDSEQ)); | 
|  | } | 
|  |  | 
|  | static void putmsg(VALUE msg_rb, const Descriptor* desc, | 
|  | upb_sink *sink, int depth) { | 
|  | MessageHeader* msg; | 
|  | upb_msg_field_iter i; | 
|  | upb_status status; | 
|  |  | 
|  | upb_sink_startmsg(sink); | 
|  |  | 
|  | // Protect against cycles (possible because users may freely reassign message | 
|  | // and repeated fields) by imposing a maximum recursion depth. | 
|  | if (depth > ENCODE_MAX_NESTING) { | 
|  | rb_raise(rb_eRuntimeError, | 
|  | "Maximum recursion depth exceeded during encoding."); | 
|  | } | 
|  |  | 
|  | TypedData_Get_Struct(msg_rb, MessageHeader, &Message_type, msg); | 
|  |  | 
|  | for (upb_msg_field_begin(&i, desc->msgdef); | 
|  | !upb_msg_field_done(&i); | 
|  | upb_msg_field_next(&i)) { | 
|  | upb_fielddef *f = upb_msg_iter_field(&i); | 
|  | bool is_matching_oneof = false; | 
|  | uint32_t offset = | 
|  | desc->layout->fields[upb_fielddef_index(f)].offset + | 
|  | sizeof(MessageHeader); | 
|  |  | 
|  | if (upb_fielddef_containingoneof(f)) { | 
|  | uint32_t oneof_case_offset = | 
|  | desc->layout->fields[upb_fielddef_index(f)].case_offset + | 
|  | sizeof(MessageHeader); | 
|  | // For a oneof, check that this field is actually present -- skip all the | 
|  | // below if not. | 
|  | if (DEREF(msg, oneof_case_offset, uint32_t) != | 
|  | upb_fielddef_number(f)) { | 
|  | continue; | 
|  | } | 
|  | // Otherwise, fall through to the appropriate singular-field handler | 
|  | // below. | 
|  | is_matching_oneof = true; | 
|  | } | 
|  |  | 
|  | if (is_map_field(f)) { | 
|  | VALUE map = DEREF(msg, offset, VALUE); | 
|  | if (map != Qnil) { | 
|  | putmap(map, f, sink, depth); | 
|  | } | 
|  | } else if (upb_fielddef_isseq(f)) { | 
|  | VALUE ary = DEREF(msg, offset, VALUE); | 
|  | if (ary != Qnil) { | 
|  | putary(ary, f, sink, depth); | 
|  | } | 
|  | } else if (upb_fielddef_isstring(f)) { | 
|  | VALUE str = DEREF(msg, offset, VALUE); | 
|  | if (is_matching_oneof || RSTRING_LEN(str) > 0) { | 
|  | putstr(str, f, sink); | 
|  | } | 
|  | } else if (upb_fielddef_issubmsg(f)) { | 
|  | putsubmsg(DEREF(msg, offset, VALUE), f, sink, depth); | 
|  | } else { | 
|  | upb_selector_t sel = getsel(f, upb_handlers_getprimitivehandlertype(f)); | 
|  |  | 
|  | #define T(upbtypeconst, upbtype, ctype, default_value)                \ | 
|  | case upbtypeconst: {                                                \ | 
|  | ctype value = DEREF(msg, offset, ctype);                        \ | 
|  | if (is_matching_oneof || value != default_value) {              \ | 
|  | upb_sink_put##upbtype(sink, sel, value);                      \ | 
|  | }                                                               \ | 
|  | }                                                                 \ | 
|  | break; | 
|  |  | 
|  | switch (upb_fielddef_type(f)) { | 
|  | T(UPB_TYPE_FLOAT,  float,  float, 0.0) | 
|  | T(UPB_TYPE_DOUBLE, double, double, 0.0) | 
|  | T(UPB_TYPE_BOOL,   bool,   uint8_t, 0) | 
|  | case UPB_TYPE_ENUM: | 
|  | T(UPB_TYPE_INT32,  int32,  int32_t, 0) | 
|  | T(UPB_TYPE_UINT32, uint32, uint32_t, 0) | 
|  | T(UPB_TYPE_INT64,  int64,  int64_t, 0) | 
|  | T(UPB_TYPE_UINT64, uint64, uint64_t, 0) | 
|  |  | 
|  | case UPB_TYPE_STRING: | 
|  | case UPB_TYPE_BYTES: | 
|  | case UPB_TYPE_MESSAGE: rb_raise(rb_eRuntimeError, "Internal error."); | 
|  | } | 
|  |  | 
|  | #undef T | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | upb_sink_endmsg(sink, &status); | 
|  | } | 
|  |  | 
|  | static const upb_handlers* msgdef_pb_serialize_handlers(Descriptor* desc) { | 
|  | if (desc->pb_serialize_handlers == NULL) { | 
|  | desc->pb_serialize_handlers = | 
|  | upb_pb_encoder_newhandlers(desc->msgdef, &desc->pb_serialize_handlers); | 
|  | } | 
|  | return desc->pb_serialize_handlers; | 
|  | } | 
|  |  | 
|  | static const upb_handlers* msgdef_json_serialize_handlers( | 
|  | Descriptor* desc, bool preserve_proto_fieldnames) { | 
|  | if (preserve_proto_fieldnames) { | 
|  | if (desc->json_serialize_handlers == NULL) { | 
|  | desc->json_serialize_handlers = | 
|  | upb_json_printer_newhandlers( | 
|  | desc->msgdef, true, &desc->json_serialize_handlers); | 
|  | } | 
|  | return desc->json_serialize_handlers; | 
|  | } else { | 
|  | if (desc->json_serialize_handlers_preserve == NULL) { | 
|  | desc->json_serialize_handlers_preserve = | 
|  | upb_json_printer_newhandlers( | 
|  | desc->msgdef, false, &desc->json_serialize_handlers_preserve); | 
|  | } | 
|  | return desc->json_serialize_handlers_preserve; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call-seq: | 
|  | *     MessageClass.encode(msg) => bytes | 
|  | * | 
|  | * Encodes the given message object to its serialized form in protocol buffers | 
|  | * wire format. | 
|  | */ | 
|  | VALUE Message_encode(VALUE klass, VALUE msg_rb) { | 
|  | VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); | 
|  | Descriptor* desc = ruby_to_Descriptor(descriptor); | 
|  |  | 
|  | stringsink sink; | 
|  | stringsink_init(&sink); | 
|  |  | 
|  | { | 
|  | const upb_handlers* serialize_handlers = | 
|  | msgdef_pb_serialize_handlers(desc); | 
|  |  | 
|  | stackenv se; | 
|  | upb_pb_encoder* encoder; | 
|  | VALUE ret; | 
|  |  | 
|  | stackenv_init(&se, "Error occurred during encoding: %s"); | 
|  | encoder = upb_pb_encoder_create(&se.env, serialize_handlers, &sink.sink); | 
|  |  | 
|  | putmsg(msg_rb, desc, upb_pb_encoder_input(encoder), 0); | 
|  |  | 
|  | ret = rb_str_new(sink.ptr, sink.len); | 
|  |  | 
|  | stackenv_uninit(&se); | 
|  | stringsink_uninit(&sink); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * call-seq: | 
|  | *     MessageClass.encode_json(msg) => json_string | 
|  | * | 
|  | * Encodes the given message object into its serialized JSON representation. | 
|  | */ | 
|  | VALUE Message_encode_json(int argc, VALUE* argv, VALUE klass) { | 
|  | VALUE descriptor = rb_ivar_get(klass, descriptor_instancevar_interned); | 
|  | Descriptor* desc = ruby_to_Descriptor(descriptor); | 
|  | VALUE msg_rb; | 
|  | VALUE preserve_proto_fieldnames = Qfalse; | 
|  | stringsink sink; | 
|  |  | 
|  | if (argc < 1 || argc > 2) { | 
|  | rb_raise(rb_eArgError, "Expected 1 or 2 arguments."); | 
|  | } | 
|  |  | 
|  | msg_rb = argv[0]; | 
|  |  | 
|  | if (argc == 2) { | 
|  | VALUE hash_args = argv[1]; | 
|  | if (TYPE(hash_args) != T_HASH) { | 
|  | rb_raise(rb_eArgError, "Expected hash arguments."); | 
|  | } | 
|  | preserve_proto_fieldnames = rb_hash_lookup2( | 
|  | hash_args, ID2SYM(rb_intern("preserve_proto_fieldnames")), Qfalse); | 
|  | } | 
|  |  | 
|  | stringsink_init(&sink); | 
|  |  | 
|  | { | 
|  | const upb_handlers* serialize_handlers = | 
|  | msgdef_json_serialize_handlers(desc, RTEST(preserve_proto_fieldnames)); | 
|  | upb_json_printer* printer; | 
|  | stackenv se; | 
|  | VALUE ret; | 
|  |  | 
|  | stackenv_init(&se, "Error occurred during encoding: %s"); | 
|  | printer = upb_json_printer_create(&se.env, serialize_handlers, &sink.sink); | 
|  |  | 
|  | putmsg(msg_rb, desc, upb_json_printer_input(printer), 0); | 
|  |  | 
|  | ret = rb_enc_str_new(sink.ptr, sink.len, rb_utf8_encoding()); | 
|  |  | 
|  | stackenv_uninit(&se); | 
|  | stringsink_uninit(&sink); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  |