blob: 7693a497c8b69ebce0d77aa168741d2ebb21b675 [file] [log] [blame] [edit]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
// Author: kenton@google.com (Kenton Varda)
#include <climits>
#include <iostream>
#include <limits>
#include <string>
#include <utility>
#include <gtest/gtest.h>
#include "absl/log/absl_check.h"
#include "absl/strings/match.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/string_view.h"
#include "google/protobuf/arena_test_util.h"
#include "google/protobuf/io/coded_stream.h"
#include "google/protobuf/io/zero_copy_stream.h"
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/io/zero_copy_stream_impl_lite.h"
#include "google/protobuf/map_lite_test_util.h"
#include "google/protobuf/map_lite_unittest.pb.h"
#include "google/protobuf/parse_context.h"
#include "google/protobuf/test_util_lite.h"
#include "google/protobuf/unittest_lite.pb.h"
#include "google/protobuf/wire_format_lite.h"
// Must be included last
#include "google/protobuf/port_def.inc"
namespace google {
namespace protobuf {
namespace {
// Helper methods to test parsing merge behavior.
void ExpectMessageMerged(const unittest::TestAllTypesLite& message) {
EXPECT_EQ(message.optional_int32(), 3);
EXPECT_EQ(message.optional_int64(), 2);
EXPECT_EQ(message.optional_string(), "hello");
}
void AssignParsingMergeMessages(unittest::TestAllTypesLite* msg1,
unittest::TestAllTypesLite* msg2,
unittest::TestAllTypesLite* msg3) {
msg1->set_optional_int32(1);
msg2->set_optional_int64(2);
msg3->set_optional_int32(3);
msg3->set_optional_string("hello");
}
// Declare and define the template `T SerializeAs()` function which we
// specialize for the typed tests serializing to a string or Cord.
template <typename T>
T SerializeAs(const MessageLite& msg);
template <>
std::string SerializeAs<std::string>(const MessageLite& msg) {
return msg.SerializeAsString();
}
template <>
absl::Cord SerializeAs<absl::Cord>(const MessageLite& msg) {
return msg.SerializeAsCord();
}
// `ParseFrom()` is overloaded for string and Cord and used in the
// typed tests parsing from string and Cord values.
bool ParseFrom(const std::string& data, MessageLite& msg) {
return msg.ParseFromString(data);
}
bool ParseFrom(const absl::Cord& data, MessageLite& msg) {
return msg.ParseFromCord(data);
}
template <typename T>
void SetAllTypesInEmptyMessageUnknownFields(
unittest::TestEmptyMessageLite* empty_message) {
protobuf_unittest::TestAllTypesLite message;
TestUtilLite::ExpectClear(message);
TestUtilLite::SetAllFields(&message);
T data = SerializeAs<T>(message);
ParseFrom(data, *empty_message);
}
void SetSomeTypesInEmptyMessageUnknownFields(
unittest::TestEmptyMessageLite* empty_message) {
protobuf_unittest::TestAllTypesLite message;
TestUtilLite::ExpectClear(message);
message.set_optional_int32(101);
message.set_optional_int64(102);
message.set_optional_uint32(103);
message.set_optional_uint64(104);
std::string data = message.SerializeAsString();
empty_message->ParseFromString(data);
}
TEST(ParseVarintTest, Varint32) {
auto test_value = [](uint32_t value, int varint_length) {
uint8_t buffer[10];
uint8_t* p = io::CodedOutputStream::WriteVarint32ToArray(value, buffer);
ASSERT_EQ(p - buffer, varint_length) << "Value = " << value;
const char* cbuffer = reinterpret_cast<const char*>(buffer);
uint32_t parsed = ~value;
const char* r = internal::VarintParse(cbuffer, &parsed);
ASSERT_EQ(r - cbuffer, varint_length) << "Value = " << value;
ASSERT_EQ(parsed, value);
};
uint32_t base = 73; // 1001011b
for (int varint_length = 1; varint_length <= 5; ++varint_length) {
uint32_t values[] = {
base - 73, base - 72, base, base + 126 - 73, base + 126 - 72,
};
for (uint32_t value : values) {
test_value(value, varint_length);
}
base = (base << 7) + 73;
}
test_value(std::numeric_limits<uint32_t>::max(), 5);
}
TEST(ParseVarintTest, Varint64) {
auto test_value = [](uint64_t value, int varint_length) {
uint8_t buffer[10];
uint8_t* p = io::CodedOutputStream::WriteVarint64ToArray(value, buffer);
ASSERT_EQ(p - buffer, varint_length) << "Value = " << value;
const char* cbuffer = reinterpret_cast<const char*>(buffer);
uint64_t parsed = ~value;
const char* r = internal::VarintParse(cbuffer, &parsed);
ASSERT_EQ(r - cbuffer, varint_length) << "Value = " << value;
ASSERT_EQ(parsed, value);
};
uint64_t base = 73; // 1001011b
for (int varint_length = 1; varint_length <= 10; ++varint_length) {
uint64_t values[] = {
base - 73, base - 72, base, base + 126 - 73, base + 126 - 72,
};
for (uint64_t value : values) {
test_value(value, varint_length);
}
base = (base << 7) + 73;
}
test_value(std::numeric_limits<uint64_t>::max(), 10);
}
template <typename T>
class LiteTest : public ::testing::Test {};
struct TypedTestName {
template <typename T>
static std::string GetName(int /*i*/) {
return std::is_same<T, absl::Cord>::value ? "Cord" : "String";
}
};
using SerializedDataTypes = ::testing::Types<std::string, absl::Cord>;
TYPED_TEST_SUITE(LiteTest, SerializedDataTypes, TypedTestName);
TYPED_TEST(LiteTest, AllLite1) {
{
protobuf_unittest::TestAllTypesLite message, message2, message3;
TestUtilLite::ExpectClear(message);
TestUtilLite::SetAllFields(&message);
message2 = message;
TypeParam data = SerializeAs<TypeParam>(message2);
ParseFrom(data, message3);
TestUtilLite::ExpectAllFieldsSet(message);
TestUtilLite::ExpectAllFieldsSet(message2);
TestUtilLite::ExpectAllFieldsSet(message3);
TestUtilLite::ModifyRepeatedFields(&message);
TestUtilLite::ExpectRepeatedFieldsModified(message);
message.Clear();
TestUtilLite::ExpectClear(message);
}
}
TYPED_TEST(LiteTest, AllLite2) {
{
protobuf_unittest::TestAllExtensionsLite message, message2, message3;
TestUtilLite::ExpectExtensionsClear(message);
TestUtilLite::SetAllExtensions(&message);
message2 = message;
TypeParam extensions_data = SerializeAs<TypeParam>(message);
ParseFrom(extensions_data, message3);
TestUtilLite::ExpectAllExtensionsSet(message);
TestUtilLite::ExpectAllExtensionsSet(message2);
TestUtilLite::ExpectAllExtensionsSet(message3);
TestUtilLite::ModifyRepeatedExtensions(&message);
TestUtilLite::ExpectRepeatedExtensionsModified(message);
message.Clear();
TestUtilLite::ExpectExtensionsClear(message);
}
}
TYPED_TEST(LiteTest, AllLite3) {
TypeParam data, packed_data;
{
protobuf_unittest::TestPackedTypesLite message, message2, message3;
TestUtilLite::ExpectPackedClear(message);
TestUtilLite::SetPackedFields(&message);
message2 = message;
packed_data = SerializeAs<TypeParam>(message);
ParseFrom(packed_data, message3);
TestUtilLite::ExpectPackedFieldsSet(message);
TestUtilLite::ExpectPackedFieldsSet(message2);
TestUtilLite::ExpectPackedFieldsSet(message3);
TestUtilLite::ModifyPackedFields(&message);
TestUtilLite::ExpectPackedFieldsModified(message);
message.Clear();
TestUtilLite::ExpectPackedClear(message);
}
{
protobuf_unittest::TestPackedExtensionsLite message, message2, message3;
TestUtilLite::ExpectPackedExtensionsClear(message);
TestUtilLite::SetPackedExtensions(&message);
message2 = message;
TypeParam packed_extensions_data = SerializeAs<TypeParam>(message);
EXPECT_EQ(packed_extensions_data, packed_data);
ParseFrom(packed_extensions_data, message3);
TestUtilLite::ExpectPackedExtensionsSet(message);
TestUtilLite::ExpectPackedExtensionsSet(message2);
TestUtilLite::ExpectPackedExtensionsSet(message3);
TestUtilLite::ModifyPackedExtensions(&message);
TestUtilLite::ExpectPackedExtensionsModified(message);
message.Clear();
TestUtilLite::ExpectPackedExtensionsClear(message);
}
}
TYPED_TEST(LiteTest, AllLite5) {
TypeParam data;
{
// Test that if an optional or required message/group field appears multiple
// times in the input, they need to be merged.
unittest::TestParsingMergeLite::RepeatedFieldsGenerator generator;
unittest::TestAllTypesLite* msg1;
unittest::TestAllTypesLite* msg2;
unittest::TestAllTypesLite* msg3;
#define ASSIGN_REPEATED_FIELD(FIELD) \
msg1 = generator.add_##FIELD(); \
msg2 = generator.add_##FIELD(); \
msg3 = generator.add_##FIELD(); \
AssignParsingMergeMessages(msg1, msg2, msg3)
ASSIGN_REPEATED_FIELD(field1);
ASSIGN_REPEATED_FIELD(field2);
ASSIGN_REPEATED_FIELD(field3);
ASSIGN_REPEATED_FIELD(ext1);
ASSIGN_REPEATED_FIELD(ext2);
#undef ASSIGN_REPEATED_FIELD
#define ASSIGN_REPEATED_GROUP(FIELD) \
msg1 = generator.add_##FIELD()->mutable_field1(); \
msg2 = generator.add_##FIELD()->mutable_field1(); \
msg3 = generator.add_##FIELD()->mutable_field1(); \
AssignParsingMergeMessages(msg1, msg2, msg3)
ASSIGN_REPEATED_GROUP(group1);
ASSIGN_REPEATED_GROUP(group2);
#undef ASSIGN_REPEATED_GROUP
TypeParam buffer;
buffer = SerializeAs<TypeParam>(generator);
// generator.SerializeToString(&buffer);
unittest::TestParsingMergeLite parsing_merge;
ParseFrom(buffer, parsing_merge);
// Required and optional fields should be merged.
ExpectMessageMerged(parsing_merge.required_all_types());
ExpectMessageMerged(parsing_merge.optional_all_types());
ExpectMessageMerged(
parsing_merge.optionalgroup().optional_group_all_types());
ExpectMessageMerged(parsing_merge.GetExtension(
unittest::TestParsingMergeLite::optional_ext));
// Repeated fields should not be merged.
EXPECT_EQ(parsing_merge.repeated_all_types_size(), 3);
EXPECT_EQ(parsing_merge.repeatedgroup_size(), 3);
EXPECT_EQ(parsing_merge.ExtensionSize(
unittest::TestParsingMergeLite::repeated_ext),
3);
}
}
TYPED_TEST(LiteTest, AllLite6) {
TypeParam data;
// Test unknown fields support for lite messages.
{
protobuf_unittest::TestAllTypesLite message, message2;
protobuf_unittest::TestEmptyMessageLite empty_message;
TestUtilLite::ExpectClear(message);
TestUtilLite::SetAllFields(&message);
data = SerializeAs<TypeParam>(message);
ASSERT_TRUE(ParseFrom(data, empty_message));
data = SerializeAs<TypeParam>(empty_message);
EXPECT_TRUE(ParseFrom(data, message2));
data = SerializeAs<TypeParam>(message2);
TestUtilLite::ExpectAllFieldsSet(message2);
message.Clear();
TestUtilLite::ExpectClear(message);
}
}
TYPED_TEST(LiteTest, AllLite7) {
TypeParam data;
{
protobuf_unittest::TestAllExtensionsLite message, message2;
protobuf_unittest::TestEmptyMessageLite empty_message;
TestUtilLite::ExpectExtensionsClear(message);
TestUtilLite::SetAllExtensions(&message);
data = SerializeAs<TypeParam>(message);
ParseFrom(data, empty_message);
data = empty_message.SerializeAsString();
ParseFrom(data, message2);
data = SerializeAs<TypeParam>(message2);
TestUtilLite::ExpectAllExtensionsSet(message2);
message.Clear();
TestUtilLite::ExpectExtensionsClear(message);
}
}
TYPED_TEST(LiteTest, AllLite8) {
TypeParam data;
{
protobuf_unittest::TestPackedTypesLite message, message2;
protobuf_unittest::TestEmptyMessageLite empty_message;
TestUtilLite::ExpectPackedClear(message);
TestUtilLite::SetPackedFields(&message);
data = SerializeAs<TypeParam>(message);
ParseFrom(data, empty_message);
data = SerializeAs<TypeParam>(empty_message);
ParseFrom(data, message2);
data = message2.SerializeAsString();
TestUtilLite::ExpectPackedFieldsSet(message2);
message.Clear();
TestUtilLite::ExpectPackedClear(message);
}
}
TYPED_TEST(LiteTest, AllLite9) {
TypeParam data;
{
protobuf_unittest::TestPackedExtensionsLite message, message2;
protobuf_unittest::TestEmptyMessageLite empty_message;
TestUtilLite::ExpectPackedExtensionsClear(message);
TestUtilLite::SetPackedExtensions(&message);
data = SerializeAs<TypeParam>(message);
ParseFrom(data, empty_message);
data = SerializeAs<TypeParam>(empty_message);
ParseFrom(data, message2);
data = SerializeAs<TypeParam>(message2);
TestUtilLite::ExpectPackedExtensionsSet(message2);
message.Clear();
TestUtilLite::ExpectPackedExtensionsClear(message);
}
}
TYPED_TEST(LiteTest, AllLite10) {
TypeParam data;
{
// Test Unknown fields swap
protobuf_unittest::TestEmptyMessageLite empty_message, empty_message2;
SetAllTypesInEmptyMessageUnknownFields<TypeParam>(&empty_message);
SetSomeTypesInEmptyMessageUnknownFields(&empty_message2);
data = SerializeAs<TypeParam>(empty_message);
auto data2 = SerializeAs<TypeParam>(empty_message2);
empty_message.Swap(&empty_message2);
EXPECT_EQ(data, SerializeAs<TypeParam>(empty_message2));
EXPECT_EQ(data2, SerializeAs<TypeParam>(empty_message));
}
}
TYPED_TEST(LiteTest, AllLite11) {
TypeParam data;
{
// Test unknown fields swap with self
protobuf_unittest::TestEmptyMessageLite empty_message;
SetAllTypesInEmptyMessageUnknownFields<TypeParam>(&empty_message);
data = SerializeAs<TypeParam>(empty_message);
empty_message.Swap(&empty_message);
EXPECT_EQ(data, empty_message.SerializeAsString());
}
}
TYPED_TEST(LiteTest, AllLite12) {
TypeParam data;
{
// Test MergeFrom with unknown fields
protobuf_unittest::TestAllTypesLite message, message2;
protobuf_unittest::TestEmptyMessageLite empty_message, empty_message2;
message.set_optional_int32(101);
message.add_repeated_int32(201);
message.set_optional_nested_enum(unittest::TestAllTypesLite::BAZ);
message2.set_optional_int64(102);
message2.add_repeated_int64(202);
message2.set_optional_foreign_enum(unittest::FOREIGN_LITE_BAZ);
data = SerializeAs<TypeParam>(message);
ParseFrom(data, empty_message);
data = message2.SerializeAsString();
ParseFrom(data, empty_message2);
message.MergeFrom(message2);
empty_message.MergeFrom(empty_message2);
data = SerializeAs<TypeParam>(empty_message);
ParseFrom(data, message2);
// We do not compare the serialized output of a normal message and a lite
// message because the order of fields do not match. We convert lite message
// back into normal message, then compare.
EXPECT_EQ(SerializeAs<TypeParam>(message),
SerializeAs<TypeParam>(message2));
}
}
TYPED_TEST(LiteTest, AllLite13StringStream) {
TypeParam data;
{
// Test unknown enum value
protobuf_unittest::TestAllTypesLite message;
std::string buffer;
{
io::StringOutputStream output_stream(&buffer);
io::CodedOutputStream coded_output(&output_stream);
internal::WireFormatLite::WriteTag(
protobuf_unittest::TestAllTypesLite::kOptionalNestedEnumFieldNumber,
internal::WireFormatLite::WIRETYPE_VARINT, &coded_output);
coded_output.WriteVarint32(10);
internal::WireFormatLite::WriteTag(
protobuf_unittest::TestAllTypesLite::kRepeatedNestedEnumFieldNumber,
internal::WireFormatLite::WIRETYPE_VARINT, &coded_output);
coded_output.WriteVarint32(20);
}
message.ParseFromString(buffer);
data = SerializeAs<TypeParam>(message);
EXPECT_EQ(data, buffer);
}
}
TYPED_TEST(LiteTest, AllLite13CordStream) {
TypeParam data;
{
// Test unknown enum value
protobuf_unittest::TestAllTypesLite message;
io::CordOutputStream output_stream;
{
io::CodedOutputStream coded_output(&output_stream);
internal::WireFormatLite::WriteTag(
protobuf_unittest::TestAllTypesLite::kOptionalNestedEnumFieldNumber,
internal::WireFormatLite::WIRETYPE_VARINT, &coded_output);
coded_output.WriteVarint32(10);
internal::WireFormatLite::WriteTag(
protobuf_unittest::TestAllTypesLite::kRepeatedNestedEnumFieldNumber,
internal::WireFormatLite::WIRETYPE_VARINT, &coded_output);
coded_output.WriteVarint32(20);
}
absl::Cord buffer = output_stream.Consume();
message.ParseFromCord(buffer);
data = SerializeAs<TypeParam>(message);
EXPECT_EQ(data, buffer);
}
}
TYPED_TEST(LiteTest, AllLite14) {
{
// Test Clear with unknown fields
protobuf_unittest::TestEmptyMessageLite empty_message;
SetAllTypesInEmptyMessageUnknownFields<TypeParam>(&empty_message);
empty_message.Clear();
EXPECT_EQ(0, empty_message.unknown_fields().size());
}
}
// Tests for map lite =============================================
TEST(LiteBasicTest, AllLite15) {
{
// Accessors
protobuf_unittest::TestMapLite message;
MapLiteTestUtil::SetMapFields(&message);
MapLiteTestUtil::ExpectMapFieldsSet(message);
MapLiteTestUtil::ModifyMapFields(&message);
MapLiteTestUtil::ExpectMapFieldsModified(message);
}
}
TYPED_TEST(LiteTest, AllLite16) {
{
// SetMapFieldsInitialized
protobuf_unittest::TestMapLite message;
MapLiteTestUtil::SetMapFieldsInitialized(&message);
MapLiteTestUtil::ExpectMapFieldsSetInitialized(message);
}
}
TEST(LiteBasicTest, AllLite17) {
{
// Clear
protobuf_unittest::TestMapLite message;
MapLiteTestUtil::SetMapFields(&message);
message.Clear();
MapLiteTestUtil::ExpectClear(message);
}
}
TEST(LiteBasicTest, AllLite18) {
{
// ClearMessageMap
protobuf_unittest::TestMessageMapLite message;
// Creates a TestAllTypes with default value
TestUtilLite::ExpectClear((*message.mutable_map_int32_message())[0]);
}
}
TEST(LiteBasicTest, AllLite19) {
{
// CopyFrom
protobuf_unittest::TestMapLite message1, message2;
MapLiteTestUtil::SetMapFields(&message1);
message2.CopyFrom(message1); // NOLINT
MapLiteTestUtil::ExpectMapFieldsSet(message2);
// Copying from self should be a no-op.
message2.CopyFrom(message2); // NOLINT
MapLiteTestUtil::ExpectMapFieldsSet(message2);
}
}
TEST(LiteBasicTest, AllLite20) {
{
// CopyFromMessageMap
protobuf_unittest::TestMessageMapLite message1, message2;
(*message1.mutable_map_int32_message())[0].add_repeated_int32(100);
(*message2.mutable_map_int32_message())[0].add_repeated_int32(101);
message1.CopyFrom(message2); // NOLINT
// Checks repeated field is overwritten.
EXPECT_EQ(1, message1.map_int32_message().at(0).repeated_int32_size());
EXPECT_EQ(101, message1.map_int32_message().at(0).repeated_int32(0));
}
}
TEST(LiteBasicTest, AllLite21) {
{
// SwapWithEmpty
protobuf_unittest::TestMapLite message1, message2;
MapLiteTestUtil::SetMapFields(&message1);
MapLiteTestUtil::ExpectMapFieldsSet(message1);
MapLiteTestUtil::ExpectClear(message2);
message1.Swap(&message2);
MapLiteTestUtil::ExpectMapFieldsSet(message2);
MapLiteTestUtil::ExpectClear(message1);
}
}
TEST(LiteBasicTest, AllLite22) {
{
// SwapWithSelf
protobuf_unittest::TestMapLite message;
MapLiteTestUtil::SetMapFields(&message);
MapLiteTestUtil::ExpectMapFieldsSet(message);
message.Swap(&message);
MapLiteTestUtil::ExpectMapFieldsSet(message);
}
}
TEST(LiteBasicTest, AllLite23) {
{
// SwapWithOther
protobuf_unittest::TestMapLite message1, message2;
MapLiteTestUtil::SetMapFields(&message1);
MapLiteTestUtil::SetMapFields(&message2);
MapLiteTestUtil::ModifyMapFields(&message2);
message1.Swap(&message2);
MapLiteTestUtil::ExpectMapFieldsModified(message1);
MapLiteTestUtil::ExpectMapFieldsSet(message2);
}
}
TEST(LiteBasicTest, AllLite24) {
{
// CopyConstructor
protobuf_unittest::TestMapLite message1;
MapLiteTestUtil::SetMapFields(&message1);
protobuf_unittest::TestMapLite message2(message1);
MapLiteTestUtil::ExpectMapFieldsSet(message2);
}
}
TEST(LiteBasicTest, AllLite25) {
{
// CopyAssignmentOperator
protobuf_unittest::TestMapLite message1;
MapLiteTestUtil::SetMapFields(&message1);
protobuf_unittest::TestMapLite message2;
message2 = message1;
MapLiteTestUtil::ExpectMapFieldsSet(message2);
// Make sure that self-assignment does something sane.
message2.operator=(message2);
MapLiteTestUtil::ExpectMapFieldsSet(message2);
}
}
TEST(LiteBasicTest, AllLite26) {
{
// NonEmptyMergeFrom
protobuf_unittest::TestMapLite message1, message2;
MapLiteTestUtil::SetMapFields(&message1);
// This field will test merging into an empty spot.
(*message2.mutable_map_int32_int32())[1] = 1;
message1.mutable_map_int32_int32()->erase(1);
// This tests overwriting.
(*message2.mutable_map_int32_double())[1] = 1;
(*message1.mutable_map_int32_double())[1] = 2;
message1.MergeFrom(message2);
MapLiteTestUtil::ExpectMapFieldsSet(message1);
}
}
TYPED_TEST(LiteTest, AllLite27) {
{
// MergeFromMessageMap
protobuf_unittest::TestMessageMapLite message1, message2;
(*message1.mutable_map_int32_message())[0].add_repeated_int32(100);
(*message2.mutable_map_int32_message())[0].add_repeated_int32(101);
message1.MergeFrom(message2);
// Checks repeated field is overwritten.
EXPECT_EQ(1, message1.map_int32_message().at(0).repeated_int32_size());
EXPECT_EQ(101, message1.map_int32_message().at(0).repeated_int32(0));
}
}
TEST(LiteStringTest, AllLite28) {
{
// Test the generated SerializeWithCachedSizesToArray()
protobuf_unittest::TestMapLite message1, message2;
std::string data;
MapLiteTestUtil::SetMapFields(&message1);
size_t size = message1.ByteSizeLong();
data.resize(size);
::uint8_t* start = reinterpret_cast<::uint8_t*>(&data[0]);
::uint8_t* end = message1.SerializeWithCachedSizesToArray(start);
EXPECT_EQ(size, end - start);
EXPECT_TRUE(message2.ParseFromString(data));
MapLiteTestUtil::ExpectMapFieldsSet(message2);
}
}
TEST(LiteStreamTest, AllLite29) {
{
// Test the generated SerializeWithCachedSizes()
protobuf_unittest::TestMapLite message1, message2;
MapLiteTestUtil::SetMapFields(&message1);
size_t size = message1.ByteSizeLong();
std::string data;
data.resize(size);
{
// Allow the output stream to buffer only one byte at a time.
io::ArrayOutputStream array_stream(&data[0], size, 1);
io::CodedOutputStream output_stream(&array_stream);
message1.SerializeWithCachedSizes(&output_stream);
EXPECT_FALSE(output_stream.HadError());
EXPECT_EQ(size, output_stream.ByteCount());
}
EXPECT_TRUE(message2.ParseFromString(data));
MapLiteTestUtil::ExpectMapFieldsSet(message2);
}
}
TYPED_TEST(LiteTest, AllLite32) {
{
// Proto2UnknownEnum
protobuf_unittest::TestEnumMapPlusExtraLite from;
(*from.mutable_known_map_field())[0] =
protobuf_unittest::E_PROTO2_MAP_ENUM_FOO_LITE;
(*from.mutable_unknown_map_field())[0] =
protobuf_unittest::E_PROTO2_MAP_ENUM_EXTRA_LITE;
TypeParam data;
data = SerializeAs<TypeParam>(from);
protobuf_unittest::TestEnumMapLite to;
EXPECT_TRUE(ParseFrom(data, to));
EXPECT_EQ(0, to.unknown_map_field().size());
EXPECT_FALSE(to.mutable_unknown_fields()->empty());
ASSERT_EQ(1, to.known_map_field().size());
EXPECT_EQ(protobuf_unittest::PROTO2_MAP_ENUM_FOO_LITE,
to.known_map_field().at(0));
from.Clear();
data = SerializeAs<TypeParam>(to);
EXPECT_TRUE(ParseFrom(data, from));
ASSERT_EQ(1, from.known_map_field().size());
EXPECT_EQ(protobuf_unittest::E_PROTO2_MAP_ENUM_FOO_LITE,
from.known_map_field().at(0));
ASSERT_EQ(1, from.unknown_map_field().size());
EXPECT_EQ(protobuf_unittest::E_PROTO2_MAP_ENUM_EXTRA_LITE,
from.unknown_map_field().at(0));
}
}
TYPED_TEST(LiteTest, AllLite33) {
{
// StandardWireFormat
protobuf_unittest::TestMapLite message;
std::string data = "\x0A\x04\x08\x01\x10\x01";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
EXPECT_EQ(1, message.map_int32_int32().at(1));
}
}
TYPED_TEST(LiteTest, AllLite34) {
{
// UnorderedWireFormat
protobuf_unittest::TestMapLite message;
// put value before key in wire format
std::string data = "\x0A\x04\x10\x01\x08\x02";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
ASSERT_NE(message.map_int32_int32().find(2),
message.map_int32_int32().end());
EXPECT_EQ(1, message.map_int32_int32().at(2));
}
}
TYPED_TEST(LiteTest, AllLite35) {
std::string data;
{
// DuplicatedKeyWireFormat
protobuf_unittest::TestMapLite message;
// Two key fields in wire format
std::string data = "\x0A\x06\x08\x01\x08\x02\x10\x01";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
EXPECT_EQ(1, message.map_int32_int32().at(2));
}
}
TYPED_TEST(LiteTest, AllLite36) {
std::string data;
{
// DuplicatedValueWireFormat
protobuf_unittest::TestMapLite message;
// Two value fields in wire format
std::string data = "\x0A\x06\x08\x01\x10\x01\x10\x02";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
EXPECT_EQ(2, message.map_int32_int32().at(1));
}
}
TYPED_TEST(LiteTest, AllLite37) {
{
// MissedKeyWireFormat
protobuf_unittest::TestMapLite message;
// No key field in wire format
std::string data = "\x0A\x02\x10\x01";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
ASSERT_NE(message.map_int32_int32().find(0),
message.map_int32_int32().end());
EXPECT_EQ(1, message.map_int32_int32().at(0));
}
}
TYPED_TEST(LiteTest, AllLite38) {
std::string data;
{
// MissedValueWireFormat
protobuf_unittest::TestMapLite message;
// No value field in wire format
std::string data = "\x0A\x02\x08\x01";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
ASSERT_NE(message.map_int32_int32().find(1),
message.map_int32_int32().end());
EXPECT_EQ(0, message.map_int32_int32().at(1));
}
}
TYPED_TEST(LiteTest, AllLite39) {
{
// UnknownFieldWireFormat
protobuf_unittest::TestMapLite message;
// Unknown field in wire format
std::string data = "\x0A\x06\x08\x02\x10\x03\x18\x01";
EXPECT_TRUE(message.ParseFromString(data));
ASSERT_EQ(1, message.map_int32_int32().size());
EXPECT_EQ(3, message.map_int32_int32().at(2));
}
}
TYPED_TEST(LiteTest, AllLite40) {
{
// CorruptedWireFormat
protobuf_unittest::TestMapLite message;
// corrupted data in wire format
std::string data = "\x0A\x06\x08\x02\x11\x03";
EXPECT_FALSE(message.ParseFromString(data));
}
}
TYPED_TEST(LiteTest, AllLite41) {
{
// IsInitialized
protobuf_unittest::TestRequiredMessageMapLite map_message;
// Add an uninitialized message.
(*map_message.mutable_map_field())[0];
EXPECT_FALSE(map_message.IsInitialized());
// Initialize uninitialized message
(*map_message.mutable_map_field())[0].set_a(0);
(*map_message.mutable_map_field())[0].set_b(0);
(*map_message.mutable_map_field())[0].set_c(0);
EXPECT_TRUE(map_message.IsInitialized());
}
}
TYPED_TEST(LiteTest, AllLite42) {
{
// Check that adding more values to enum does not corrupt message
// when passed through an old client.
protobuf_unittest::V2MessageLite v2_message;
v2_message.set_int_field(800);
// Set enum field to the value not understood by the old client.
v2_message.set_enum_field(protobuf_unittest::V2_SECOND);
std::string v2_bytes = v2_message.SerializeAsString();
protobuf_unittest::V1MessageLite v1_message;
v1_message.ParseFromString(v2_bytes);
EXPECT_TRUE(v1_message.IsInitialized());
EXPECT_EQ(v1_message.int_field(), v2_message.int_field());
// V1 client does not understand V2_SECOND value, so it discards it and
// uses default value instead.
EXPECT_EQ(v1_message.enum_field(), protobuf_unittest::V1_FIRST);
// However, when re-serialized, it should preserve enum value.
std::string v1_bytes = v1_message.SerializeAsString();
protobuf_unittest::V2MessageLite same_v2_message;
same_v2_message.ParseFromString(v1_bytes);
EXPECT_EQ(v2_message.int_field(), same_v2_message.int_field());
EXPECT_EQ(v2_message.enum_field(), same_v2_message.enum_field());
}
}
// Test that when parsing a oneof, we can successfully clear whatever already
// happened to be stored in the oneof.
TYPED_TEST(LiteTest, AllLite43) {
protobuf_unittest::TestOneofParsingLite message1;
message1.set_oneof_int32(17);
std::string serialized;
EXPECT_TRUE(message1.SerializeToString(&serialized));
// Submessage
{
protobuf_unittest::TestOneofParsingLite message2;
message2.mutable_oneof_submessage();
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(message2.MergeFromCodedStream(&input_stream));
EXPECT_EQ(17, message2.oneof_int32());
}
// String
{
protobuf_unittest::TestOneofParsingLite message2;
message2.set_oneof_string("string");
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(message2.MergeFromCodedStream(&input_stream));
EXPECT_EQ(17, message2.oneof_int32());
}
// Bytes
{
protobuf_unittest::TestOneofParsingLite message2;
message2.set_oneof_bytes("bytes");
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(message2.MergeFromCodedStream(&input_stream));
EXPECT_EQ(17, message2.oneof_int32());
}
}
// Verify that we can successfully parse fields of various types within oneof
// fields. We also verify that we can parse the same data twice into the same
// message.
TYPED_TEST(LiteTest, AllLite44) {
// Int32
{
protobuf_unittest::TestOneofParsingLite original;
original.set_oneof_int32(17);
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
protobuf_unittest::TestOneofParsingLite parsed;
for (int i = 0; i < 2; ++i) {
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream));
EXPECT_EQ(17, parsed.oneof_int32());
}
}
// Submessage
{
protobuf_unittest::TestOneofParsingLite original;
original.mutable_oneof_submessage()->set_optional_int32(5);
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
protobuf_unittest::TestOneofParsingLite parsed;
for (int i = 0; i < 2; ++i) {
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream));
EXPECT_EQ(5, parsed.oneof_submessage().optional_int32());
}
}
// String
{
protobuf_unittest::TestOneofParsingLite original;
original.set_oneof_string("string");
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
protobuf_unittest::TestOneofParsingLite parsed;
for (int i = 0; i < 2; ++i) {
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream));
EXPECT_EQ("string", parsed.oneof_string());
}
}
// Bytes
{
protobuf_unittest::TestOneofParsingLite original;
original.set_oneof_bytes("bytes");
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
protobuf_unittest::TestOneofParsingLite parsed;
for (int i = 0; i < 2; ++i) {
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream));
EXPECT_EQ("bytes", parsed.oneof_bytes());
}
}
// Enum
{
protobuf_unittest::TestOneofParsingLite original;
original.set_oneof_enum(protobuf_unittest::V2_SECOND);
std::string serialized;
EXPECT_TRUE(original.SerializeToString(&serialized));
protobuf_unittest::TestOneofParsingLite parsed;
for (int i = 0; i < 2; ++i) {
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(serialized.data()),
serialized.size());
EXPECT_TRUE(parsed.MergeFromCodedStream(&input_stream));
EXPECT_EQ(protobuf_unittest::V2_SECOND, parsed.oneof_enum());
}
}
std::cout << "PASS" << std::endl;
}
TYPED_TEST(LiteTest, AllLite45) {
// Test unknown fields are not discarded upon parsing.
std::string data = "\20\1"; // varint 1 with field number 2
protobuf_unittest::ForeignMessageLite a;
EXPECT_TRUE(a.ParseFromString(data));
io::CodedInputStream input_stream(
reinterpret_cast<const ::uint8_t*>(data.data()), data.size());
EXPECT_TRUE(a.MergePartialFromCodedStream(&input_stream));
std::string serialized = a.SerializeAsString();
EXPECT_EQ(serialized.substr(0, 2), data);
EXPECT_EQ(serialized.substr(2), data);
}
// The following two tests check for wire compatibility between packed and
// unpacked repeated fields. There used to be a bug in the generated parsing
// code that caused us to calculate the highest possible tag number without
// taking into account that a repeated field might not be in the packed (or
// unpacked) state we expect. These tests specifically check for that issue by
// making sure we can parse repeated fields when the tag is higher than we would
// expect.
TYPED_TEST(LiteTest, AllLite46) {
protobuf_unittest::PackedInt32 packed;
packed.add_repeated_int32(42);
std::string serialized;
ASSERT_TRUE(packed.SerializeToString(&serialized));
protobuf_unittest::NonPackedInt32 non_packed;
ASSERT_TRUE(non_packed.ParseFromString(serialized));
ASSERT_EQ(1, non_packed.repeated_int32_size());
EXPECT_EQ(42, non_packed.repeated_int32(0));
}
TYPED_TEST(LiteTest, AllLite47) {
protobuf_unittest::NonPackedFixed32 non_packed;
non_packed.add_repeated_fixed32(42);
std::string serialized;
ASSERT_TRUE(non_packed.SerializeToString(&serialized));
protobuf_unittest::PackedFixed32 packed;
ASSERT_TRUE(packed.ParseFromString(serialized));
ASSERT_EQ(1, packed.repeated_fixed32_size());
EXPECT_EQ(42, packed.repeated_fixed32(0));
}
TYPED_TEST(LiteTest, MapCrash) {
// See b/113635730
Arena arena;
auto msg = Arena::CreateMessage<protobuf_unittest::TestMapLite>(&arena);
// Payload for the map<string, Enum> with a enum varint that's longer >
// 10 bytes. This causes a parse fail and a subsequent delete. field 16
// (map<int32, MapEnumLite>) tag = 128+2 = \202 \1
// 13 long \15
// int32 key = 1 (\10 \1)
// MapEnumLite value = too long varint (parse error)
EXPECT_FALSE(msg->ParseFromString(
"\202\1\15\10\1\200\200\200\200\200\200\200\200\200\200\1"));
}
TYPED_TEST(LiteTest, CorrectEnding) {
protobuf_unittest::TestAllTypesLite msg;
{
// All proto wireformat parsers should act the same on parsing data in as
// much as it concerns the parsing, ie. not the interpretation of the data.
// TestAllTypesLite is not a group inside another message. So in practice
// will not encounter an end-group tag. However the parser should behave
// like any wire format parser should.
static const char kWireFormat[] = "\204\1";
io::CodedInputStream cis(reinterpret_cast<const uint8_t*>(kWireFormat), 2);
// The old CodedInputStream parser got an optimization (ReadTagNoLastTag)
// for non-group messages (like TestAllTypesLite) which made it not accept
// end-group. This is not a real big deal, but I think going forward its
// good to have all parse loops behave 'exactly' the same.
EXPECT_TRUE(msg.MergePartialFromCodedStream(&cis));
EXPECT_FALSE(cis.ConsumedEntireMessage());
EXPECT_TRUE(cis.LastTagWas(132));
}
{
// This is an incomplete end-group tag. This should be a genuine parse
// failure.
static const char kWireFormat[] = "\214";
io::CodedInputStream cis(reinterpret_cast<const uint8_t*>(kWireFormat), 1);
// Unfortunately the old parser detects a parse error in ReadTag and returns
// 0 (as it states 0 is an invalid tag). However 0 is not an invalid tag
// as it can be used to terminate the stream, so this returns true.
EXPECT_FALSE(msg.MergePartialFromCodedStream(&cis));
}
}
TYPED_TEST(LiteTest, DebugString) {
protobuf_unittest::TestAllTypesLite message1, message2;
EXPECT_TRUE(absl::StartsWith(message1.DebugString(), "MessageLite at 0x"));
EXPECT_TRUE(absl::StartsWith(message2.DebugString(), "MessageLite at 0x"));
// DebugString() and ShortDebugString() are the same for now.
EXPECT_EQ(message1.DebugString(), message1.ShortDebugString());
// Even identical lite protos should have different DebugString() output. Part
// of the reason for including the memory address is so that we get some
// non-determinism, which should make it easier for us to change the output
// later without breaking any code.
EXPECT_NE(message1.DebugString(), message2.DebugString());
}
TYPED_TEST(LiteTest, EnumValueToName) {
EXPECT_EQ("FOREIGN_LITE_FOO", protobuf_unittest::ForeignEnumLite_Name(
protobuf_unittest::FOREIGN_LITE_FOO));
EXPECT_EQ("FOREIGN_LITE_BAR", protobuf_unittest::ForeignEnumLite_Name(
protobuf_unittest::FOREIGN_LITE_BAR));
EXPECT_EQ("FOREIGN_LITE_BAZ", protobuf_unittest::ForeignEnumLite_Name(
protobuf_unittest::FOREIGN_LITE_BAZ));
EXPECT_EQ("", protobuf_unittest::ForeignEnumLite_Name(0));
EXPECT_EQ("", protobuf_unittest::ForeignEnumLite_Name(999));
}
TYPED_TEST(LiteTest, NestedEnumValueToName) {
EXPECT_EQ("FOO", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(
protobuf_unittest::TestAllTypesLite::FOO));
EXPECT_EQ("BAR", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(
protobuf_unittest::TestAllTypesLite::BAR));
EXPECT_EQ("BAZ", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(
protobuf_unittest::TestAllTypesLite::BAZ));
EXPECT_EQ("", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(0));
EXPECT_EQ("", protobuf_unittest::TestAllTypesLite::NestedEnum_Name(999));
}
TYPED_TEST(LiteTest, EnumNameToValue) {
protobuf_unittest::ForeignEnumLite value;
ASSERT_TRUE(
protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_FOO", &value));
EXPECT_EQ(protobuf_unittest::FOREIGN_LITE_FOO, value);
ASSERT_TRUE(
protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_BAR", &value));
EXPECT_EQ(protobuf_unittest::FOREIGN_LITE_BAR, value);
ASSERT_TRUE(
protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_BAZ", &value));
EXPECT_EQ(protobuf_unittest::FOREIGN_LITE_BAZ, value);
// Non-existent values
EXPECT_FALSE(protobuf_unittest::ForeignEnumLite_Parse("E", &value));
EXPECT_FALSE(
protobuf_unittest::ForeignEnumLite_Parse("FOREIGN_LITE_C", &value));
EXPECT_FALSE(protobuf_unittest::ForeignEnumLite_Parse("G", &value));
}
TYPED_TEST(LiteTest, NestedEnumNameToValue) {
protobuf_unittest::TestAllTypesLite::NestedEnum value;
ASSERT_TRUE(
protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("FOO", &value));
EXPECT_EQ(protobuf_unittest::TestAllTypesLite::FOO, value);
ASSERT_TRUE(
protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("BAR", &value));
EXPECT_EQ(protobuf_unittest::TestAllTypesLite::BAR, value);
ASSERT_TRUE(
protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("BAZ", &value));
EXPECT_EQ(protobuf_unittest::TestAllTypesLite::BAZ, value);
// Non-existent values
EXPECT_FALSE(
protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("A", &value));
EXPECT_FALSE(
protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("C", &value));
EXPECT_FALSE(
protobuf_unittest::TestAllTypesLite::NestedEnum_Parse("G", &value));
}
TYPED_TEST(LiteTest, AliasedEnum) {
// Enums with allow_alias = true can have multiple entries with the same
// value.
EXPECT_EQ("FOO1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(
protobuf_unittest::DupEnum::FOO1));
EXPECT_EQ("FOO1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(
protobuf_unittest::DupEnum::FOO2));
EXPECT_EQ("BAR1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(
protobuf_unittest::DupEnum::BAR1));
EXPECT_EQ("BAR1", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(
protobuf_unittest::DupEnum::BAR2));
EXPECT_EQ("BAZ", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(
protobuf_unittest::DupEnum::BAZ));
EXPECT_EQ("", protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Name(999));
protobuf_unittest::DupEnum::TestEnumWithDupValueLite value;
ASSERT_TRUE(
protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Parse("FOO1", &value));
EXPECT_EQ(protobuf_unittest::DupEnum::FOO1, value);
value = static_cast<protobuf_unittest::DupEnum::TestEnumWithDupValueLite>(0);
ASSERT_TRUE(
protobuf_unittest::DupEnum::TestEnumWithDupValueLite_Parse("FOO2", &value));
EXPECT_EQ(protobuf_unittest::DupEnum::FOO2, value);
}
TEST(LiteBasicTest, CodedInputStreamRollback) {
{
protobuf_unittest::TestAllTypesLite m;
m.set_optional_bytes(std::string(30, 'a'));
std::string serialized = m.SerializeAsString();
serialized += '\014';
serialized += std::string(3, ' ');
io::ArrayInputStream is(serialized.data(), serialized.size(),
serialized.size() - 6);
{
io::CodedInputStream cis(&is);
m.Clear();
m.MergePartialFromCodedStream(&cis);
EXPECT_TRUE(cis.LastTagWas(12));
EXPECT_FALSE(cis.ConsumedEntireMessage());
// Should leave is with 3 spaces;
}
const void* data;
int size;
ASSERT_TRUE(is.Next(&data, &size));
ASSERT_EQ(size, 3);
EXPECT_EQ(memcmp(data, " ", 3), 0);
}
{
protobuf_unittest::TestPackedTypesLite m;
constexpr int kCount = 30;
for (int i = 0; i < kCount; i++) m.add_packed_fixed32(i);
std::string serialized = m.SerializeAsString();
serialized += '\014';
serialized += std::string(3, ' ');
// Buffer breaks in middle of a fixed32.
io::ArrayInputStream is(serialized.data(), serialized.size(),
serialized.size() - 7);
{
io::CodedInputStream cis(&is);
m.Clear();
m.MergePartialFromCodedStream(&cis);
EXPECT_TRUE(cis.LastTagWas(12));
EXPECT_FALSE(cis.ConsumedEntireMessage());
// Should leave is with 3 spaces;
}
ASSERT_EQ(m.packed_fixed32_size(), kCount);
for (int i = 0; i < kCount; i++) EXPECT_EQ(m.packed_fixed32(i), i);
const void* data;
int size;
ASSERT_TRUE(is.Next(&data, &size));
ASSERT_EQ(size, 3);
EXPECT_EQ(memcmp(data, " ", 3), 0);
}
{
protobuf_unittest::TestPackedTypesLite m;
constexpr int kCount = 30;
// Make sure we output 2 byte varints
for (int i = 0; i < kCount; i++) m.add_packed_fixed32(128 + i);
std::string serialized = m.SerializeAsString();
serialized += '\014';
serialized += std::string(3, ' ');
// Buffer breaks in middle of a 2 byte varint.
io::ArrayInputStream is(serialized.data(), serialized.size(),
serialized.size() - 5);
{
io::CodedInputStream cis(&is);
m.Clear();
m.MergePartialFromCodedStream(&cis);
EXPECT_TRUE(cis.LastTagWas(12));
EXPECT_FALSE(cis.ConsumedEntireMessage());
// Should leave is with 3 spaces;
}
ASSERT_EQ(m.packed_fixed32_size(), kCount);
for (int i = 0; i < kCount; i++) EXPECT_EQ(m.packed_fixed32(i), i + 128);
const void* data;
int size;
ASSERT_TRUE(is.Next(&data, &size));
ASSERT_EQ(size, 3);
EXPECT_EQ(memcmp(data, " ", 3), 0);
}
}
} // namespace
} // namespace protobuf
} // namespace google