| #region Copyright notice and license |
| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // https://developers.google.com/protocol-buffers/ |
| // |
| // Redistribution and use in source and binary forms, with or without |
| // modification, are permitted provided that the following conditions are |
| // met: |
| // |
| // * Redistributions of source code must retain the above copyright |
| // notice, this list of conditions and the following disclaimer. |
| // * Redistributions in binary form must reproduce the above |
| // copyright notice, this list of conditions and the following disclaimer |
| // in the documentation and/or other materials provided with the |
| // distribution. |
| // * Neither the name of Google Inc. nor the names of its |
| // contributors may be used to endorse or promote products derived from |
| // this software without specific prior written permission. |
| // |
| // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| #endregion |
| |
| using System; |
| using System.Buffers; |
| using System.Buffers.Binary; |
| using System.Collections.Generic; |
| using System.IO; |
| using System.Runtime.CompilerServices; |
| using System.Runtime.InteropServices; |
| using System.Security; |
| |
| namespace Google.Protobuf |
| { |
| /// <summary> |
| /// Primitives for parsing protobuf wire format. |
| /// </summary> |
| [SecuritySafeCritical] |
| internal static class ParsingPrimitives |
| { |
| private const int StackallocThreshold = 256; |
| |
| /// <summary> |
| /// Reads a length for length-delimited data. |
| /// </summary> |
| /// <remarks> |
| /// This is internally just reading a varint, but this method exists |
| /// to make the calling code clearer. |
| /// </remarks> |
| [MethodImpl(MethodImplOptions.AggressiveInlining)] |
| public static int ParseLength(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| return (int)ParseRawVarint32(ref buffer, ref state); |
| } |
| |
| /// <summary> |
| /// Parses the next tag. |
| /// If the end of logical stream was reached, an invalid tag of 0 is returned. |
| /// </summary> |
| public static uint ParseTag(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| // The "nextTag" logic is there only as an optimization for reading non-packed repeated / map |
| // fields and is strictly speaking not necessary. |
| // TODO(jtattermusch): look into simplifying the ParseTag logic. |
| if (state.hasNextTag) |
| { |
| state.lastTag = state.nextTag; |
| state.hasNextTag = false; |
| return state.lastTag; |
| } |
| |
| // Optimize for the incredibly common case of having at least two bytes left in the buffer, |
| // and those two bytes being enough to get the tag. This will be true for fields up to 4095. |
| if (state.bufferPos + 2 <= state.bufferSize) |
| { |
| int tmp = buffer[state.bufferPos++]; |
| if (tmp < 128) |
| { |
| state.lastTag = (uint)tmp; |
| } |
| else |
| { |
| int result = tmp & 0x7f; |
| if ((tmp = buffer[state.bufferPos++]) < 128) |
| { |
| result |= tmp << 7; |
| state.lastTag = (uint) result; |
| } |
| else |
| { |
| // Nope, rewind and go the potentially slow route. |
| state.bufferPos -= 2; |
| state.lastTag = ParsingPrimitives.ParseRawVarint32(ref buffer, ref state); |
| } |
| } |
| } |
| else |
| { |
| if (SegmentedBufferHelper.IsAtEnd(ref buffer, ref state)) |
| { |
| state.lastTag = 0; |
| return 0; |
| } |
| |
| state.lastTag = ParsingPrimitives.ParseRawVarint32(ref buffer, ref state); |
| } |
| if (WireFormat.GetTagFieldNumber(state.lastTag) == 0) |
| { |
| // If we actually read a tag with a field of 0, that's not a valid tag. |
| throw InvalidProtocolBufferException.InvalidTag(); |
| } |
| return state.lastTag; |
| } |
| |
| /// <summary> |
| /// Peeks at the next tag in the stream. If it matches <paramref name="tag"/>, |
| /// the tag is consumed and the method returns <c>true</c>; otherwise, the |
| /// stream is left in the original position and the method returns <c>false</c>. |
| /// </summary> |
| public static bool MaybeConsumeTag(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, uint tag) |
| { |
| if (PeekTag(ref buffer, ref state) == tag) |
| { |
| state.hasNextTag = false; |
| return true; |
| } |
| return false; |
| } |
| |
| /// <summary> |
| /// Peeks at the next field tag. This is like calling <see cref="ParseTag"/>, but the |
| /// tag is not consumed. (So a subsequent call to <see cref="ParseTag"/> will return the |
| /// same value.) |
| /// </summary> |
| public static uint PeekTag(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| if (state.hasNextTag) |
| { |
| return state.nextTag; |
| } |
| |
| uint savedLast = state.lastTag; |
| state.nextTag = ParseTag(ref buffer, ref state); |
| state.hasNextTag = true; |
| state.lastTag = savedLast; // Undo the side effect of ReadTag |
| return state.nextTag; |
| } |
| |
| /// <summary> |
| /// Parses a raw varint. |
| /// </summary> |
| public static ulong ParseRawVarint64(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| if (state.bufferPos + 10 > state.bufferSize) |
| { |
| return ParseRawVarint64SlowPath(ref buffer, ref state); |
| } |
| |
| ulong result = buffer[state.bufferPos++]; |
| if (result < 128) |
| { |
| return result; |
| } |
| result &= 0x7f; |
| int shift = 7; |
| do |
| { |
| byte b = buffer[state.bufferPos++]; |
| result |= (ulong)(b & 0x7F) << shift; |
| if (b < 0x80) |
| { |
| return result; |
| } |
| shift += 7; |
| } |
| while (shift < 64); |
| |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| private static ulong ParseRawVarint64SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| int shift = 0; |
| ulong result = 0; |
| do |
| { |
| byte b = ReadRawByte(ref buffer, ref state); |
| result |= (ulong)(b & 0x7F) << shift; |
| if (b < 0x80) |
| { |
| return result; |
| } |
| shift += 7; |
| } |
| while (shift < 64); |
| |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| /// <summary> |
| /// Parses a raw Varint. If larger than 32 bits, discard the upper bits. |
| /// This method is optimised for the case where we've got lots of data in the buffer. |
| /// That means we can check the size just once, then just read directly from the buffer |
| /// without constant rechecking of the buffer length. |
| /// </summary> |
| public static uint ParseRawVarint32(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| if (state.bufferPos + 5 > state.bufferSize) |
| { |
| return ParseRawVarint32SlowPath(ref buffer, ref state); |
| } |
| |
| int tmp = buffer[state.bufferPos++]; |
| if (tmp < 128) |
| { |
| return (uint)tmp; |
| } |
| int result = tmp & 0x7f; |
| if ((tmp = buffer[state.bufferPos++]) < 128) |
| { |
| result |= tmp << 7; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 7; |
| if ((tmp = buffer[state.bufferPos++]) < 128) |
| { |
| result |= tmp << 14; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 14; |
| if ((tmp = buffer[state.bufferPos++]) < 128) |
| { |
| result |= tmp << 21; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 21; |
| result |= (tmp = buffer[state.bufferPos++]) << 28; |
| if (tmp >= 128) |
| { |
| // Discard upper 32 bits. |
| // Note that this has to use ReadRawByte() as we only ensure we've |
| // got at least 5 bytes at the start of the method. This lets us |
| // use the fast path in more cases, and we rarely hit this section of code. |
| for (int i = 0; i < 5; i++) |
| { |
| if (ReadRawByte(ref buffer, ref state) < 128) |
| { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| } |
| } |
| } |
| return (uint)result; |
| } |
| |
| private static uint ParseRawVarint32SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| int tmp = ReadRawByte(ref buffer, ref state); |
| if (tmp < 128) |
| { |
| return (uint) tmp; |
| } |
| int result = tmp & 0x7f; |
| if ((tmp = ReadRawByte(ref buffer, ref state)) < 128) |
| { |
| result |= tmp << 7; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 7; |
| if ((tmp = ReadRawByte(ref buffer, ref state)) < 128) |
| { |
| result |= tmp << 14; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 14; |
| if ((tmp = ReadRawByte(ref buffer, ref state)) < 128) |
| { |
| result |= tmp << 21; |
| } |
| else |
| { |
| result |= (tmp & 0x7f) << 21; |
| result |= (tmp = ReadRawByte(ref buffer, ref state)) << 28; |
| if (tmp >= 128) |
| { |
| // Discard upper 32 bits. |
| for (int i = 0; i < 5; i++) |
| { |
| if (ReadRawByte(ref buffer, ref state) < 128) |
| { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| } |
| } |
| } |
| return (uint) result; |
| } |
| |
| /// <summary> |
| /// Parses a 32-bit little-endian integer. |
| /// </summary> |
| public static uint ParseRawLittleEndian32(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| const int uintLength = sizeof(uint); |
| const int ulongLength = sizeof(ulong); |
| if (state.bufferPos + ulongLength > state.bufferSize) |
| { |
| return ParseRawLittleEndian32SlowPath(ref buffer, ref state); |
| } |
| // ReadUInt32LittleEndian is many times slower than ReadUInt64LittleEndian (at least on some runtimes) |
| // so it's faster better to use ReadUInt64LittleEndian and truncate the result. |
| uint result = (uint) BinaryPrimitives.ReadUInt64LittleEndian(buffer.Slice(state.bufferPos, ulongLength)); |
| state.bufferPos += uintLength; |
| return result; |
| } |
| |
| private static uint ParseRawLittleEndian32SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| uint b1 = ReadRawByte(ref buffer, ref state); |
| uint b2 = ReadRawByte(ref buffer, ref state); |
| uint b3 = ReadRawByte(ref buffer, ref state); |
| uint b4 = ReadRawByte(ref buffer, ref state); |
| return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); |
| } |
| |
| /// <summary> |
| /// Parses a 64-bit little-endian integer. |
| /// </summary> |
| public static ulong ParseRawLittleEndian64(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| const int length = sizeof(ulong); |
| if (state.bufferPos + length > state.bufferSize) |
| { |
| return ParseRawLittleEndian64SlowPath(ref buffer, ref state); |
| } |
| ulong result = BinaryPrimitives.ReadUInt64LittleEndian(buffer.Slice(state.bufferPos, length)); |
| state.bufferPos += length; |
| return result; |
| } |
| |
| private static ulong ParseRawLittleEndian64SlowPath(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| ulong b1 = ReadRawByte(ref buffer, ref state); |
| ulong b2 = ReadRawByte(ref buffer, ref state); |
| ulong b3 = ReadRawByte(ref buffer, ref state); |
| ulong b4 = ReadRawByte(ref buffer, ref state); |
| ulong b5 = ReadRawByte(ref buffer, ref state); |
| ulong b6 = ReadRawByte(ref buffer, ref state); |
| ulong b7 = ReadRawByte(ref buffer, ref state); |
| ulong b8 = ReadRawByte(ref buffer, ref state); |
| return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) |
| | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); |
| } |
| |
| /// <summary> |
| /// Parses a double value. |
| /// </summary> |
| public static double ParseDouble(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| const int length = sizeof(double); |
| if (!BitConverter.IsLittleEndian || state.bufferPos + length > state.bufferSize) |
| { |
| return BitConverter.Int64BitsToDouble((long)ParseRawLittleEndian64(ref buffer, ref state)); |
| } |
| // ReadUnaligned uses processor architecture for endianness. |
| double result = Unsafe.ReadUnaligned<double>(ref MemoryMarshal.GetReference(buffer.Slice(state.bufferPos, length))); |
| state.bufferPos += length; |
| return result; |
| } |
| |
| /// <summary> |
| /// Parses a float value. |
| /// </summary> |
| public static float ParseFloat(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| const int length = sizeof(float); |
| if (!BitConverter.IsLittleEndian || state.bufferPos + length > state.bufferSize) |
| { |
| return ParseFloatSlow(ref buffer, ref state); |
| } |
| // ReadUnaligned uses processor architecture for endianness. |
| float result = Unsafe.ReadUnaligned<float>(ref MemoryMarshal.GetReference(buffer.Slice(state.bufferPos, length))); |
| state.bufferPos += length; |
| return result; |
| } |
| |
| private static unsafe float ParseFloatSlow(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| const int length = sizeof(float); |
| byte* stackBuffer = stackalloc byte[length]; |
| Span<byte> tempSpan = new Span<byte>(stackBuffer, length); |
| for (int i = 0; i < length; i++) |
| { |
| tempSpan[i] = ReadRawByte(ref buffer, ref state); |
| } |
| |
| // Content is little endian. Reverse if needed to match endianness of architecture. |
| if (!BitConverter.IsLittleEndian) |
| { |
| tempSpan.Reverse(); |
| } |
| return Unsafe.ReadUnaligned<float>(ref MemoryMarshal.GetReference(tempSpan)); |
| } |
| |
| /// <summary> |
| /// Reads a fixed size of bytes from the input. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException"> |
| /// the end of the stream or the current limit was reached |
| /// </exception> |
| public static byte[] ReadRawBytes(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int size) |
| { |
| if (size < 0) |
| { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| if (size <= state.bufferSize - state.bufferPos) |
| { |
| // We have all the bytes we need already. |
| byte[] bytes = new byte[size]; |
| buffer.Slice(state.bufferPos, size).CopyTo(bytes); |
| state.bufferPos += size; |
| return bytes; |
| } |
| |
| return ReadRawBytesSlow(ref buffer, ref state, size); |
| } |
| |
| private static byte[] ReadRawBytesSlow(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int size) |
| { |
| ValidateCurrentLimit(ref buffer, ref state, size); |
| |
| if ((!state.segmentedBufferHelper.TotalLength.HasValue && size < buffer.Length) || |
| IsDataAvailableInSource(ref state, size)) |
| { |
| // Reading more bytes than are in the buffer, but not an excessive number |
| // of bytes. We can safely allocate the resulting array ahead of time. |
| |
| byte[] bytes = new byte[size]; |
| ReadRawBytesIntoSpan(ref buffer, ref state, size, bytes); |
| return bytes; |
| } |
| else |
| { |
| // The size is very large. For security reasons, we can't allocate the |
| // entire byte array yet. The size comes directly from the input, so a |
| // maliciously-crafted message could provide a bogus very large size in |
| // order to trick the app into allocating a lot of memory. We avoid this |
| // by allocating and reading only a small chunk at a time, so that the |
| // malicious message must actually *be* extremely large to cause |
| // problems. Meanwhile, we limit the allowed size of a message elsewhere. |
| |
| List<byte[]> chunks = new List<byte[]>(); |
| |
| int pos = state.bufferSize - state.bufferPos; |
| byte[] firstChunk = new byte[pos]; |
| buffer.Slice(state.bufferPos, pos).CopyTo(firstChunk); |
| chunks.Add(firstChunk); |
| state.bufferPos = state.bufferSize; |
| |
| // Read all the rest of the bytes we need. |
| int sizeLeft = size - pos; |
| while (sizeLeft > 0) |
| { |
| state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true); |
| byte[] chunk = new byte[Math.Min(sizeLeft, state.bufferSize)]; |
| |
| buffer.Slice(0, chunk.Length) |
| .CopyTo(chunk); |
| state.bufferPos += chunk.Length; |
| sizeLeft -= chunk.Length; |
| chunks.Add(chunk); |
| } |
| |
| // OK, got everything. Now concatenate it all into one buffer. |
| byte[] bytes = new byte[size]; |
| int newPos = 0; |
| foreach (byte[] chunk in chunks) |
| { |
| Buffer.BlockCopy(chunk, 0, bytes, newPos, chunk.Length); |
| newPos += chunk.Length; |
| } |
| |
| // Done. |
| return bytes; |
| } |
| } |
| |
| /// <summary> |
| /// Reads and discards <paramref name="size"/> bytes. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException">the end of the stream |
| /// or the current limit was reached</exception> |
| public static void SkipRawBytes(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int size) |
| { |
| if (size < 0) |
| { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| ValidateCurrentLimit(ref buffer, ref state, size); |
| |
| if (size <= state.bufferSize - state.bufferPos) |
| { |
| // We have all the bytes we need already. |
| state.bufferPos += size; |
| } |
| else |
| { |
| // Skipping more bytes than are in the buffer. First skip what we have. |
| int pos = state.bufferSize - state.bufferPos; |
| state.bufferPos = state.bufferSize; |
| |
| // TODO: If our segmented buffer is backed by a Stream that is seekable, we could skip the bytes more efficiently |
| // by simply updating stream's Position property. This used to be supported in the past, but the support was dropped |
| // because it would make the segmentedBufferHelper more complex. Support can be reintroduced if needed. |
| state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true); |
| |
| while (size - pos > state.bufferSize) |
| { |
| pos += state.bufferSize; |
| state.bufferPos = state.bufferSize; |
| state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true); |
| } |
| |
| state.bufferPos = size - pos; |
| } |
| } |
| |
| /// <summary> |
| /// Reads a string field value from the input. |
| /// </summary> |
| [MethodImpl(MethodImplOptions.AggressiveInlining)] |
| public static string ReadString(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| int length = ParsingPrimitives.ParseLength(ref buffer, ref state); |
| return ParsingPrimitives.ReadRawString(ref buffer, ref state, length); |
| } |
| |
| /// <summary> |
| /// Reads a bytes field value from the input. |
| /// </summary> |
| [MethodImpl(MethodImplOptions.AggressiveInlining)] |
| public static ByteString ReadBytes(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| int length = ParsingPrimitives.ParseLength(ref buffer, ref state); |
| return ByteString.AttachBytes(ParsingPrimitives.ReadRawBytes(ref buffer, ref state, length)); |
| } |
| |
| /// <summary> |
| /// Reads a UTF-8 string from the next "length" bytes. |
| /// </summary> |
| /// <exception cref="InvalidProtocolBufferException"> |
| /// the end of the stream or the current limit was reached |
| /// </exception> |
| [SecuritySafeCritical] |
| public static string ReadRawString(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int length) |
| { |
| // No need to read any data for an empty string. |
| if (length == 0) |
| { |
| return string.Empty; |
| } |
| |
| if (length < 0) |
| { |
| throw InvalidProtocolBufferException.NegativeSize(); |
| } |
| |
| #if GOOGLE_PROTOBUF_SUPPORT_FAST_STRING |
| if (length <= state.bufferSize - state.bufferPos) |
| { |
| // Fast path: all bytes to decode appear in the same span. |
| ReadOnlySpan<byte> data = buffer.Slice(state.bufferPos, length); |
| |
| string value; |
| unsafe |
| { |
| fixed (byte* sourceBytes = &MemoryMarshal.GetReference(data)) |
| { |
| value = WritingPrimitives.Utf8Encoding.GetString(sourceBytes, length); |
| } |
| } |
| |
| state.bufferPos += length; |
| return value; |
| } |
| #endif |
| |
| return ReadStringSlow(ref buffer, ref state, length); |
| } |
| |
| /// <summary> |
| /// Reads a string assuming that it is spread across multiple spans in a <see cref="ReadOnlySequence{T}"/>. |
| /// </summary> |
| private static string ReadStringSlow(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int length) |
| { |
| ValidateCurrentLimit(ref buffer, ref state, length); |
| |
| #if GOOGLE_PROTOBUF_SUPPORT_FAST_STRING |
| if (IsDataAvailable(ref state, length)) |
| { |
| // Read string data into a temporary buffer, either stackalloc'ed or from ArrayPool |
| // Once all data is read then call Encoding.GetString on buffer and return to pool if needed. |
| |
| byte[] byteArray = null; |
| Span<byte> byteSpan = length <= StackallocThreshold ? |
| stackalloc byte[length] : |
| (byteArray = ArrayPool<byte>.Shared.Rent(length)); |
| |
| try |
| { |
| unsafe |
| { |
| fixed (byte* pByteSpan = &MemoryMarshal.GetReference(byteSpan)) |
| { |
| // Compiler doesn't like that a potentially stackalloc'd Span<byte> is being used |
| // in a method with a "ref Span<byte> buffer" argument. If the stackalloc'd span was assigned |
| // to the ref argument then bad things would happen. We'll never do that so it is ok. |
| // Make compiler happy by passing a new span created from pointer. |
| var tempSpan = new Span<byte>(pByteSpan, byteSpan.Length); |
| ReadRawBytesIntoSpan(ref buffer, ref state, length, tempSpan); |
| |
| return WritingPrimitives.Utf8Encoding.GetString(pByteSpan, length); |
| } |
| } |
| } |
| finally |
| { |
| if (byteArray != null) |
| { |
| ArrayPool<byte>.Shared.Return(byteArray); |
| } |
| } |
| } |
| #endif |
| |
| // Slow path: Build a byte array first then copy it. |
| // This will be called when reading from a Stream because we don't know the length of the stream, |
| // or there is not enough data in the sequence. If there is not enough data then ReadRawBytes will |
| // throw an exception. |
| return WritingPrimitives.Utf8Encoding.GetString(ReadRawBytes(ref buffer, ref state, length), 0, length); |
| } |
| |
| /// <summary> |
| /// Validates that the specified size doesn't exceed the current limit. If it does then remaining bytes |
| /// are skipped and an error is thrown. |
| /// </summary> |
| private static void ValidateCurrentLimit(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int size) |
| { |
| if (state.totalBytesRetired + state.bufferPos + size > state.currentLimit) |
| { |
| // Read to the end of the stream (up to the current limit) anyway. |
| SkipRawBytes(ref buffer, ref state, state.currentLimit - state.totalBytesRetired - state.bufferPos); |
| // Then fail. |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| } |
| |
| [SecuritySafeCritical] |
| private static byte ReadRawByte(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state) |
| { |
| if (state.bufferPos == state.bufferSize) |
| { |
| state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true); |
| } |
| return buffer[state.bufferPos++]; |
| } |
| |
| /// <summary> |
| /// Reads a varint from the input one byte at a time, so that it does not |
| /// read any bytes after the end of the varint. If you simply wrapped the |
| /// stream in a CodedInputStream and used ReadRawVarint32(Stream) |
| /// then you would probably end up reading past the end of the varint since |
| /// CodedInputStream buffers its input. |
| /// </summary> |
| /// <param name="input"></param> |
| /// <returns></returns> |
| public static uint ReadRawVarint32(Stream input) |
| { |
| int result = 0; |
| int offset = 0; |
| for (; offset < 32; offset += 7) |
| { |
| int b = input.ReadByte(); |
| if (b == -1) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| result |= (b & 0x7f) << offset; |
| if ((b & 0x80) == 0) |
| { |
| return (uint) result; |
| } |
| } |
| // Keep reading up to 64 bits. |
| for (; offset < 64; offset += 7) |
| { |
| int b = input.ReadByte(); |
| if (b == -1) |
| { |
| throw InvalidProtocolBufferException.TruncatedMessage(); |
| } |
| if ((b & 0x80) == 0) |
| { |
| return (uint) result; |
| } |
| } |
| throw InvalidProtocolBufferException.MalformedVarint(); |
| } |
| |
| /// <summary> |
| /// Decode a 32-bit value with ZigZag encoding. |
| /// </summary> |
| /// <remarks> |
| /// ZigZag encodes signed integers into values that can be efficiently |
| /// encoded with varint. (Otherwise, negative values must be |
| /// sign-extended to 32 bits to be varint encoded, thus always taking |
| /// 5 bytes on the wire.) |
| /// </remarks> |
| public static int DecodeZigZag32(uint n) |
| { |
| return (int)(n >> 1) ^ -(int)(n & 1); |
| } |
| |
| /// <summary> |
| /// Decode a 64-bit value with ZigZag encoding. |
| /// </summary> |
| /// <remarks> |
| /// ZigZag encodes signed integers into values that can be efficiently |
| /// encoded with varint. (Otherwise, negative values must be |
| /// sign-extended to 64 bits to be varint encoded, thus always taking |
| /// 10 bytes on the wire.) |
| /// </remarks> |
| public static long DecodeZigZag64(ulong n) |
| { |
| return (long)(n >> 1) ^ -(long)(n & 1); |
| } |
| |
| /// <summary> |
| /// Checks whether there is known data available of the specified size remaining to parse. |
| /// When parsing from a Stream this can return false because we have no knowledge of the amount |
| /// of data remaining in the stream until it is read. |
| /// </summary> |
| public static bool IsDataAvailable(ref ParserInternalState state, int size) |
| { |
| // Data fits in remaining buffer |
| if (size <= state.bufferSize - state.bufferPos) |
| { |
| return true; |
| } |
| |
| return IsDataAvailableInSource(ref state, size); |
| } |
| |
| /// <summary> |
| /// Checks whether there is known data available of the specified size remaining to parse |
| /// in the underlying data source. |
| /// When parsing from a Stream this will return false because we have no knowledge of the amount |
| /// of data remaining in the stream until it is read. |
| /// </summary> |
| private static bool IsDataAvailableInSource(ref ParserInternalState state, int size) |
| { |
| // Data fits in remaining source data. |
| // Note that this will never be true when reading from a stream as the total length is unknown. |
| return size <= state.segmentedBufferHelper.TotalLength - state.totalBytesRetired - state.bufferPos; |
| } |
| |
| /// <summary> |
| /// Read raw bytes of the specified length into a span. The amount of data available and the current limit should |
| /// be checked before calling this method. |
| /// </summary> |
| private static void ReadRawBytesIntoSpan(ref ReadOnlySpan<byte> buffer, ref ParserInternalState state, int length, Span<byte> byteSpan) |
| { |
| int remainingByteLength = length; |
| while (remainingByteLength > 0) |
| { |
| if (state.bufferSize - state.bufferPos == 0) |
| { |
| state.segmentedBufferHelper.RefillBuffer(ref buffer, ref state, true); |
| } |
| |
| ReadOnlySpan<byte> unreadSpan = buffer.Slice(state.bufferPos, Math.Min(remainingByteLength, state.bufferSize - state.bufferPos)); |
| unreadSpan.CopyTo(byteSpan.Slice(length - remainingByteLength)); |
| |
| remainingByteLength -= unreadSpan.Length; |
| state.bufferPos += unreadSpan.Length; |
| } |
| } |
| } |
| } |