| // Protocol Buffers - Google's data interchange format |
| // Copyright 2008 Google Inc. All rights reserved. |
| // |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file or at |
| // https://developers.google.com/open-source/licenses/bsd |
| |
| #ifndef GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
| #define GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |
| |
| #include <algorithm> |
| #include <climits> |
| #include <cstddef> |
| #include <cstdint> |
| #include <cstring> |
| #include <limits> |
| #include <string> |
| #include <type_traits> |
| #include <utility> |
| |
| #include "absl/base/config.h" |
| #include "absl/base/prefetch.h" |
| #include "absl/log/absl_check.h" |
| #include "absl/log/absl_log.h" |
| #include "absl/strings/cord.h" |
| #include "absl/strings/internal/resize_uninitialized.h" |
| #include "absl/strings/string_view.h" |
| #include "absl/types/optional.h" |
| #include "google/protobuf/arena.h" |
| #include "google/protobuf/arenastring.h" |
| #include "google/protobuf/endian.h" |
| #include "google/protobuf/inlined_string_field.h" |
| #include "google/protobuf/io/coded_stream.h" |
| #include "google/protobuf/io/zero_copy_stream.h" |
| #include "google/protobuf/message_lite.h" |
| #include "google/protobuf/metadata_lite.h" |
| #include "google/protobuf/port.h" |
| #include "google/protobuf/repeated_field.h" |
| #include "google/protobuf/repeated_ptr_field.h" |
| #include "google/protobuf/wire_format_lite.h" |
| |
| |
| // Must be included last. |
| #include "google/protobuf/port_def.inc" |
| |
| |
| namespace google { |
| namespace protobuf { |
| |
| class UnknownFieldSet; |
| class DescriptorPool; |
| class MessageFactory; |
| |
| namespace internal { |
| |
| // Template code below needs to know about the existence of these functions. |
| PROTOBUF_EXPORT void WriteVarint(uint32_t num, uint64_t val, std::string* s); |
| PROTOBUF_EXPORT void WriteLengthDelimited(uint32_t num, absl::string_view val, |
| std::string* s); |
| // Inline because it is just forwarding to s->WriteVarint |
| inline void WriteVarint(uint32_t num, uint64_t val, UnknownFieldSet* s); |
| inline void WriteLengthDelimited(uint32_t num, absl::string_view val, |
| UnknownFieldSet* s); |
| |
| |
| // The basic abstraction the parser is designed for is a slight modification |
| // of the ZeroCopyInputStream (ZCIS) abstraction. A ZCIS presents a serialized |
| // stream as a series of buffers that concatenate to the full stream. |
| // Pictorially a ZCIS presents a stream in chunks like so |
| // [---------------------------------------------------------------] |
| // [---------------------] chunk 1 |
| // [----------------------------] chunk 2 |
| // chunk 3 [--------------] |
| // |
| // Where the '-' represent the bytes which are vertically lined up with the |
| // bytes of the stream. The proto parser requires its input to be presented |
| // similarly with the extra |
| // property that each chunk has kSlopBytes past its end that overlaps with the |
| // first kSlopBytes of the next chunk, or if there is no next chunk at least its |
| // still valid to read those bytes. Again, pictorially, we now have |
| // |
| // [---------------------------------------------------------------] |
| // [-------------------....] chunk 1 |
| // [------------------------....] chunk 2 |
| // chunk 3 [------------------..**] |
| // chunk 4 [--****] |
| // Here '-' mean the bytes of the stream or chunk and '.' means bytes past the |
| // chunk that match up with the start of the next chunk. Above each chunk has |
| // 4 '.' after the chunk. In the case these 'overflow' bytes represents bytes |
| // past the stream, indicated by '*' above, their values are unspecified. It is |
| // still legal to read them (ie. should not segfault). Reading past the |
| // end should be detected by the user and indicated as an error. |
| // |
| // The reason for this, admittedly, unconventional invariant is to ruthlessly |
| // optimize the protobuf parser. Having an overlap helps in two important ways. |
| // Firstly it alleviates having to performing bounds checks if a piece of code |
| // is guaranteed to not read more than kSlopBytes. Secondly, and more |
| // importantly, the protobuf wireformat is such that reading a key/value pair is |
| // always less than 16 bytes. This removes the need to change to next buffer in |
| // the middle of reading primitive values. Hence there is no need to store and |
| // load the current position. |
| |
| class PROTOBUF_EXPORT EpsCopyInputStream { |
| public: |
| enum { kMaxCordBytesToCopy = 512 }; |
| explicit EpsCopyInputStream(bool enable_aliasing) |
| : aliasing_(enable_aliasing ? kOnPatch : kNoAliasing) {} |
| |
| void BackUp(const char* ptr) { |
| ABSL_DCHECK(ptr <= buffer_end_ + kSlopBytes); |
| int count; |
| if (next_chunk_ == patch_buffer_) { |
| count = BytesAvailable(ptr); |
| } else { |
| count = size_ + static_cast<int>(buffer_end_ - ptr); |
| } |
| if (count > 0) StreamBackUp(count); |
| } |
| |
| // In sanitizer mode we use memory poisoning to guarantee that: |
| // - We do not read an uninitialized token. |
| // - We would like to verify that this token was consumed, but unfortunately |
| // __asan_address_is_poisoned is allowed to have false negatives. |
| class LimitToken { |
| public: |
| LimitToken() { internal::PoisonMemoryRegion(&token_, sizeof(token_)); } |
| |
| explicit LimitToken(int token) : token_(token) { |
| internal::UnpoisonMemoryRegion(&token_, sizeof(token_)); |
| } |
| |
| LimitToken(const LimitToken&) = delete; |
| LimitToken& operator=(const LimitToken&) = delete; |
| |
| LimitToken(LimitToken&& other) { *this = std::move(other); } |
| |
| LimitToken& operator=(LimitToken&& other) { |
| internal::UnpoisonMemoryRegion(&token_, sizeof(token_)); |
| token_ = other.token_; |
| internal::PoisonMemoryRegion(&other.token_, sizeof(token_)); |
| return *this; |
| } |
| |
| ~LimitToken() { internal::UnpoisonMemoryRegion(&token_, sizeof(token_)); } |
| |
| int token() && { |
| int t = token_; |
| internal::PoisonMemoryRegion(&token_, sizeof(token_)); |
| return t; |
| } |
| |
| private: |
| int token_; |
| }; |
| |
| // If return value is negative it's an error |
| [[nodiscard]] LimitToken PushLimit(const char* ptr, int limit) { |
| ABSL_DCHECK(limit >= 0 && limit <= INT_MAX - kSlopBytes); |
| // This add is safe due to the invariant above, because |
| // ptr - buffer_end_ <= kSlopBytes. |
| limit += static_cast<int>(ptr - buffer_end_); |
| limit_end_ = buffer_end_ + (std::min)(0, limit); |
| auto old_limit = limit_; |
| limit_ = limit; |
| return LimitToken(old_limit - limit); |
| } |
| |
| [[nodiscard]] bool PopLimit(LimitToken delta) { |
| // We must update the limit first before the early return. Otherwise, we can |
| // end up with an invalid limit and it can lead to integer overflows. |
| limit_ = limit_ + std::move(delta).token(); |
| if (ABSL_PREDICT_FALSE(!EndedAtLimit())) return false; |
| // TODO We could remove this line and hoist the code to |
| // DoneFallback. Study the perf/bin-size effects. |
| limit_end_ = buffer_end_ + (std::min)(0, limit_); |
| return true; |
| } |
| |
| [[nodiscard]] const char* Skip(const char* ptr, int size) { |
| if (size <= BytesAvailable(ptr)) { |
| return ptr + size; |
| } |
| return SkipFallback(ptr, size); |
| } |
| [[nodiscard]] const char* ReadString(const char* ptr, int size, |
| std::string* s) { |
| if (size <= BytesAvailable(ptr)) { |
| // Fundamentally we just want to do assign to the string. |
| // However micro-benchmarks regress on string reading cases. So we copy |
| // the same logic from the old CodedInputStream ReadString. Note: as of |
| // Apr 2021, this is still a significant win over `assign()`. |
| absl::strings_internal::STLStringResizeUninitialized(s, size); |
| char* z = &(*s)[0]; |
| memcpy(z, ptr, size); |
| return ptr + size; |
| } |
| return ReadStringFallback(ptr, size, s); |
| } |
| [[nodiscard]] const char* AppendString(const char* ptr, int size, |
| std::string* s) { |
| if (size <= BytesAvailable(ptr)) { |
| s->append(ptr, size); |
| return ptr + size; |
| } |
| return AppendStringFallback(ptr, size, s); |
| } |
| // Implemented in arenastring.cc |
| [[nodiscard]] const char* ReadArenaString(const char* ptr, ArenaStringPtr* s, |
| Arena* arena); |
| |
| [[nodiscard]] const char* ReadCord(const char* ptr, int size, |
| ::absl::Cord* cord) { |
| if (size <= std::min<int>(BytesAvailable(ptr), kMaxCordBytesToCopy)) { |
| *cord = absl::string_view(ptr, size); |
| return ptr + size; |
| } |
| return ReadCordFallback(ptr, size, cord); |
| } |
| |
| |
| template <typename Tag, typename T> |
| [[nodiscard]] const char* ReadRepeatedFixed(const char* ptr, Tag expected_tag, |
| RepeatedField<T>* out); |
| |
| template <typename T> |
| [[nodiscard]] const char* ReadPackedFixed(const char* ptr, int size, |
| RepeatedField<T>* out); |
| template <typename Add> |
| [[nodiscard]] const char* ReadPackedVarint(const char* ptr, Add add) { |
| return ReadPackedVarint(ptr, add, [](int) {}); |
| } |
| template <typename Add, typename SizeCb> |
| [[nodiscard]] const char* ReadPackedVarint(const char* ptr, Add add, |
| SizeCb size_callback); |
| |
| uint32_t LastTag() const { return last_tag_minus_1_ + 1; } |
| bool ConsumeEndGroup(uint32_t start_tag) { |
| bool res = last_tag_minus_1_ == start_tag; |
| last_tag_minus_1_ = 0; |
| return res; |
| } |
| bool EndedAtLimit() const { return last_tag_minus_1_ == 0; } |
| bool EndedAtEndOfStream() const { return last_tag_minus_1_ == 1; } |
| void SetLastTag(uint32_t tag) { last_tag_minus_1_ = tag - 1; } |
| void SetEndOfStream() { last_tag_minus_1_ = 1; } |
| bool IsExceedingLimit(const char* ptr) { |
| return ptr > limit_end_ && |
| (next_chunk_ == nullptr || ptr - buffer_end_ > limit_); |
| } |
| bool AliasingEnabled() const { return aliasing_ != kNoAliasing; } |
| int BytesUntilLimit(const char* ptr) const { |
| return limit_ + static_cast<int>(buffer_end_ - ptr); |
| } |
| // Maximum number of sequential bytes that can be read starting from `ptr`. |
| int MaximumReadSize(const char* ptr) const { |
| return static_cast<int>(limit_end_ - ptr) + kSlopBytes; |
| } |
| // Returns true if more data is available, if false is returned one has to |
| // call Done for further checks. |
| bool DataAvailable(const char* ptr) { return ptr < limit_end_; } |
| |
| protected: |
| // Returns true if limit (either an explicit limit or end of stream) is |
| // reached. It aligns *ptr across buffer seams. |
| // If limit is exceeded, it returns true and ptr is set to null. |
| bool DoneWithCheck(const char** ptr, int d) { |
| ABSL_DCHECK(*ptr); |
| if (ABSL_PREDICT_TRUE(*ptr < limit_end_)) return false; |
| int overrun = static_cast<int>(*ptr - buffer_end_); |
| ABSL_DCHECK_LE(overrun, kSlopBytes); // Guaranteed by parse loop. |
| if (overrun == |
| limit_) { // No need to flip buffers if we ended on a limit. |
| // If we actually overrun the buffer and next_chunk_ is null, it means |
| // the stream ended and we passed the stream end. |
| if (overrun > 0 && next_chunk_ == nullptr) *ptr = nullptr; |
| return true; |
| } |
| auto res = DoneFallback(overrun, d); |
| *ptr = res.first; |
| return res.second; |
| } |
| |
| const char* InitFrom(absl::string_view flat) { |
| overall_limit_ = 0; |
| if (flat.size() > kSlopBytes) { |
| limit_ = kSlopBytes; |
| limit_end_ = buffer_end_ = flat.data() + flat.size() - kSlopBytes; |
| next_chunk_ = patch_buffer_; |
| if (aliasing_ == kOnPatch) aliasing_ = kNoDelta; |
| return flat.data(); |
| } else { |
| if (!flat.empty()) { |
| std::memcpy(patch_buffer_, flat.data(), flat.size()); |
| } |
| limit_ = 0; |
| limit_end_ = buffer_end_ = patch_buffer_ + flat.size(); |
| next_chunk_ = nullptr; |
| if (aliasing_ == kOnPatch) { |
| aliasing_ = reinterpret_cast<std::uintptr_t>(flat.data()) - |
| reinterpret_cast<std::uintptr_t>(patch_buffer_); |
| } |
| return patch_buffer_; |
| } |
| } |
| |
| const char* InitFrom(io::ZeroCopyInputStream* zcis); |
| |
| const char* InitFrom(io::ZeroCopyInputStream* zcis, int limit) { |
| if (limit == -1) return InitFrom(zcis); |
| overall_limit_ = limit; |
| auto res = InitFrom(zcis); |
| limit_ = limit - static_cast<int>(buffer_end_ - res); |
| limit_end_ = buffer_end_ + (std::min)(0, limit_); |
| return res; |
| } |
| |
| private: |
| enum { kSlopBytes = 16, kPatchBufferSize = 32 }; |
| static_assert(kPatchBufferSize >= kSlopBytes * 2, |
| "Patch buffer needs to be at least large enough to hold all " |
| "the slop bytes from the previous buffer, plus the first " |
| "kSlopBytes from the next buffer."); |
| |
| const char* limit_end_; // buffer_end_ + min(limit_, 0) |
| const char* buffer_end_; |
| const char* next_chunk_; |
| int size_; |
| int limit_; // relative to buffer_end_; |
| io::ZeroCopyInputStream* zcis_ = nullptr; |
| char patch_buffer_[kPatchBufferSize] = {}; |
| enum { kNoAliasing = 0, kOnPatch = 1, kNoDelta = 2 }; |
| std::uintptr_t aliasing_ = kNoAliasing; |
| // This variable is used to communicate how the parse ended, in order to |
| // completely verify the parsed data. A wire-format parse can end because of |
| // one of the following conditions: |
| // 1) A parse can end on a pushed limit. |
| // 2) A parse can end on End Of Stream (EOS). |
| // 3) A parse can end on 0 tag (only valid for toplevel message). |
| // 4) A parse can end on an end-group tag. |
| // This variable should always be set to 0, which indicates case 1. If the |
| // parse terminated due to EOS (case 2), it's set to 1. In case the parse |
| // ended due to a terminating tag (case 3 and 4) it's set to (tag - 1). |
| // This var doesn't really belong in EpsCopyInputStream and should be part of |
| // the ParseContext, but case 2 is most easily and optimally implemented in |
| // DoneFallback. |
| uint32_t last_tag_minus_1_ = 0; |
| int overall_limit_ = INT_MAX; // Overall limit independent of pushed limits. |
| // Pretty random large number that seems like a safe allocation on most |
| // systems. TODO do we need to set this as build flag? |
| enum { kSafeStringSize = 50000000 }; |
| |
| int BytesAvailable(const char* ptr) const { |
| ABSL_DCHECK_NE(ptr, nullptr); |
| ptrdiff_t available = buffer_end_ + kSlopBytes - ptr; |
| ABSL_DCHECK_GE(available, 0); |
| ABSL_DCHECK_LE(available, INT_MAX); |
| return static_cast<int>(available); |
| } |
| |
| // Advances to next buffer chunk returns a pointer to the same logical place |
| // in the stream as set by overrun. Overrun indicates the position in the slop |
| // region the parse was left (0 <= overrun <= kSlopBytes). Returns true if at |
| // limit, at which point the returned pointer maybe null if there was an |
| // error. The invariant of this function is that it's guaranteed that |
| // kSlopBytes bytes can be accessed from the returned ptr. This function might |
| // advance more buffers than one in the underlying ZeroCopyInputStream. |
| std::pair<const char*, bool> DoneFallback(int overrun, int depth); |
| // Advances to the next buffer, at most one call to Next() on the underlying |
| // ZeroCopyInputStream is made. This function DOES NOT match the returned |
| // pointer to where in the slop region the parse ends, hence no overrun |
| // parameter. This is useful for string operations where you always copy |
| // to the end of the buffer (including the slop region). |
| const char* Next(); |
| // overrun is the location in the slop region the stream currently is |
| // (0 <= overrun <= kSlopBytes). To prevent flipping to the next buffer of |
| // the ZeroCopyInputStream in the case the parse will end in the last |
| // kSlopBytes of the current buffer. depth is the current depth of nested |
| // groups (or negative if the use case does not need careful tracking). |
| inline const char* NextBuffer(int overrun, int depth); |
| const char* SkipFallback(const char* ptr, int size); |
| const char* AppendStringFallback(const char* ptr, int size, std::string* str); |
| const char* ReadStringFallback(const char* ptr, int size, std::string* str); |
| const char* ReadCordFallback(const char* ptr, int size, absl::Cord* cord); |
| static bool ParseEndsInSlopRegion(const char* begin, int overrun, int depth); |
| bool StreamNext(const void** data) { |
| bool res = zcis_->Next(data, &size_); |
| if (res) overall_limit_ -= size_; |
| return res; |
| } |
| void StreamBackUp(int count) { |
| zcis_->BackUp(count); |
| overall_limit_ += count; |
| } |
| |
| template <typename A> |
| const char* AppendSize(const char* ptr, int size, const A& append) { |
| int chunk_size = BytesAvailable(ptr); |
| do { |
| ABSL_DCHECK(size > chunk_size); |
| if (next_chunk_ == nullptr) return nullptr; |
| append(ptr, chunk_size); |
| ptr += chunk_size; |
| size -= chunk_size; |
| // TODO Next calls NextBuffer which generates buffers with |
| // overlap and thus incurs cost of copying the slop regions. This is not |
| // necessary for reading strings. We should just call Next buffers. |
| if (limit_ <= kSlopBytes) return nullptr; |
| ptr = Next(); |
| if (ptr == nullptr) return nullptr; // passed the limit |
| ptr += kSlopBytes; |
| chunk_size = BytesAvailable(ptr); |
| } while (size > chunk_size); |
| append(ptr, size); |
| return ptr + size; |
| } |
| |
| // AppendUntilEnd appends data until a limit (either a PushLimit or end of |
| // stream. Normal payloads are from length delimited fields which have an |
| // explicit size. Reading until limit only comes when the string takes |
| // the place of a protobuf, ie RawMessage, lazy fields and implicit weak |
| // messages. We keep these methods private and friend them. |
| template <typename A> |
| const char* AppendUntilEnd(const char* ptr, const A& append) { |
| if (ptr - buffer_end_ > limit_) return nullptr; |
| while (limit_ > kSlopBytes) { |
| size_t chunk_size = BytesAvailable(ptr); |
| append(ptr, chunk_size); |
| ptr = Next(); |
| if (ptr == nullptr) return limit_end_; |
| ptr += kSlopBytes; |
| } |
| auto end = buffer_end_ + limit_; |
| ABSL_DCHECK(end >= ptr); |
| append(ptr, end - ptr); |
| return end; |
| } |
| |
| [[nodiscard]] const char* AppendString(const char* ptr, std::string* str) { |
| return AppendUntilEnd( |
| ptr, [str](const char* p, ptrdiff_t s) { str->append(p, s); }); |
| } |
| friend class ImplicitWeakMessage; |
| |
| // Needs access to kSlopBytes. |
| friend PROTOBUF_EXPORT std::pair<const char*, int32_t> ReadSizeFallback( |
| const char* p, uint32_t res); |
| }; |
| |
| using LazyEagerVerifyFnType = const char* (*)(const char* ptr, |
| ParseContext* ctx); |
| using LazyEagerVerifyFnRef = std::remove_pointer<LazyEagerVerifyFnType>::type&; |
| |
| // ParseContext holds all data that is global to the entire parse. Most |
| // importantly it contains the input stream, but also recursion depth and also |
| // stores the end group tag, in case a parser ended on a endgroup, to verify |
| // matching start/end group tags. |
| class PROTOBUF_EXPORT ParseContext : public EpsCopyInputStream { |
| public: |
| struct Data { |
| const DescriptorPool* pool = nullptr; |
| MessageFactory* factory = nullptr; |
| }; |
| |
| template <typename... T> |
| ParseContext(int depth, bool aliasing, const char** start, T&&... args) |
| : EpsCopyInputStream(aliasing), depth_(depth) { |
| *start = InitFrom(std::forward<T>(args)...); |
| } |
| |
| struct Spawn {}; |
| static constexpr Spawn kSpawn = {}; |
| |
| // Creates a new context from a given "ctx" to inherit a few attributes to |
| // emulate continued parsing. For example, recursion depth or descriptor pools |
| // must be passed down to a new "spawned" context to maintain the same parse |
| // context. Note that the spawned context always disables aliasing (different |
| // input). |
| template <typename... T> |
| ParseContext(Spawn, const ParseContext& ctx, const char** start, T&&... args) |
| : EpsCopyInputStream(false), |
| depth_(ctx.depth_), |
| data_(ctx.data_) |
| { |
| *start = InitFrom(std::forward<T>(args)...); |
| } |
| |
| // Move constructor and assignment operator are not supported because "ptr" |
| // for parsing may have pointed to an inlined buffer (patch_buffer_) which can |
| // be invalid afterwards. |
| ParseContext(ParseContext&&) = delete; |
| ParseContext& operator=(ParseContext&&) = delete; |
| ParseContext& operator=(const ParseContext&) = delete; |
| |
| void TrackCorrectEnding() { group_depth_ = 0; } |
| |
| // Done should only be called when the parsing pointer is pointing to the |
| // beginning of field data - that is, at a tag. Or if it is NULL. |
| bool Done(const char** ptr) { return DoneWithCheck(ptr, group_depth_); } |
| |
| int depth() const { return depth_; } |
| |
| Data& data() { return data_; } |
| const Data& data() const { return data_; } |
| |
| const char* ParseMessage(MessageLite* msg, const char* ptr); |
| |
| // Read the length prefix, push the new limit, call the func(ptr), and then |
| // pop the limit. Useful for situations that don't have an actual message. |
| template <typename Func> |
| [[nodiscard]] const char* ParseLengthDelimitedInlined(const char*, |
| const Func& func); |
| |
| // Push the recursion depth, call the func(ptr), and then pop depth. Useful |
| // for situations that don't have an actual message. |
| template <typename Func> |
| [[nodiscard]] const char* ParseGroupInlined(const char* ptr, |
| uint32_t start_tag, |
| const Func& func); |
| |
| // Use a template to avoid the strong dep into TcParser. All callers will have |
| // the dep. |
| template <typename Parser = TcParser> |
| PROTOBUF_ALWAYS_INLINE const char* ParseMessage( |
| MessageLite* msg, const TcParseTableBase* tc_table, const char* ptr) { |
| return ParseLengthDelimitedInlined(ptr, [&](const char* ptr) { |
| return Parser::ParseLoop(msg, ptr, this, tc_table); |
| }); |
| } |
| template <typename Parser = TcParser> |
| PROTOBUF_ALWAYS_INLINE const char* ParseGroup( |
| MessageLite* msg, const TcParseTableBase* tc_table, const char* ptr, |
| uint32_t start_tag) { |
| return ParseGroupInlined(ptr, start_tag, [&](const char* ptr) { |
| return Parser::ParseLoop(msg, ptr, this, tc_table); |
| }); |
| } |
| |
| [[nodiscard]] PROTOBUF_NDEBUG_INLINE const char* ParseGroup(MessageLite* msg, |
| const char* ptr, |
| uint32_t tag) { |
| if (--depth_ < 0) return nullptr; |
| group_depth_++; |
| auto old_depth = depth_; |
| auto old_group_depth = group_depth_; |
| ptr = msg->_InternalParse(ptr, this); |
| if (ptr != nullptr) { |
| ABSL_DCHECK_EQ(old_depth, depth_); |
| ABSL_DCHECK_EQ(old_group_depth, group_depth_); |
| } |
| group_depth_--; |
| depth_++; |
| if (ABSL_PREDICT_FALSE(!ConsumeEndGroup(tag))) return nullptr; |
| return ptr; |
| } |
| |
| private: |
| // Out-of-line routine to save space in ParseContext::ParseMessage<T> |
| // LimitToken old; |
| // ptr = ReadSizeAndPushLimitAndDepth(ptr, &old) |
| // is equivalent to: |
| // int size = ReadSize(&ptr); |
| // if (!ptr) return nullptr; |
| // LimitToken old = PushLimit(ptr, size); |
| // if (--depth_ < 0) return nullptr; |
| [[nodiscard]] const char* ReadSizeAndPushLimitAndDepth(const char* ptr, |
| LimitToken* old_limit); |
| |
| // As above, but fully inlined for the cases where we care about performance |
| // more than size. eg TcParser. |
| [[nodiscard]] PROTOBUF_ALWAYS_INLINE const char* |
| ReadSizeAndPushLimitAndDepthInlined(const char* ptr, LimitToken* old_limit); |
| |
| // The context keeps an internal stack to keep track of the recursive |
| // part of the parse state. |
| // Current depth of the active parser, depth counts down. |
| // This is used to limit recursion depth (to prevent overflow on malicious |
| // data), but is also used to index in stack_ to store the current state. |
| int depth_; |
| // Unfortunately necessary for the fringe case of ending on 0 or end-group tag |
| // in the last kSlopBytes of a ZeroCopyInputStream chunk. |
| int group_depth_ = INT_MIN; |
| Data data_; |
| }; |
| |
| template <int> |
| struct EndianHelper; |
| |
| template <> |
| struct EndianHelper<1> { |
| static uint8_t Load(const void* p) { return *static_cast<const uint8_t*>(p); } |
| }; |
| |
| template <> |
| struct EndianHelper<2> { |
| static uint16_t Load(const void* p) { |
| uint16_t tmp; |
| std::memcpy(&tmp, p, 2); |
| return little_endian::ToHost(tmp); |
| } |
| }; |
| |
| template <> |
| struct EndianHelper<4> { |
| static uint32_t Load(const void* p) { |
| uint32_t tmp; |
| std::memcpy(&tmp, p, 4); |
| return little_endian::ToHost(tmp); |
| } |
| }; |
| |
| template <> |
| struct EndianHelper<8> { |
| static uint64_t Load(const void* p) { |
| uint64_t tmp; |
| std::memcpy(&tmp, p, 8); |
| return little_endian::ToHost(tmp); |
| } |
| }; |
| |
| template <typename T> |
| T UnalignedLoad(const char* p) { |
| auto tmp = EndianHelper<sizeof(T)>::Load(p); |
| T res; |
| memcpy(&res, &tmp, sizeof(T)); |
| return res; |
| } |
| template <typename T, typename Void, |
| typename = std::enable_if_t<std::is_same<Void, void>::value>> |
| T UnalignedLoad(const Void* p) { |
| return UnalignedLoad<T>(reinterpret_cast<const char*>(p)); |
| } |
| |
| PROTOBUF_EXPORT |
| std::pair<const char*, uint32_t> VarintParseSlow32(const char* p, uint32_t res); |
| PROTOBUF_EXPORT |
| std::pair<const char*, uint64_t> VarintParseSlow64(const char* p, uint32_t res); |
| |
| inline const char* VarintParseSlow(const char* p, uint32_t res, uint32_t* out) { |
| auto tmp = VarintParseSlow32(p, res); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| inline const char* VarintParseSlow(const char* p, uint32_t res, uint64_t* out) { |
| auto tmp = VarintParseSlow64(p, res); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| #if defined(__aarch64__) && !defined(_MSC_VER) |
| // Generally, speaking, the ARM-optimized Varint decode algorithm is to extract |
| // and concatenate all potentially valid data bits, compute the actual length |
| // of the Varint, and mask off the data bits which are not actually part of the |
| // result. More detail on the two main parts is shown below. |
| // |
| // 1) Extract and concatenate all potentially valid data bits. |
| // Two ARM-specific features help significantly: |
| // a) Efficient and non-destructive bit extraction (UBFX) |
| // b) A single instruction can perform both an OR with a shifted |
| // second operand in one cycle. E.g., the following two lines do the same |
| // thing |
| // ```result = operand_1 | (operand2 << 7);``` |
| // ```ORR %[result], %[operand_1], %[operand_2], LSL #7``` |
| // The figure below shows the implementation for handling four chunks. |
| // |
| // Bits 32 31-24 23 22-16 15 14-8 7 6-0 |
| // +----+---------+----+---------+----+---------+----+---------+ |
| // |CB 3| Chunk 3 |CB 2| Chunk 2 |CB 1| Chunk 1 |CB 0| Chunk 0 | |
| // +----+---------+----+---------+----+---------+----+---------+ |
| // | | | | |
| // UBFX UBFX UBFX UBFX -- cycle 1 |
| // | | | | |
| // V V V V |
| // Combined LSL #7 and ORR Combined LSL #7 and ORR -- cycle 2 |
| // | | |
| // V V |
| // Combined LSL #14 and ORR -- cycle 3 |
| // | |
| // V |
| // Parsed bits 0-27 |
| // |
| // |
| // 2) Calculate the index of the cleared continuation bit in order to determine |
| // where the encoded Varint ends and the size of the decoded value. The |
| // easiest way to do this is mask off all data bits, leaving just the |
| // continuation bits. We actually need to do the masking on an inverted |
| // copy of the data, which leaves a 1 in all continuation bits which were |
| // originally clear. The number of trailing zeroes in this value indicates |
| // the size of the Varint. |
| // |
| // AND 0x80 0x80 0x80 0x80 0x80 0x80 0x80 0x80 |
| // |
| // Bits 63 55 47 39 31 23 15 7 |
| // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
| // ~ |CB 7| |CB 6| |CB 5| |CB 4| |CB 3| |CB 2| |CB 1| |CB 0| | |
| // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
| // | | | | | | | | |
| // V V V V V V V V |
| // Bits 63 55 47 39 31 23 15 7 |
| // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
| // |~CB 7|0|~CB 6|0|~CB 5|0|~CB 4|0|~CB 3|0|~CB 2|0|~CB 1|0|~CB 0|0| |
| // +----+--+----+--+----+--+----+--+----+--+----+--+----+--+----+--+ |
| // | |
| // CTZ |
| // V |
| // Index of first cleared continuation bit |
| // |
| // |
| // While this is implemented in C++ significant care has been taken to ensure |
| // the compiler emits the best instruction sequence. In some cases we use the |
| // following two functions to manipulate the compiler's scheduling decisions. |
| // |
| // Controls compiler scheduling by telling it that the first value is modified |
| // by the second value the callsite. This is useful if non-critical path |
| // instructions are too aggressively scheduled, resulting in a slowdown of the |
| // actual critical path due to opportunity costs. An example usage is shown |
| // where a false dependence of num_bits on result is added to prevent checking |
| // for a very unlikely error until all critical path instructions have been |
| // fetched. |
| // |
| // ``` |
| // num_bits = <multiple operations to calculate new num_bits value> |
| // result = <multiple operations to calculate result> |
| // num_bits = ValueBarrier(num_bits, result); |
| // if (num_bits == 63) { |
| // ABSL_LOG(FATAL) << "Invalid num_bits value"; |
| // } |
| // ``` |
| // Falsely indicate that the specific value is modified at this location. This |
| // prevents code which depends on this value from being scheduled earlier. |
| template <typename V1Type> |
| PROTOBUF_ALWAYS_INLINE V1Type ValueBarrier(V1Type value1) { |
| asm("" : "+r"(value1)); |
| return value1; |
| } |
| |
| template <typename V1Type, typename V2Type> |
| PROTOBUF_ALWAYS_INLINE V1Type ValueBarrier(V1Type value1, V2Type value2) { |
| asm("" : "+r"(value1) : "r"(value2)); |
| return value1; |
| } |
| |
| // Performs a 7 bit UBFX (Unsigned Bit Extract) starting at the indicated bit. |
| static PROTOBUF_ALWAYS_INLINE uint64_t Ubfx7(uint64_t data, uint64_t start) { |
| return ValueBarrier((data >> start) & 0x7f); |
| } |
| |
| PROTOBUF_ALWAYS_INLINE uint64_t ExtractAndMergeTwoChunks(uint64_t data, |
| uint64_t first_byte) { |
| ABSL_DCHECK_LE(first_byte, 6U); |
| uint64_t first = Ubfx7(data, first_byte * 8); |
| uint64_t second = Ubfx7(data, (first_byte + 1) * 8); |
| return ValueBarrier(first | (second << 7)); |
| } |
| |
| struct SlowPathEncodedInfo { |
| const char* p; |
| uint64_t last8; |
| uint64_t valid_bits; |
| uint64_t valid_chunk_bits; |
| uint64_t masked_cont_bits; |
| }; |
| |
| // Performs multiple actions which are identical between 32 and 64 bit Varints |
| // in order to compute the length of the encoded Varint and compute the new |
| // of p. |
| PROTOBUF_ALWAYS_INLINE SlowPathEncodedInfo |
| ComputeLengthAndUpdateP(const char* p) { |
| SlowPathEncodedInfo result; |
| // Load the last two bytes of the encoded Varint. |
| std::memcpy(&result.last8, p + 2, sizeof(result.last8)); |
| uint64_t mask = ValueBarrier(0x8080808080808080); |
| // Only set continuation bits remain |
| result.masked_cont_bits = ValueBarrier(mask & ~result.last8); |
| // The first cleared continuation bit is the most significant 1 in the |
| // reversed value. Result is undefined for an input of 0 and we handle that |
| // case below. |
| result.valid_bits = absl::countr_zero(result.masked_cont_bits); |
| // Calculates the number of chunks in the encoded Varint. This value is low |
| // by three as neither the cleared continuation chunk nor the first two chunks |
| // are counted. |
| uint64_t set_continuation_bits = result.valid_bits >> 3; |
| // Update p to point past the encoded Varint. |
| result.p = p + set_continuation_bits + 3; |
| // Calculate number of valid data bits in the decoded value so invalid bits |
| // can be masked off. Value is too low by 14 but we account for that when |
| // calculating the mask. |
| result.valid_chunk_bits = result.valid_bits - set_continuation_bits; |
| return result; |
| } |
| |
| PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint64_t> VarintParseSlowArm64( |
| const char* p, uint64_t first8) { |
| constexpr uint64_t kResultMaskUnshifted = 0xffffffffffffc000ULL; |
| constexpr uint64_t kFirstResultBitChunk2 = 2 * 7; |
| constexpr uint64_t kFirstResultBitChunk4 = 4 * 7; |
| constexpr uint64_t kFirstResultBitChunk6 = 6 * 7; |
| constexpr uint64_t kFirstResultBitChunk8 = 8 * 7; |
| |
| SlowPathEncodedInfo info = ComputeLengthAndUpdateP(p); |
| // Extract data bits from the low six chunks. This includes chunks zero and |
| // one which we already know are valid. |
| uint64_t merged_01 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/0); |
| uint64_t merged_23 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/2); |
| uint64_t merged_45 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/4); |
| // Low 42 bits of decoded value. |
| uint64_t result = merged_01 | (merged_23 << kFirstResultBitChunk2) | |
| (merged_45 << kFirstResultBitChunk4); |
| // This immediate ends in 14 zeroes since valid_chunk_bits is too low by 14. |
| uint64_t result_mask = kResultMaskUnshifted << info.valid_chunk_bits; |
| // iff the Varint i invalid. |
| if (ABSL_PREDICT_FALSE(info.masked_cont_bits == 0)) { |
| return {nullptr, 0}; |
| } |
| // Test for early exit if Varint does not exceed 6 chunks. Branching on one |
| // bit is faster on ARM than via a compare and branch. |
| if (ABSL_PREDICT_FALSE((info.valid_bits & 0x20) != 0)) { |
| // Extract data bits from high four chunks. |
| uint64_t merged_67 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/6); |
| // Last two chunks come from last two bytes of info.last8. |
| uint64_t merged_89 = |
| ExtractAndMergeTwoChunks(info.last8, /*first_chunk=*/6); |
| result |= merged_67 << kFirstResultBitChunk6; |
| result |= merged_89 << kFirstResultBitChunk8; |
| // Handle an invalid Varint with all 10 continuation bits set. |
| } |
| // Mask off invalid data bytes. |
| result &= ~result_mask; |
| return {info.p, result}; |
| } |
| |
| // See comments in VarintParseSlowArm64 for a description of the algorithm. |
| // Differences in the 32 bit version are noted below. |
| PROTOBUF_ALWAYS_INLINE std::pair<const char*, uint32_t> VarintParseSlowArm32( |
| const char* p, uint64_t first8) { |
| constexpr uint64_t kResultMaskUnshifted = 0xffffffffffffc000ULL; |
| constexpr uint64_t kFirstResultBitChunk1 = 1 * 7; |
| constexpr uint64_t kFirstResultBitChunk3 = 3 * 7; |
| |
| // This also skips the slop bytes. |
| SlowPathEncodedInfo info = ComputeLengthAndUpdateP(p); |
| // Extract data bits from chunks 1-4. Chunk zero is merged in below. |
| uint64_t merged_12 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/1); |
| uint64_t merged_34 = ExtractAndMergeTwoChunks(first8, /*first_chunk=*/3); |
| first8 = ValueBarrier(first8, p); |
| uint64_t result = Ubfx7(first8, /*start=*/0); |
| result = ValueBarrier(result | merged_12 << kFirstResultBitChunk1); |
| result = ValueBarrier(result | merged_34 << kFirstResultBitChunk3); |
| uint64_t result_mask = kResultMaskUnshifted << info.valid_chunk_bits; |
| result &= ~result_mask; |
| // It is extremely unlikely that a Varint is invalid so checking that |
| // condition isn't on the critical path. Here we make sure that we don't do so |
| // until result has been computed. |
| info.masked_cont_bits = ValueBarrier(info.masked_cont_bits, result); |
| if (ABSL_PREDICT_FALSE(info.masked_cont_bits == 0)) { |
| return {nullptr, 0}; |
| } |
| return {info.p, result}; |
| } |
| |
| static const char* VarintParseSlowArm(const char* p, uint32_t* out, |
| uint64_t first8) { |
| auto tmp = VarintParseSlowArm32(p, first8); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| static const char* VarintParseSlowArm(const char* p, uint64_t* out, |
| uint64_t first8) { |
| auto tmp = VarintParseSlowArm64(p, first8); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| #endif |
| |
| // The caller must ensure that p points to at least 10 valid bytes. |
| template <typename T> |
| [[nodiscard]] const char* VarintParse(const char* p, T* out) { |
| AssertBytesAreReadable(p, 10); |
| #if defined(__aarch64__) && defined(ABSL_IS_LITTLE_ENDIAN) && !defined(_MSC_VER) |
| // This optimization is not supported in big endian mode |
| uint64_t first8; |
| std::memcpy(&first8, p, sizeof(first8)); |
| if (ABSL_PREDICT_TRUE((first8 & 0x80) == 0)) { |
| *out = static_cast<uint8_t>(first8); |
| return p + 1; |
| } |
| if (ABSL_PREDICT_TRUE((first8 & 0x8000) == 0)) { |
| uint64_t chunk1; |
| uint64_t chunk2; |
| // Extracting the two chunks this way gives a speedup for this path. |
| chunk1 = Ubfx7(first8, 0); |
| chunk2 = Ubfx7(first8, 8); |
| *out = chunk1 | (chunk2 << 7); |
| return p + 2; |
| } |
| return VarintParseSlowArm(p, out, first8); |
| #else // __aarch64__ |
| auto ptr = reinterpret_cast<const uint8_t*>(p); |
| uint32_t res = ptr[0]; |
| if ((res & 0x80) == 0) { |
| *out = res; |
| return p + 1; |
| } |
| return VarintParseSlow(p, res, out); |
| #endif // __aarch64__ |
| } |
| |
| // Used for tags, could read up to 5 bytes which must be available. |
| // Caller must ensure it's safe to call. |
| |
| PROTOBUF_EXPORT |
| std::pair<const char*, uint32_t> ReadTagFallback(const char* p, uint32_t res); |
| |
| // Same as ParseVarint but only accept 5 bytes at most. |
| inline const char* ReadTag(const char* p, uint32_t* out, |
| uint32_t /*max_tag*/ = 0) { |
| uint32_t res = static_cast<uint8_t>(p[0]); |
| if (res < 128) { |
| *out = res; |
| return p + 1; |
| } |
| uint32_t second = static_cast<uint8_t>(p[1]); |
| res += (second - 1) << 7; |
| if (second < 128) { |
| *out = res; |
| return p + 2; |
| } |
| auto tmp = ReadTagFallback(p, res); |
| *out = tmp.second; |
| return tmp.first; |
| } |
| |
| // As above, but optimized to consume very few registers while still being fast, |
| // ReadTagInlined is useful for callers that don't mind the extra code but would |
| // like to avoid an extern function call causing spills into the stack. |
| // |
| // Two support routines for ReadTagInlined come first... |
| template <class T> |
| [[nodiscard]] PROTOBUF_ALWAYS_INLINE constexpr T RotateLeft(T x, |
| int s) noexcept { |
| return static_cast<T>(x << (s & (std::numeric_limits<T>::digits - 1))) | |
| static_cast<T>(x >> ((-s) & (std::numeric_limits<T>::digits - 1))); |
| } |
| |
| [[nodiscard]] PROTOBUF_ALWAYS_INLINE uint64_t |
| RotRight7AndReplaceLowByte(uint64_t res, const char& byte) { |
| // TODO: remove the inline assembly |
| #if defined(__x86_64__) && defined(__GNUC__) |
| // This will only use one register for `res`. |
| // `byte` comes as a reference to allow the compiler to generate code like: |
| // |
| // rorq $7, %rcx |
| // movb 1(%rax), %cl |
| // |
| // which avoids loading the incoming bytes into a separate register first. |
| asm("ror $7,%0\n\t" |
| "movb %1,%b0" |
| : "+r"(res) |
| : "m"(byte)); |
| #else |
| res = RotateLeft(res, -7); |
| res = res & ~0xFF; |
| res |= 0xFF & byte; |
| #endif |
| return res; |
| } |
| |
| PROTOBUF_ALWAYS_INLINE const char* ReadTagInlined(const char* ptr, |
| uint32_t* out) { |
| uint64_t res = 0xFF & ptr[0]; |
| if (ABSL_PREDICT_FALSE(res >= 128)) { |
| res = RotRight7AndReplaceLowByte(res, ptr[1]); |
| if (ABSL_PREDICT_FALSE(res & 0x80)) { |
| res = RotRight7AndReplaceLowByte(res, ptr[2]); |
| if (ABSL_PREDICT_FALSE(res & 0x80)) { |
| res = RotRight7AndReplaceLowByte(res, ptr[3]); |
| if (ABSL_PREDICT_FALSE(res & 0x80)) { |
| // Note: this wouldn't work if res were 32-bit, |
| // because then replacing the low byte would overwrite |
| // the bottom 4 bits of the result. |
| res = RotRight7AndReplaceLowByte(res, ptr[4]); |
| if (ABSL_PREDICT_FALSE(res & 0x80)) { |
| // The proto format does not permit longer than 5-byte encodings for |
| // tags. |
| *out = 0; |
| return nullptr; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 28)); |
| #if defined(__GNUC__) |
| // Note: this asm statement prevents the compiler from |
| // trying to share the "return ptr + constant" among all |
| // branches. |
| asm("" : "+r"(ptr)); |
| #endif |
| return ptr + 5; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 21)); |
| return ptr + 4; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 14)); |
| return ptr + 3; |
| } |
| *out = static_cast<uint32_t>(RotateLeft(res, 7)); |
| return ptr + 2; |
| } |
| *out = static_cast<uint32_t>(res); |
| return ptr + 1; |
| } |
| |
| // Decode 2 consecutive bytes of a varint and returns the value, shifted left |
| // by 1. It simultaneous updates *ptr to *ptr + 1 or *ptr + 2 depending if the |
| // first byte's continuation bit is set. |
| // If bit 15 of return value is set (equivalent to the continuation bits of both |
| // bytes being set) the varint continues, otherwise the parse is done. On x86 |
| // movsx eax, dil |
| // and edi, eax |
| // add eax, edi |
| // adc [rsi], 1 |
| inline uint32_t DecodeTwoBytes(const char** ptr) { |
| uint32_t value = UnalignedLoad<uint16_t>(*ptr); |
| // Sign extend the low byte continuation bit |
| uint32_t x = static_cast<int8_t>(value); |
| value &= x; // Mask out the high byte iff no continuation |
| // This add is an amazing operation, it cancels the low byte continuation bit |
| // from y transferring it to the carry. Simultaneously it also shifts the 7 |
| // LSB left by one tightly against high byte varint bits. Hence value now |
| // contains the unpacked value shifted left by 1. |
| value += x; |
| // Use the carry to update the ptr appropriately. |
| *ptr += value < x ? 2 : 1; |
| return value; |
| } |
| |
| // More efficient varint parsing for big varints |
| inline const char* ParseBigVarint(const char* p, uint64_t* out) { |
| auto pnew = p; |
| auto tmp = DecodeTwoBytes(&pnew); |
| uint64_t res = tmp >> 1; |
| if (ABSL_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { |
| *out = res; |
| return pnew; |
| } |
| for (std::uint32_t i = 1; i < 5; i++) { |
| pnew = p + 2 * i; |
| tmp = DecodeTwoBytes(&pnew); |
| res += (static_cast<std::uint64_t>(tmp) - 2) << (14 * i - 1); |
| if (ABSL_PREDICT_TRUE(static_cast<std::int16_t>(tmp) >= 0)) { |
| *out = res; |
| return pnew; |
| } |
| } |
| return nullptr; |
| } |
| |
| PROTOBUF_EXPORT |
| std::pair<const char*, int32_t> ReadSizeFallback(const char* p, uint32_t first); |
| |
| // Used for length prefixes. Could read up to 5 bytes, but no more than |
| // necessary for a single varint. The caller must ensure enough bytes are |
| // available. Additionally it makes sure the unsigned value fits in an int32_t, |
| // otherwise returns nullptr. Caller must ensure it is safe to call. |
| inline uint32_t ReadSize(const char** pp) { |
| auto p = *pp; |
| uint32_t res = static_cast<uint8_t>(p[0]); |
| if (res < 128) { |
| *pp = p + 1; |
| return res; |
| } |
| auto x = ReadSizeFallback(p, res); |
| *pp = x.first; |
| return x.second; |
| } |
| |
| // Some convenience functions to simplify the generated parse loop code. |
| // Returning the value and updating the buffer pointer allows for nicer |
| // function composition. We rely on the compiler to inline this. |
| // Also in debug compiles having local scoped variables tend to generated |
| // stack frames that scale as O(num fields). |
| inline uint64_t ReadVarint64(const char** p) { |
| uint64_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return tmp; |
| } |
| |
| inline uint32_t ReadVarint32(const char** p) { |
| uint32_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return tmp; |
| } |
| |
| inline int64_t ReadVarintZigZag64(const char** p) { |
| uint64_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return WireFormatLite::ZigZagDecode64(tmp); |
| } |
| |
| inline int32_t ReadVarintZigZag32(const char** p) { |
| uint64_t tmp; |
| *p = VarintParse(*p, &tmp); |
| return WireFormatLite::ZigZagDecode32(static_cast<uint32_t>(tmp)); |
| } |
| |
| template <typename Func> |
| [[nodiscard]] PROTOBUF_ALWAYS_INLINE const char* |
| ParseContext::ParseLengthDelimitedInlined(const char* ptr, const Func& func) { |
| LimitToken old; |
| ptr = ReadSizeAndPushLimitAndDepthInlined(ptr, &old); |
| if (ptr == nullptr) return ptr; |
| auto old_depth = depth_; |
| PROTOBUF_ALWAYS_INLINE_CALL ptr = func(ptr); |
| if (ptr != nullptr) ABSL_DCHECK_EQ(old_depth, depth_); |
| depth_++; |
| if (!PopLimit(std::move(old))) return nullptr; |
| return ptr; |
| } |
| |
| template <typename Func> |
| [[nodiscard]] PROTOBUF_ALWAYS_INLINE const char* |
| ParseContext::ParseGroupInlined(const char* ptr, uint32_t start_tag, |
| const Func& func) { |
| if (--depth_ < 0) return nullptr; |
| group_depth_++; |
| auto old_depth = depth_; |
| auto old_group_depth = group_depth_; |
| PROTOBUF_ALWAYS_INLINE_CALL ptr = func(ptr); |
| if (ptr != nullptr) { |
| ABSL_DCHECK_EQ(old_depth, depth_); |
| ABSL_DCHECK_EQ(old_group_depth, group_depth_); |
| } |
| group_depth_--; |
| depth_++; |
| if (ABSL_PREDICT_FALSE(!ConsumeEndGroup(start_tag))) return nullptr; |
| return ptr; |
| } |
| |
| inline const char* ParseContext::ReadSizeAndPushLimitAndDepthInlined( |
| const char* ptr, LimitToken* old_limit) { |
| int size = ReadSize(&ptr); |
| if (ABSL_PREDICT_FALSE(!ptr) || depth_ <= 0) { |
| return nullptr; |
| } |
| *old_limit = PushLimit(ptr, size); |
| --depth_; |
| return ptr; |
| } |
| |
| template <typename Tag, typename T> |
| const char* EpsCopyInputStream::ReadRepeatedFixed(const char* ptr, |
| Tag expected_tag, |
| RepeatedField<T>* out) { |
| do { |
| out->Add(UnalignedLoad<T>(ptr)); |
| ptr += sizeof(T); |
| if (ABSL_PREDICT_FALSE(ptr >= limit_end_)) return ptr; |
| } while (UnalignedLoad<Tag>(ptr) == expected_tag && (ptr += sizeof(Tag))); |
| return ptr; |
| } |
| |
| // Add any of the following lines to debug which parse function is failing. |
| |
| #define GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, ret) \ |
| if (!(predicate)) { \ |
| /* ::raise(SIGINT); */ \ |
| /* ABSL_LOG(ERROR) << "Parse failure"; */ \ |
| return ret; \ |
| } |
| |
| #define GOOGLE_PROTOBUF_PARSER_ASSERT(predicate) \ |
| GOOGLE_PROTOBUF_ASSERT_RETURN(predicate, nullptr) |
| |
| template <typename T> |
| const char* EpsCopyInputStream::ReadPackedFixed(const char* ptr, int size, |
| RepeatedField<T>* out) { |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| int nbytes = BytesAvailable(ptr); |
| while (size > nbytes) { |
| int num = nbytes / sizeof(T); |
| int old_entries = out->size(); |
| out->Reserve(old_entries + num); |
| int block_size = num * sizeof(T); |
| auto dst = out->AddNAlreadyReserved(num); |
| #ifdef ABSL_IS_LITTLE_ENDIAN |
| std::memcpy(dst, ptr, block_size); |
| #else |
| for (int i = 0; i < num; i++) |
| dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); |
| #endif |
| size -= block_size; |
| if (limit_ <= kSlopBytes) return nullptr; |
| ptr = Next(); |
| if (ptr == nullptr) return nullptr; |
| ptr += kSlopBytes - (nbytes - block_size); |
| nbytes = BytesAvailable(ptr); |
| } |
| int num = size / sizeof(T); |
| int block_size = num * sizeof(T); |
| if (num == 0) return size == block_size ? ptr : nullptr; |
| int old_entries = out->size(); |
| out->Reserve(old_entries + num); |
| auto dst = out->AddNAlreadyReserved(num); |
| #ifdef ABSL_IS_LITTLE_ENDIAN |
| ABSL_CHECK(dst != nullptr) << out << "," << num; |
| std::memcpy(dst, ptr, block_size); |
| #else |
| for (int i = 0; i < num; i++) dst[i] = UnalignedLoad<T>(ptr + i * sizeof(T)); |
| #endif |
| ptr += block_size; |
| if (size != block_size) return nullptr; |
| return ptr; |
| } |
| |
| template <typename Add> |
| const char* ReadPackedVarintArray(const char* ptr, const char* end, Add add) { |
| while (ptr < end) { |
| uint64_t varint; |
| ptr = VarintParse(ptr, &varint); |
| if (ptr == nullptr) return nullptr; |
| add(varint); |
| } |
| return ptr; |
| } |
| |
| template <typename Add, typename SizeCb> |
| const char* EpsCopyInputStream::ReadPackedVarint(const char* ptr, Add add, |
| SizeCb size_callback) { |
| int size = ReadSize(&ptr); |
| size_callback(size); |
| |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| int chunk_size = static_cast<int>(buffer_end_ - ptr); |
| while (size > chunk_size) { |
| ptr = ReadPackedVarintArray(ptr, buffer_end_, add); |
| if (ptr == nullptr) return nullptr; |
| int overrun = static_cast<int>(ptr - buffer_end_); |
| ABSL_DCHECK(overrun >= 0 && overrun <= kSlopBytes); |
| if (size - chunk_size <= kSlopBytes) { |
| // The current buffer contains all the information needed, we don't need |
| // to flip buffers. However we must parse from a buffer with enough space |
| // so we are not prone to a buffer overflow. |
| char buf[kSlopBytes + 10] = {}; |
| std::memcpy(buf, buffer_end_, kSlopBytes); |
| ABSL_CHECK_LE(size - chunk_size, kSlopBytes); |
| auto end = buf + (size - chunk_size); |
| auto res = ReadPackedVarintArray(buf + overrun, end, add); |
| if (res == nullptr || res != end) return nullptr; |
| return buffer_end_ + (res - buf); |
| } |
| size -= overrun + chunk_size; |
| ABSL_DCHECK_GT(size, 0); |
| // We must flip buffers |
| if (limit_ <= kSlopBytes) return nullptr; |
| ptr = Next(); |
| if (ptr == nullptr) return nullptr; |
| ptr += overrun; |
| chunk_size = static_cast<int>(buffer_end_ - ptr); |
| } |
| auto end = ptr + size; |
| ptr = ReadPackedVarintArray(ptr, end, add); |
| return end == ptr ? ptr : nullptr; |
| } |
| |
| // Helper for verification of utf8 |
| PROTOBUF_EXPORT |
| bool VerifyUTF8(absl::string_view s, const char* field_name); |
| |
| inline bool VerifyUTF8(const std::string* s, const char* field_name) { |
| return VerifyUTF8(*s, field_name); |
| } |
| |
| // All the string parsers with or without UTF checking and for all CTypes. |
| [[nodiscard]] PROTOBUF_EXPORT const char* InlineGreedyStringParser( |
| std::string* s, const char* ptr, ParseContext* ctx); |
| |
| [[nodiscard]] inline const char* InlineCordParser(::absl::Cord* cord, |
| const char* ptr, |
| ParseContext* ctx) { |
| int size = ReadSize(&ptr); |
| if (!ptr) return nullptr; |
| return ctx->ReadCord(ptr, size, cord); |
| } |
| |
| |
| template <typename T> |
| [[nodiscard]] const char* FieldParser(uint64_t tag, T& field_parser, |
| const char* ptr, ParseContext* ctx) { |
| uint32_t number = tag >> 3; |
| GOOGLE_PROTOBUF_PARSER_ASSERT(number != 0); |
| using WireType = internal::WireFormatLite::WireType; |
| switch (tag & 7) { |
| case WireType::WIRETYPE_VARINT: { |
| uint64_t value; |
| ptr = VarintParse(ptr, &value); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| field_parser.AddVarint(number, value); |
| break; |
| } |
| case WireType::WIRETYPE_FIXED64: { |
| uint64_t value = UnalignedLoad<uint64_t>(ptr); |
| ptr += 8; |
| field_parser.AddFixed64(number, value); |
| break; |
| } |
| case WireType::WIRETYPE_LENGTH_DELIMITED: { |
| ptr = field_parser.ParseLengthDelimited(number, ptr, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| break; |
| } |
| case WireType::WIRETYPE_START_GROUP: { |
| ptr = field_parser.ParseGroup(number, ptr, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr); |
| break; |
| } |
| case WireType::WIRETYPE_END_GROUP: { |
| ABSL_LOG(FATAL) << "Can't happen"; |
| break; |
| } |
| case WireType::WIRETYPE_FIXED32: { |
| uint32_t value = UnalignedLoad<uint32_t>(ptr); |
| ptr += 4; |
| field_parser.AddFixed32(number, value); |
| break; |
| } |
| default: |
| return nullptr; |
| } |
| return ptr; |
| } |
| |
| template <typename T> |
| [[nodiscard]] const char* WireFormatParser(T& field_parser, const char* ptr, |
| ParseContext* ctx) { |
| while (!ctx->Done(&ptr)) { |
| uint32_t tag; |
| ptr = ReadTag(ptr, &tag); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
| if (tag == 0 || (tag & 7) == 4) { |
| ctx->SetLastTag(tag); |
| return ptr; |
| } |
| ptr = FieldParser(tag, field_parser, ptr, ctx); |
| GOOGLE_PROTOBUF_PARSER_ASSERT(ptr != nullptr); |
| } |
| return ptr; |
| } |
| |
| // The packed parsers parse repeated numeric primitives directly into the |
| // corresponding field |
| |
| // These are packed varints |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedInt32Parser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedUInt32Parser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedInt64Parser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedUInt64Parser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedSInt32Parser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedSInt64Parser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedEnumParser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| |
| template <typename T, typename Validator> |
| [[nodiscard]] const char* PackedEnumParserArg(void* object, const char* ptr, |
| ParseContext* ctx, |
| Validator validator, |
| InternalMetadata* metadata, |
| int field_num) { |
| return ctx->ReadPackedVarint( |
| ptr, [object, validator, metadata, field_num](int32_t val) { |
| if (validator.IsValid(val)) { |
| static_cast<RepeatedField<int>*>(object)->Add(val); |
| } else { |
| WriteVarint(field_num, val, metadata->mutable_unknown_fields<T>()); |
| } |
| }); |
| } |
| |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedBoolParser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedFixed32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedSFixed32Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedFixed64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedSFixed64Parser( |
| void* object, const char* ptr, ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedFloatParser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| [[nodiscard]] PROTOBUF_EXPORT const char* PackedDoubleParser(void* object, |
| const char* ptr, |
| ParseContext* ctx); |
| |
| // This is the only recursive parser. |
| [[nodiscard]] PROTOBUF_EXPORT const char* UnknownGroupLiteParse( |
| std::string* unknown, const char* ptr, ParseContext* ctx); |
| // This is a helper to for the UnknownGroupLiteParse but is actually also |
| // useful in the generated code. It uses overload on std::string* vs |
| // UnknownFieldSet* to make the generated code isomorphic between full and lite. |
| [[nodiscard]] PROTOBUF_EXPORT const char* UnknownFieldParse( |
| uint32_t tag, std::string* unknown, const char* ptr, ParseContext* ctx); |
| |
| } // namespace internal |
| } // namespace protobuf |
| } // namespace google |
| |
| #include "google/protobuf/port_undef.inc" |
| |
| #endif // GOOGLE_PROTOBUF_PARSE_CONTEXT_H__ |