blob: 7b08a245f101726a5c50a5466c21d935f3a0c7c7 [file] [log] [blame] [edit]
// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc. All rights reserved.
//
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file or at
// https://developers.google.com/open-source/licenses/bsd
// Author: kenton@google.com (Kenton Varda)
// Based on original Protocol Buffers design by
// Sanjay Ghemawat, Jeff Dean, and others.
//
// RepeatedField and RepeatedPtrField are used by generated protocol message
// classes to manipulate repeated fields. These classes are very similar to
// STL's vector, but include a number of optimizations found to be useful
// specifically in the case of Protocol Buffers. RepeatedPtrField is
// particularly different from STL vector as it manages ownership of the
// pointers that it contains.
//
// This header covers RepeatedPtrField.
#ifndef GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
#define GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <limits>
#include <new>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/prefetch.h"
#include "absl/log/absl_check.h"
#include "absl/meta/type_traits.h"
#include "google/protobuf/arena.h"
#include "google/protobuf/internal_visibility.h"
#include "google/protobuf/message_lite.h"
#include "google/protobuf/port.h"
// Must be included last.
#include "google/protobuf/port_def.inc"
#ifdef SWIG
#error "You cannot SWIG proto headers"
#endif
namespace google {
namespace protobuf {
class Message;
class Reflection;
template <typename T>
struct WeakRepeatedPtrField;
namespace internal {
class MergePartialFromCodedStreamHelper;
class SwapFieldHelper;
} // namespace internal
namespace internal {
template <typename It>
class RepeatedPtrIterator;
template <typename It, typename VoidPtr>
class RepeatedPtrOverPtrsIterator;
} // namespace internal
namespace internal {
// Swaps two non-overlapping blocks of memory of size `N`
template <size_t N>
inline void memswap(char* PROTOBUF_RESTRICT a, char* PROTOBUF_RESTRICT b) {
// `PROTOBUF_RESTRICT` tells compiler that blocks do not overlapping which
// allows it to generate optimized code for swap_ranges.
std::swap_ranges(a, a + N, b);
}
template <typename T>
struct IsMovable
: std::integral_constant<bool, std::is_move_constructible<T>::value &&
std::is_move_assignable<T>::value> {};
// A trait that tells offset of `T::arena_`.
//
// Do not use this struct - it exists for internal use only.
template <typename T>
struct ArenaOffsetHelper {
static constexpr size_t value = offsetof(T, arena_);
};
// Defined further below.
template <typename Type>
class GenericTypeHandler;
// This is the common base class for RepeatedPtrFields. It deals only in void*
// pointers. Users should not use this interface directly.
//
// The methods of this interface correspond to the methods of RepeatedPtrField,
// but may have a template argument called TypeHandler. Its signature is:
// class TypeHandler {
// public:
// using Type = MyType;
// using Movable = ...;
//
// static Type*(*)(Arena*) GetNewFunc();
// static void GetArena(Type* value);
//
// static Type* New(Arena* arena);
// static Type* New(Arena* arena, Type&& value);
// static Type* NewFromPrototype(const Type* prototype, Arena* arena);
// static void Delete(Type*, Arena* arena);
// static void Clear(Type*);
// static void Merge(const Type& from, Type* to);
//
// // Only needs to be implemented if SpaceUsedExcludingSelf() is called.
// static int SpaceUsedLong(const Type&);
// };
class PROTOBUF_EXPORT RepeatedPtrFieldBase {
template <typename TypeHandler>
using Value = typename TypeHandler::Type;
static constexpr int kSSOCapacity = 1;
using ElementFactory = void* (*)(Arena*);
protected:
// We use the same TypeHandler for all Message types to deduplicate generated
// code.
template <typename TypeHandler>
using CommonHandler = typename std::conditional<
std::is_base_of<MessageLite, Value<TypeHandler>>::value,
GenericTypeHandler<MessageLite>, TypeHandler>::type;
constexpr RepeatedPtrFieldBase()
: tagged_rep_or_elem_(nullptr),
current_size_(0),
capacity_proxy_(0),
arena_(nullptr) {}
explicit RepeatedPtrFieldBase(Arena* arena)
: tagged_rep_or_elem_(nullptr),
current_size_(0),
capacity_proxy_(0),
arena_(arena) {}
RepeatedPtrFieldBase(const RepeatedPtrFieldBase&) = delete;
RepeatedPtrFieldBase& operator=(const RepeatedPtrFieldBase&) = delete;
~RepeatedPtrFieldBase() {
#ifndef NDEBUG
// Try to trigger segfault / asan failure in non-opt builds if arena_
// lifetime has ended before the destructor.
if (arena_) (void)arena_->SpaceAllocated();
#endif
}
bool empty() const { return current_size_ == 0; }
int size() const { return current_size_; }
// Returns the size of the buffer with pointers to elements.
//
// Note:
//
// * prefer `SizeAtCapacity()` to `size() == Capacity()`;
// * prefer `AllocatedSizeAtCapacity()` to `allocated_size() == Capacity()`.
int Capacity() const { return capacity_proxy_ + kSSOCapacity; }
template <typename TypeHandler>
const Value<TypeHandler>& at(int index) const {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, current_size_);
return *cast<TypeHandler>(element_at(index));
}
template <typename TypeHandler>
Value<TypeHandler>& at(int index) {
ABSL_CHECK_GE(index, 0);
ABSL_CHECK_LT(index, current_size_);
return *cast<TypeHandler>(element_at(index));
}
template <typename TypeHandler>
Value<TypeHandler>* Mutable(int index) {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, current_size_);
return cast<TypeHandler>(element_at(index));
}
template <typename TypeHandler>
Value<TypeHandler>* Add() {
if (std::is_same<Value<TypeHandler>, std::string>{}) {
return cast<TypeHandler>(AddString());
}
return cast<TypeHandler>(AddMessageLite(TypeHandler::GetNewFunc()));
}
template <
typename TypeHandler,
typename std::enable_if<TypeHandler::Movable::value>::type* = nullptr>
inline void Add(Value<TypeHandler>&& value) {
if (current_size_ < allocated_size()) {
*cast<TypeHandler>(element_at(ExchangeCurrentSize(current_size_ + 1))) =
std::move(value);
return;
}
MaybeExtend();
if (!using_sso()) ++rep()->allocated_size;
auto* result = TypeHandler::New(arena_, std::move(value));
element_at(ExchangeCurrentSize(current_size_ + 1)) = result;
}
// Must be called from destructor.
//
// Pre-condition: NeedsDestroy() returns true.
template <typename TypeHandler>
void Destroy() {
ABSL_DCHECK(NeedsDestroy());
// TODO: arena check is redundant once all `RepeatedPtrField`s
// with non-null arena are owned by the arena.
if (PROTOBUF_PREDICT_FALSE(arena_ != nullptr)) return;
using H = CommonHandler<TypeHandler>;
int n = allocated_size();
void** elems = elements();
for (int i = 0; i < n; i++) {
Delete<H>(elems[i], nullptr);
}
if (!using_sso()) {
internal::SizedDelete(rep(),
Capacity() * sizeof(elems[0]) + kRepHeaderSize);
}
}
inline bool NeedsDestroy() const {
// Either there is an allocated element in SSO buffer or there is an
// allocated Rep.
return tagged_rep_or_elem_ != nullptr;
}
void DestroyProtos();
public:
// The next few methods are public so that they can be called from generated
// code when implicit weak fields are used, but they should never be called by
// application code.
template <typename TypeHandler>
const Value<TypeHandler>& Get(int index) const {
ABSL_DCHECK_GE(index, 0);
ABSL_DCHECK_LT(index, current_size_);
return *cast<TypeHandler>(element_at(index));
}
// Creates and adds an element using the given prototype, without introducing
// a link-time dependency on the concrete message type.
//
// Pre-condition: prototype must not be nullptr.
MessageLite* AddMessage(const MessageLite* prototype);
template <typename TypeHandler>
void Clear() {
const int n = current_size_;
ABSL_DCHECK_GE(n, 0);
if (n > 0) {
using H = CommonHandler<TypeHandler>;
ClearNonEmpty<H>();
}
}
// Appends all message values from `from` to this instance.
template <typename T>
void MergeFrom(const RepeatedPtrFieldBase& from) {
static_assert(std::is_base_of<MessageLite, T>::value, "");
#ifdef __cpp_if_constexpr
if constexpr (!std::is_base_of<Message, T>::value) {
// For LITE objects we use the generic MergeFrom to save on binary size.
return MergeFrom<MessageLite>(from);
}
#endif
MergeFromConcreteMessage(from, Arena::CopyConstruct<T>);
}
inline void InternalSwap(RepeatedPtrFieldBase* PROTOBUF_RESTRICT rhs) {
ABSL_DCHECK(this != rhs);
// Swap all fields except arena pointer at once.
internal::memswap<ArenaOffsetHelper<RepeatedPtrFieldBase>::value>(
reinterpret_cast<char*>(this), reinterpret_cast<char*>(rhs));
}
// Returns true if there are no preallocated elements in the array.
bool PrepareForParse() { return allocated_size() == current_size_; }
// Similar to `AddAllocated` but faster.
//
// Pre-condition: PrepareForParse() is true.
void AddAllocatedForParse(void* value) {
ABSL_DCHECK(PrepareForParse());
if (PROTOBUF_PREDICT_FALSE(SizeAtCapacity())) {
*InternalExtend(1) = value;
++rep()->allocated_size;
} else {
if (using_sso()) {
tagged_rep_or_elem_ = value;
} else {
rep()->elements[current_size_] = value;
++rep()->allocated_size;
}
}
ExchangeCurrentSize(current_size_ + 1);
}
protected:
template <typename TypeHandler>
void RemoveLast() {
ABSL_DCHECK_GT(current_size_, 0);
ExchangeCurrentSize(current_size_ - 1);
using H = CommonHandler<TypeHandler>;
H::Clear(cast<H>(element_at(current_size_)));
}
template <typename TypeHandler>
void CopyFrom(const RepeatedPtrFieldBase& other) {
if (&other == this) return;
Clear<TypeHandler>();
if (other.empty()) return;
MergeFrom<typename TypeHandler::Type>(other);
}
void CloseGap(int start, int num);
void Reserve(int capacity);
template <typename TypeHandler>
static inline Value<TypeHandler>* copy(const Value<TypeHandler>* value) {
using H = CommonHandler<TypeHandler>;
auto* new_value = H::NewFromPrototype(value, nullptr);
H::Merge(*value, new_value);
return cast<TypeHandler>(new_value);
}
// Used for constructing iterators.
void* const* raw_data() const { return elements(); }
void** raw_mutable_data() { return elements(); }
template <typename TypeHandler>
Value<TypeHandler>** mutable_data() {
// TODO: Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<Value<TypeHandler>**>(raw_mutable_data());
}
template <typename TypeHandler>
const Value<TypeHandler>* const* data() const {
// TODO: Breaks C++ aliasing rules. We should probably remove this
// method entirely.
return reinterpret_cast<const Value<TypeHandler>* const*>(raw_data());
}
template <typename TypeHandler>
PROTOBUF_NDEBUG_INLINE void Swap(RepeatedPtrFieldBase* other) {
if (internal::CanUseInternalSwap(GetArena(), other->GetArena())) {
InternalSwap(other);
} else {
SwapFallback<TypeHandler>(other);
}
}
void SwapElements(int index1, int index2) {
using std::swap; // enable ADL with fallback
swap(element_at(index1), element_at(index2));
}
template <typename TypeHandler>
PROTOBUF_NOINLINE size_t SpaceUsedExcludingSelfLong() const {
size_t allocated_bytes =
using_sso()
? 0
: static_cast<size_t>(Capacity()) * sizeof(void*) + kRepHeaderSize;
const int n = allocated_size();
void* const* elems = elements();
for (int i = 0; i < n; ++i) {
allocated_bytes +=
TypeHandler::SpaceUsedLong(*cast<TypeHandler>(elems[i]));
}
return allocated_bytes;
}
// Advanced memory management --------------------------------------
// Like Add(), but if there are no cleared objects to use, returns nullptr.
template <typename TypeHandler>
Value<TypeHandler>* AddFromCleared() {
if (current_size_ < allocated_size()) {
return cast<TypeHandler>(
element_at(ExchangeCurrentSize(current_size_ + 1)));
} else {
return nullptr;
}
}
template <typename TypeHandler>
void AddAllocated(Value<TypeHandler>* value) {
ABSL_DCHECK_NE(value, nullptr);
Arena* element_arena = TypeHandler::GetArena(value);
Arena* arena = GetArena();
if (arena != element_arena || AllocatedSizeAtCapacity()) {
AddAllocatedSlowWithCopy<TypeHandler>(value, element_arena, arena);
return;
}
// Fast path: underlying arena representation (tagged pointer) is equal to
// our arena pointer, and we can add to array without resizing it (at
// least one slot that is not allocated).
void** elems = elements();
if (current_size_ < allocated_size()) {
// Make space at [current] by moving first allocated element to end of
// allocated list.
elems[allocated_size()] = elems[current_size_];
}
elems[ExchangeCurrentSize(current_size_ + 1)] = value;
if (!using_sso()) ++rep()->allocated_size;
}
template <typename TypeHandler>
void UnsafeArenaAddAllocated(Value<TypeHandler>* value) {
ABSL_DCHECK_NE(value, nullptr);
// Make room for the new pointer.
if (SizeAtCapacity()) {
// The array is completely full with no cleared objects, so grow it.
InternalExtend(1);
++rep()->allocated_size;
} else if (AllocatedSizeAtCapacity()) {
// There is no more space in the pointer array because it contains some
// cleared objects awaiting reuse. We don't want to grow the array in
// this case because otherwise a loop calling AddAllocated() followed by
// Clear() would leak memory.
using H = CommonHandler<TypeHandler>;
Delete<H>(element_at(current_size_), arena_);
} else if (current_size_ < allocated_size()) {
// We have some cleared objects. We don't care about their order, so we
// can just move the first one to the end to make space.
element_at(allocated_size()) = element_at(current_size_);
++rep()->allocated_size;
} else {
// There are no cleared objects.
if (!using_sso()) ++rep()->allocated_size;
}
element_at(ExchangeCurrentSize(current_size_ + 1)) = value;
}
template <typename TypeHandler>
PROTOBUF_NODISCARD Value<TypeHandler>* ReleaseLast() {
Value<TypeHandler>* result = UnsafeArenaReleaseLast<TypeHandler>();
// Now perform a copy if we're on an arena.
Arena* arena = GetArena();
if (internal::DebugHardenForceCopyInRelease()) {
auto* new_result = copy<TypeHandler>(result);
if (arena == nullptr) delete result;
return new_result;
} else {
return (arena == nullptr) ? result : copy<TypeHandler>(result);
}
}
// Releases and returns the last element, but does not do out-of-arena copy.
// Instead, just returns the raw pointer to the contained element in the
// arena.
template <typename TypeHandler>
Value<TypeHandler>* UnsafeArenaReleaseLast() {
ABSL_DCHECK_GT(current_size_, 0);
ExchangeCurrentSize(current_size_ - 1);
auto* result = cast<TypeHandler>(element_at(current_size_));
if (using_sso()) {
tagged_rep_or_elem_ = nullptr;
} else {
--rep()->allocated_size;
if (current_size_ < allocated_size()) {
// There are cleared elements on the end; replace the removed element
// with the last allocated element.
element_at(current_size_) = element_at(allocated_size());
}
}
return result;
}
int ClearedCount() const { return allocated_size() - current_size_; }
// Slowpath handles all cases, copying if necessary.
template <typename TypeHandler>
PROTOBUF_NOINLINE void AddAllocatedSlowWithCopy(
// Pass value_arena and my_arena to avoid duplicate virtual call (value)
// or load (mine).
Value<TypeHandler>* value, Arena* value_arena, Arena* my_arena) {
using H = CommonHandler<TypeHandler>;
// Ensure that either the value is in the same arena, or if not, we do the
// appropriate thing: Own() it (if it's on heap and we're in an arena) or
// copy it to our arena/heap (otherwise).
if (my_arena != nullptr && value_arena == nullptr) {
my_arena->Own(value);
} else if (my_arena != value_arena) {
ABSL_DCHECK(value_arena != nullptr);
auto* new_value = TypeHandler::NewFromPrototype(value, my_arena);
H::Merge(*value, new_value);
value = new_value;
}
UnsafeArenaAddAllocated<H>(value);
}
template <typename TypeHandler>
PROTOBUF_NOINLINE void SwapFallback(RepeatedPtrFieldBase* other) {
ABSL_DCHECK(!internal::CanUseInternalSwap(GetArena(), other->GetArena()));
// Copy semantics in this case. We try to improve efficiency by placing the
// temporary on |other|'s arena so that messages are copied twice rather
// than three times.
RepeatedPtrFieldBase temp(other->GetArena());
if (!this->empty()) {
temp.MergeFrom<typename TypeHandler::Type>(*this);
}
this->CopyFrom<TypeHandler>(*other);
other->InternalSwap(&temp);
if (temp.NeedsDestroy()) {
temp.Destroy<TypeHandler>();
}
}
// Gets the Arena on which this RepeatedPtrField stores its elements.
inline Arena* GetArena() const { return arena_; }
static constexpr size_t InternalGetArenaOffset(internal::InternalVisibility) {
return PROTOBUF_FIELD_OFFSET(RepeatedPtrFieldBase, arena_);
}
private:
using InternalArenaConstructable_ = void;
using DestructorSkippable_ = void;
template <typename T>
friend class Arena::InternalHelper;
// ExtensionSet stores repeated message extensions as
// RepeatedPtrField<MessageLite>, but non-lite ExtensionSets need to implement
// SpaceUsedLong(), and thus need to call SpaceUsedExcludingSelfLong()
// reinterpreting MessageLite as Message. ExtensionSet also needs to make use
// of AddFromCleared(), which is not part of the public interface.
friend class ExtensionSet;
// The MapFieldBase implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class MapFieldBase;
friend struct MapFieldTestPeer;
// The table-driven MergePartialFromCodedStream implementation needs to
// operate on RepeatedPtrField<MessageLite>.
friend class MergePartialFromCodedStreamHelper;
friend class AccessorHelper;
template <typename T>
friend struct google::protobuf::WeakRepeatedPtrField;
friend class internal::TcParser; // TODO: Remove this friend.
// Expose offset of `arena_` without exposing the member itself.
// Used to optimize code size of `InternalSwap` method.
template <typename T>
friend struct ArenaOffsetHelper;
// The reflection implementation needs to call protected methods directly,
// reinterpreting pointers as being to Message instead of a specific Message
// subclass.
friend class google::protobuf::Reflection;
friend class internal::SwapFieldHelper;
friend class LazyRepeatedPtrField;
// Concrete Arena enabled copy function used to copy messages instances.
// This follows the `Arena::CopyConstruct` signature so that the compiler
// can have the inlined call into the out of line copy function(s) simply pass
// the address of `Arena::CopyConstruct` 'as is'.
using CopyFn = void* (*)(Arena*, const void*);
struct Rep {
int allocated_size;
// Here we declare a huge array as a way of approximating C's "flexible
// array member" feature without relying on undefined behavior.
void* elements[(std::numeric_limits<int>::max() - 2 * sizeof(int)) /
sizeof(void*)];
};
static constexpr size_t kRepHeaderSize = offsetof(Rep, elements);
// Replaces current_size_ with new_size and returns the previous value of
// current_size_. This function is intended to be the only place where
// current_size_ is modified.
inline int ExchangeCurrentSize(int new_size) {
return std::exchange(current_size_, new_size);
}
inline bool SizeAtCapacity() const {
// Harden invariant size() <= allocated_size() <= Capacity().
ABSL_DCHECK_LE(size(), allocated_size());
ABSL_DCHECK_LE(allocated_size(), Capacity());
// This is equivalent to `current_size_ == Capacity()`.
// Assuming `Capacity()` function is inlined, compiler is likely to optimize
// away "+ kSSOCapacity" and reduce it to "current_size_ > capacity_proxy_"
// which is an instruction less than "current_size_ == capacity_proxy_ + 1".
return current_size_ >= Capacity();
}
inline bool AllocatedSizeAtCapacity() const {
// Harden invariant size() <= allocated_size() <= Capacity().
ABSL_DCHECK_LE(size(), allocated_size());
ABSL_DCHECK_LE(allocated_size(), Capacity());
// This combines optimization mentioned in `SizeAtCapacity()` and simplifies
// `allocated_size()` in sso case.
return using_sso() ? (tagged_rep_or_elem_ != nullptr)
: rep()->allocated_size >= Capacity();
}
void* const* elements() const {
return using_sso() ? &tagged_rep_or_elem_ : +rep()->elements;
}
void** elements() {
return using_sso() ? &tagged_rep_or_elem_ : +rep()->elements;
}
void*& element_at(int index) {
if (using_sso()) {
ABSL_DCHECK_EQ(index, 0);
return tagged_rep_or_elem_;
}
return rep()->elements[index];
}
const void* element_at(int index) const {
return const_cast<RepeatedPtrFieldBase*>(this)->element_at(index);
}
int allocated_size() const {
return using_sso() ? (tagged_rep_or_elem_ != nullptr ? 1 : 0)
: rep()->allocated_size;
}
Rep* rep() {
ABSL_DCHECK(!using_sso());
return reinterpret_cast<Rep*>(
reinterpret_cast<uintptr_t>(tagged_rep_or_elem_) - 1);
}
const Rep* rep() const {
return const_cast<RepeatedPtrFieldBase*>(this)->rep();
}
bool using_sso() const {
return (reinterpret_cast<uintptr_t>(tagged_rep_or_elem_) & 1) == 0;
}
template <typename TypeHandler>
static inline Value<TypeHandler>* cast(void* element) {
return reinterpret_cast<Value<TypeHandler>*>(element);
}
template <typename TypeHandler>
static inline const Value<TypeHandler>* cast(const void* element) {
return reinterpret_cast<const Value<TypeHandler>*>(element);
}
template <typename TypeHandler>
static inline void Delete(void* obj, Arena* arena) {
TypeHandler::Delete(cast<TypeHandler>(obj), arena);
}
// Out-of-line helper routine for Clear() once the inlined check has
// determined the container is non-empty
template <typename TypeHandler>
PROTOBUF_NOINLINE void ClearNonEmpty() {
const int n = current_size_;
void* const* elems = elements();
int i = 0;
ABSL_DCHECK_GT(n, 0);
// do/while loop to avoid initial test because we know n > 0
do {
TypeHandler::Clear(cast<TypeHandler>(elems[i++]));
} while (i < n);
ExchangeCurrentSize(0);
}
// Merges messages from `from` into available, cleared messages sitting in the
// range `[size(), allocated_size())`. Returns the number of message merged
// which is `ClearedCount(), from.size())`.
// Note that this function does explicitly NOT update `current_size_`.
// This function is out of line as it should be the slow path: this scenario
// only happens when a caller constructs and fills a repeated field, then
// shrinks it, and then merges additional messages into it.
int MergeIntoClearedMessages(const RepeatedPtrFieldBase& from);
// Appends all messages from `from` to this instance, using the
// provided `copy_fn` copy function to copy existing messages.
void MergeFromConcreteMessage(const RepeatedPtrFieldBase& from,
CopyFn copy_fn);
// Extends capacity by at least |extend_amount|. Returns a pointer to the
// next available element slot.
//
// Pre-condition: |extend_amount| must be > 0.
void** InternalExtend(int extend_amount);
// Ensures that capacity is big enough to store one more allocated element.
inline void MaybeExtend() {
if (AllocatedSizeAtCapacity()) {
ABSL_DCHECK_EQ(allocated_size(), Capacity());
InternalExtend(1);
} else {
ABSL_DCHECK_NE(allocated_size(), Capacity());
}
}
// Ensures that capacity is at least `n` elements.
// Returns a pointer to the element directly beyond the last element.
inline void** InternalReserve(int n) {
if (n <= Capacity()) {
void** elements = using_sso() ? &tagged_rep_or_elem_ : rep()->elements;
return elements + current_size_;
}
return InternalExtend(n - Capacity());
}
// Internal helpers for Add that keep definition out-of-line.
void* AddMessageLite(ElementFactory factory);
void* AddString();
// Common implementation used by various Add* methods. `factory` is an object
// used to construct a new element unless there are spare cleared elements
// ready for reuse. Returns pointer to the new element.
//
// Note: avoid inlining this function in methods such as `Add()` as this would
// drastically increase binary size due to template instantiation and implicit
// inlining.
template <typename Factory>
void* AddInternal(Factory factory);
// A few notes on internal representation:
//
// We use an indirected approach, with struct Rep, to keep
// sizeof(RepeatedPtrFieldBase) equivalent to what it was before arena support
// was added; namely, 3 8-byte machine words on x86-64. An instance of Rep is
// allocated only when the repeated field is non-empty, and it is a
// dynamically-sized struct (the header is directly followed by elements[]).
// We place arena_ and current_size_ directly in the object to avoid cache
// misses due to the indirection, because these fields are checked frequently.
// Placing all fields directly in the RepeatedPtrFieldBase instance would cost
// significant performance for memory-sensitive workloads.
void* tagged_rep_or_elem_;
int current_size_;
int capacity_proxy_; // we store `capacity - kSSOCapacity` as an optimization
Arena* arena_;
};
// Appends all message values from `from` to this instance using the abstract
// message interface. This overload is used in places like reflection and
// other locations where the underlying type is unavailable
template <>
void RepeatedPtrFieldBase::MergeFrom<MessageLite>(
const RepeatedPtrFieldBase& from);
template <>
inline void RepeatedPtrFieldBase::MergeFrom<Message>(
const RepeatedPtrFieldBase& from) {
return MergeFrom<MessageLite>(from);
}
// Appends all `std::string` values from `from` to this instance.
template <>
void RepeatedPtrFieldBase::MergeFrom<std::string>(
const RepeatedPtrFieldBase& from);
template <typename Factory>
void* RepeatedPtrFieldBase::AddInternal(Factory factory) {
Arena* const arena = GetArena();
if (tagged_rep_or_elem_ == nullptr) {
ExchangeCurrentSize(1);
tagged_rep_or_elem_ = factory(arena);
return tagged_rep_or_elem_;
}
absl::PrefetchToLocalCache(tagged_rep_or_elem_);
if (using_sso()) {
if (current_size_ == 0) {
ExchangeCurrentSize(1);
return tagged_rep_or_elem_;
}
void*& result = *InternalExtend(1);
result = factory(arena);
Rep* r = rep();
r->allocated_size = 2;
ExchangeCurrentSize(2);
return result;
}
Rep* r = rep();
if (PROTOBUF_PREDICT_FALSE(SizeAtCapacity())) {
InternalExtend(1);
r = rep();
} else {
if (current_size_ != r->allocated_size) {
return r->elements[ExchangeCurrentSize(current_size_ + 1)];
}
}
++r->allocated_size;
void*& result = r->elements[ExchangeCurrentSize(current_size_ + 1)];
result = factory(arena);
return result;
}
PROTOBUF_EXPORT void InternalOutOfLineDeleteMessageLite(MessageLite* message);
template <typename GenericType>
class GenericTypeHandler {
public:
using Type = GenericType;
using Movable = IsMovable<Type>;
static constexpr auto GetNewFunc() { return Arena::DefaultConstruct<Type>; }
static inline Arena* GetArena(Type* value) {
return Arena::InternalGetArena(value);
}
static inline Type* New(Arena* arena) {
return static_cast<Type*>(Arena::DefaultConstruct<Type>(arena));
}
static inline Type* New(Arena* arena, Type&& value) {
return Arena::Create<Type>(arena, std::move(value));
}
static inline Type* NewFromPrototype(const Type* /*prototype*/,
Arena* arena = nullptr) {
return New(arena);
}
static inline void Delete(Type* value, Arena* arena) {
if (arena != nullptr) return;
#ifdef __cpp_if_constexpr
if constexpr (std::is_base_of<MessageLite, Type>::value) {
// Using virtual destructor to reduce generated code size that would have
// happened otherwise due to inlined `~Type()`.
InternalOutOfLineDeleteMessageLite(value);
} else {
delete value;
}
#else
delete value;
#endif
}
static inline void Clear(Type* value) { value->Clear(); }
static void Merge(const Type& from, Type* to);
static inline size_t SpaceUsedLong(const Type& value) {
return value.SpaceUsedLong();
}
};
// NewFromPrototypeHelper() is not defined inline here, as we will need to do a
// virtual function dispatch anyways to go from Message* to call New/Merge. (The
// additional helper is needed as a workaround for MSVC.)
PROTOBUF_EXPORT MessageLite* NewFromPrototypeHelper(
const MessageLite* prototype, Arena* arena);
template <>
inline MessageLite* GenericTypeHandler<MessageLite>::NewFromPrototype(
const MessageLite* prototype, Arena* arena) {
return NewFromPrototypeHelper(prototype, arena);
}
template <>
inline Arena* GenericTypeHandler<MessageLite>::GetArena(MessageLite* value) {
return value->GetArena();
}
template <typename GenericType>
PROTOBUF_NOINLINE inline void GenericTypeHandler<GenericType>::Merge(
const GenericType& from, GenericType* to) {
to->MergeFrom(from);
}
template <>
PROTOBUF_EXPORT void GenericTypeHandler<MessageLite>::Merge(
const MessageLite& from, MessageLite* to);
// Message specialization bodies defined in message.cc. This split is necessary
// to allow proto2-lite (which includes this header) to be independent of
// Message.
template <>
PROTOBUF_EXPORT Message* GenericTypeHandler<Message>::NewFromPrototype(
const Message* prototype, Arena* arena);
template <>
PROTOBUF_EXPORT Arena* GenericTypeHandler<Message>::GetArena(Message* value);
PROTOBUF_EXPORT void* NewStringElement(Arena* arena);
template <>
class GenericTypeHandler<std::string> {
public:
using Type = std::string;
using Movable = IsMovable<Type>;
static constexpr auto GetNewFunc() { return NewStringElement; }
static inline Arena* GetArena(Type*) { return nullptr; }
static PROTOBUF_NOINLINE Type* New(Arena* arena) {
return Arena::Create<Type>(arena);
}
static PROTOBUF_NOINLINE Type* New(Arena* arena, Type&& value) {
return Arena::Create<Type>(arena, std::move(value));
}
static inline Type* NewFromPrototype(const Type*, Arena* arena) {
return New(arena);
}
static inline void Delete(Type* value, Arena* arena) {
if (arena == nullptr) {
delete value;
}
}
static inline void Clear(Type* value) { value->clear(); }
static inline void Merge(const Type& from, Type* to) { *to = from; }
static size_t SpaceUsedLong(const Type& value) {
return sizeof(value) + StringSpaceUsedExcludingSelfLong(value);
}
};
} // namespace internal
// RepeatedPtrField is like RepeatedField, but used for repeated strings or
// Messages.
template <typename Element>
class RepeatedPtrField final : private internal::RepeatedPtrFieldBase {
static_assert(!std::is_const<Element>::value,
"We do not support const value types.");
static_assert(!std::is_volatile<Element>::value,
"We do not support volatile value types.");
static_assert(!std::is_pointer<Element>::value,
"We do not support pointer value types.");
static_assert(!std::is_reference<Element>::value,
"We do not support reference value types.");
static constexpr PROTOBUF_ALWAYS_INLINE void StaticValidityCheck() {
static_assert(
absl::disjunction<
internal::is_supported_string_type<Element>,
internal::is_supported_message_type<Element>>::value,
"We only support string and Message types in RepeatedPtrField.");
}
public:
using value_type = Element;
using size_type = int;
using difference_type = ptrdiff_t;
using reference = Element&;
using const_reference = const Element&;
using pointer = Element*;
using const_pointer = const Element*;
using iterator = internal::RepeatedPtrIterator<Element>;
using const_iterator = internal::RepeatedPtrIterator<const Element>;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
// Custom STL-like iterator that iterates over and returns the underlying
// pointers to Element rather than Element itself.
using pointer_iterator =
internal::RepeatedPtrOverPtrsIterator<Element*, void*>;
using const_pointer_iterator =
internal::RepeatedPtrOverPtrsIterator<const Element* const,
const void* const>;
constexpr RepeatedPtrField();
// Arena enabled constructors: for internal use only.
RepeatedPtrField(internal::InternalVisibility, Arena* arena)
: RepeatedPtrField(arena) {}
RepeatedPtrField(internal::InternalVisibility, Arena* arena,
const RepeatedPtrField& rhs)
: RepeatedPtrField(arena, rhs) {}
// TODO: make constructor private
explicit RepeatedPtrField(Arena* arena);
template <typename Iter,
typename = typename std::enable_if<std::is_constructible<
Element, decltype(*std::declval<Iter>())>::value>::type>
RepeatedPtrField(Iter begin, Iter end);
RepeatedPtrField(const RepeatedPtrField& rhs)
: RepeatedPtrField(nullptr, rhs) {}
RepeatedPtrField& operator=(const RepeatedPtrField& other)
ABSL_ATTRIBUTE_LIFETIME_BOUND;
RepeatedPtrField(RepeatedPtrField&& rhs) noexcept
: RepeatedPtrField(nullptr, std::move(rhs)) {}
RepeatedPtrField& operator=(RepeatedPtrField&& other) noexcept
ABSL_ATTRIBUTE_LIFETIME_BOUND;
~RepeatedPtrField();
bool empty() const;
int size() const;
const_reference Get(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
pointer Mutable(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Unlike std::vector, adding an element to a RepeatedPtrField doesn't always
// make a new element; it might re-use an element left over from when the
// field was Clear()'d or resize()'d smaller. For this reason, Add() is the
// fastest API for adding a new element.
pointer Add() ABSL_ATTRIBUTE_LIFETIME_BOUND;
// `Add(std::move(value));` is equivalent to `*Add() = std::move(value);`
// It will either move-construct to the end of this field, or swap value
// with the new-or-recycled element at the end of this field. Note that
// this operation is very slow if this RepeatedPtrField is not on the
// same Arena, if any, as `value`.
void Add(Element&& value);
// Copying to the end of this RepeatedPtrField is slowest of all; it can't
// reliably copy-construct to the last element of this RepeatedPtrField, for
// example (unlike std::vector).
// We currently block this API. The right way to add to the end is to call
// Add() and modify the element it points to.
// If you must add an existing value, call `*Add() = value;`
void Add(const Element& value) = delete;
// Append elements in the range [begin, end) after reserving
// the appropriate number of elements.
template <typename Iter>
void Add(Iter begin, Iter end);
const_reference operator[](int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return Get(index);
}
reference operator[](int index) ABSL_ATTRIBUTE_LIFETIME_BOUND {
return *Mutable(index);
}
const_reference at(int index) const ABSL_ATTRIBUTE_LIFETIME_BOUND;
reference at(int index) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Removes the last element in the array.
// Ownership of the element is retained by the array.
void RemoveLast();
// Deletes elements with indices in the range [start .. start+num-1].
// Caution: moves all elements with indices [start+num .. ].
// Calling this routine inside a loop can cause quadratic behavior.
void DeleteSubrange(int start, int num);
ABSL_ATTRIBUTE_REINITIALIZES void Clear();
// Appends the elements from `other` after this instance.
// The end result length will be `other.size() + this->size()`.
void MergeFrom(const RepeatedPtrField& other);
// Replaces the contents with a copy of the elements from `other`.
ABSL_ATTRIBUTE_REINITIALIZES void CopyFrom(const RepeatedPtrField& other);
// Replaces the contents with RepeatedPtrField(begin, end).
template <typename Iter>
ABSL_ATTRIBUTE_REINITIALIZES void Assign(Iter begin, Iter end);
// Reserves space to expand the field to at least the given size. This only
// resizes the pointer array; it doesn't allocate any objects. If the
// array is grown, it will always be at least doubled in size.
void Reserve(int new_size);
int Capacity() const;
// Gets the underlying array. This pointer is possibly invalidated by
// any add or remove operation.
Element**
mutable_data() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const Element* const* data() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Swaps entire contents with "other". If they are on separate arenas, then
// copies data.
void Swap(RepeatedPtrField* other);
// Swaps entire contents with "other". Caller should guarantee that either
// both fields are on the same arena or both are on the heap. Swapping between
// different arenas with this function is disallowed and is caught via
// ABSL_DCHECK.
void UnsafeArenaSwap(RepeatedPtrField* other);
// Swaps two elements.
void SwapElements(int index1, int index2);
iterator begin() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
iterator end() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_iterator cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
reverse_iterator rbegin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(end());
}
reverse_iterator rend() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return reverse_iterator(begin());
}
const_reverse_iterator rend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_reverse_iterator(begin());
}
pointer_iterator pointer_begin() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_pointer_iterator pointer_begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
pointer_iterator pointer_end() ABSL_ATTRIBUTE_LIFETIME_BOUND;
const_pointer_iterator pointer_end() const ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Returns (an estimate of) the number of bytes used by the repeated field,
// excluding sizeof(*this).
size_t SpaceUsedExcludingSelfLong() const;
int SpaceUsedExcludingSelf() const {
return internal::ToIntSize(SpaceUsedExcludingSelfLong());
}
// Advanced memory management --------------------------------------
// When hardcore memory management becomes necessary -- as it sometimes
// does here at Google -- the following methods may be useful.
// Adds an already-allocated object, passing ownership to the
// RepeatedPtrField.
//
// Note that some special behavior occurs with respect to arenas:
//
// (i) if this field holds submessages, the new submessage will be copied if
// the original is in an arena and this RepeatedPtrField is either in a
// different arena, or on the heap.
// (ii) if this field holds strings, the passed-in string *must* be
// heap-allocated, not arena-allocated. There is no way to dynamically check
// this at runtime, so User Beware.
// Requires: value != nullptr
void AddAllocated(Element* value);
// Removes and returns the last element, passing ownership to the caller.
// Requires: size() > 0
//
// If this RepeatedPtrField is on an arena, an object copy is required to pass
// ownership back to the user (for compatible semantics). Use
// UnsafeArenaReleaseLast() if this behavior is undesired.
PROTOBUF_NODISCARD Element* ReleaseLast();
// Adds an already-allocated object, skipping arena-ownership checks. The user
// must guarantee that the given object is in the same arena as this
// RepeatedPtrField.
// It is also useful in legacy code that uses temporary ownership to avoid
// copies. Example:
// RepeatedPtrField<T> temp_field;
// temp_field.UnsafeArenaAddAllocated(new T);
// ... // Do something with temp_field
// temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
// If you put temp_field on the arena this fails, because the ownership
// transfers to the arena at the "AddAllocated" call and is not released
// anymore, causing a double delete. UnsafeArenaAddAllocated prevents this.
// Requires: value != nullptr
void UnsafeArenaAddAllocated(Element* value);
// Removes and returns the last element. Unlike ReleaseLast, the returned
// pointer is always to the original object. This may be in an arena, in
// which case it would have the arena's lifetime.
// Requires: current_size_ > 0
pointer UnsafeArenaReleaseLast();
// Extracts elements with indices in the range "[start .. start+num-1]".
// The caller assumes ownership of the extracted elements and is responsible
// for deleting them when they are no longer needed.
// If "elements" is non-nullptr, then pointers to the extracted elements
// are stored in "elements[0 .. num-1]" for the convenience of the caller.
// If "elements" is nullptr, then the caller must use some other mechanism
// to perform any further operations (like deletion) on these elements.
// Caution: implementation also moves elements with indices [start+num ..].
// Calling this routine inside a loop can cause quadratic behavior.
//
// Memory copying behavior is identical to ReleaseLast(), described above: if
// this RepeatedPtrField is on an arena, an object copy is performed for each
// returned element, so that all returned element pointers are to
// heap-allocated copies. If this copy is not desired, the user should call
// UnsafeArenaExtractSubrange().
void ExtractSubrange(int start, int num, Element** elements);
// Identical to ExtractSubrange() described above, except that no object
// copies are ever performed. Instead, the raw object pointers are returned.
// Thus, if on an arena, the returned objects must not be freed, because they
// will not be heap-allocated objects.
void UnsafeArenaExtractSubrange(int start, int num, Element** elements);
// When elements are removed by calls to RemoveLast() or Clear(), they
// are not actually freed. Instead, they are cleared and kept so that
// they can be reused later. This can save lots of CPU time when
// repeatedly reusing a protocol message for similar purposes.
//
// Hardcore programs may choose to manipulate these cleared objects
// to better optimize memory management using the following routines.
// Gets the number of cleared objects that are currently being kept
// around for reuse.
ABSL_DEPRECATED("This will be removed in a future release")
int ClearedCount() const;
// Removes the element referenced by position.
//
// Returns an iterator to the element immediately following the removed
// element.
//
// Invalidates all iterators at or after the removed element, including end().
iterator erase(const_iterator position) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Removes the elements in the range [first, last).
//
// Returns an iterator to the element immediately following the removed range.
//
// Invalidates all iterators at or after the removed range, including end().
iterator erase(const_iterator first,
const_iterator last) ABSL_ATTRIBUTE_LIFETIME_BOUND;
// Gets the arena on which this RepeatedPtrField stores its elements.
inline Arena* GetArena();
// For internal use only.
//
// This is public due to it being called by generated code.
void InternalSwap(RepeatedPtrField* PROTOBUF_RESTRICT other) {
internal::RepeatedPtrFieldBase::InternalSwap(other);
}
using RepeatedPtrFieldBase::InternalGetArenaOffset;
private:
using InternalArenaConstructable_ = void;
using DestructorSkippable_ = void;
friend class Arena;
friend class internal::TcParser;
template <typename T>
friend struct WeakRepeatedPtrField;
// Note: RepeatedPtrField SHOULD NOT be subclassed by users.
using TypeHandler = internal::GenericTypeHandler<Element>;
RepeatedPtrField(Arena* arena, const RepeatedPtrField& rhs);
RepeatedPtrField(Arena* arena, RepeatedPtrField&& rhs);
void AddAllocatedForParse(Element* p) {
return RepeatedPtrFieldBase::AddAllocatedForParse(p);
}
};
// -------------------------------------------------------------------
template <typename Element>
constexpr RepeatedPtrField<Element>::RepeatedPtrField()
: RepeatedPtrFieldBase() {
StaticValidityCheck();
}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena)
: RepeatedPtrFieldBase(arena) {
// We can't have StaticValidityCheck here because that requires Element to be
// a complete type, and in split repeated fields cases, we call
// CreateMessage<RepeatedPtrField<T>> for incomplete Ts.
}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena,
const RepeatedPtrField& rhs)
: RepeatedPtrFieldBase(arena) {
StaticValidityCheck();
MergeFrom(rhs);
}
template <typename Element>
template <typename Iter, typename>
inline RepeatedPtrField<Element>::RepeatedPtrField(Iter begin, Iter end) {
StaticValidityCheck();
Add(begin, end);
}
template <typename Element>
RepeatedPtrField<Element>::~RepeatedPtrField() {
StaticValidityCheck();
if (!NeedsDestroy()) return;
#ifdef __cpp_if_constexpr
if constexpr (std::is_base_of<MessageLite, Element>::value) {
#else
if (std::is_base_of<MessageLite, Element>::value) {
#endif
DestroyProtos();
} else {
Destroy<TypeHandler>();
}
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
const RepeatedPtrField& other) ABSL_ATTRIBUTE_LIFETIME_BOUND {
if (this != &other) CopyFrom(other);
return *this;
}
template <typename Element>
inline RepeatedPtrField<Element>::RepeatedPtrField(Arena* arena,
RepeatedPtrField&& rhs)
: RepeatedPtrField(arena) {
// We don't just call Swap(&rhs) here because it would perform 3 copies if rhs
// is on a different arena.
if (internal::CanMoveWithInternalSwap(arena, rhs.GetArena())) {
InternalSwap(&rhs);
} else {
CopyFrom(rhs);
}
}
template <typename Element>
inline RepeatedPtrField<Element>& RepeatedPtrField<Element>::operator=(
RepeatedPtrField&& other) noexcept ABSL_ATTRIBUTE_LIFETIME_BOUND {
// We don't just call Swap(&other) here because it would perform 3 copies if
// the two fields are on different arenas.
if (this != &other) {
if (internal::CanMoveWithInternalSwap(GetArena(), other.GetArena())) {
InternalSwap(&other);
} else {
CopyFrom(other);
}
}
return *this;
}
template <typename Element>
inline bool RepeatedPtrField<Element>::empty() const {
return RepeatedPtrFieldBase::empty();
}
template <typename Element>
inline int RepeatedPtrField<Element>::size() const {
return RepeatedPtrFieldBase::size();
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::Get(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::Get<TypeHandler>(index);
}
template <typename Element>
inline const Element& RepeatedPtrField<Element>::at(int index) const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::at<TypeHandler>(index);
}
template <typename Element>
inline Element& RepeatedPtrField<Element>::at(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::at<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Mutable(int index)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::Mutable<TypeHandler>(index);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::Add() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::Add<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Add(Element&& value) {
RepeatedPtrFieldBase::Add<TypeHandler>(std::move(value));
}
template <typename Element>
template <typename Iter>
inline void RepeatedPtrField<Element>::Add(Iter begin, Iter end) {
if (std::is_base_of<
std::forward_iterator_tag,
typename std::iterator_traits<Iter>::iterator_category>::value) {
int reserve = static_cast<int>(std::distance(begin, end));
Reserve(size() + reserve);
}
for (; begin != end; ++begin) {
*Add() = *begin;
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::RemoveLast() {
RepeatedPtrFieldBase::RemoveLast<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::DeleteSubrange(int start, int num) {
ABSL_DCHECK_GE(start, 0);
ABSL_DCHECK_GE(num, 0);
ABSL_DCHECK_LE(start + num, size());
void** subrange = raw_mutable_data() + start;
Arena* arena = GetArena();
for (int i = 0; i < num; ++i) {
using H = CommonHandler<TypeHandler>;
H::Delete(static_cast<Element*>(subrange[i]), arena);
}
UnsafeArenaExtractSubrange(start, num, nullptr);
}
template <typename Element>
inline void RepeatedPtrField<Element>::ExtractSubrange(int start, int num,
Element** elements) {
ABSL_DCHECK_GE(start, 0);
ABSL_DCHECK_GE(num, 0);
ABSL_DCHECK_LE(start + num, size());
if (num == 0) return;
ABSL_DCHECK_NE(elements, nullptr)
<< "Releasing elements without transferring ownership is an unsafe "
"operation. Use UnsafeArenaExtractSubrange.";
if (elements != nullptr) {
Arena* arena = GetArena();
auto* extracted = data() + start;
if (internal::DebugHardenForceCopyInRelease()) {
// Always copy.
for (int i = 0; i < num; ++i) {
elements[i] = copy<TypeHandler>(extracted[i]);
}
if (arena == nullptr) {
for (int i = 0; i < num; ++i) {
delete extracted[i];
}
}
} else {
// If we're on an arena, we perform a copy for each element so that the
// returned elements are heap-allocated. Otherwise, just forward it.
if (arena != nullptr) {
for (int i = 0; i < num; ++i) {
elements[i] = copy<TypeHandler>(extracted[i]);
}
} else {
memcpy(elements, extracted, num * sizeof(Element*));
}
}
}
CloseGap(start, num);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaExtractSubrange(
int start, int num, Element** elements) {
ABSL_DCHECK_GE(start, 0);
ABSL_DCHECK_GE(num, 0);
ABSL_DCHECK_LE(start + num, size());
if (num > 0) {
// Save the values of the removed elements if requested.
if (elements != nullptr) {
memcpy(elements, data() + start, num * sizeof(Element*));
}
CloseGap(start, num);
}
}
template <typename Element>
inline void RepeatedPtrField<Element>::Clear() {
RepeatedPtrFieldBase::Clear<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::MergeFrom(
const RepeatedPtrField& other) {
if (other.empty()) return;
RepeatedPtrFieldBase::MergeFrom<Element>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::CopyFrom(const RepeatedPtrField& other) {
RepeatedPtrFieldBase::CopyFrom<TypeHandler>(other);
}
template <typename Element>
template <typename Iter>
inline void RepeatedPtrField<Element>::Assign(Iter begin, Iter end) {
Clear();
Add(begin, end);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator position)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return erase(position, position + 1);
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::erase(const_iterator first, const_iterator last)
ABSL_ATTRIBUTE_LIFETIME_BOUND {
size_type pos_offset = static_cast<size_type>(std::distance(cbegin(), first));
size_type last_offset = static_cast<size_type>(std::distance(cbegin(), last));
DeleteSubrange(pos_offset, last_offset - pos_offset);
return begin() + pos_offset;
}
template <typename Element>
inline Element** RepeatedPtrField<Element>::mutable_data()
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::mutable_data<TypeHandler>();
}
template <typename Element>
inline const Element* const* RepeatedPtrField<Element>::data() const
ABSL_ATTRIBUTE_LIFETIME_BOUND {
return RepeatedPtrFieldBase::data<TypeHandler>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Swap(RepeatedPtrField* other) {
if (this == other) return;
RepeatedPtrFieldBase::Swap<TypeHandler>(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaSwap(
RepeatedPtrField* other) {
if (this == other) return;
ABSL_DCHECK_EQ(GetArena(), other->GetArena());
RepeatedPtrFieldBase::InternalSwap(other);
}
template <typename Element>
inline void RepeatedPtrField<Element>::SwapElements(int index1, int index2) {
RepeatedPtrFieldBase::SwapElements(index1, index2);
}
template <typename Element>
inline Arena* RepeatedPtrField<Element>::GetArena() {
return RepeatedPtrFieldBase::GetArena();
}
template <typename Element>
inline size_t RepeatedPtrField<Element>::SpaceUsedExcludingSelfLong() const {
// `google::protobuf::Message` has a virtual method `SpaceUsedLong`, hence we can
// instantiate just one function for all protobuf messages.
// Note: std::is_base_of requires that `Element` is a concrete class.
using H = typename std::conditional<std::is_base_of<Message, Element>::value,
internal::GenericTypeHandler<Message>,
TypeHandler>::type;
return RepeatedPtrFieldBase::SpaceUsedExcludingSelfLong<H>();
}
template <typename Element>
inline void RepeatedPtrField<Element>::AddAllocated(Element* value) {
RepeatedPtrFieldBase::AddAllocated<TypeHandler>(value);
}
template <typename Element>
inline void RepeatedPtrField<Element>::UnsafeArenaAddAllocated(Element* value) {
RepeatedPtrFieldBase::UnsafeArenaAddAllocated<TypeHandler>(value);
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::ReleaseLast() {
return RepeatedPtrFieldBase::ReleaseLast<TypeHandler>();
}
template <typename Element>
inline Element* RepeatedPtrField<Element>::UnsafeArenaReleaseLast() {
return RepeatedPtrFieldBase::UnsafeArenaReleaseLast<TypeHandler>();
}
template <typename Element>
inline int RepeatedPtrField<Element>::ClearedCount() const {
return RepeatedPtrFieldBase::ClearedCount();
}
template <typename Element>
inline void RepeatedPtrField<Element>::Reserve(int new_size) {
return RepeatedPtrFieldBase::Reserve(new_size);
}
template <typename Element>
inline int RepeatedPtrField<Element>::Capacity() const {
return RepeatedPtrFieldBase::Capacity();
}
// -------------------------------------------------------------------
namespace internal {
// STL-like iterator implementation for RepeatedPtrField. You should not
// refer to this class directly; use RepeatedPtrField<T>::iterator instead.
//
// The iterator for RepeatedPtrField<T>, RepeatedPtrIterator<T>, is
// very similar to iterator_ptr<T**> in util/gtl/iterator_adaptors.h,
// but adds random-access operators and is modified to wrap a void** base
// iterator (since RepeatedPtrField stores its array as a void* array and
// casting void** to T** would violate C++ aliasing rules).
//
// This code based on net/proto/proto-array-internal.h by Jeffrey Yasskin
// (jyasskin@google.com).
template <typename Element>
class RepeatedPtrIterator {
public:
using iterator = RepeatedPtrIterator<Element>;
using iterator_category = std::random_access_iterator_tag;
using value_type = typename std::remove_const<Element>::type;
using difference_type = std::ptrdiff_t;
using pointer = Element*;
using reference = Element&;
RepeatedPtrIterator() : it_(nullptr) {}
explicit RepeatedPtrIterator(void* const* it) : it_(it) {}
// Allows "upcasting" from RepeatedPtrIterator<T**> to
// RepeatedPtrIterator<const T*const*>.
template <typename OtherElement,
typename std::enable_if<std::is_convertible<
OtherElement*, pointer>::value>::type* = nullptr>
RepeatedPtrIterator(const RepeatedPtrIterator<OtherElement>& other)
: it_(other.it_) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(*it_); }
pointer operator->() const { return &(operator*()); }
// {inc,dec}rementable
iterator& operator++() {
++it_;
return *this;
}
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() {
--it_;
return *this;
}
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
friend bool operator==(const iterator& x, const iterator& y) {
return x.it_ == y.it_;
}
friend bool operator!=(const iterator& x, const iterator& y) {
return x.it_ != y.it_;
}
// less_than_comparable
friend bool operator<(const iterator& x, const iterator& y) {
return x.it_ < y.it_;
}
friend bool operator<=(const iterator& x, const iterator& y) {
return x.it_ <= y.it_;
}
friend bool operator>(const iterator& x, const iterator& y) {
return x.it_ > y.it_;
}
friend bool operator>=(const iterator& x, const iterator& y) {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, const difference_type d) {
it += d;
return it;
}
friend iterator operator+(const difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
friend difference_type operator-(iterator it1, iterator it2) {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement>
friend class RepeatedPtrIterator;
// The internal iterator.
void* const* it_;
};
template <typename Traits, typename = void>
struct IteratorConceptSupport {
using tag = typename Traits::iterator_category;
};
template <typename Traits>
struct IteratorConceptSupport<Traits,
absl::void_t<typename Traits::iterator_concept>> {
using tag = typename Traits::iterator_concept;
};
// Provides an iterator that operates on pointers to the underlying objects
// rather than the objects themselves as RepeatedPtrIterator does.
// Consider using this when working with stl algorithms that change
// the array.
// The VoidPtr template parameter holds the type-agnostic pointer value
// referenced by the iterator. It should either be "void *" for a mutable
// iterator, or "const void* const" for a constant iterator.
template <typename Element, typename VoidPtr>
class RepeatedPtrOverPtrsIterator {
private:
using traits =
std::iterator_traits<typename std::remove_const<Element>::type*>;
public:
using value_type = typename traits::value_type;
using difference_type = typename traits::difference_type;
using pointer = Element*;
using reference = Element&;
using iterator_category = typename traits::iterator_category;
using iterator_concept = typename IteratorConceptSupport<traits>::tag;
using iterator = RepeatedPtrOverPtrsIterator<Element, VoidPtr>;
RepeatedPtrOverPtrsIterator() : it_(nullptr) {}
explicit RepeatedPtrOverPtrsIterator(VoidPtr* it) : it_(it) {}
// Allows "upcasting" from RepeatedPtrOverPtrsIterator<T**> to
// RepeatedPtrOverPtrsIterator<const T*const*>.
template <
typename OtherElement, typename OtherVoidPtr,
typename std::enable_if<
std::is_convertible<OtherElement*, pointer>::value &&
std::is_convertible<OtherVoidPtr*, VoidPtr>::value>::type* = nullptr>
RepeatedPtrOverPtrsIterator(
const RepeatedPtrOverPtrsIterator<OtherElement, OtherVoidPtr>& other)
: it_(other.it_) {}
// dereferenceable
reference operator*() const { return *reinterpret_cast<Element*>(it_); }
pointer operator->() const { return reinterpret_cast<Element*>(it_); }
// {inc,dec}rementable
iterator& operator++() {
++it_;
return *this;
}
iterator operator++(int) { return iterator(it_++); }
iterator& operator--() {
--it_;
return *this;
}
iterator operator--(int) { return iterator(it_--); }
// equality_comparable
friend bool operator==(const iterator& x, const iterator& y) {
return x.it_ == y.it_;
}
friend bool operator!=(const iterator& x, const iterator& y) {
return x.it_ != y.it_;
}
// less_than_comparable
friend bool operator<(const iterator& x, const iterator& y) {
return x.it_ < y.it_;
}
friend bool operator<=(const iterator& x, const iterator& y) {
return x.it_ <= y.it_;
}
friend bool operator>(const iterator& x, const iterator& y) {
return x.it_ > y.it_;
}
friend bool operator>=(const iterator& x, const iterator& y) {
return x.it_ >= y.it_;
}
// addable, subtractable
iterator& operator+=(difference_type d) {
it_ += d;
return *this;
}
friend iterator operator+(iterator it, difference_type d) {
it += d;
return it;
}
friend iterator operator+(difference_type d, iterator it) {
it += d;
return it;
}
iterator& operator-=(difference_type d) {
it_ -= d;
return *this;
}
friend iterator operator-(iterator it, difference_type d) {
it -= d;
return it;
}
// indexable
reference operator[](difference_type d) const { return *(*this + d); }
// random access iterator
friend difference_type operator-(iterator it1, iterator it2) {
return it1.it_ - it2.it_;
}
private:
template <typename OtherElement, typename OtherVoidPtr>
friend class RepeatedPtrOverPtrsIterator;
// The internal iterator.
VoidPtr* it_;
};
} // namespace internal
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(raw_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cbegin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return begin();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::iterator
RepeatedPtrField<Element>::end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return iterator(raw_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_iterator
RepeatedPtrField<Element>::cend() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return end();
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_begin() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return pointer_iterator(raw_mutable_data());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_begin() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_pointer_iterator(const_cast<const void* const*>(raw_data()));
}
template <typename Element>
inline typename RepeatedPtrField<Element>::pointer_iterator
RepeatedPtrField<Element>::pointer_end() ABSL_ATTRIBUTE_LIFETIME_BOUND {
return pointer_iterator(raw_mutable_data() + size());
}
template <typename Element>
inline typename RepeatedPtrField<Element>::const_pointer_iterator
RepeatedPtrField<Element>::pointer_end() const ABSL_ATTRIBUTE_LIFETIME_BOUND {
return const_pointer_iterator(
const_cast<const void* const*>(raw_data() + size()));
}
// Iterators and helper functions that follow the spirit of the STL
// std::back_insert_iterator and std::back_inserter but are tailor-made
// for RepeatedField and RepeatedPtrField. Typical usage would be:
//
// std::copy(some_sequence.begin(), some_sequence.end(),
// RepeatedFieldBackInserter(proto.mutable_sequence()));
//
// Ported by johannes from util/gtl/proto-array-iterators.h
namespace internal {
// A back inserter for RepeatedPtrField objects.
template <typename T>
class RepeatedPtrFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
RepeatedPtrFieldBackInsertIterator(RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
RepeatedPtrFieldBackInsertIterator<T>& operator=(const T& value) {
*field_->Add() = value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(
const T* const ptr_to_value) {
*field_->Add() = *ptr_to_value;
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator=(T&& value) {
*field_->Add() = std::move(value);
return *this;
}
RepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
RepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
RepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// A back inserter for RepeatedPtrFields that inserts by transferring ownership
// of a pointer.
template <typename T>
class AllocatedRepeatedPtrFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit AllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T* const ptr_to_value) {
field_->AddAllocated(ptr_to_value);
return *this;
}
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() { return *this; }
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() { return *this; }
AllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
// Almost identical to AllocatedRepeatedPtrFieldBackInsertIterator. This one
// uses the UnsafeArenaAddAllocated instead.
template <typename T>
class UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator {
public:
using iterator_category = std::output_iterator_tag;
using value_type = T;
using pointer = void;
using reference = void;
using difference_type = std::ptrdiff_t;
explicit UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator(
RepeatedPtrField<T>* const mutable_field)
: field_(mutable_field) {}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator=(
T const* const ptr_to_value) {
field_->UnsafeArenaAddAllocated(const_cast<T*>(ptr_to_value));
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator*() {
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++() {
return *this;
}
UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>& operator++(
int /* unused */) {
return *this;
}
private:
RepeatedPtrField<T>* field_;
};
} // namespace internal
// Provides a back insert iterator for RepeatedPtrField instances,
// similar to std::back_inserter().
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Special back insert iterator for RepeatedPtrField instances, just in
// case someone wants to write generic template code that can access both
// RepeatedFields and RepeatedPtrFields using a common name.
template <typename T>
internal::RepeatedPtrFieldBackInsertIterator<T> RepeatedFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::RepeatedPtrFieldBackInsertIterator<T>(mutable_field);
}
// Provides a back insert iterator for RepeatedPtrField instances
// similar to std::back_inserter() which transfers the ownership while
// copying elements.
template <typename T>
internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>
AllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::AllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
// Similar to AllocatedRepeatedPtrFieldBackInserter, using
// UnsafeArenaAddAllocated instead of AddAllocated.
// This is slightly faster if that matters. It is also useful in legacy code
// that uses temporary ownership to avoid copies. Example:
// RepeatedPtrField<T> temp_field;
// temp_field.UnsafeArenaAddAllocated(new T);
// ... // Do something with temp_field
// temp_field.UnsafeArenaExtractSubrange(0, temp_field.size(), nullptr);
// Putting temp_field on the arena fails because the ownership transfers to the
// arena at the "AddAllocated" call and is not released anymore causing a
// double delete. This function uses UnsafeArenaAddAllocated to prevent this.
template <typename T>
internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>
UnsafeArenaAllocatedRepeatedPtrFieldBackInserter(
RepeatedPtrField<T>* const mutable_field) {
return internal::UnsafeArenaAllocatedRepeatedPtrFieldBackInsertIterator<T>(
mutable_field);
}
namespace internal {
// Size optimization for `memswap<N>` - supplied below N is used by every
// `RepeatedPtrField<T>`.
extern template PROTOBUF_EXPORT_TEMPLATE_DECLARE void
memswap<ArenaOffsetHelper<RepeatedPtrFieldBase>::value>(
char* PROTOBUF_RESTRICT, char* PROTOBUF_RESTRICT);
} // namespace internal
} // namespace protobuf
} // namespace google
#include "google/protobuf/port_undef.inc"
#endif // GOOGLE_PROTOBUF_REPEATED_PTR_FIELD_H__