| // Protocol Buffers - Google's data interchange format |
| // Copyright 2023 Google LLC. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| /* |
| * upb_table Implementation |
| * |
| * Implementation is heavily inspired by Lua's ltable.c. |
| */ |
| |
| #include <string.h> |
| |
| #include "upb/base/internal/log2.h" |
| #include "upb/hash/int_table.h" |
| #include "upb/hash/str_table.h" |
| |
| // Must be last. |
| #include "upb/port/def.inc" |
| |
| #define UPB_MAXARRSIZE 16 // 2**16 = 64k. |
| |
| // From Chromium. |
| #define ARRAY_SIZE(x) \ |
| ((sizeof(x) / sizeof(0 [x])) / ((size_t)(!(sizeof(x) % sizeof(0 [x]))))) |
| |
| static const double MAX_LOAD = 0.85; |
| |
| /* The minimum utilization of the array part of a mixed hash/array table. This |
| * is a speed/memory-usage tradeoff (though it's not straightforward because of |
| * cache effects). The lower this is, the more memory we'll use. */ |
| static const double MIN_DENSITY = 0.1; |
| |
| static bool is_pow2(uint64_t v) { return v == 0 || (v & (v - 1)) == 0; } |
| |
| static upb_value _upb_value_val(uint64_t val) { |
| upb_value ret; |
| _upb_value_setval(&ret, val); |
| return ret; |
| } |
| |
| static int log2ceil(uint64_t v) { |
| int ret = 0; |
| bool pow2 = is_pow2(v); |
| while (v >>= 1) ret++; |
| ret = pow2 ? ret : ret + 1; // Ceiling. |
| return UPB_MIN(UPB_MAXARRSIZE, ret); |
| } |
| |
| /* A type to represent the lookup key of either a strtable or an inttable. */ |
| typedef union { |
| uintptr_t num; |
| struct { |
| const char* str; |
| size_t len; |
| } str; |
| } lookupkey_t; |
| |
| static lookupkey_t strkey2(const char* str, size_t len) { |
| lookupkey_t k; |
| k.str.str = str; |
| k.str.len = len; |
| return k; |
| } |
| |
| static lookupkey_t intkey(uintptr_t key) { |
| lookupkey_t k; |
| k.num = key; |
| return k; |
| } |
| |
| typedef uint32_t hashfunc_t(upb_tabkey key); |
| typedef bool eqlfunc_t(upb_tabkey k1, lookupkey_t k2); |
| |
| /* Base table (shared code) ***************************************************/ |
| |
| static uint32_t upb_inthash(uintptr_t key) { return (uint32_t)key; } |
| |
| static const upb_tabent* upb_getentry(const upb_table* t, uint32_t hash) { |
| return t->entries + (hash & t->mask); |
| } |
| |
| static bool upb_arrhas(upb_tabval key) { return key.val != (uint64_t)-1; } |
| |
| static bool isfull(upb_table* t) { return t->count == t->max_count; } |
| |
| static bool init(upb_table* t, uint8_t size_lg2, upb_Arena* a) { |
| size_t bytes; |
| |
| t->count = 0; |
| t->size_lg2 = size_lg2; |
| t->mask = upb_table_size(t) ? upb_table_size(t) - 1 : 0; |
| t->max_count = upb_table_size(t) * MAX_LOAD; |
| bytes = upb_table_size(t) * sizeof(upb_tabent); |
| if (bytes > 0) { |
| t->entries = upb_Arena_Malloc(a, bytes); |
| if (!t->entries) return false; |
| memset(t->entries, 0, bytes); |
| } else { |
| t->entries = NULL; |
| } |
| return true; |
| } |
| |
| static upb_tabent* emptyent(upb_table* t, upb_tabent* e) { |
| upb_tabent* begin = t->entries; |
| upb_tabent* end = begin + upb_table_size(t); |
| for (e = e + 1; e < end; e++) { |
| if (upb_tabent_isempty(e)) return e; |
| } |
| for (e = begin; e < end; e++) { |
| if (upb_tabent_isempty(e)) return e; |
| } |
| UPB_ASSERT(false); |
| return NULL; |
| } |
| |
| static upb_tabent* getentry_mutable(upb_table* t, uint32_t hash) { |
| return (upb_tabent*)upb_getentry(t, hash); |
| } |
| |
| static const upb_tabent* findentry(const upb_table* t, lookupkey_t key, |
| uint32_t hash, eqlfunc_t* eql) { |
| const upb_tabent* e; |
| |
| if (t->size_lg2 == 0) return NULL; |
| e = upb_getentry(t, hash); |
| if (upb_tabent_isempty(e)) return NULL; |
| while (1) { |
| if (eql(e->key, key)) return e; |
| if ((e = e->next) == NULL) return NULL; |
| } |
| } |
| |
| static upb_tabent* findentry_mutable(upb_table* t, lookupkey_t key, |
| uint32_t hash, eqlfunc_t* eql) { |
| return (upb_tabent*)findentry(t, key, hash, eql); |
| } |
| |
| static bool lookup(const upb_table* t, lookupkey_t key, upb_value* v, |
| uint32_t hash, eqlfunc_t* eql) { |
| const upb_tabent* e = findentry(t, key, hash, eql); |
| if (e) { |
| if (v) { |
| _upb_value_setval(v, e->val.val); |
| } |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| /* The given key must not already exist in the table. */ |
| static void insert(upb_table* t, lookupkey_t key, upb_tabkey tabkey, |
| upb_value val, uint32_t hash, hashfunc_t* hashfunc, |
| eqlfunc_t* eql) { |
| upb_tabent* mainpos_e; |
| upb_tabent* our_e; |
| |
| UPB_ASSERT(findentry(t, key, hash, eql) == NULL); |
| |
| t->count++; |
| mainpos_e = getentry_mutable(t, hash); |
| our_e = mainpos_e; |
| |
| if (upb_tabent_isempty(mainpos_e)) { |
| /* Our main position is empty; use it. */ |
| our_e->next = NULL; |
| } else { |
| /* Collision. */ |
| upb_tabent* new_e = emptyent(t, mainpos_e); |
| /* Head of collider's chain. */ |
| upb_tabent* chain = getentry_mutable(t, hashfunc(mainpos_e->key)); |
| if (chain == mainpos_e) { |
| /* Existing ent is in its main position (it has the same hash as us, and |
| * is the head of our chain). Insert to new ent and append to this chain. |
| */ |
| new_e->next = mainpos_e->next; |
| mainpos_e->next = new_e; |
| our_e = new_e; |
| } else { |
| /* Existing ent is not in its main position (it is a node in some other |
| * chain). This implies that no existing ent in the table has our hash. |
| * Evict it (updating its chain) and use its ent for head of our chain. */ |
| *new_e = *mainpos_e; /* copies next. */ |
| while (chain->next != mainpos_e) { |
| chain = (upb_tabent*)chain->next; |
| UPB_ASSERT(chain); |
| } |
| chain->next = new_e; |
| our_e = mainpos_e; |
| our_e->next = NULL; |
| } |
| } |
| our_e->key = tabkey; |
| our_e->val.val = val.val; |
| UPB_ASSERT(findentry(t, key, hash, eql) == our_e); |
| } |
| |
| static bool rm(upb_table* t, lookupkey_t key, upb_value* val, |
| upb_tabkey* removed, uint32_t hash, eqlfunc_t* eql) { |
| upb_tabent* chain = getentry_mutable(t, hash); |
| if (upb_tabent_isempty(chain)) return false; |
| if (eql(chain->key, key)) { |
| /* Element to remove is at the head of its chain. */ |
| t->count--; |
| if (val) _upb_value_setval(val, chain->val.val); |
| if (removed) *removed = chain->key; |
| if (chain->next) { |
| upb_tabent* move = (upb_tabent*)chain->next; |
| *chain = *move; |
| move->key = 0; /* Make the slot empty. */ |
| } else { |
| chain->key = 0; /* Make the slot empty. */ |
| } |
| return true; |
| } else { |
| /* Element to remove is either in a non-head position or not in the |
| * table. */ |
| while (chain->next && !eql(chain->next->key, key)) { |
| chain = (upb_tabent*)chain->next; |
| } |
| if (chain->next) { |
| /* Found element to remove. */ |
| upb_tabent* rm = (upb_tabent*)chain->next; |
| t->count--; |
| if (val) _upb_value_setval(val, chain->next->val.val); |
| if (removed) *removed = rm->key; |
| rm->key = 0; /* Make the slot empty. */ |
| chain->next = rm->next; |
| return true; |
| } else { |
| /* Element to remove is not in the table. */ |
| return false; |
| } |
| } |
| } |
| |
| static size_t next(const upb_table* t, size_t i) { |
| do { |
| if (++i >= upb_table_size(t)) return SIZE_MAX - 1; /* Distinct from -1. */ |
| } while (upb_tabent_isempty(&t->entries[i])); |
| |
| return i; |
| } |
| |
| static size_t begin(const upb_table* t) { return next(t, -1); } |
| |
| /* upb_strtable ***************************************************************/ |
| |
| /* A simple "subclass" of upb_table that only adds a hash function for strings. |
| */ |
| |
| static upb_tabkey strcopy(lookupkey_t k2, upb_Arena* a) { |
| uint32_t len = (uint32_t)k2.str.len; |
| char* str = upb_Arena_Malloc(a, k2.str.len + sizeof(uint32_t) + 1); |
| if (str == NULL) return 0; |
| memcpy(str, &len, sizeof(uint32_t)); |
| if (k2.str.len) memcpy(str + sizeof(uint32_t), k2.str.str, k2.str.len); |
| str[sizeof(uint32_t) + k2.str.len] = '\0'; |
| return (uintptr_t)str; |
| } |
| |
| /* Adapted from ABSL's wyhash. */ |
| |
| static uint64_t UnalignedLoad64(const void* p) { |
| uint64_t val; |
| memcpy(&val, p, 8); |
| return val; |
| } |
| |
| static uint32_t UnalignedLoad32(const void* p) { |
| uint32_t val; |
| memcpy(&val, p, 4); |
| return val; |
| } |
| |
| #if defined(_MSC_VER) && defined(_M_X64) |
| #include <intrin.h> |
| #endif |
| |
| /* Computes a * b, returning the low 64 bits of the result and storing the high |
| * 64 bits in |*high|. */ |
| static uint64_t upb_umul128(uint64_t v0, uint64_t v1, uint64_t* out_high) { |
| #ifdef __SIZEOF_INT128__ |
| __uint128_t p = v0; |
| p *= v1; |
| *out_high = (uint64_t)(p >> 64); |
| return (uint64_t)p; |
| #elif defined(_MSC_VER) && defined(_M_X64) |
| return _umul128(v0, v1, out_high); |
| #else |
| uint64_t a32 = v0 >> 32; |
| uint64_t a00 = v0 & 0xffffffff; |
| uint64_t b32 = v1 >> 32; |
| uint64_t b00 = v1 & 0xffffffff; |
| uint64_t high = a32 * b32; |
| uint64_t low = a00 * b00; |
| uint64_t mid1 = a32 * b00; |
| uint64_t mid2 = a00 * b32; |
| low += (mid1 << 32) + (mid2 << 32); |
| // Omit carry bit, for mixing we do not care about exact numerical precision. |
| high += (mid1 >> 32) + (mid2 >> 32); |
| *out_high = high; |
| return low; |
| #endif |
| } |
| |
| static uint64_t WyhashMix(uint64_t v0, uint64_t v1) { |
| uint64_t high; |
| uint64_t low = upb_umul128(v0, v1, &high); |
| return low ^ high; |
| } |
| |
| static uint64_t Wyhash(const void* data, size_t len, uint64_t seed, |
| const uint64_t salt[]) { |
| const uint8_t* ptr = (const uint8_t*)data; |
| uint64_t starting_length = (uint64_t)len; |
| uint64_t current_state = seed ^ salt[0]; |
| |
| if (len > 64) { |
| // If we have more than 64 bytes, we're going to handle chunks of 64 |
| // bytes at a time. We're going to build up two separate hash states |
| // which we will then hash together. |
| uint64_t duplicated_state = current_state; |
| |
| do { |
| uint64_t a = UnalignedLoad64(ptr); |
| uint64_t b = UnalignedLoad64(ptr + 8); |
| uint64_t c = UnalignedLoad64(ptr + 16); |
| uint64_t d = UnalignedLoad64(ptr + 24); |
| uint64_t e = UnalignedLoad64(ptr + 32); |
| uint64_t f = UnalignedLoad64(ptr + 40); |
| uint64_t g = UnalignedLoad64(ptr + 48); |
| uint64_t h = UnalignedLoad64(ptr + 56); |
| |
| uint64_t cs0 = WyhashMix(a ^ salt[1], b ^ current_state); |
| uint64_t cs1 = WyhashMix(c ^ salt[2], d ^ current_state); |
| current_state = (cs0 ^ cs1); |
| |
| uint64_t ds0 = WyhashMix(e ^ salt[3], f ^ duplicated_state); |
| uint64_t ds1 = WyhashMix(g ^ salt[4], h ^ duplicated_state); |
| duplicated_state = (ds0 ^ ds1); |
| |
| ptr += 64; |
| len -= 64; |
| } while (len > 64); |
| |
| current_state = current_state ^ duplicated_state; |
| } |
| |
| // We now have a data `ptr` with at most 64 bytes and the current state |
| // of the hashing state machine stored in current_state. |
| while (len > 16) { |
| uint64_t a = UnalignedLoad64(ptr); |
| uint64_t b = UnalignedLoad64(ptr + 8); |
| |
| current_state = WyhashMix(a ^ salt[1], b ^ current_state); |
| |
| ptr += 16; |
| len -= 16; |
| } |
| |
| // We now have a data `ptr` with at most 16 bytes. |
| uint64_t a = 0; |
| uint64_t b = 0; |
| if (len > 8) { |
| // When we have at least 9 and at most 16 bytes, set A to the first 64 |
| // bits of the input and B to the last 64 bits of the input. Yes, they will |
| // overlap in the middle if we are working with less than the full 16 |
| // bytes. |
| a = UnalignedLoad64(ptr); |
| b = UnalignedLoad64(ptr + len - 8); |
| } else if (len > 3) { |
| // If we have at least 4 and at most 8 bytes, set A to the first 32 |
| // bits and B to the last 32 bits. |
| a = UnalignedLoad32(ptr); |
| b = UnalignedLoad32(ptr + len - 4); |
| } else if (len > 0) { |
| // If we have at least 1 and at most 3 bytes, read all of the provided |
| // bits into A, with some adjustments. |
| a = ((ptr[0] << 16) | (ptr[len >> 1] << 8) | ptr[len - 1]); |
| b = 0; |
| } else { |
| a = 0; |
| b = 0; |
| } |
| |
| uint64_t w = WyhashMix(a ^ salt[1], b ^ current_state); |
| uint64_t z = salt[1] ^ starting_length; |
| return WyhashMix(w, z); |
| } |
| |
| const uint64_t kWyhashSalt[5] = { |
| 0x243F6A8885A308D3ULL, 0x13198A2E03707344ULL, 0xA4093822299F31D0ULL, |
| 0x082EFA98EC4E6C89ULL, 0x452821E638D01377ULL, |
| }; |
| |
| uint32_t _upb_Hash(const void* p, size_t n, uint64_t seed) { |
| return Wyhash(p, n, seed, kWyhashSalt); |
| } |
| |
| static uint32_t _upb_Hash_NoSeed(const char* p, size_t n) { |
| return _upb_Hash(p, n, 0); |
| } |
| |
| static uint32_t strhash(upb_tabkey key) { |
| uint32_t len; |
| char* str = upb_tabstr(key, &len); |
| return _upb_Hash_NoSeed(str, len); |
| } |
| |
| static bool streql(upb_tabkey k1, lookupkey_t k2) { |
| uint32_t len; |
| char* str = upb_tabstr(k1, &len); |
| return len == k2.str.len && (len == 0 || memcmp(str, k2.str.str, len) == 0); |
| } |
| |
| bool upb_strtable_init(upb_strtable* t, size_t expected_size, upb_Arena* a) { |
| // Multiply by approximate reciprocal of MAX_LOAD (0.85), with pow2 |
| // denominator. |
| size_t need_entries = (expected_size + 1) * 1204 / 1024; |
| UPB_ASSERT(need_entries >= expected_size * 0.85); |
| int size_lg2 = upb_Log2Ceiling(need_entries); |
| return init(&t->t, size_lg2, a); |
| } |
| |
| void upb_strtable_clear(upb_strtable* t) { |
| size_t bytes = upb_table_size(&t->t) * sizeof(upb_tabent); |
| t->t.count = 0; |
| memset((char*)t->t.entries, 0, bytes); |
| } |
| |
| bool upb_strtable_resize(upb_strtable* t, size_t size_lg2, upb_Arena* a) { |
| upb_strtable new_table; |
| if (!init(&new_table.t, size_lg2, a)) return false; |
| |
| intptr_t iter = UPB_STRTABLE_BEGIN; |
| upb_StringView key; |
| upb_value val; |
| while (upb_strtable_next2(t, &key, &val, &iter)) { |
| upb_strtable_insert(&new_table, key.data, key.size, val, a); |
| } |
| *t = new_table; |
| return true; |
| } |
| |
| bool upb_strtable_insert(upb_strtable* t, const char* k, size_t len, |
| upb_value v, upb_Arena* a) { |
| lookupkey_t key; |
| upb_tabkey tabkey; |
| uint32_t hash; |
| |
| if (isfull(&t->t)) { |
| /* Need to resize. New table of double the size, add old elements to it. */ |
| if (!upb_strtable_resize(t, t->t.size_lg2 + 1, a)) { |
| return false; |
| } |
| } |
| |
| key = strkey2(k, len); |
| tabkey = strcopy(key, a); |
| if (tabkey == 0) return false; |
| |
| hash = _upb_Hash_NoSeed(key.str.str, key.str.len); |
| insert(&t->t, key, tabkey, v, hash, &strhash, &streql); |
| return true; |
| } |
| |
| bool upb_strtable_lookup2(const upb_strtable* t, const char* key, size_t len, |
| upb_value* v) { |
| uint32_t hash = _upb_Hash_NoSeed(key, len); |
| return lookup(&t->t, strkey2(key, len), v, hash, &streql); |
| } |
| |
| bool upb_strtable_remove2(upb_strtable* t, const char* key, size_t len, |
| upb_value* val) { |
| uint32_t hash = _upb_Hash_NoSeed(key, len); |
| upb_tabkey tabkey; |
| return rm(&t->t, strkey2(key, len), val, &tabkey, hash, &streql); |
| } |
| |
| /* Iteration */ |
| |
| void upb_strtable_begin(upb_strtable_iter* i, const upb_strtable* t) { |
| i->t = t; |
| i->index = begin(&t->t); |
| } |
| |
| void upb_strtable_next(upb_strtable_iter* i) { |
| i->index = next(&i->t->t, i->index); |
| } |
| |
| bool upb_strtable_done(const upb_strtable_iter* i) { |
| if (!i->t) return true; |
| return i->index >= upb_table_size(&i->t->t) || |
| upb_tabent_isempty(str_tabent(i)); |
| } |
| |
| upb_StringView upb_strtable_iter_key(const upb_strtable_iter* i) { |
| upb_StringView key; |
| uint32_t len; |
| UPB_ASSERT(!upb_strtable_done(i)); |
| key.data = upb_tabstr(str_tabent(i)->key, &len); |
| key.size = len; |
| return key; |
| } |
| |
| upb_value upb_strtable_iter_value(const upb_strtable_iter* i) { |
| UPB_ASSERT(!upb_strtable_done(i)); |
| return _upb_value_val(str_tabent(i)->val.val); |
| } |
| |
| void upb_strtable_iter_setdone(upb_strtable_iter* i) { |
| i->t = NULL; |
| i->index = SIZE_MAX; |
| } |
| |
| bool upb_strtable_iter_isequal(const upb_strtable_iter* i1, |
| const upb_strtable_iter* i2) { |
| if (upb_strtable_done(i1) && upb_strtable_done(i2)) return true; |
| return i1->t == i2->t && i1->index == i2->index; |
| } |
| |
| /* upb_inttable ***************************************************************/ |
| |
| /* For inttables we use a hybrid structure where small keys are kept in an |
| * array and large keys are put in the hash table. */ |
| |
| static uint32_t inthash(upb_tabkey key) { return upb_inthash(key); } |
| |
| static bool inteql(upb_tabkey k1, lookupkey_t k2) { return k1 == k2.num; } |
| |
| static upb_tabval* mutable_array(upb_inttable* t) { |
| return (upb_tabval*)t->array; |
| } |
| |
| static upb_tabval* inttable_val(upb_inttable* t, uintptr_t key) { |
| if (key < t->array_size) { |
| return upb_arrhas(t->array[key]) ? &(mutable_array(t)[key]) : NULL; |
| } else { |
| upb_tabent* e = |
| findentry_mutable(&t->t, intkey(key), upb_inthash(key), &inteql); |
| return e ? &e->val : NULL; |
| } |
| } |
| |
| static const upb_tabval* inttable_val_const(const upb_inttable* t, |
| uintptr_t key) { |
| return inttable_val((upb_inttable*)t, key); |
| } |
| |
| size_t upb_inttable_count(const upb_inttable* t) { |
| return t->t.count + t->array_count; |
| } |
| |
| static void check(upb_inttable* t) { |
| UPB_UNUSED(t); |
| #if defined(UPB_DEBUG_TABLE) && !defined(NDEBUG) |
| { |
| // This check is very expensive (makes inserts/deletes O(N)). |
| size_t count = 0; |
| intptr_t iter = UPB_INTTABLE_BEGIN; |
| uintptr_t key; |
| upb_value val; |
| while (upb_inttable_next(t, &key, &val, &iter)) { |
| UPB_ASSERT(upb_inttable_lookup(t, key, NULL)); |
| } |
| UPB_ASSERT(count == upb_inttable_count(t)); |
| } |
| #endif |
| } |
| |
| bool upb_inttable_sizedinit(upb_inttable* t, size_t asize, int hsize_lg2, |
| upb_Arena* a) { |
| size_t array_bytes; |
| |
| if (!init(&t->t, hsize_lg2, a)) return false; |
| /* Always make the array part at least 1 long, so that we know key 0 |
| * won't be in the hash part, which simplifies things. */ |
| t->array_size = UPB_MAX(1, asize); |
| t->array_count = 0; |
| array_bytes = t->array_size * sizeof(upb_value); |
| t->array = upb_Arena_Malloc(a, array_bytes); |
| if (!t->array) { |
| return false; |
| } |
| memset(mutable_array(t), 0xff, array_bytes); |
| check(t); |
| return true; |
| } |
| |
| bool upb_inttable_init(upb_inttable* t, upb_Arena* a) { |
| return upb_inttable_sizedinit(t, 0, 4, a); |
| } |
| |
| bool upb_inttable_insert(upb_inttable* t, uintptr_t key, upb_value val, |
| upb_Arena* a) { |
| upb_tabval tabval; |
| tabval.val = val.val; |
| UPB_ASSERT( |
| upb_arrhas(tabval)); /* This will reject (uint64_t)-1. Fix this. */ |
| |
| if (key < t->array_size) { |
| UPB_ASSERT(!upb_arrhas(t->array[key])); |
| t->array_count++; |
| mutable_array(t)[key].val = val.val; |
| } else { |
| if (isfull(&t->t)) { |
| /* Need to resize the hash part, but we re-use the array part. */ |
| size_t i; |
| upb_table new_table; |
| |
| if (!init(&new_table, t->t.size_lg2 + 1, a)) { |
| return false; |
| } |
| |
| for (i = begin(&t->t); i < upb_table_size(&t->t); i = next(&t->t, i)) { |
| const upb_tabent* e = &t->t.entries[i]; |
| uint32_t hash; |
| upb_value v; |
| |
| _upb_value_setval(&v, e->val.val); |
| hash = upb_inthash(e->key); |
| insert(&new_table, intkey(e->key), e->key, v, hash, &inthash, &inteql); |
| } |
| |
| UPB_ASSERT(t->t.count == new_table.count); |
| |
| t->t = new_table; |
| } |
| insert(&t->t, intkey(key), key, val, upb_inthash(key), &inthash, &inteql); |
| } |
| check(t); |
| return true; |
| } |
| |
| bool upb_inttable_lookup(const upb_inttable* t, uintptr_t key, upb_value* v) { |
| const upb_tabval* table_v = inttable_val_const(t, key); |
| if (!table_v) return false; |
| if (v) _upb_value_setval(v, table_v->val); |
| return true; |
| } |
| |
| bool upb_inttable_replace(upb_inttable* t, uintptr_t key, upb_value val) { |
| upb_tabval* table_v = inttable_val(t, key); |
| if (!table_v) return false; |
| table_v->val = val.val; |
| return true; |
| } |
| |
| bool upb_inttable_remove(upb_inttable* t, uintptr_t key, upb_value* val) { |
| bool success; |
| if (key < t->array_size) { |
| if (upb_arrhas(t->array[key])) { |
| upb_tabval empty = UPB_TABVALUE_EMPTY_INIT; |
| t->array_count--; |
| if (val) { |
| _upb_value_setval(val, t->array[key].val); |
| } |
| mutable_array(t)[key] = empty; |
| success = true; |
| } else { |
| success = false; |
| } |
| } else { |
| success = rm(&t->t, intkey(key), val, NULL, upb_inthash(key), &inteql); |
| } |
| check(t); |
| return success; |
| } |
| |
| void upb_inttable_compact(upb_inttable* t, upb_Arena* a) { |
| /* A power-of-two histogram of the table keys. */ |
| size_t counts[UPB_MAXARRSIZE + 1] = {0}; |
| |
| /* The max key in each bucket. */ |
| uintptr_t max[UPB_MAXARRSIZE + 1] = {0}; |
| |
| { |
| intptr_t iter = UPB_INTTABLE_BEGIN; |
| uintptr_t key; |
| upb_value val; |
| while (upb_inttable_next(t, &key, &val, &iter)) { |
| int bucket = log2ceil(key); |
| max[bucket] = UPB_MAX(max[bucket], key); |
| counts[bucket]++; |
| } |
| } |
| |
| /* Find the largest power of two that satisfies the MIN_DENSITY |
| * definition (while actually having some keys). */ |
| size_t arr_count = upb_inttable_count(t); |
| int size_lg2; |
| upb_inttable new_t; |
| |
| for (size_lg2 = ARRAY_SIZE(counts) - 1; size_lg2 > 0; size_lg2--) { |
| if (counts[size_lg2] == 0) { |
| /* We can halve again without losing any entries. */ |
| continue; |
| } else if (arr_count >= (1 << size_lg2) * MIN_DENSITY) { |
| break; |
| } |
| |
| arr_count -= counts[size_lg2]; |
| } |
| |
| UPB_ASSERT(arr_count <= upb_inttable_count(t)); |
| |
| { |
| /* Insert all elements into new, perfectly-sized table. */ |
| size_t arr_size = max[size_lg2] + 1; /* +1 so arr[max] will fit. */ |
| size_t hash_count = upb_inttable_count(t) - arr_count; |
| size_t hash_size = hash_count ? (hash_count / MAX_LOAD) + 1 : 0; |
| int hashsize_lg2 = log2ceil(hash_size); |
| |
| upb_inttable_sizedinit(&new_t, arr_size, hashsize_lg2, a); |
| |
| { |
| intptr_t iter = UPB_INTTABLE_BEGIN; |
| uintptr_t key; |
| upb_value val; |
| while (upb_inttable_next(t, &key, &val, &iter)) { |
| upb_inttable_insert(&new_t, key, val, a); |
| } |
| } |
| |
| UPB_ASSERT(new_t.array_size == arr_size); |
| UPB_ASSERT(new_t.t.size_lg2 == hashsize_lg2); |
| } |
| *t = new_t; |
| } |
| |
| // Iteration. |
| |
| bool upb_inttable_next(const upb_inttable* t, uintptr_t* key, upb_value* val, |
| intptr_t* iter) { |
| intptr_t i = *iter; |
| if ((size_t)(i + 1) <= t->array_size) { |
| while ((size_t)++i < t->array_size) { |
| upb_tabval ent = t->array[i]; |
| if (upb_arrhas(ent)) { |
| *key = i; |
| *val = _upb_value_val(ent.val); |
| *iter = i; |
| return true; |
| } |
| } |
| i--; // Back up to exactly one position before the start of the table. |
| } |
| |
| size_t tab_idx = next(&t->t, i - t->array_size); |
| if (tab_idx < upb_table_size(&t->t)) { |
| upb_tabent* ent = &t->t.entries[tab_idx]; |
| *key = ent->key; |
| *val = _upb_value_val(ent->val.val); |
| *iter = tab_idx + t->array_size; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void upb_inttable_removeiter(upb_inttable* t, intptr_t* iter) { |
| intptr_t i = *iter; |
| if ((size_t)i < t->array_size) { |
| t->array_count--; |
| mutable_array(t)[i].val = -1; |
| } else { |
| upb_tabent* ent = &t->t.entries[i - t->array_size]; |
| upb_tabent* prev = NULL; |
| |
| // Linear search, not great. |
| upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; |
| for (upb_tabent* e = t->t.entries; e != end; e++) { |
| if (e->next == ent) { |
| prev = e; |
| break; |
| } |
| } |
| |
| if (prev) { |
| prev->next = ent->next; |
| } |
| |
| t->t.count--; |
| ent->key = 0; |
| ent->next = NULL; |
| } |
| } |
| |
| bool upb_strtable_next2(const upb_strtable* t, upb_StringView* key, |
| upb_value* val, intptr_t* iter) { |
| size_t tab_idx = next(&t->t, *iter); |
| if (tab_idx < upb_table_size(&t->t)) { |
| upb_tabent* ent = &t->t.entries[tab_idx]; |
| uint32_t len; |
| key->data = upb_tabstr(ent->key, &len); |
| key->size = len; |
| *val = _upb_value_val(ent->val.val); |
| *iter = tab_idx; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| void upb_strtable_removeiter(upb_strtable* t, intptr_t* iter) { |
| intptr_t i = *iter; |
| upb_tabent* ent = &t->t.entries[i]; |
| upb_tabent* prev = NULL; |
| |
| // Linear search, not great. |
| upb_tabent* end = &t->t.entries[upb_table_size(&t->t)]; |
| for (upb_tabent* e = t->t.entries; e != end; e++) { |
| if (e->next == ent) { |
| prev = e; |
| break; |
| } |
| } |
| |
| if (prev) { |
| prev->next = ent->next; |
| } |
| |
| t->t.count--; |
| ent->key = 0; |
| ent->next = NULL; |
| } |
| |
| void upb_strtable_setentryvalue(upb_strtable* t, intptr_t iter, upb_value v) { |
| upb_tabent* ent = &t->t.entries[iter]; |
| ent->val.val = v.val; |
| } |