| /* stb_image_resize2 - v2.12 - public domain image resizing |
| |
| by Jeff Roberts (v2) and Jorge L Rodriguez |
| http://github.com/nothings/stb |
| |
| Can be threaded with the extended API. SSE2, AVX, Neon and WASM SIMD support. Only |
| scaling and translation is supported, no rotations or shears. |
| |
| COMPILING & LINKING |
| In one C/C++ file that #includes this file, do this: |
| #define STB_IMAGE_RESIZE_IMPLEMENTATION |
| before the #include. That will create the implementation in that file. |
| |
| EASY API CALLS: |
| Easy API downsamples w/Mitchell filter, upsamples w/cubic interpolation, clamps to edge. |
| |
| stbir_resize_uint8_srgb( input_pixels, input_w, input_h, input_stride_in_bytes, |
| output_pixels, output_w, output_h, output_stride_in_bytes, |
| pixel_layout_enum ) |
| |
| stbir_resize_uint8_linear( input_pixels, input_w, input_h, input_stride_in_bytes, |
| output_pixels, output_w, output_h, output_stride_in_bytes, |
| pixel_layout_enum ) |
| |
| stbir_resize_float_linear( input_pixels, input_w, input_h, input_stride_in_bytes, |
| output_pixels, output_w, output_h, output_stride_in_bytes, |
| pixel_layout_enum ) |
| |
| If you pass NULL or zero for the output_pixels, we will allocate the output buffer |
| for you and return it from the function (free with free() or STBIR_FREE). |
| As a special case, XX_stride_in_bytes of 0 means packed continuously in memory. |
| |
| API LEVELS |
| There are three levels of API - easy-to-use, medium-complexity and extended-complexity. |
| |
| See the "header file" section of the source for API documentation. |
| |
| ADDITIONAL DOCUMENTATION |
| |
| MEMORY ALLOCATION |
| By default, we use malloc and free for memory allocation. To override the |
| memory allocation, before the implementation #include, add a: |
| |
| #define STBIR_MALLOC(size,user_data) ... |
| #define STBIR_FREE(ptr,user_data) ... |
| |
| Each resize makes exactly one call to malloc/free (unless you use the |
| extended API where you can do one allocation for many resizes). Under |
| address sanitizer, we do separate allocations to find overread/writes. |
| |
| PERFORMANCE |
| This library was written with an emphasis on performance. When testing |
| stb_image_resize with RGBA, the fastest mode is STBIR_4CHANNEL with |
| STBIR_TYPE_UINT8 pixels and CLAMPed edges (which is what many other resize |
| libs do by default). Also, make sure SIMD is turned on of course (default |
| for 64-bit targets). Avoid WRAP edge mode if you want the fastest speed. |
| |
| This library also comes with profiling built-in. If you define STBIR_PROFILE, |
| you can use the advanced API and get low-level profiling information by |
| calling stbir_resize_extended_profile_info() or stbir_resize_split_profile_info() |
| after a resize. |
| |
| SIMD |
| Most of the routines have optimized SSE2, AVX, NEON and WASM versions. |
| |
| On Microsoft compilers, we automatically turn on SIMD for 64-bit x64 and |
| ARM; for 32-bit x86 and ARM, you select SIMD mode by defining STBIR_SSE2 or |
| STBIR_NEON. For AVX and AVX2, we auto-select it by detecting the /arch:AVX |
| or /arch:AVX2 switches. You can also always manually turn SSE2, AVX or AVX2 |
| support on by defining STBIR_SSE2, STBIR_AVX or STBIR_AVX2. |
| |
| On Linux, SSE2 and Neon is on by default for 64-bit x64 or ARM64. For 32-bit, |
| we select x86 SIMD mode by whether you have -msse2, -mavx or -mavx2 enabled |
| on the command line. For 32-bit ARM, you must pass -mfpu=neon-vfpv4 for both |
| clang and GCC, but GCC also requires an additional -mfp16-format=ieee to |
| automatically enable NEON. |
| |
| On x86 platforms, you can also define STBIR_FP16C to turn on FP16C instructions |
| for converting back and forth to half-floats. This is autoselected when we |
| are using AVX2. Clang and GCC also require the -mf16c switch. ARM always uses |
| the built-in half float hardware NEON instructions. |
| |
| You can also tell us to use multiply-add instructions with STBIR_USE_FMA. |
| Because x86 doesn't always have fma, we turn it off by default to maintain |
| determinism across all platforms. If you don't care about non-FMA determinism |
| and are willing to restrict yourself to more recent x86 CPUs (around the AVX |
| timeframe), then fma will give you around a 15% speedup. |
| |
| You can force off SIMD in all cases by defining STBIR_NO_SIMD. You can turn |
| off AVX or AVX2 specifically with STBIR_NO_AVX or STBIR_NO_AVX2. AVX is 10% |
| to 40% faster, and AVX2 is generally another 12%. |
| |
| ALPHA CHANNEL |
| Most of the resizing functions provide the ability to control how the alpha |
| channel of an image is processed. |
| |
| When alpha represents transparency, it is important that when combining |
| colors with filtering, the pixels should not be treated equally; they |
| should use a weighted average based on their alpha values. For example, |
| if a pixel is 1% opaque bright green and another pixel is 99% opaque |
| black and you average them, the average will be 50% opaque, but the |
| unweighted average and will be a middling green color, while the weighted |
| average will be nearly black. This means the unweighted version introduced |
| green energy that didn't exist in the source image. |
| |
| (If you want to know why this makes sense, you can work out the math for |
| the following: consider what happens if you alpha composite a source image |
| over a fixed color and then average the output, vs. if you average the |
| source image pixels and then composite that over the same fixed color. |
| Only the weighted average produces the same result as the ground truth |
| composite-then-average result.) |
| |
| Therefore, it is in general best to "alpha weight" the pixels when applying |
| filters to them. This essentially means multiplying the colors by the alpha |
| values before combining them, and then dividing by the alpha value at the |
| end. |
| |
| The computer graphics industry introduced a technique called "premultiplied |
| alpha" or "associated alpha" in which image colors are stored in image files |
| already multiplied by their alpha. This saves some math when compositing, |
| and also avoids the need to divide by the alpha at the end (which is quite |
| inefficient). However, while premultiplied alpha is common in the movie CGI |
| industry, it is not commonplace in other industries like videogames, and most |
| consumer file formats are generally expected to contain not-premultiplied |
| colors. For example, Photoshop saves PNG files "unpremultiplied", and web |
| browsers like Chrome and Firefox expect PNG images to be unpremultiplied. |
| |
| Note that there are three possibilities that might describe your image |
| and resize expectation: |
| |
| 1. images are not premultiplied, alpha weighting is desired |
| 2. images are not premultiplied, alpha weighting is not desired |
| 3. images are premultiplied |
| |
| Both case #2 and case #3 require the exact same math: no alpha weighting |
| should be applied or removed. Only case 1 requires extra math operations; |
| the other two cases can be handled identically. |
| |
| stb_image_resize expects case #1 by default, applying alpha weighting to |
| images, expecting the input images to be unpremultiplied. This is what the |
| COLOR+ALPHA buffer types tell the resizer to do. |
| |
| When you use the pixel layouts STBIR_RGBA, STBIR_BGRA, STBIR_ARGB, |
| STBIR_ABGR, STBIR_RX, or STBIR_XR you are telling us that the pixels are |
| non-premultiplied. In these cases, the resizer will alpha weight the colors |
| (effectively creating the premultiplied image), do the filtering, and then |
| convert back to non-premult on exit. |
| |
| When you use the pixel layouts STBIR_RGBA_PM, STBIR_RGBA_PM, STBIR_RGBA_PM, |
| STBIR_RGBA_PM, STBIR_RX_PM or STBIR_XR_PM, you are telling that the pixels |
| ARE premultiplied. In this case, the resizer doesn't have to do the |
| premultipling - it can filter directly on the input. This about twice as |
| fast as the non-premultiplied case, so it's the right option if your data is |
| already setup correctly. |
| |
| When you use the pixel layout STBIR_4CHANNEL or STBIR_2CHANNEL, you are |
| telling us that there is no channel that represents transparency; it may be |
| RGB and some unrelated fourth channel that has been stored in the alpha |
| channel, but it is actually not alpha. No special processing will be |
| performed. |
| |
| The difference between the generic 4 or 2 channel layouts, and the |
| specialized _PM versions is with the _PM versions you are telling us that |
| the data *is* alpha, just don't premultiply it. That's important when |
| using SRGB pixel formats, we need to know where the alpha is, because |
| it is converted linearly (rather than with the SRGB converters). |
| |
| Because alpha weighting produces the same effect as premultiplying, you |
| even have the option with non-premultiplied inputs to let the resizer |
| produce a premultiplied output. Because the intially computed alpha-weighted |
| output image is effectively premultiplied, this is actually more performant |
| than the normal path which un-premultiplies the output image as a final step. |
| |
| Finally, when converting both in and out of non-premulitplied space (for |
| example, when using STBIR_RGBA), we go to somewhat heroic measures to |
| ensure that areas with zero alpha value pixels get something reasonable |
| in the RGB values. If you don't care about the RGB values of zero alpha |
| pixels, you can call the stbir_set_non_pm_alpha_speed_over_quality() |
| function - this runs a premultiplied resize about 25% faster. That said, |
| when you really care about speed, using premultiplied pixels for both in |
| and out (STBIR_RGBA_PM, etc) much faster than both of these premultiplied |
| options. |
| |
| PIXEL LAYOUT CONVERSION |
| The resizer can convert from some pixel layouts to others. When using the |
| stbir_set_pixel_layouts(), you can, for example, specify STBIR_RGBA |
| on input, and STBIR_ARGB on output, and it will re-organize the channels |
| during the resize. Currently, you can only convert between two pixel |
| layouts with the same number of channels. |
| |
| DETERMINISM |
| We commit to being deterministic (from x64 to ARM to scalar to SIMD, etc). |
| This requires compiling with fast-math off (using at least /fp:precise). |
| Also, you must turn off fp-contracting (which turns mult+adds into fmas)! |
| We attempt to do this with pragmas, but with Clang, you usually want to add |
| -ffp-contract=off to the command line as well. |
| |
| For 32-bit x86, you must use SSE and SSE2 codegen for determinism. That is, |
| if the scalar x87 unit gets used at all, we immediately lose determinism. |
| On Microsoft Visual Studio 2008 and earlier, from what we can tell there is |
| no way to be deterministic in 32-bit x86 (some x87 always leaks in, even |
| with fp:strict). On 32-bit x86 GCC, determinism requires both -msse2 and |
| -fpmath=sse. |
| |
| Note that we will not be deterministic with float data containing NaNs - |
| the NaNs will propagate differently on different SIMD and platforms. |
| |
| If you turn on STBIR_USE_FMA, then we will be deterministic with other |
| fma targets, but we will differ from non-fma targets (this is unavoidable, |
| because a fma isn't simply an add with a mult - it also introduces a |
| rounding difference compared to non-fma instruction sequences. |
| |
| FLOAT PIXEL FORMAT RANGE |
| Any range of values can be used for the non-alpha float data that you pass |
| in (0 to 1, -1 to 1, whatever). However, if you are inputting float values |
| but *outputting* bytes or shorts, you must use a range of 0 to 1 so that we |
| scale back properly. The alpha channel must also be 0 to 1 for any format |
| that does premultiplication prior to resizing. |
| |
| Note also that with float output, using filters with negative lobes, the |
| output filtered values might go slightly out of range. You can define |
| STBIR_FLOAT_LOW_CLAMP and/or STBIR_FLOAT_HIGH_CLAMP to specify the range |
| to clamp to on output, if that's important. |
| |
| MAX/MIN SCALE FACTORS |
| The input pixel resolutions are in integers, and we do the internal pointer |
| resolution in size_t sized integers. However, the scale ratio from input |
| resolution to output resolution is calculated in float form. This means |
| the effective possible scale ratio is limited to 24 bits (or 16 million |
| to 1). As you get close to the size of the float resolution (again, 16 |
| million pixels wide or high), you might start seeing float inaccuracy |
| issues in general in the pipeline. If you have to do extreme resizes, |
| you can usually do this is multiple stages (using float intermediate |
| buffers). |
| |
| FLIPPED IMAGES |
| Stride is just the delta from one scanline to the next. This means you can |
| use a negative stride to handle inverted images (point to the final |
| scanline and use a negative stride). You can invert the input or output, |
| using negative strides. |
| |
| DEFAULT FILTERS |
| For functions which don't provide explicit control over what filters to |
| use, you can change the compile-time defaults with: |
| |
| #define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_something |
| #define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_something |
| |
| See stbir_filter in the header-file section for the list of filters. |
| |
| NEW FILTERS |
| A number of 1D filter kernels are supplied. For a list of supported |
| filters, see the stbir_filter enum. You can install your own filters by |
| using the stbir_set_filter_callbacks function. |
| |
| PROGRESS |
| For interactive use with slow resize operations, you can use the the |
| scanline callbacks in the extended API. It would have to be a *very* large |
| image resample to need progress though - we're very fast. |
| |
| CEIL and FLOOR |
| In scalar mode, the only functions we use from math.h are ceilf and floorf, |
| but if you have your own versions, you can define the STBIR_CEILF(v) and |
| STBIR_FLOORF(v) macros and we'll use them instead. In SIMD, we just use |
| our own versions. |
| |
| ASSERT |
| Define STBIR_ASSERT(boolval) to override assert() and not use assert.h |
| |
| PORTING FROM VERSION 1 |
| The API has changed. You can continue to use the old version of stb_image_resize.h, |
| which is available in the "deprecated/" directory. |
| |
| If you're using the old simple-to-use API, porting is straightforward. |
| (For more advanced APIs, read the documentation.) |
| |
| stbir_resize_uint8(): |
| - call `stbir_resize_uint8_linear`, cast channel count to `stbir_pixel_layout` |
| |
| stbir_resize_float(): |
| - call `stbir_resize_float_linear`, cast channel count to `stbir_pixel_layout` |
| |
| stbir_resize_uint8_srgb(): |
| - function name is unchanged |
| - cast channel count to `stbir_pixel_layout` |
| - above is sufficient unless your image has alpha and it's not RGBA/BGRA |
| - in that case, follow the below instructions for stbir_resize_uint8_srgb_edgemode |
| |
| stbir_resize_uint8_srgb_edgemode() |
| - switch to the "medium complexity" API |
| - stbir_resize(), very similar API but a few more parameters: |
| - pixel_layout: cast channel count to `stbir_pixel_layout` |
| - data_type: STBIR_TYPE_UINT8_SRGB |
| - edge: unchanged (STBIR_EDGE_WRAP, etc.) |
| - filter: STBIR_FILTER_DEFAULT |
| - which channel is alpha is specified in stbir_pixel_layout, see enum for details |
| |
| FUTURE TODOS |
| * For polyphase integral filters, we just memcpy the coeffs to dupe |
| them, but we should indirect and use the same coeff memory. |
| * Add pixel layout conversions for sensible different channel counts |
| (maybe, 1->3/4, 3->4, 4->1, 3->1). |
| * For SIMD encode and decode scanline routines, do any pre-aligning |
| for bad input/output buffer alignments and pitch? |
| * For very wide scanlines, we should we do vertical strips to stay within |
| L2 cache. Maybe do chunks of 1K pixels at a time. There would be |
| some pixel reconversion, but probably dwarfed by things falling out |
| of cache. Probably also something possible with alternating between |
| scattering and gathering at high resize scales? |
| * Rewrite the coefficient generator to do many at once. |
| * AVX-512 vertical kernels - worried about downclocking here. |
| * Convert the reincludes to macros when we know they aren't changing. |
| * Experiment with pivoting the horizontal and always using the |
| vertical filters (which are faster, but perhaps not enough to overcome |
| the pivot cost and the extra memory touches). Need to buffer the whole |
| image so have to balance memory use. |
| * Most of our code is internally function pointers, should we compile |
| all the SIMD stuff always and dynamically dispatch? |
| |
| CONTRIBUTORS |
| Jeff Roberts: 2.0 implementation, optimizations, SIMD |
| Martins Mozeiko: NEON simd, WASM simd, clang and GCC whisperer |
| Fabian Giesen: half float and srgb converters |
| Sean Barrett: API design, optimizations |
| Jorge L Rodriguez: Original 1.0 implementation |
| Aras Pranckevicius: bugfixes |
| Nathan Reed: warning fixes for 1.0 |
| |
| REVISIONS |
| 2.12 (2024-10-18) fix incorrect use of user_data with STBIR_FREE |
| 2.11 (2024-09-08) fix harmless asan warnings in 2-channel and 3-channel mode |
| with AVX-2, fix some weird scaling edge conditions with |
| point sample mode. |
| 2.10 (2024-07-27) fix the defines GCC and mingw for loop unroll control, |
| fix MSVC 32-bit arm half float routines. |
| 2.09 (2024-06-19) fix the defines for 32-bit ARM GCC builds (was selecting |
| hardware half floats). |
| 2.08 (2024-06-10) fix for RGB->BGR three channel flips and add SIMD (thanks |
| to Ryan Salsbury), fix for sub-rect resizes, use the |
| pragmas to control unrolling when they are available. |
| 2.07 (2024-05-24) fix for slow final split during threaded conversions of very |
| wide scanlines when downsampling (caused by extra input |
| converting), fix for wide scanline resamples with many |
| splits (int overflow), fix GCC warning. |
| 2.06 (2024-02-10) fix for identical width/height 3x or more down-scaling |
| undersampling a single row on rare resize ratios (about 1%). |
| 2.05 (2024-02-07) fix for 2 pixel to 1 pixel resizes with wrap (thanks Aras), |
| fix for output callback (thanks Julien Koenen). |
| 2.04 (2023-11-17) fix for rare AVX bug, shadowed symbol (thanks Nikola Smiljanic). |
| 2.03 (2023-11-01) ASAN and TSAN warnings fixed, minor tweaks. |
| 2.00 (2023-10-10) mostly new source: new api, optimizations, simd, vertical-first, etc |
| 2x-5x faster without simd, 4x-12x faster with simd, |
| in some cases, 20x to 40x faster esp resizing large to very small. |
| 0.96 (2019-03-04) fixed warnings |
| 0.95 (2017-07-23) fixed warnings |
| 0.94 (2017-03-18) fixed warnings |
| 0.93 (2017-03-03) fixed bug with certain combinations of heights |
| 0.92 (2017-01-02) fix integer overflow on large (>2GB) images |
| 0.91 (2016-04-02) fix warnings; fix handling of subpixel regions |
| 0.90 (2014-09-17) first released version |
| |
| LICENSE |
| See end of file for license information. |
| */ |
| |
| #if !defined(STB_IMAGE_RESIZE_DO_HORIZONTALS) && !defined(STB_IMAGE_RESIZE_DO_VERTICALS) && !defined(STB_IMAGE_RESIZE_DO_CODERS) // for internal re-includes |
| |
| #ifndef STBIR_INCLUDE_STB_IMAGE_RESIZE2_H |
| #define STBIR_INCLUDE_STB_IMAGE_RESIZE2_H |
| |
| #include <stddef.h> |
| #ifdef _MSC_VER |
| typedef unsigned char stbir_uint8; |
| typedef unsigned short stbir_uint16; |
| typedef unsigned int stbir_uint32; |
| typedef unsigned __int64 stbir_uint64; |
| #else |
| #include <stdint.h> |
| typedef uint8_t stbir_uint8; |
| typedef uint16_t stbir_uint16; |
| typedef uint32_t stbir_uint32; |
| typedef uint64_t stbir_uint64; |
| #endif |
| |
| #ifdef _M_IX86_FP |
| #if ( _M_IX86_FP >= 1 ) |
| #ifndef STBIR_SSE |
| #define STBIR_SSE |
| #endif |
| #endif |
| #endif |
| |
| #if defined(_x86_64) || defined( __x86_64__ ) || defined( _M_X64 ) || defined(__x86_64) || defined(_M_AMD64) || defined(__SSE2__) || defined(STBIR_SSE) || defined(STBIR_SSE2) |
| #ifndef STBIR_SSE2 |
| #define STBIR_SSE2 |
| #endif |
| #if defined(__AVX__) || defined(STBIR_AVX2) |
| #ifndef STBIR_AVX |
| #ifndef STBIR_NO_AVX |
| #define STBIR_AVX |
| #endif |
| #endif |
| #endif |
| #if defined(__AVX2__) || defined(STBIR_AVX2) |
| #ifndef STBIR_NO_AVX2 |
| #ifndef STBIR_AVX2 |
| #define STBIR_AVX2 |
| #endif |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| #ifndef STBIR_FP16C // FP16C instructions are on all AVX2 cpus, so we can autoselect it here on microsoft - clang needs -m16c |
| #define STBIR_FP16C |
| #endif |
| #endif |
| #endif |
| #endif |
| #ifdef __F16C__ |
| #ifndef STBIR_FP16C // turn on FP16C instructions if the define is set (for clang and gcc) |
| #define STBIR_FP16C |
| #endif |
| #endif |
| #endif |
| |
| #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) || ((__ARM_NEON_FP & 4) != 0) || defined(__ARM_NEON__) |
| #ifndef STBIR_NEON |
| #define STBIR_NEON |
| #endif |
| #endif |
| |
| #if defined(_M_ARM) || defined(__arm__) |
| #ifdef STBIR_USE_FMA |
| #undef STBIR_USE_FMA // no FMA for 32-bit arm on MSVC |
| #endif |
| #endif |
| |
| #if defined(__wasm__) && defined(__wasm_simd128__) |
| #ifndef STBIR_WASM |
| #define STBIR_WASM |
| #endif |
| #endif |
| |
| #ifndef STBIRDEF |
| #ifdef STB_IMAGE_RESIZE_STATIC |
| #define STBIRDEF static |
| #else |
| #ifdef __cplusplus |
| #define STBIRDEF extern "C" |
| #else |
| #define STBIRDEF extern |
| #endif |
| #endif |
| #endif |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| //// start "header file" /////////////////////////////////////////////////// |
| // |
| // Easy-to-use API: |
| // |
| // * stride is the offset between successive rows of image data |
| // in memory, in bytes. specify 0 for packed continuously in memory |
| // * colorspace is linear or sRGB as specified by function name |
| // * Uses the default filters |
| // * Uses edge mode clamped |
| // * returned result is 1 for success or 0 in case of an error. |
| |
| |
| // stbir_pixel_layout specifies: |
| // number of channels |
| // order of channels |
| // whether color is premultiplied by alpha |
| // for back compatibility, you can cast the old channel count to an stbir_pixel_layout |
| typedef enum |
| { |
| STBIR_1CHANNEL = 1, |
| STBIR_2CHANNEL = 2, |
| STBIR_RGB = 3, // 3-chan, with order specified (for channel flipping) |
| STBIR_BGR = 0, // 3-chan, with order specified (for channel flipping) |
| STBIR_4CHANNEL = 5, |
| |
| STBIR_RGBA = 4, // alpha formats, where alpha is NOT premultiplied into color channels |
| STBIR_BGRA = 6, |
| STBIR_ARGB = 7, |
| STBIR_ABGR = 8, |
| STBIR_RA = 9, |
| STBIR_AR = 10, |
| |
| STBIR_RGBA_PM = 11, // alpha formats, where alpha is premultiplied into color channels |
| STBIR_BGRA_PM = 12, |
| STBIR_ARGB_PM = 13, |
| STBIR_ABGR_PM = 14, |
| STBIR_RA_PM = 15, |
| STBIR_AR_PM = 16, |
| |
| STBIR_RGBA_NO_AW = 11, // alpha formats, where NO alpha weighting is applied at all! |
| STBIR_BGRA_NO_AW = 12, // these are just synonyms for the _PM flags (which also do |
| STBIR_ARGB_NO_AW = 13, // no alpha weighting). These names just make it more clear |
| STBIR_ABGR_NO_AW = 14, // for some folks). |
| STBIR_RA_NO_AW = 15, |
| STBIR_AR_NO_AW = 16, |
| |
| } stbir_pixel_layout; |
| |
| //=============================================================== |
| // Simple-complexity API |
| // |
| // If output_pixels is NULL (0), then we will allocate the buffer and return it to you. |
| //-------------------------------- |
| |
| STBIRDEF unsigned char * stbir_resize_uint8_srgb( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_type ); |
| |
| STBIRDEF unsigned char * stbir_resize_uint8_linear( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_type ); |
| |
| STBIRDEF float * stbir_resize_float_linear( const float *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| float *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_type ); |
| //=============================================================== |
| |
| //=============================================================== |
| // Medium-complexity API |
| // |
| // This extends the easy-to-use API as follows: |
| // |
| // * Can specify the datatype - U8, U8_SRGB, U16, FLOAT, HALF_FLOAT |
| // * Edge wrap can selected explicitly |
| // * Filter can be selected explicitly |
| //-------------------------------- |
| |
| typedef enum |
| { |
| STBIR_EDGE_CLAMP = 0, |
| STBIR_EDGE_REFLECT = 1, |
| STBIR_EDGE_WRAP = 2, // this edge mode is slower and uses more memory |
| STBIR_EDGE_ZERO = 3, |
| } stbir_edge; |
| |
| typedef enum |
| { |
| STBIR_FILTER_DEFAULT = 0, // use same filter type that easy-to-use API chooses |
| STBIR_FILTER_BOX = 1, // A trapezoid w/1-pixel wide ramps, same result as box for integer scale ratios |
| STBIR_FILTER_TRIANGLE = 2, // On upsampling, produces same results as bilinear texture filtering |
| STBIR_FILTER_CUBICBSPLINE = 3, // The cubic b-spline (aka Mitchell-Netrevalli with B=1,C=0), gaussian-esque |
| STBIR_FILTER_CATMULLROM = 4, // An interpolating cubic spline |
| STBIR_FILTER_MITCHELL = 5, // Mitchell-Netrevalli filter with B=1/3, C=1/3 |
| STBIR_FILTER_POINT_SAMPLE = 6, // Simple point sampling |
| STBIR_FILTER_OTHER = 7, // User callback specified |
| } stbir_filter; |
| |
| typedef enum |
| { |
| STBIR_TYPE_UINT8 = 0, |
| STBIR_TYPE_UINT8_SRGB = 1, |
| STBIR_TYPE_UINT8_SRGB_ALPHA = 2, // alpha channel, when present, should also be SRGB (this is very unusual) |
| STBIR_TYPE_UINT16 = 3, |
| STBIR_TYPE_FLOAT = 4, |
| STBIR_TYPE_HALF_FLOAT = 5 |
| } stbir_datatype; |
| |
| // medium api |
| STBIRDEF void * stbir_resize( const void *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_layout, stbir_datatype data_type, |
| stbir_edge edge, stbir_filter filter ); |
| //=============================================================== |
| |
| |
| |
| //=============================================================== |
| // Extended-complexity API |
| // |
| // This API exposes all resize functionality. |
| // |
| // * Separate filter types for each axis |
| // * Separate edge modes for each axis |
| // * Separate input and output data types |
| // * Can specify regions with subpixel correctness |
| // * Can specify alpha flags |
| // * Can specify a memory callback |
| // * Can specify a callback data type for pixel input and output |
| // * Can be threaded for a single resize |
| // * Can be used to resize many frames without recalculating the sampler info |
| // |
| // Use this API as follows: |
| // 1) Call the stbir_resize_init function on a local STBIR_RESIZE structure |
| // 2) Call any of the stbir_set functions |
| // 3) Optionally call stbir_build_samplers() if you are going to resample multiple times |
| // with the same input and output dimensions (like resizing video frames) |
| // 4) Resample by calling stbir_resize_extended(). |
| // 5) Call stbir_free_samplers() if you called stbir_build_samplers() |
| //-------------------------------- |
| |
| |
| // Types: |
| |
| // INPUT CALLBACK: this callback is used for input scanlines |
| typedef void const * stbir_input_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ); |
| |
| // OUTPUT CALLBACK: this callback is used for output scanlines |
| typedef void stbir_output_callback( void const * output_ptr, int num_pixels, int y, void * context ); |
| |
| // callbacks for user installed filters |
| typedef float stbir__kernel_callback( float x, float scale, void * user_data ); // centered at zero |
| typedef float stbir__support_callback( float scale, void * user_data ); |
| |
| // internal structure with precomputed scaling |
| typedef struct stbir__info stbir__info; |
| |
| typedef struct STBIR_RESIZE // use the stbir_resize_init and stbir_override functions to set these values for future compatibility |
| { |
| void * user_data; |
| void const * input_pixels; |
| int input_w, input_h; |
| double input_s0, input_t0, input_s1, input_t1; |
| stbir_input_callback * input_cb; |
| void * output_pixels; |
| int output_w, output_h; |
| int output_subx, output_suby, output_subw, output_subh; |
| stbir_output_callback * output_cb; |
| int input_stride_in_bytes; |
| int output_stride_in_bytes; |
| int splits; |
| int fast_alpha; |
| int needs_rebuild; |
| int called_alloc; |
| stbir_pixel_layout input_pixel_layout_public; |
| stbir_pixel_layout output_pixel_layout_public; |
| stbir_datatype input_data_type; |
| stbir_datatype output_data_type; |
| stbir_filter horizontal_filter, vertical_filter; |
| stbir_edge horizontal_edge, vertical_edge; |
| stbir__kernel_callback * horizontal_filter_kernel; stbir__support_callback * horizontal_filter_support; |
| stbir__kernel_callback * vertical_filter_kernel; stbir__support_callback * vertical_filter_support; |
| stbir__info * samplers; |
| } STBIR_RESIZE; |
| |
| // extended complexity api |
| |
| |
| // First off, you must ALWAYS call stbir_resize_init on your resize structure before any of the other calls! |
| STBIRDEF void stbir_resize_init( STBIR_RESIZE * resize, |
| const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero |
| void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero |
| stbir_pixel_layout pixel_layout, stbir_datatype data_type ); |
| |
| //=============================================================== |
| // You can update these parameters any time after resize_init and there is no cost |
| //-------------------------------- |
| |
| STBIRDEF void stbir_set_datatypes( STBIR_RESIZE * resize, stbir_datatype input_type, stbir_datatype output_type ); |
| STBIRDEF void stbir_set_pixel_callbacks( STBIR_RESIZE * resize, stbir_input_callback * input_cb, stbir_output_callback * output_cb ); // no callbacks by default |
| STBIRDEF void stbir_set_user_data( STBIR_RESIZE * resize, void * user_data ); // pass back STBIR_RESIZE* by default |
| STBIRDEF void stbir_set_buffer_ptrs( STBIR_RESIZE * resize, const void * input_pixels, int input_stride_in_bytes, void * output_pixels, int output_stride_in_bytes ); |
| |
| //=============================================================== |
| |
| |
| //=============================================================== |
| // If you call any of these functions, you will trigger a sampler rebuild! |
| //-------------------------------- |
| |
| STBIRDEF int stbir_set_pixel_layouts( STBIR_RESIZE * resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout ); // sets new buffer layouts |
| STBIRDEF int stbir_set_edgemodes( STBIR_RESIZE * resize, stbir_edge horizontal_edge, stbir_edge vertical_edge ); // CLAMP by default |
| |
| STBIRDEF int stbir_set_filters( STBIR_RESIZE * resize, stbir_filter horizontal_filter, stbir_filter vertical_filter ); // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default |
| STBIRDEF int stbir_set_filter_callbacks( STBIR_RESIZE * resize, stbir__kernel_callback * horizontal_filter, stbir__support_callback * horizontal_support, stbir__kernel_callback * vertical_filter, stbir__support_callback * vertical_support ); |
| |
| STBIRDEF int stbir_set_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ); // sets both sub-regions (full regions by default) |
| STBIRDEF int stbir_set_input_subrect( STBIR_RESIZE * resize, double s0, double t0, double s1, double t1 ); // sets input sub-region (full region by default) |
| STBIRDEF int stbir_set_output_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ); // sets output sub-region (full region by default) |
| |
| // when inputting AND outputting non-premultiplied alpha pixels, we use a slower but higher quality technique |
| // that fills the zero alpha pixel's RGB values with something plausible. If you don't care about areas of |
| // zero alpha, you can call this function to get about a 25% speed improvement for STBIR_RGBA to STBIR_RGBA |
| // types of resizes. |
| STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality( STBIR_RESIZE * resize, int non_pma_alpha_speed_over_quality ); |
| //=============================================================== |
| |
| |
| //=============================================================== |
| // You can call build_samplers to prebuild all the internal data we need to resample. |
| // Then, if you call resize_extended many times with the same resize, you only pay the |
| // cost once. |
| // If you do call build_samplers, you MUST call free_samplers eventually. |
| //-------------------------------- |
| |
| // This builds the samplers and does one allocation |
| STBIRDEF int stbir_build_samplers( STBIR_RESIZE * resize ); |
| |
| // You MUST call this, if you call stbir_build_samplers or stbir_build_samplers_with_splits |
| STBIRDEF void stbir_free_samplers( STBIR_RESIZE * resize ); |
| //=============================================================== |
| |
| |
| // And this is the main function to perform the resize synchronously on one thread. |
| STBIRDEF int stbir_resize_extended( STBIR_RESIZE * resize ); |
| |
| |
| //=============================================================== |
| // Use these functions for multithreading. |
| // 1) You call stbir_build_samplers_with_splits first on the main thread |
| // 2) Then stbir_resize_with_split on each thread |
| // 3) stbir_free_samplers when done on the main thread |
| //-------------------------------- |
| |
| // This will build samplers for threading. |
| // You can pass in the number of threads you'd like to use (try_splits). |
| // It returns the number of splits (threads) that you can call it with. |
| /// It might be less if the image resize can't be split up that many ways. |
| |
| STBIRDEF int stbir_build_samplers_with_splits( STBIR_RESIZE * resize, int try_splits ); |
| |
| // This function does a split of the resizing (you call this fuction for each |
| // split, on multiple threads). A split is a piece of the output resize pixel space. |
| |
| // Note that you MUST call stbir_build_samplers_with_splits before stbir_resize_extended_split! |
| |
| // Usually, you will always call stbir_resize_split with split_start as the thread_index |
| // and "1" for the split_count. |
| // But, if you have a weird situation where you MIGHT want 8 threads, but sometimes |
| // only 4 threads, you can use 0,2,4,6 for the split_start's and use "2" for the |
| // split_count each time to turn in into a 4 thread resize. (This is unusual). |
| |
| STBIRDEF int stbir_resize_extended_split( STBIR_RESIZE * resize, int split_start, int split_count ); |
| //=============================================================== |
| |
| |
| //=============================================================== |
| // Pixel Callbacks info: |
| //-------------------------------- |
| |
| // The input callback is super flexible - it calls you with the input address |
| // (based on the stride and base pointer), it gives you an optional_output |
| // pointer that you can fill, or you can just return your own pointer into |
| // your own data. |
| // |
| // You can also do conversion from non-supported data types if necessary - in |
| // this case, you ignore the input_ptr and just use the x and y parameters to |
| // calculate your own input_ptr based on the size of each non-supported pixel. |
| // (Something like the third example below.) |
| // |
| // You can also install just an input or just an output callback by setting the |
| // callback that you don't want to zero. |
| // |
| // First example, progress: (getting a callback that you can monitor the progress): |
| // void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ) |
| // { |
| // percentage_done = y / input_height; |
| // return input_ptr; // use buffer from call |
| // } |
| // |
| // Next example, copying: (copy from some other buffer or stream): |
| // void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ) |
| // { |
| // CopyOrStreamData( optional_output, other_data_src, num_pixels * pixel_width_in_bytes ); |
| // return optional_output; // return the optional buffer that we filled |
| // } |
| // |
| // Third example, input another buffer without copying: (zero-copy from other buffer): |
| // void const * my_callback( void * optional_output, void const * input_ptr, int num_pixels, int x, int y, void * context ) |
| // { |
| // void * pixels = ( (char*) other_image_base ) + ( y * other_image_stride ) + ( x * other_pixel_width_in_bytes ); |
| // return pixels; // return pointer to your data without copying |
| // } |
| // |
| // |
| // The output callback is considerably simpler - it just calls you so that you can dump |
| // out each scanline. You could even directly copy out to disk if you have a simple format |
| // like TGA or BMP. You can also convert to other output types here if you want. |
| // |
| // Simple example: |
| // void const * my_output( void * output_ptr, int num_pixels, int y, void * context ) |
| // { |
| // percentage_done = y / output_height; |
| // fwrite( output_ptr, pixel_width_in_bytes, num_pixels, output_file ); |
| // } |
| //=============================================================== |
| |
| |
| |
| |
| //=============================================================== |
| // optional built-in profiling API |
| //-------------------------------- |
| |
| #ifdef STBIR_PROFILE |
| |
| typedef struct STBIR_PROFILE_INFO |
| { |
| stbir_uint64 total_clocks; |
| |
| // how many clocks spent (of total_clocks) in the various resize routines, along with a string description |
| // there are "resize_count" number of zones |
| stbir_uint64 clocks[ 8 ]; |
| char const ** descriptions; |
| |
| // count of clocks and descriptions |
| stbir_uint32 count; |
| } STBIR_PROFILE_INFO; |
| |
| // use after calling stbir_resize_extended (or stbir_build_samplers or stbir_build_samplers_with_splits) |
| STBIRDEF void stbir_resize_build_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize ); |
| |
| // use after calling stbir_resize_extended |
| STBIRDEF void stbir_resize_extended_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize ); |
| |
| // use after calling stbir_resize_extended_split |
| STBIRDEF void stbir_resize_split_profile_info( STBIR_PROFILE_INFO * out_info, STBIR_RESIZE const * resize, int split_start, int split_num ); |
| |
| //=============================================================== |
| |
| #endif |
| |
| |
| //// end header file ///////////////////////////////////////////////////// |
| #endif // STBIR_INCLUDE_STB_IMAGE_RESIZE2_H |
| |
| #if defined(STB_IMAGE_RESIZE_IMPLEMENTATION) || defined(STB_IMAGE_RESIZE2_IMPLEMENTATION) |
| |
| #ifndef STBIR_ASSERT |
| #include <assert.h> |
| #define STBIR_ASSERT(x) assert(x) |
| #endif |
| |
| #ifndef STBIR_MALLOC |
| #include <stdlib.h> |
| #define STBIR_MALLOC(size,user_data) ((void)(user_data), malloc(size)) |
| #define STBIR_FREE(ptr,user_data) ((void)(user_data), free(ptr)) |
| // (we used the comma operator to evaluate user_data, to avoid "unused parameter" warnings) |
| #endif |
| |
| #ifdef _MSC_VER |
| |
| #define stbir__inline __forceinline |
| |
| #else |
| |
| #define stbir__inline __inline__ |
| |
| // Clang address sanitizer |
| #if defined(__has_feature) |
| #if __has_feature(address_sanitizer) || __has_feature(memory_sanitizer) |
| #ifndef STBIR__SEPARATE_ALLOCATIONS |
| #define STBIR__SEPARATE_ALLOCATIONS |
| #endif |
| #endif |
| #endif |
| |
| #endif |
| |
| // GCC and MSVC |
| #if defined(__SANITIZE_ADDRESS__) |
| #ifndef STBIR__SEPARATE_ALLOCATIONS |
| #define STBIR__SEPARATE_ALLOCATIONS |
| #endif |
| #endif |
| |
| // Always turn off automatic FMA use - use STBIR_USE_FMA if you want. |
| // Otherwise, this is a determinism disaster. |
| #ifndef STBIR_DONT_CHANGE_FP_CONTRACT // override in case you don't want this behavior |
| #if defined(_MSC_VER) && !defined(__clang__) |
| #if _MSC_VER > 1200 |
| #pragma fp_contract(off) |
| #endif |
| #elif defined(__GNUC__) && !defined(__clang__) |
| #pragma GCC optimize("fp-contract=off") |
| #else |
| #pragma STDC FP_CONTRACT OFF |
| #endif |
| #endif |
| |
| #ifdef _MSC_VER |
| #define STBIR__UNUSED(v) (void)(v) |
| #else |
| #define STBIR__UNUSED(v) (void)sizeof(v) |
| #endif |
| |
| #define STBIR__ARRAY_SIZE(a) (sizeof((a))/sizeof((a)[0])) |
| |
| |
| #ifndef STBIR_DEFAULT_FILTER_UPSAMPLE |
| #define STBIR_DEFAULT_FILTER_UPSAMPLE STBIR_FILTER_CATMULLROM |
| #endif |
| |
| #ifndef STBIR_DEFAULT_FILTER_DOWNSAMPLE |
| #define STBIR_DEFAULT_FILTER_DOWNSAMPLE STBIR_FILTER_MITCHELL |
| #endif |
| |
| |
| #ifndef STBIR__HEADER_FILENAME |
| #define STBIR__HEADER_FILENAME "stb_image_resize2.h" |
| #endif |
| |
| // the internal pixel layout enums are in a different order, so we can easily do range comparisons of types |
| // the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible |
| typedef enum |
| { |
| STBIRI_1CHANNEL = 0, |
| STBIRI_2CHANNEL = 1, |
| STBIRI_RGB = 2, |
| STBIRI_BGR = 3, |
| STBIRI_4CHANNEL = 4, |
| |
| STBIRI_RGBA = 5, |
| STBIRI_BGRA = 6, |
| STBIRI_ARGB = 7, |
| STBIRI_ABGR = 8, |
| STBIRI_RA = 9, |
| STBIRI_AR = 10, |
| |
| STBIRI_RGBA_PM = 11, |
| STBIRI_BGRA_PM = 12, |
| STBIRI_ARGB_PM = 13, |
| STBIRI_ABGR_PM = 14, |
| STBIRI_RA_PM = 15, |
| STBIRI_AR_PM = 16, |
| } stbir_internal_pixel_layout; |
| |
| // define the public pixel layouts to not compile inside the implementation (to avoid accidental use) |
| #define STBIR_BGR bad_dont_use_in_implementation |
| #define STBIR_1CHANNEL STBIR_BGR |
| #define STBIR_2CHANNEL STBIR_BGR |
| #define STBIR_RGB STBIR_BGR |
| #define STBIR_RGBA STBIR_BGR |
| #define STBIR_4CHANNEL STBIR_BGR |
| #define STBIR_BGRA STBIR_BGR |
| #define STBIR_ARGB STBIR_BGR |
| #define STBIR_ABGR STBIR_BGR |
| #define STBIR_RA STBIR_BGR |
| #define STBIR_AR STBIR_BGR |
| #define STBIR_RGBA_PM STBIR_BGR |
| #define STBIR_BGRA_PM STBIR_BGR |
| #define STBIR_ARGB_PM STBIR_BGR |
| #define STBIR_ABGR_PM STBIR_BGR |
| #define STBIR_RA_PM STBIR_BGR |
| #define STBIR_AR_PM STBIR_BGR |
| |
| // must match stbir_datatype |
| static unsigned char stbir__type_size[] = { |
| 1,1,1,2,4,2 // STBIR_TYPE_UINT8,STBIR_TYPE_UINT8_SRGB,STBIR_TYPE_UINT8_SRGB_ALPHA,STBIR_TYPE_UINT16,STBIR_TYPE_FLOAT,STBIR_TYPE_HALF_FLOAT |
| }; |
| |
| // When gathering, the contributors are which source pixels contribute. |
| // When scattering, the contributors are which destination pixels are contributed to. |
| typedef struct |
| { |
| int n0; // First contributing pixel |
| int n1; // Last contributing pixel |
| } stbir__contributors; |
| |
| typedef struct |
| { |
| int lowest; // First sample index for whole filter |
| int highest; // Last sample index for whole filter |
| int widest; // widest single set of samples for an output |
| } stbir__filter_extent_info; |
| |
| typedef struct |
| { |
| int n0; // First pixel of decode buffer to write to |
| int n1; // Last pixel of decode that will be written to |
| int pixel_offset_for_input; // Pixel offset into input_scanline |
| } stbir__span; |
| |
| typedef struct stbir__scale_info |
| { |
| int input_full_size; |
| int output_sub_size; |
| float scale; |
| float inv_scale; |
| float pixel_shift; // starting shift in output pixel space (in pixels) |
| int scale_is_rational; |
| stbir_uint32 scale_numerator, scale_denominator; |
| } stbir__scale_info; |
| |
| typedef struct |
| { |
| stbir__contributors * contributors; |
| float* coefficients; |
| stbir__contributors * gather_prescatter_contributors; |
| float * gather_prescatter_coefficients; |
| stbir__scale_info scale_info; |
| float support; |
| stbir_filter filter_enum; |
| stbir__kernel_callback * filter_kernel; |
| stbir__support_callback * filter_support; |
| stbir_edge edge; |
| int coefficient_width; |
| int filter_pixel_width; |
| int filter_pixel_margin; |
| int num_contributors; |
| int contributors_size; |
| int coefficients_size; |
| stbir__filter_extent_info extent_info; |
| int is_gather; // 0 = scatter, 1 = gather with scale >= 1, 2 = gather with scale < 1 |
| int gather_prescatter_num_contributors; |
| int gather_prescatter_coefficient_width; |
| int gather_prescatter_contributors_size; |
| int gather_prescatter_coefficients_size; |
| } stbir__sampler; |
| |
| typedef struct |
| { |
| stbir__contributors conservative; |
| int edge_sizes[2]; // this can be less than filter_pixel_margin, if the filter and scaling falls off |
| stbir__span spans[2]; // can be two spans, if doing input subrect with clamp mode WRAP |
| } stbir__extents; |
| |
| typedef struct |
| { |
| #ifdef STBIR_PROFILE |
| union |
| { |
| struct { stbir_uint64 total, looping, vertical, horizontal, decode, encode, alpha, unalpha; } named; |
| stbir_uint64 array[8]; |
| } profile; |
| stbir_uint64 * current_zone_excluded_ptr; |
| #endif |
| float* decode_buffer; |
| |
| int ring_buffer_first_scanline; |
| int ring_buffer_last_scanline; |
| int ring_buffer_begin_index; // first_scanline is at this index in the ring buffer |
| int start_output_y, end_output_y; |
| int start_input_y, end_input_y; // used in scatter only |
| |
| #ifdef STBIR__SEPARATE_ALLOCATIONS |
| float** ring_buffers; // one pointer for each ring buffer |
| #else |
| float* ring_buffer; // one big buffer that we index into |
| #endif |
| |
| float* vertical_buffer; |
| |
| char no_cache_straddle[64]; |
| } stbir__per_split_info; |
| |
| typedef void stbir__decode_pixels_func( float * decode, int width_times_channels, void const * input ); |
| typedef void stbir__alpha_weight_func( float * decode_buffer, int width_times_channels ); |
| typedef void stbir__horizontal_gather_channels_func( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, |
| stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ); |
| typedef void stbir__alpha_unweight_func(float * encode_buffer, int width_times_channels ); |
| typedef void stbir__encode_pixels_func( void * output, int width_times_channels, float const * encode ); |
| |
| struct stbir__info |
| { |
| #ifdef STBIR_PROFILE |
| union |
| { |
| struct { stbir_uint64 total, build, alloc, horizontal, vertical, cleanup, pivot; } named; |
| stbir_uint64 array[7]; |
| } profile; |
| stbir_uint64 * current_zone_excluded_ptr; |
| #endif |
| stbir__sampler horizontal; |
| stbir__sampler vertical; |
| |
| void const * input_data; |
| void * output_data; |
| |
| int input_stride_bytes; |
| int output_stride_bytes; |
| int ring_buffer_length_bytes; // The length of an individual entry in the ring buffer. The total number of ring buffers is stbir__get_filter_pixel_width(filter) |
| int ring_buffer_num_entries; // Total number of entries in the ring buffer. |
| |
| stbir_datatype input_type; |
| stbir_datatype output_type; |
| |
| stbir_input_callback * in_pixels_cb; |
| void * user_data; |
| stbir_output_callback * out_pixels_cb; |
| |
| stbir__extents scanline_extents; |
| |
| void * alloced_mem; |
| stbir__per_split_info * split_info; // by default 1, but there will be N of these allocated based on the thread init you did |
| |
| stbir__decode_pixels_func * decode_pixels; |
| stbir__alpha_weight_func * alpha_weight; |
| stbir__horizontal_gather_channels_func * horizontal_gather_channels; |
| stbir__alpha_unweight_func * alpha_unweight; |
| stbir__encode_pixels_func * encode_pixels; |
| |
| int alloc_ring_buffer_num_entries; // Number of entries in the ring buffer that will be allocated |
| int splits; // count of splits |
| |
| stbir_internal_pixel_layout input_pixel_layout_internal; |
| stbir_internal_pixel_layout output_pixel_layout_internal; |
| |
| int input_color_and_type; |
| int offset_x, offset_y; // offset within output_data |
| int vertical_first; |
| int channels; |
| int effective_channels; // same as channels, except on RGBA/ARGB (7), or XA/AX (3) |
| size_t alloced_total; |
| }; |
| |
| |
| #define stbir__max_uint8_as_float 255.0f |
| #define stbir__max_uint16_as_float 65535.0f |
| #define stbir__max_uint8_as_float_inverted (1.0f/255.0f) |
| #define stbir__max_uint16_as_float_inverted (1.0f/65535.0f) |
| #define stbir__small_float ((float)1 / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20) / (1 << 20)) |
| |
| // min/max friendly |
| #define STBIR_CLAMP(x, xmin, xmax) for(;;) { \ |
| if ( (x) < (xmin) ) (x) = (xmin); \ |
| if ( (x) > (xmax) ) (x) = (xmax); \ |
| break; \ |
| } |
| |
| static stbir__inline int stbir__min(int a, int b) |
| { |
| return a < b ? a : b; |
| } |
| |
| static stbir__inline int stbir__max(int a, int b) |
| { |
| return a > b ? a : b; |
| } |
| |
| static float stbir__srgb_uchar_to_linear_float[256] = { |
| 0.000000f, 0.000304f, 0.000607f, 0.000911f, 0.001214f, 0.001518f, 0.001821f, 0.002125f, 0.002428f, 0.002732f, 0.003035f, |
| 0.003347f, 0.003677f, 0.004025f, 0.004391f, 0.004777f, 0.005182f, 0.005605f, 0.006049f, 0.006512f, 0.006995f, 0.007499f, |
| 0.008023f, 0.008568f, 0.009134f, 0.009721f, 0.010330f, 0.010960f, 0.011612f, 0.012286f, 0.012983f, 0.013702f, 0.014444f, |
| 0.015209f, 0.015996f, 0.016807f, 0.017642f, 0.018500f, 0.019382f, 0.020289f, 0.021219f, 0.022174f, 0.023153f, 0.024158f, |
| 0.025187f, 0.026241f, 0.027321f, 0.028426f, 0.029557f, 0.030713f, 0.031896f, 0.033105f, 0.034340f, 0.035601f, 0.036889f, |
| 0.038204f, 0.039546f, 0.040915f, 0.042311f, 0.043735f, 0.045186f, 0.046665f, 0.048172f, 0.049707f, 0.051269f, 0.052861f, |
| 0.054480f, 0.056128f, 0.057805f, 0.059511f, 0.061246f, 0.063010f, 0.064803f, 0.066626f, 0.068478f, 0.070360f, 0.072272f, |
| 0.074214f, 0.076185f, 0.078187f, 0.080220f, 0.082283f, 0.084376f, 0.086500f, 0.088656f, 0.090842f, 0.093059f, 0.095307f, |
| 0.097587f, 0.099899f, 0.102242f, 0.104616f, 0.107023f, 0.109462f, 0.111932f, 0.114435f, 0.116971f, 0.119538f, 0.122139f, |
| 0.124772f, 0.127438f, 0.130136f, 0.132868f, 0.135633f, 0.138432f, 0.141263f, 0.144128f, 0.147027f, 0.149960f, 0.152926f, |
| 0.155926f, 0.158961f, 0.162029f, 0.165132f, 0.168269f, 0.171441f, 0.174647f, 0.177888f, 0.181164f, 0.184475f, 0.187821f, |
| 0.191202f, 0.194618f, 0.198069f, 0.201556f, 0.205079f, 0.208637f, 0.212231f, 0.215861f, 0.219526f, 0.223228f, 0.226966f, |
| 0.230740f, 0.234551f, 0.238398f, 0.242281f, 0.246201f, 0.250158f, 0.254152f, 0.258183f, 0.262251f, 0.266356f, 0.270498f, |
| 0.274677f, 0.278894f, 0.283149f, 0.287441f, 0.291771f, 0.296138f, 0.300544f, 0.304987f, 0.309469f, 0.313989f, 0.318547f, |
| 0.323143f, 0.327778f, 0.332452f, 0.337164f, 0.341914f, 0.346704f, 0.351533f, 0.356400f, 0.361307f, 0.366253f, 0.371238f, |
| 0.376262f, 0.381326f, 0.386430f, 0.391573f, 0.396755f, 0.401978f, 0.407240f, 0.412543f, 0.417885f, 0.423268f, 0.428691f, |
| 0.434154f, 0.439657f, 0.445201f, 0.450786f, 0.456411f, 0.462077f, 0.467784f, 0.473532f, 0.479320f, 0.485150f, 0.491021f, |
| 0.496933f, 0.502887f, 0.508881f, 0.514918f, 0.520996f, 0.527115f, 0.533276f, 0.539480f, 0.545725f, 0.552011f, 0.558340f, |
| 0.564712f, 0.571125f, 0.577581f, 0.584078f, 0.590619f, 0.597202f, 0.603827f, 0.610496f, 0.617207f, 0.623960f, 0.630757f, |
| 0.637597f, 0.644480f, 0.651406f, 0.658375f, 0.665387f, 0.672443f, 0.679543f, 0.686685f, 0.693872f, 0.701102f, 0.708376f, |
| 0.715694f, 0.723055f, 0.730461f, 0.737911f, 0.745404f, 0.752942f, 0.760525f, 0.768151f, 0.775822f, 0.783538f, 0.791298f, |
| 0.799103f, 0.806952f, 0.814847f, 0.822786f, 0.830770f, 0.838799f, 0.846873f, 0.854993f, 0.863157f, 0.871367f, 0.879622f, |
| 0.887923f, 0.896269f, 0.904661f, 0.913099f, 0.921582f, 0.930111f, 0.938686f, 0.947307f, 0.955974f, 0.964686f, 0.973445f, |
| 0.982251f, 0.991102f, 1.0f |
| }; |
| |
| typedef union |
| { |
| unsigned int u; |
| float f; |
| } stbir__FP32; |
| |
| // From https://gist.github.com/rygorous/2203834 |
| |
| static const stbir_uint32 fp32_to_srgb8_tab4[104] = { |
| 0x0073000d, 0x007a000d, 0x0080000d, 0x0087000d, 0x008d000d, 0x0094000d, 0x009a000d, 0x00a1000d, |
| 0x00a7001a, 0x00b4001a, 0x00c1001a, 0x00ce001a, 0x00da001a, 0x00e7001a, 0x00f4001a, 0x0101001a, |
| 0x010e0033, 0x01280033, 0x01410033, 0x015b0033, 0x01750033, 0x018f0033, 0x01a80033, 0x01c20033, |
| 0x01dc0067, 0x020f0067, 0x02430067, 0x02760067, 0x02aa0067, 0x02dd0067, 0x03110067, 0x03440067, |
| 0x037800ce, 0x03df00ce, 0x044600ce, 0x04ad00ce, 0x051400ce, 0x057b00c5, 0x05dd00bc, 0x063b00b5, |
| 0x06970158, 0x07420142, 0x07e30130, 0x087b0120, 0x090b0112, 0x09940106, 0x0a1700fc, 0x0a9500f2, |
| 0x0b0f01cb, 0x0bf401ae, 0x0ccb0195, 0x0d950180, 0x0e56016e, 0x0f0d015e, 0x0fbc0150, 0x10630143, |
| 0x11070264, 0x1238023e, 0x1357021d, 0x14660201, 0x156601e9, 0x165a01d3, 0x174401c0, 0x182401af, |
| 0x18fe0331, 0x1a9602fe, 0x1c1502d2, 0x1d7e02ad, 0x1ed4028d, 0x201a0270, 0x21520256, 0x227d0240, |
| 0x239f0443, 0x25c003fe, 0x27bf03c4, 0x29a10392, 0x2b6a0367, 0x2d1d0341, 0x2ebe031f, 0x304d0300, |
| 0x31d105b0, 0x34a80555, 0x37520507, 0x39d504c5, 0x3c37048b, 0x3e7c0458, 0x40a8042a, 0x42bd0401, |
| 0x44c20798, 0x488e071e, 0x4c1c06b6, 0x4f76065d, 0x52a50610, 0x55ac05cc, 0x5892058f, 0x5b590559, |
| 0x5e0c0a23, 0x631c0980, 0x67db08f6, 0x6c55087f, 0x70940818, 0x74a007bd, 0x787d076c, 0x7c330723, |
| }; |
| |
| static stbir__inline stbir_uint8 stbir__linear_to_srgb_uchar(float in) |
| { |
| static const stbir__FP32 almostone = { 0x3f7fffff }; // 1-eps |
| static const stbir__FP32 minval = { (127-13) << 23 }; |
| stbir_uint32 tab,bias,scale,t; |
| stbir__FP32 f; |
| |
| // Clamp to [2^(-13), 1-eps]; these two values map to 0 and 1, respectively. |
| // The tests are carefully written so that NaNs map to 0, same as in the reference |
| // implementation. |
| if (!(in > minval.f)) // written this way to catch NaNs |
| return 0; |
| if (in > almostone.f) |
| return 255; |
| |
| // Do the table lookup and unpack bias, scale |
| f.f = in; |
| tab = fp32_to_srgb8_tab4[(f.u - minval.u) >> 20]; |
| bias = (tab >> 16) << 9; |
| scale = tab & 0xffff; |
| |
| // Grab next-highest mantissa bits and perform linear interpolation |
| t = (f.u >> 12) & 0xff; |
| return (unsigned char) ((bias + scale*t) >> 16); |
| } |
| |
| #ifndef STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT |
| #define STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT 32 // when downsampling and <= 32 scanlines of buffering, use gather. gather used down to 1/8th scaling for 25% win. |
| #endif |
| |
| #ifndef STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS |
| #define STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS 4 // when threading, what is the minimum number of scanlines for a split? |
| #endif |
| |
| // restrict pointers for the output pointers, other loop and unroll control |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| #define STBIR_STREAMOUT_PTR( star ) star __restrict |
| #define STBIR_NO_UNROLL( ptr ) __assume(ptr) // this oddly keeps msvc from unrolling a loop |
| #if _MSC_VER >= 1900 |
| #define STBIR_NO_UNROLL_LOOP_START __pragma(loop( no_vector )) |
| #else |
| #define STBIR_NO_UNROLL_LOOP_START |
| #endif |
| #elif defined( __clang__ ) |
| #define STBIR_STREAMOUT_PTR( star ) star __restrict__ |
| #define STBIR_NO_UNROLL( ptr ) __asm__ (""::"r"(ptr)) |
| #if ( __clang_major__ >= 4 ) || ( ( __clang_major__ >= 3 ) && ( __clang_minor__ >= 5 ) ) |
| #define STBIR_NO_UNROLL_LOOP_START _Pragma("clang loop unroll(disable)") _Pragma("clang loop vectorize(disable)") |
| #else |
| #define STBIR_NO_UNROLL_LOOP_START |
| #endif |
| #elif defined( __GNUC__ ) |
| #define STBIR_STREAMOUT_PTR( star ) star __restrict__ |
| #define STBIR_NO_UNROLL( ptr ) __asm__ (""::"r"(ptr)) |
| #if __GNUC__ >= 14 |
| #define STBIR_NO_UNROLL_LOOP_START _Pragma("GCC unroll 0") _Pragma("GCC novector") |
| #else |
| #define STBIR_NO_UNROLL_LOOP_START |
| #endif |
| #define STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| #else |
| #define STBIR_STREAMOUT_PTR( star ) star |
| #define STBIR_NO_UNROLL( ptr ) |
| #define STBIR_NO_UNROLL_LOOP_START |
| #endif |
| |
| #ifndef STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| #define STBIR_NO_UNROLL_LOOP_START_INF_FOR STBIR_NO_UNROLL_LOOP_START |
| #endif |
| |
| #ifdef STBIR_NO_SIMD // force simd off for whatever reason |
| |
| // force simd off overrides everything else, so clear it all |
| |
| #ifdef STBIR_SSE2 |
| #undef STBIR_SSE2 |
| #endif |
| |
| #ifdef STBIR_AVX |
| #undef STBIR_AVX |
| #endif |
| |
| #ifdef STBIR_NEON |
| #undef STBIR_NEON |
| #endif |
| |
| #ifdef STBIR_AVX2 |
| #undef STBIR_AVX2 |
| #endif |
| |
| #ifdef STBIR_FP16C |
| #undef STBIR_FP16C |
| #endif |
| |
| #ifdef STBIR_WASM |
| #undef STBIR_WASM |
| #endif |
| |
| #ifdef STBIR_SIMD |
| #undef STBIR_SIMD |
| #endif |
| |
| #else // STBIR_SIMD |
| |
| #ifdef STBIR_SSE2 |
| #include <emmintrin.h> |
| |
| #define stbir__simdf __m128 |
| #define stbir__simdi __m128i |
| |
| #define stbir_simdi_castf( reg ) _mm_castps_si128(reg) |
| #define stbir_simdf_casti( reg ) _mm_castsi128_ps(reg) |
| |
| #define stbir__simdf_load( reg, ptr ) (reg) = _mm_loadu_ps( (float const*)(ptr) ) |
| #define stbir__simdi_load( reg, ptr ) (reg) = _mm_loadu_si128 ( (stbir__simdi const*)(ptr) ) |
| #define stbir__simdf_load1( out, ptr ) (out) = _mm_load_ss( (float const*)(ptr) ) // top values can be random (not denormal or nan for perf) |
| #define stbir__simdi_load1( out, ptr ) (out) = _mm_castps_si128( _mm_load_ss( (float const*)(ptr) )) |
| #define stbir__simdf_load1z( out, ptr ) (out) = _mm_load_ss( (float const*)(ptr) ) // top values must be zero |
| #define stbir__simdf_frep4( fvar ) _mm_set_ps1( fvar ) |
| #define stbir__simdf_load1frep4( out, fvar ) (out) = _mm_set_ps1( fvar ) |
| #define stbir__simdf_load2( out, ptr ) (out) = _mm_castsi128_ps( _mm_loadl_epi64( (__m128i*)(ptr)) ) // top values can be random (not denormal or nan for perf) |
| #define stbir__simdf_load2z( out, ptr ) (out) = _mm_castsi128_ps( _mm_loadl_epi64( (__m128i*)(ptr)) ) // top values must be zero |
| #define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = _mm_castpd_ps(_mm_loadh_pd( _mm_castps_pd(reg), (double*)(ptr) )) |
| |
| #define stbir__simdf_zeroP() _mm_setzero_ps() |
| #define stbir__simdf_zero( reg ) (reg) = _mm_setzero_ps() |
| |
| #define stbir__simdf_store( ptr, reg ) _mm_storeu_ps( (float*)(ptr), reg ) |
| #define stbir__simdf_store1( ptr, reg ) _mm_store_ss( (float*)(ptr), reg ) |
| #define stbir__simdf_store2( ptr, reg ) _mm_storel_epi64( (__m128i*)(ptr), _mm_castps_si128(reg) ) |
| #define stbir__simdf_store2h( ptr, reg ) _mm_storeh_pd( (double*)(ptr), _mm_castps_pd(reg) ) |
| |
| #define stbir__simdi_store( ptr, reg ) _mm_storeu_si128( (__m128i*)(ptr), reg ) |
| #define stbir__simdi_store1( ptr, reg ) _mm_store_ss( (float*)(ptr), _mm_castsi128_ps(reg) ) |
| #define stbir__simdi_store2( ptr, reg ) _mm_storel_epi64( (__m128i*)(ptr), (reg) ) |
| |
| #define stbir__prefetch( ptr ) _mm_prefetch((char*)(ptr), _MM_HINT_T0 ) |
| |
| #define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \ |
| { \ |
| stbir__simdi zero = _mm_setzero_si128(); \ |
| out2 = _mm_unpacklo_epi8( ireg, zero ); \ |
| out3 = _mm_unpackhi_epi8( ireg, zero ); \ |
| out0 = _mm_unpacklo_epi16( out2, zero ); \ |
| out1 = _mm_unpackhi_epi16( out2, zero ); \ |
| out2 = _mm_unpacklo_epi16( out3, zero ); \ |
| out3 = _mm_unpackhi_epi16( out3, zero ); \ |
| } |
| |
| #define stbir__simdi_expand_u8_to_1u32(out,ireg) \ |
| { \ |
| stbir__simdi zero = _mm_setzero_si128(); \ |
| out = _mm_unpacklo_epi8( ireg, zero ); \ |
| out = _mm_unpacklo_epi16( out, zero ); \ |
| } |
| |
| #define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \ |
| { \ |
| stbir__simdi zero = _mm_setzero_si128(); \ |
| out0 = _mm_unpacklo_epi16( ireg, zero ); \ |
| out1 = _mm_unpackhi_epi16( ireg, zero ); \ |
| } |
| |
| #define stbir__simdf_convert_float_to_i32( i, f ) (i) = _mm_cvttps_epi32(f) |
| #define stbir__simdf_convert_float_to_int( f ) _mm_cvtt_ss2si(f) |
| #define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f,STBIR__CONSTF(STBIR_max_uint8_as_float)),_mm_setzero_ps())))) |
| #define stbir__simdf_convert_float_to_short( f ) ((unsigned short)_mm_cvtsi128_si32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(f,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())))) |
| |
| #define stbir__simdi_to_int( i ) _mm_cvtsi128_si32(i) |
| #define stbir__simdi_convert_i32_to_float(out, ireg) (out) = _mm_cvtepi32_ps( ireg ) |
| #define stbir__simdf_add( out, reg0, reg1 ) (out) = _mm_add_ps( reg0, reg1 ) |
| #define stbir__simdf_mult( out, reg0, reg1 ) (out) = _mm_mul_ps( reg0, reg1 ) |
| #define stbir__simdf_mult_mem( out, reg, ptr ) (out) = _mm_mul_ps( reg, _mm_loadu_ps( (float const*)(ptr) ) ) |
| #define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = _mm_mul_ss( reg, _mm_load_ss( (float const*)(ptr) ) ) |
| #define stbir__simdf_add_mem( out, reg, ptr ) (out) = _mm_add_ps( reg, _mm_loadu_ps( (float const*)(ptr) ) ) |
| #define stbir__simdf_add1_mem( out, reg, ptr ) (out) = _mm_add_ss( reg, _mm_load_ss( (float const*)(ptr) ) ) |
| |
| #ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd |
| #include <immintrin.h> |
| #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = _mm_fmadd_ps( mul1, mul2, add ) |
| #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = _mm_fmadd_ss( mul1, mul2, add ) |
| #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = _mm_fmadd_ps( mul, _mm_loadu_ps( (float const*)(ptr) ), add ) |
| #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = _mm_fmadd_ss( mul, _mm_load_ss( (float const*)(ptr) ), add ) |
| #else |
| #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = _mm_add_ps( add, _mm_mul_ps( mul1, mul2 ) ) |
| #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = _mm_add_ss( add, _mm_mul_ss( mul1, mul2 ) ) |
| #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = _mm_add_ps( add, _mm_mul_ps( mul, _mm_loadu_ps( (float const*)(ptr) ) ) ) |
| #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = _mm_add_ss( add, _mm_mul_ss( mul, _mm_load_ss( (float const*)(ptr) ) ) ) |
| #endif |
| |
| #define stbir__simdf_add1( out, reg0, reg1 ) (out) = _mm_add_ss( reg0, reg1 ) |
| #define stbir__simdf_mult1( out, reg0, reg1 ) (out) = _mm_mul_ss( reg0, reg1 ) |
| |
| #define stbir__simdf_and( out, reg0, reg1 ) (out) = _mm_and_ps( reg0, reg1 ) |
| #define stbir__simdf_or( out, reg0, reg1 ) (out) = _mm_or_ps( reg0, reg1 ) |
| |
| #define stbir__simdf_min( out, reg0, reg1 ) (out) = _mm_min_ps( reg0, reg1 ) |
| #define stbir__simdf_max( out, reg0, reg1 ) (out) = _mm_max_ps( reg0, reg1 ) |
| #define stbir__simdf_min1( out, reg0, reg1 ) (out) = _mm_min_ss( reg0, reg1 ) |
| #define stbir__simdf_max1( out, reg0, reg1 ) (out) = _mm_max_ss( reg0, reg1 ) |
| |
| #define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_shuffle_ps( reg1,reg0, (0<<0) + (1<<2) + (2<<4) + (3<<6) )), (3<<0) + (0<<2) + (1<<4) + (2<<6) ) ) |
| #define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_shuffle_ps( reg1,reg0, (0<<0) + (1<<2) + (2<<4) + (3<<6) )), (2<<0) + (3<<2) + (0<<4) + (1<<6) ) ) |
| |
| static const stbir__simdf STBIR_zeroones = { 0.0f,1.0f,0.0f,1.0f }; |
| static const stbir__simdf STBIR_onezeros = { 1.0f,0.0f,1.0f,0.0f }; |
| #define stbir__simdf_aaa1( out, alp, ones ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_movehl_ps( ones, alp ) ), (1<<0) + (1<<2) + (1<<4) + (2<<6) ) ) |
| #define stbir__simdf_1aaa( out, alp, ones ) (out)=_mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( _mm_movelh_ps( ones, alp ) ), (0<<0) + (2<<2) + (2<<4) + (2<<6) ) ) |
| #define stbir__simdf_a1a1( out, alp, ones) (out) = _mm_or_ps( _mm_castsi128_ps( _mm_srli_epi64( _mm_castps_si128(alp), 32 ) ), STBIR_zeroones ) |
| #define stbir__simdf_1a1a( out, alp, ones) (out) = _mm_or_ps( _mm_castsi128_ps( _mm_slli_epi64( _mm_castps_si128(alp), 32 ) ), STBIR_onezeros ) |
| |
| #define stbir__simdf_swiz( reg, one, two, three, four ) _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( reg ), (one<<0) + (two<<2) + (three<<4) + (four<<6) ) ) |
| |
| #define stbir__simdi_and( out, reg0, reg1 ) (out) = _mm_and_si128( reg0, reg1 ) |
| #define stbir__simdi_or( out, reg0, reg1 ) (out) = _mm_or_si128( reg0, reg1 ) |
| #define stbir__simdi_16madd( out, reg0, reg1 ) (out) = _mm_madd_epi16( reg0, reg1 ) |
| |
| #define stbir__simdf_pack_to_8bytes(out,aa,bb) \ |
| { \ |
| stbir__simdf af,bf; \ |
| stbir__simdi a,b; \ |
| af = _mm_min_ps( aa, STBIR_max_uint8_as_float ); \ |
| bf = _mm_min_ps( bb, STBIR_max_uint8_as_float ); \ |
| af = _mm_max_ps( af, _mm_setzero_ps() ); \ |
| bf = _mm_max_ps( bf, _mm_setzero_ps() ); \ |
| a = _mm_cvttps_epi32( af ); \ |
| b = _mm_cvttps_epi32( bf ); \ |
| a = _mm_packs_epi32( a, b ); \ |
| out = _mm_packus_epi16( a, a ); \ |
| } |
| |
| #define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \ |
| stbir__simdf_load( o0, (ptr) ); \ |
| stbir__simdf_load( o1, (ptr)+4 ); \ |
| stbir__simdf_load( o2, (ptr)+8 ); \ |
| stbir__simdf_load( o3, (ptr)+12 ); \ |
| { \ |
| __m128 tmp0, tmp1, tmp2, tmp3; \ |
| tmp0 = _mm_unpacklo_ps(o0, o1); \ |
| tmp2 = _mm_unpacklo_ps(o2, o3); \ |
| tmp1 = _mm_unpackhi_ps(o0, o1); \ |
| tmp3 = _mm_unpackhi_ps(o2, o3); \ |
| o0 = _mm_movelh_ps(tmp0, tmp2); \ |
| o1 = _mm_movehl_ps(tmp2, tmp0); \ |
| o2 = _mm_movelh_ps(tmp1, tmp3); \ |
| o3 = _mm_movehl_ps(tmp3, tmp1); \ |
| } |
| |
| #define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \ |
| r0 = _mm_packs_epi32( r0, r1 ); \ |
| r2 = _mm_packs_epi32( r2, r3 ); \ |
| r1 = _mm_unpacklo_epi16( r0, r2 ); \ |
| r3 = _mm_unpackhi_epi16( r0, r2 ); \ |
| r0 = _mm_unpacklo_epi16( r1, r3 ); \ |
| r2 = _mm_unpackhi_epi16( r1, r3 ); \ |
| r0 = _mm_packus_epi16( r0, r2 ); \ |
| stbir__simdi_store( ptr, r0 ); \ |
| |
| #define stbir__simdi_32shr( out, reg, imm ) out = _mm_srli_epi32( reg, imm ) |
| |
| #if defined(_MSC_VER) && !defined(__clang__) |
| // msvc inits with 8 bytes |
| #define STBIR__CONST_32_TO_8( v ) (char)(unsigned char)((v)&255),(char)(unsigned char)(((v)>>8)&255),(char)(unsigned char)(((v)>>16)&255),(char)(unsigned char)(((v)>>24)&255) |
| #define STBIR__CONST_4_32i( v ) STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ), STBIR__CONST_32_TO_8( v ) |
| #define STBIR__CONST_4d_32i( v0, v1, v2, v3 ) STBIR__CONST_32_TO_8( v0 ), STBIR__CONST_32_TO_8( v1 ), STBIR__CONST_32_TO_8( v2 ), STBIR__CONST_32_TO_8( v3 ) |
| #else |
| // everything else inits with long long's |
| #define STBIR__CONST_4_32i( v ) (long long)((((stbir_uint64)(stbir_uint32)(v))<<32)|((stbir_uint64)(stbir_uint32)(v))),(long long)((((stbir_uint64)(stbir_uint32)(v))<<32)|((stbir_uint64)(stbir_uint32)(v))) |
| #define STBIR__CONST_4d_32i( v0, v1, v2, v3 ) (long long)((((stbir_uint64)(stbir_uint32)(v1))<<32)|((stbir_uint64)(stbir_uint32)(v0))),(long long)((((stbir_uint64)(stbir_uint32)(v3))<<32)|((stbir_uint64)(stbir_uint32)(v2))) |
| #endif |
| |
| #define STBIR__SIMDF_CONST(var, x) stbir__simdf var = { x, x, x, x } |
| #define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { STBIR__CONST_4_32i(x) } |
| #define STBIR__CONSTF(var) (var) |
| #define STBIR__CONSTI(var) (var) |
| |
| #if defined(STBIR_AVX) || defined(__SSE4_1__) |
| #include <smmintrin.h> |
| #define stbir__simdf_pack_to_8words(out,reg0,reg1) out = _mm_packus_epi32(_mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())), _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps()))) |
| #else |
| STBIR__SIMDI_CONST(stbir__s32_32768, 32768); |
| STBIR__SIMDI_CONST(stbir__s16_32768, ((32768<<16)|32768)); |
| |
| #define stbir__simdf_pack_to_8words(out,reg0,reg1) \ |
| { \ |
| stbir__simdi tmp0,tmp1; \ |
| tmp0 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg0,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())); \ |
| tmp1 = _mm_cvttps_epi32(_mm_max_ps(_mm_min_ps(reg1,STBIR__CONSTF(STBIR_max_uint16_as_float)),_mm_setzero_ps())); \ |
| tmp0 = _mm_sub_epi32( tmp0, stbir__s32_32768 ); \ |
| tmp1 = _mm_sub_epi32( tmp1, stbir__s32_32768 ); \ |
| out = _mm_packs_epi32( tmp0, tmp1 ); \ |
| out = _mm_sub_epi16( out, stbir__s16_32768 ); \ |
| } |
| |
| #endif |
| |
| #define STBIR_SIMD |
| |
| // if we detect AVX, set the simd8 defines |
| #ifdef STBIR_AVX |
| #include <immintrin.h> |
| #define STBIR_SIMD8 |
| #define stbir__simdf8 __m256 |
| #define stbir__simdi8 __m256i |
| #define stbir__simdf8_load( out, ptr ) (out) = _mm256_loadu_ps( (float const *)(ptr) ) |
| #define stbir__simdi8_load( out, ptr ) (out) = _mm256_loadu_si256( (__m256i const *)(ptr) ) |
| #define stbir__simdf8_mult( out, a, b ) (out) = _mm256_mul_ps( (a), (b) ) |
| #define stbir__simdf8_store( ptr, out ) _mm256_storeu_ps( (float*)(ptr), out ) |
| #define stbir__simdi8_store( ptr, reg ) _mm256_storeu_si256( (__m256i*)(ptr), reg ) |
| #define stbir__simdf8_frep8( fval ) _mm256_set1_ps( fval ) |
| |
| #define stbir__simdf8_min( out, reg0, reg1 ) (out) = _mm256_min_ps( reg0, reg1 ) |
| #define stbir__simdf8_max( out, reg0, reg1 ) (out) = _mm256_max_ps( reg0, reg1 ) |
| |
| #define stbir__simdf8_add4halves( out, bot4, top8 ) (out) = _mm_add_ps( bot4, _mm256_extractf128_ps( top8, 1 ) ) |
| #define stbir__simdf8_mult_mem( out, reg, ptr ) (out) = _mm256_mul_ps( reg, _mm256_loadu_ps( (float const*)(ptr) ) ) |
| #define stbir__simdf8_add_mem( out, reg, ptr ) (out) = _mm256_add_ps( reg, _mm256_loadu_ps( (float const*)(ptr) ) ) |
| #define stbir__simdf8_add( out, a, b ) (out) = _mm256_add_ps( a, b ) |
| #define stbir__simdf8_load1b( out, ptr ) (out) = _mm256_broadcast_ss( ptr ) |
| #define stbir__simdf_load1rep4( out, ptr ) (out) = _mm_broadcast_ss( ptr ) // avx load instruction |
| |
| #define stbir__simdi8_convert_i32_to_float(out, ireg) (out) = _mm256_cvtepi32_ps( ireg ) |
| #define stbir__simdf8_convert_float_to_i32( i, f ) (i) = _mm256_cvttps_epi32(f) |
| |
| #define stbir__simdf8_bot4s( out, a, b ) (out) = _mm256_permute2f128_ps(a,b, (0<<0)+(2<<4) ) |
| #define stbir__simdf8_top4s( out, a, b ) (out) = _mm256_permute2f128_ps(a,b, (1<<0)+(3<<4) ) |
| |
| #define stbir__simdf8_gettop4( reg ) _mm256_extractf128_ps(reg,1) |
| |
| #ifdef STBIR_AVX2 |
| |
| #define stbir__simdi8_expand_u8_to_u32(out0,out1,ireg) \ |
| { \ |
| stbir__simdi8 a, zero =_mm256_setzero_si256();\ |
| a = _mm256_permute4x64_epi64( _mm256_unpacklo_epi8( _mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg),(0<<0)+(2<<2)+(1<<4)+(3<<6)), zero ),(0<<0)+(2<<2)+(1<<4)+(3<<6)); \ |
| out0 = _mm256_unpacklo_epi16( a, zero ); \ |
| out1 = _mm256_unpackhi_epi16( a, zero ); \ |
| } |
| |
| #define stbir__simdf8_pack_to_16bytes(out,aa,bb) \ |
| { \ |
| stbir__simdi8 t; \ |
| stbir__simdf8 af,bf; \ |
| stbir__simdi8 a,b; \ |
| af = _mm256_min_ps( aa, STBIR_max_uint8_as_floatX ); \ |
| bf = _mm256_min_ps( bb, STBIR_max_uint8_as_floatX ); \ |
| af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ |
| bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ |
| a = _mm256_cvttps_epi32( af ); \ |
| b = _mm256_cvttps_epi32( bf ); \ |
| t = _mm256_permute4x64_epi64( _mm256_packs_epi32( a, b ), (0<<0)+(2<<2)+(1<<4)+(3<<6) ); \ |
| out = _mm256_castsi256_si128( _mm256_permute4x64_epi64( _mm256_packus_epi16( t, t ), (0<<0)+(2<<2)+(1<<4)+(3<<6) ) ); \ |
| } |
| |
| #define stbir__simdi8_expand_u16_to_u32(out,ireg) out = _mm256_unpacklo_epi16( _mm256_permute4x64_epi64(_mm256_castsi128_si256(ireg),(0<<0)+(2<<2)+(1<<4)+(3<<6)), _mm256_setzero_si256() ); |
| |
| #define stbir__simdf8_pack_to_16words(out,aa,bb) \ |
| { \ |
| stbir__simdf8 af,bf; \ |
| stbir__simdi8 a,b; \ |
| af = _mm256_min_ps( aa, STBIR_max_uint16_as_floatX ); \ |
| bf = _mm256_min_ps( bb, STBIR_max_uint16_as_floatX ); \ |
| af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ |
| bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ |
| a = _mm256_cvttps_epi32( af ); \ |
| b = _mm256_cvttps_epi32( bf ); \ |
| (out) = _mm256_permute4x64_epi64( _mm256_packus_epi32(a, b), (0<<0)+(2<<2)+(1<<4)+(3<<6) ); \ |
| } |
| |
| #else |
| |
| #define stbir__simdi8_expand_u8_to_u32(out0,out1,ireg) \ |
| { \ |
| stbir__simdi a,zero = _mm_setzero_si128(); \ |
| a = _mm_unpacklo_epi8( ireg, zero ); \ |
| out0 = _mm256_setr_m128i( _mm_unpacklo_epi16( a, zero ), _mm_unpackhi_epi16( a, zero ) ); \ |
| a = _mm_unpackhi_epi8( ireg, zero ); \ |
| out1 = _mm256_setr_m128i( _mm_unpacklo_epi16( a, zero ), _mm_unpackhi_epi16( a, zero ) ); \ |
| } |
| |
| #define stbir__simdf8_pack_to_16bytes(out,aa,bb) \ |
| { \ |
| stbir__simdi t; \ |
| stbir__simdf8 af,bf; \ |
| stbir__simdi8 a,b; \ |
| af = _mm256_min_ps( aa, STBIR_max_uint8_as_floatX ); \ |
| bf = _mm256_min_ps( bb, STBIR_max_uint8_as_floatX ); \ |
| af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ |
| bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ |
| a = _mm256_cvttps_epi32( af ); \ |
| b = _mm256_cvttps_epi32( bf ); \ |
| out = _mm_packs_epi32( _mm256_castsi256_si128(a), _mm256_extractf128_si256( a, 1 ) ); \ |
| out = _mm_packus_epi16( out, out ); \ |
| t = _mm_packs_epi32( _mm256_castsi256_si128(b), _mm256_extractf128_si256( b, 1 ) ); \ |
| t = _mm_packus_epi16( t, t ); \ |
| out = _mm_castps_si128( _mm_shuffle_ps( _mm_castsi128_ps(out), _mm_castsi128_ps(t), (0<<0)+(1<<2)+(0<<4)+(1<<6) ) ); \ |
| } |
| |
| #define stbir__simdi8_expand_u16_to_u32(out,ireg) \ |
| { \ |
| stbir__simdi a,b,zero = _mm_setzero_si128(); \ |
| a = _mm_unpacklo_epi16( ireg, zero ); \ |
| b = _mm_unpackhi_epi16( ireg, zero ); \ |
| out = _mm256_insertf128_si256( _mm256_castsi128_si256( a ), b, 1 ); \ |
| } |
| |
| #define stbir__simdf8_pack_to_16words(out,aa,bb) \ |
| { \ |
| stbir__simdi t0,t1; \ |
| stbir__simdf8 af,bf; \ |
| stbir__simdi8 a,b; \ |
| af = _mm256_min_ps( aa, STBIR_max_uint16_as_floatX ); \ |
| bf = _mm256_min_ps( bb, STBIR_max_uint16_as_floatX ); \ |
| af = _mm256_max_ps( af, _mm256_setzero_ps() ); \ |
| bf = _mm256_max_ps( bf, _mm256_setzero_ps() ); \ |
| a = _mm256_cvttps_epi32( af ); \ |
| b = _mm256_cvttps_epi32( bf ); \ |
| t0 = _mm_packus_epi32( _mm256_castsi256_si128(a), _mm256_extractf128_si256( a, 1 ) ); \ |
| t1 = _mm_packus_epi32( _mm256_castsi256_si128(b), _mm256_extractf128_si256( b, 1 ) ); \ |
| out = _mm256_setr_m128i( t0, t1 ); \ |
| } |
| |
| #endif |
| |
| static __m256i stbir_00001111 = { STBIR__CONST_4d_32i( 0, 0, 0, 0 ), STBIR__CONST_4d_32i( 1, 1, 1, 1 ) }; |
| #define stbir__simdf8_0123to00001111( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_00001111 ) |
| |
| static __m256i stbir_22223333 = { STBIR__CONST_4d_32i( 2, 2, 2, 2 ), STBIR__CONST_4d_32i( 3, 3, 3, 3 ) }; |
| #define stbir__simdf8_0123to22223333( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_22223333 ) |
| |
| #define stbir__simdf8_0123to2222( out, in ) (out) = stbir__simdf_swiz(_mm256_castps256_ps128(in), 2,2,2,2 ) |
| |
| #define stbir__simdf8_load4b( out, ptr ) (out) = _mm256_broadcast_ps( (__m128 const *)(ptr) ) |
| |
| static __m256i stbir_00112233 = { STBIR__CONST_4d_32i( 0, 0, 1, 1 ), STBIR__CONST_4d_32i( 2, 2, 3, 3 ) }; |
| #define stbir__simdf8_0123to00112233( out, in ) (out) = _mm256_permutevar_ps ( in, stbir_00112233 ) |
| #define stbir__simdf8_add4( out, a8, b ) (out) = _mm256_add_ps( a8, _mm256_castps128_ps256( b ) ) |
| |
| static __m256i stbir_load6 = { STBIR__CONST_4_32i( 0x80000000 ), STBIR__CONST_4d_32i( 0x80000000, 0x80000000, 0, 0 ) }; |
| #define stbir__simdf8_load6z( out, ptr ) (out) = _mm256_maskload_ps( ptr, stbir_load6 ) |
| |
| #define stbir__simdf8_0123to00000000( out, in ) (out) = _mm256_shuffle_ps ( in, in, (0<<0)+(0<<2)+(0<<4)+(0<<6) ) |
| #define stbir__simdf8_0123to11111111( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(1<<2)+(1<<4)+(1<<6) ) |
| #define stbir__simdf8_0123to22222222( out, in ) (out) = _mm256_shuffle_ps ( in, in, (2<<0)+(2<<2)+(2<<4)+(2<<6) ) |
| #define stbir__simdf8_0123to33333333( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(3<<2)+(3<<4)+(3<<6) ) |
| #define stbir__simdf8_0123to21032103( out, in ) (out) = _mm256_shuffle_ps ( in, in, (2<<0)+(1<<2)+(0<<4)+(3<<6) ) |
| #define stbir__simdf8_0123to32103210( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(2<<2)+(1<<4)+(0<<6) ) |
| #define stbir__simdf8_0123to12301230( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(2<<2)+(3<<4)+(0<<6) ) |
| #define stbir__simdf8_0123to10321032( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(0<<2)+(3<<4)+(2<<6) ) |
| #define stbir__simdf8_0123to30123012( out, in ) (out) = _mm256_shuffle_ps ( in, in, (3<<0)+(0<<2)+(1<<4)+(2<<6) ) |
| |
| #define stbir__simdf8_0123to11331133( out, in ) (out) = _mm256_shuffle_ps ( in, in, (1<<0)+(1<<2)+(3<<4)+(3<<6) ) |
| #define stbir__simdf8_0123to00220022( out, in ) (out) = _mm256_shuffle_ps ( in, in, (0<<0)+(0<<2)+(2<<4)+(2<<6) ) |
| |
| #define stbir__simdf8_aaa1( out, alp, ones ) (out) = _mm256_blend_ps( alp, ones, (1<<0)+(1<<1)+(1<<2)+(0<<3)+(1<<4)+(1<<5)+(1<<6)+(0<<7)); (out)=_mm256_shuffle_ps( out,out, (3<<0) + (3<<2) + (3<<4) + (0<<6) ) |
| #define stbir__simdf8_1aaa( out, alp, ones ) (out) = _mm256_blend_ps( alp, ones, (0<<0)+(1<<1)+(1<<2)+(1<<3)+(0<<4)+(1<<5)+(1<<6)+(1<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (0<<4) + (0<<6) ) |
| #define stbir__simdf8_a1a1( out, alp, ones) (out) = _mm256_blend_ps( alp, ones, (1<<0)+(0<<1)+(1<<2)+(0<<3)+(1<<4)+(0<<5)+(1<<6)+(0<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (3<<4) + (2<<6) ) |
| #define stbir__simdf8_1a1a( out, alp, ones) (out) = _mm256_blend_ps( alp, ones, (0<<0)+(1<<1)+(0<<2)+(1<<3)+(0<<4)+(1<<5)+(0<<6)+(1<<7)); (out)=_mm256_shuffle_ps( out,out, (1<<0) + (0<<2) + (3<<4) + (2<<6) ) |
| |
| #define stbir__simdf8_zero( reg ) (reg) = _mm256_setzero_ps() |
| |
| #ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd |
| #define stbir__simdf8_madd( out, add, mul1, mul2 ) (out) = _mm256_fmadd_ps( mul1, mul2, add ) |
| #define stbir__simdf8_madd_mem( out, add, mul, ptr ) (out) = _mm256_fmadd_ps( mul, _mm256_loadu_ps( (float const*)(ptr) ), add ) |
| #define stbir__simdf8_madd_mem4( out, add, mul, ptr )(out) = _mm256_fmadd_ps( _mm256_setr_m128( mul, _mm_setzero_ps() ), _mm256_setr_m128( _mm_loadu_ps( (float const*)(ptr) ), _mm_setzero_ps() ), add ) |
| #else |
| #define stbir__simdf8_madd( out, add, mul1, mul2 ) (out) = _mm256_add_ps( add, _mm256_mul_ps( mul1, mul2 ) ) |
| #define stbir__simdf8_madd_mem( out, add, mul, ptr ) (out) = _mm256_add_ps( add, _mm256_mul_ps( mul, _mm256_loadu_ps( (float const*)(ptr) ) ) ) |
| #define stbir__simdf8_madd_mem4( out, add, mul, ptr ) (out) = _mm256_add_ps( add, _mm256_setr_m128( _mm_mul_ps( mul, _mm_loadu_ps( (float const*)(ptr) ) ), _mm_setzero_ps() ) ) |
| #endif |
| #define stbir__if_simdf8_cast_to_simdf4( val ) _mm256_castps256_ps128( val ) |
| |
| #endif |
| |
| #ifdef STBIR_FLOORF |
| #undef STBIR_FLOORF |
| #endif |
| #define STBIR_FLOORF stbir_simd_floorf |
| static stbir__inline float stbir_simd_floorf(float x) // martins floorf |
| { |
| #if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41) |
| __m128 t = _mm_set_ss(x); |
| return _mm_cvtss_f32( _mm_floor_ss(t, t) ); |
| #else |
| __m128 f = _mm_set_ss(x); |
| __m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f)); |
| __m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(f, t), _mm_set_ss(-1.0f))); |
| return _mm_cvtss_f32(r); |
| #endif |
| } |
| |
| #ifdef STBIR_CEILF |
| #undef STBIR_CEILF |
| #endif |
| #define STBIR_CEILF stbir_simd_ceilf |
| static stbir__inline float stbir_simd_ceilf(float x) // martins ceilf |
| { |
| #if defined(STBIR_AVX) || defined(__SSE4_1__) || defined(STBIR_SSE41) |
| __m128 t = _mm_set_ss(x); |
| return _mm_cvtss_f32( _mm_ceil_ss(t, t) ); |
| #else |
| __m128 f = _mm_set_ss(x); |
| __m128 t = _mm_cvtepi32_ps(_mm_cvttps_epi32(f)); |
| __m128 r = _mm_add_ss(t, _mm_and_ps(_mm_cmplt_ss(t, f), _mm_set_ss(1.0f))); |
| return _mm_cvtss_f32(r); |
| #endif |
| } |
| |
| #elif defined(STBIR_NEON) |
| |
| #include <arm_neon.h> |
| |
| #define stbir__simdf float32x4_t |
| #define stbir__simdi uint32x4_t |
| |
| #define stbir_simdi_castf( reg ) vreinterpretq_u32_f32(reg) |
| #define stbir_simdf_casti( reg ) vreinterpretq_f32_u32(reg) |
| |
| #define stbir__simdf_load( reg, ptr ) (reg) = vld1q_f32( (float const*)(ptr) ) |
| #define stbir__simdi_load( reg, ptr ) (reg) = vld1q_u32( (uint32_t const*)(ptr) ) |
| #define stbir__simdf_load1( out, ptr ) (out) = vld1q_dup_f32( (float const*)(ptr) ) // top values can be random (not denormal or nan for perf) |
| #define stbir__simdi_load1( out, ptr ) (out) = vld1q_dup_u32( (uint32_t const*)(ptr) ) |
| #define stbir__simdf_load1z( out, ptr ) (out) = vld1q_lane_f32( (float const*)(ptr), vdupq_n_f32(0), 0 ) // top values must be zero |
| #define stbir__simdf_frep4( fvar ) vdupq_n_f32( fvar ) |
| #define stbir__simdf_load1frep4( out, fvar ) (out) = vdupq_n_f32( fvar ) |
| #define stbir__simdf_load2( out, ptr ) (out) = vcombine_f32( vld1_f32( (float const*)(ptr) ), vcreate_f32(0) ) // top values can be random (not denormal or nan for perf) |
| #define stbir__simdf_load2z( out, ptr ) (out) = vcombine_f32( vld1_f32( (float const*)(ptr) ), vcreate_f32(0) ) // top values must be zero |
| #define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = vcombine_f32( vget_low_f32(reg), vld1_f32( (float const*)(ptr) ) ) |
| |
| #define stbir__simdf_zeroP() vdupq_n_f32(0) |
| #define stbir__simdf_zero( reg ) (reg) = vdupq_n_f32(0) |
| |
| #define stbir__simdf_store( ptr, reg ) vst1q_f32( (float*)(ptr), reg ) |
| #define stbir__simdf_store1( ptr, reg ) vst1q_lane_f32( (float*)(ptr), reg, 0) |
| #define stbir__simdf_store2( ptr, reg ) vst1_f32( (float*)(ptr), vget_low_f32(reg) ) |
| #define stbir__simdf_store2h( ptr, reg ) vst1_f32( (float*)(ptr), vget_high_f32(reg) ) |
| |
| #define stbir__simdi_store( ptr, reg ) vst1q_u32( (uint32_t*)(ptr), reg ) |
| #define stbir__simdi_store1( ptr, reg ) vst1q_lane_u32( (uint32_t*)(ptr), reg, 0 ) |
| #define stbir__simdi_store2( ptr, reg ) vst1_u32( (uint32_t*)(ptr), vget_low_u32(reg) ) |
| |
| #define stbir__prefetch( ptr ) |
| |
| #define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \ |
| { \ |
| uint16x8_t l = vmovl_u8( vget_low_u8 ( vreinterpretq_u8_u32(ireg) ) ); \ |
| uint16x8_t h = vmovl_u8( vget_high_u8( vreinterpretq_u8_u32(ireg) ) ); \ |
| out0 = vmovl_u16( vget_low_u16 ( l ) ); \ |
| out1 = vmovl_u16( vget_high_u16( l ) ); \ |
| out2 = vmovl_u16( vget_low_u16 ( h ) ); \ |
| out3 = vmovl_u16( vget_high_u16( h ) ); \ |
| } |
| |
| #define stbir__simdi_expand_u8_to_1u32(out,ireg) \ |
| { \ |
| uint16x8_t tmp = vmovl_u8( vget_low_u8( vreinterpretq_u8_u32(ireg) ) ); \ |
| out = vmovl_u16( vget_low_u16( tmp ) ); \ |
| } |
| |
| #define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \ |
| { \ |
| uint16x8_t tmp = vreinterpretq_u16_u32(ireg); \ |
| out0 = vmovl_u16( vget_low_u16 ( tmp ) ); \ |
| out1 = vmovl_u16( vget_high_u16( tmp ) ); \ |
| } |
| |
| #define stbir__simdf_convert_float_to_i32( i, f ) (i) = vreinterpretq_u32_s32( vcvtq_s32_f32(f) ) |
| #define stbir__simdf_convert_float_to_int( f ) vgetq_lane_s32(vcvtq_s32_f32(f), 0) |
| #define stbir__simdi_to_int( i ) (int)vgetq_lane_u32(i, 0) |
| #define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f,STBIR__CONSTF(STBIR_max_uint8_as_float)),vdupq_n_f32(0))), 0)) |
| #define stbir__simdf_convert_float_to_short( f ) ((unsigned short)vgetq_lane_s32(vcvtq_s32_f32(vmaxq_f32(vminq_f32(f,STBIR__CONSTF(STBIR_max_uint16_as_float)),vdupq_n_f32(0))), 0)) |
| #define stbir__simdi_convert_i32_to_float(out, ireg) (out) = vcvtq_f32_s32( vreinterpretq_s32_u32(ireg) ) |
| #define stbir__simdf_add( out, reg0, reg1 ) (out) = vaddq_f32( reg0, reg1 ) |
| #define stbir__simdf_mult( out, reg0, reg1 ) (out) = vmulq_f32( reg0, reg1 ) |
| #define stbir__simdf_mult_mem( out, reg, ptr ) (out) = vmulq_f32( reg, vld1q_f32( (float const*)(ptr) ) ) |
| #define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = vmulq_f32( reg, vld1q_dup_f32( (float const*)(ptr) ) ) |
| #define stbir__simdf_add_mem( out, reg, ptr ) (out) = vaddq_f32( reg, vld1q_f32( (float const*)(ptr) ) ) |
| #define stbir__simdf_add1_mem( out, reg, ptr ) (out) = vaddq_f32( reg, vld1q_dup_f32( (float const*)(ptr) ) ) |
| |
| #ifdef STBIR_USE_FMA // not on by default to maintain bit identical simd to non-simd (and also x64 no madd to arm madd) |
| #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = vfmaq_f32( add, mul1, mul2 ) |
| #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = vfmaq_f32( add, mul1, mul2 ) |
| #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = vfmaq_f32( add, mul, vld1q_f32( (float const*)(ptr) ) ) |
| #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = vfmaq_f32( add, mul, vld1q_dup_f32( (float const*)(ptr) ) ) |
| #else |
| #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = vaddq_f32( add, vmulq_f32( mul1, mul2 ) ) |
| #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = vaddq_f32( add, vmulq_f32( mul1, mul2 ) ) |
| #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = vaddq_f32( add, vmulq_f32( mul, vld1q_f32( (float const*)(ptr) ) ) ) |
| #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = vaddq_f32( add, vmulq_f32( mul, vld1q_dup_f32( (float const*)(ptr) ) ) ) |
| #endif |
| |
| #define stbir__simdf_add1( out, reg0, reg1 ) (out) = vaddq_f32( reg0, reg1 ) |
| #define stbir__simdf_mult1( out, reg0, reg1 ) (out) = vmulq_f32( reg0, reg1 ) |
| |
| #define stbir__simdf_and( out, reg0, reg1 ) (out) = vreinterpretq_f32_u32( vandq_u32( vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1) ) ) |
| #define stbir__simdf_or( out, reg0, reg1 ) (out) = vreinterpretq_f32_u32( vorrq_u32( vreinterpretq_u32_f32(reg0), vreinterpretq_u32_f32(reg1) ) ) |
| |
| #define stbir__simdf_min( out, reg0, reg1 ) (out) = vminq_f32( reg0, reg1 ) |
| #define stbir__simdf_max( out, reg0, reg1 ) (out) = vmaxq_f32( reg0, reg1 ) |
| #define stbir__simdf_min1( out, reg0, reg1 ) (out) = vminq_f32( reg0, reg1 ) |
| #define stbir__simdf_max1( out, reg0, reg1 ) (out) = vmaxq_f32( reg0, reg1 ) |
| |
| #define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out) = vextq_f32( reg0, reg1, 3 ) |
| #define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out) = vextq_f32( reg0, reg1, 2 ) |
| |
| #define stbir__simdf_a1a1( out, alp, ones ) (out) = vzipq_f32(vuzpq_f32(alp, alp).val[1], ones).val[0] |
| #define stbir__simdf_1a1a( out, alp, ones ) (out) = vzipq_f32(ones, vuzpq_f32(alp, alp).val[0]).val[0] |
| |
| #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) |
| |
| #define stbir__simdf_aaa1( out, alp, ones ) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3, ones, 3) |
| #define stbir__simdf_1aaa( out, alp, ones ) (out) = vcopyq_laneq_f32(vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0, ones, 0) |
| |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| #define stbir_make16(a,b,c,d) vcombine_u8( \ |
| vcreate_u8( (4*a+0) | ((4*a+1)<<8) | ((4*a+2)<<16) | ((4*a+3)<<24) | \ |
| ((stbir_uint64)(4*b+0)<<32) | ((stbir_uint64)(4*b+1)<<40) | ((stbir_uint64)(4*b+2)<<48) | ((stbir_uint64)(4*b+3)<<56)), \ |
| vcreate_u8( (4*c+0) | ((4*c+1)<<8) | ((4*c+2)<<16) | ((4*c+3)<<24) | \ |
| ((stbir_uint64)(4*d+0)<<32) | ((stbir_uint64)(4*d+1)<<40) | ((stbir_uint64)(4*d+2)<<48) | ((stbir_uint64)(4*d+3)<<56) ) ) |
| |
| static stbir__inline uint8x16x2_t stbir_make16x2(float32x4_t rega,float32x4_t regb) |
| { |
| uint8x16x2_t r = { vreinterpretq_u8_f32(rega), vreinterpretq_u8_f32(regb) }; |
| return r; |
| } |
| #else |
| #define stbir_make16(a,b,c,d) (uint8x16_t){4*a+0,4*a+1,4*a+2,4*a+3,4*b+0,4*b+1,4*b+2,4*b+3,4*c+0,4*c+1,4*c+2,4*c+3,4*d+0,4*d+1,4*d+2,4*d+3} |
| #define stbir_make16x2(a,b) (uint8x16x2_t){{vreinterpretq_u8_f32(a),vreinterpretq_u8_f32(b)}} |
| #endif |
| |
| #define stbir__simdf_swiz( reg, one, two, three, four ) vreinterpretq_f32_u8( vqtbl1q_u8( vreinterpretq_u8_f32(reg), stbir_make16(one, two, three, four) ) ) |
| #define stbir__simdf_swiz2( rega, regb, one, two, three, four ) vreinterpretq_f32_u8( vqtbl2q_u8( stbir_make16x2(rega,regb), stbir_make16(one, two, three, four) ) ) |
| |
| #define stbir__simdi_16madd( out, reg0, reg1 ) \ |
| { \ |
| int16x8_t r0 = vreinterpretq_s16_u32(reg0); \ |
| int16x8_t r1 = vreinterpretq_s16_u32(reg1); \ |
| int32x4_t tmp0 = vmull_s16( vget_low_s16(r0), vget_low_s16(r1) ); \ |
| int32x4_t tmp1 = vmull_s16( vget_high_s16(r0), vget_high_s16(r1) ); \ |
| (out) = vreinterpretq_u32_s32( vpaddq_s32(tmp0, tmp1) ); \ |
| } |
| |
| #else |
| |
| #define stbir__simdf_aaa1( out, alp, ones ) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 3)), 3) |
| #define stbir__simdf_1aaa( out, alp, ones ) (out) = vsetq_lane_f32(1.0f, vdupq_n_f32(vgetq_lane_f32(alp, 0)), 0) |
| |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| static stbir__inline uint8x8x2_t stbir_make8x2(float32x4_t reg) |
| { |
| uint8x8x2_t r = { { vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) } }; |
| return r; |
| } |
| #define stbir_make8(a,b) vcreate_u8( \ |
| (4*a+0) | ((4*a+1)<<8) | ((4*a+2)<<16) | ((4*a+3)<<24) | \ |
| ((stbir_uint64)(4*b+0)<<32) | ((stbir_uint64)(4*b+1)<<40) | ((stbir_uint64)(4*b+2)<<48) | ((stbir_uint64)(4*b+3)<<56) ) |
| #else |
| #define stbir_make8x2(reg) (uint8x8x2_t){ { vget_low_u8(vreinterpretq_u8_f32(reg)), vget_high_u8(vreinterpretq_u8_f32(reg)) } } |
| #define stbir_make8(a,b) (uint8x8_t){4*a+0,4*a+1,4*a+2,4*a+3,4*b+0,4*b+1,4*b+2,4*b+3} |
| #endif |
| |
| #define stbir__simdf_swiz( reg, one, two, three, four ) vreinterpretq_f32_u8( vcombine_u8( \ |
| vtbl2_u8( stbir_make8x2( reg ), stbir_make8( one, two ) ), \ |
| vtbl2_u8( stbir_make8x2( reg ), stbir_make8( three, four ) ) ) ) |
| |
| #define stbir__simdi_16madd( out, reg0, reg1 ) \ |
| { \ |
| int16x8_t r0 = vreinterpretq_s16_u32(reg0); \ |
| int16x8_t r1 = vreinterpretq_s16_u32(reg1); \ |
| int32x4_t tmp0 = vmull_s16( vget_low_s16(r0), vget_low_s16(r1) ); \ |
| int32x4_t tmp1 = vmull_s16( vget_high_s16(r0), vget_high_s16(r1) ); \ |
| int32x2_t out0 = vpadd_s32( vget_low_s32(tmp0), vget_high_s32(tmp0) ); \ |
| int32x2_t out1 = vpadd_s32( vget_low_s32(tmp1), vget_high_s32(tmp1) ); \ |
| (out) = vreinterpretq_u32_s32( vcombine_s32(out0, out1) ); \ |
| } |
| |
| #endif |
| |
| #define stbir__simdi_and( out, reg0, reg1 ) (out) = vandq_u32( reg0, reg1 ) |
| #define stbir__simdi_or( out, reg0, reg1 ) (out) = vorrq_u32( reg0, reg1 ) |
| |
| #define stbir__simdf_pack_to_8bytes(out,aa,bb) \ |
| { \ |
| float32x4_t af = vmaxq_f32( vminq_f32(aa,STBIR__CONSTF(STBIR_max_uint8_as_float) ), vdupq_n_f32(0) ); \ |
| float32x4_t bf = vmaxq_f32( vminq_f32(bb,STBIR__CONSTF(STBIR_max_uint8_as_float) ), vdupq_n_f32(0) ); \ |
| int16x4_t ai = vqmovn_s32( vcvtq_s32_f32( af ) ); \ |
| int16x4_t bi = vqmovn_s32( vcvtq_s32_f32( bf ) ); \ |
| uint8x8_t out8 = vqmovun_s16( vcombine_s16(ai, bi) ); \ |
| out = vreinterpretq_u32_u8( vcombine_u8(out8, out8) ); \ |
| } |
| |
| #define stbir__simdf_pack_to_8words(out,aa,bb) \ |
| { \ |
| float32x4_t af = vmaxq_f32( vminq_f32(aa,STBIR__CONSTF(STBIR_max_uint16_as_float) ), vdupq_n_f32(0) ); \ |
| float32x4_t bf = vmaxq_f32( vminq_f32(bb,STBIR__CONSTF(STBIR_max_uint16_as_float) ), vdupq_n_f32(0) ); \ |
| int32x4_t ai = vcvtq_s32_f32( af ); \ |
| int32x4_t bi = vcvtq_s32_f32( bf ); \ |
| out = vreinterpretq_u32_u16( vcombine_u16(vqmovun_s32(ai), vqmovun_s32(bi)) ); \ |
| } |
| |
| #define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \ |
| { \ |
| int16x4x2_t tmp0 = vzip_s16( vqmovn_s32(vreinterpretq_s32_u32(r0)), vqmovn_s32(vreinterpretq_s32_u32(r2)) ); \ |
| int16x4x2_t tmp1 = vzip_s16( vqmovn_s32(vreinterpretq_s32_u32(r1)), vqmovn_s32(vreinterpretq_s32_u32(r3)) ); \ |
| uint8x8x2_t out = \ |
| { { \ |
| vqmovun_s16( vcombine_s16(tmp0.val[0], tmp0.val[1]) ), \ |
| vqmovun_s16( vcombine_s16(tmp1.val[0], tmp1.val[1]) ), \ |
| } }; \ |
| vst2_u8(ptr, out); \ |
| } |
| |
| #define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \ |
| { \ |
| float32x4x4_t tmp = vld4q_f32(ptr); \ |
| o0 = tmp.val[0]; \ |
| o1 = tmp.val[1]; \ |
| o2 = tmp.val[2]; \ |
| o3 = tmp.val[3]; \ |
| } |
| |
| #define stbir__simdi_32shr( out, reg, imm ) out = vshrq_n_u32( reg, imm ) |
| |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| #define STBIR__SIMDF_CONST(var, x) __declspec(align(8)) float var[] = { x, x, x, x } |
| #define STBIR__SIMDI_CONST(var, x) __declspec(align(8)) uint32_t var[] = { x, x, x, x } |
| #define STBIR__CONSTF(var) (*(const float32x4_t*)var) |
| #define STBIR__CONSTI(var) (*(const uint32x4_t*)var) |
| #else |
| #define STBIR__SIMDF_CONST(var, x) stbir__simdf var = { x, x, x, x } |
| #define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { x, x, x, x } |
| #define STBIR__CONSTF(var) (var) |
| #define STBIR__CONSTI(var) (var) |
| #endif |
| |
| #ifdef STBIR_FLOORF |
| #undef STBIR_FLOORF |
| #endif |
| #define STBIR_FLOORF stbir_simd_floorf |
| static stbir__inline float stbir_simd_floorf(float x) |
| { |
| #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) |
| return vget_lane_f32( vrndm_f32( vdup_n_f32(x) ), 0); |
| #else |
| float32x2_t f = vdup_n_f32(x); |
| float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f)); |
| uint32x2_t a = vclt_f32(f, t); |
| uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(-1.0f)); |
| float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b))); |
| return vget_lane_f32(r, 0); |
| #endif |
| } |
| |
| #ifdef STBIR_CEILF |
| #undef STBIR_CEILF |
| #endif |
| #define STBIR_CEILF stbir_simd_ceilf |
| static stbir__inline float stbir_simd_ceilf(float x) |
| { |
| #if defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) |
| return vget_lane_f32( vrndp_f32( vdup_n_f32(x) ), 0); |
| #else |
| float32x2_t f = vdup_n_f32(x); |
| float32x2_t t = vcvt_f32_s32(vcvt_s32_f32(f)); |
| uint32x2_t a = vclt_f32(t, f); |
| uint32x2_t b = vreinterpret_u32_f32(vdup_n_f32(1.0f)); |
| float32x2_t r = vadd_f32(t, vreinterpret_f32_u32(vand_u32(a, b))); |
| return vget_lane_f32(r, 0); |
| #endif |
| } |
| |
| #define STBIR_SIMD |
| |
| #elif defined(STBIR_WASM) |
| |
| #include <wasm_simd128.h> |
| |
| #define stbir__simdf v128_t |
| #define stbir__simdi v128_t |
| |
| #define stbir_simdi_castf( reg ) (reg) |
| #define stbir_simdf_casti( reg ) (reg) |
| |
| #define stbir__simdf_load( reg, ptr ) (reg) = wasm_v128_load( (void const*)(ptr) ) |
| #define stbir__simdi_load( reg, ptr ) (reg) = wasm_v128_load( (void const*)(ptr) ) |
| #define stbir__simdf_load1( out, ptr ) (out) = wasm_v128_load32_splat( (void const*)(ptr) ) // top values can be random (not denormal or nan for perf) |
| #define stbir__simdi_load1( out, ptr ) (out) = wasm_v128_load32_splat( (void const*)(ptr) ) |
| #define stbir__simdf_load1z( out, ptr ) (out) = wasm_v128_load32_zero( (void const*)(ptr) ) // top values must be zero |
| #define stbir__simdf_frep4( fvar ) wasm_f32x4_splat( fvar ) |
| #define stbir__simdf_load1frep4( out, fvar ) (out) = wasm_f32x4_splat( fvar ) |
| #define stbir__simdf_load2( out, ptr ) (out) = wasm_v128_load64_splat( (void const*)(ptr) ) // top values can be random (not denormal or nan for perf) |
| #define stbir__simdf_load2z( out, ptr ) (out) = wasm_v128_load64_zero( (void const*)(ptr) ) // top values must be zero |
| #define stbir__simdf_load2hmerge( out, reg, ptr ) (out) = wasm_v128_load64_lane( (void const*)(ptr), reg, 1 ) |
| |
| #define stbir__simdf_zeroP() wasm_f32x4_const_splat(0) |
| #define stbir__simdf_zero( reg ) (reg) = wasm_f32x4_const_splat(0) |
| |
| #define stbir__simdf_store( ptr, reg ) wasm_v128_store( (void*)(ptr), reg ) |
| #define stbir__simdf_store1( ptr, reg ) wasm_v128_store32_lane( (void*)(ptr), reg, 0 ) |
| #define stbir__simdf_store2( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 0 ) |
| #define stbir__simdf_store2h( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 1 ) |
| |
| #define stbir__simdi_store( ptr, reg ) wasm_v128_store( (void*)(ptr), reg ) |
| #define stbir__simdi_store1( ptr, reg ) wasm_v128_store32_lane( (void*)(ptr), reg, 0 ) |
| #define stbir__simdi_store2( ptr, reg ) wasm_v128_store64_lane( (void*)(ptr), reg, 0 ) |
| |
| #define stbir__prefetch( ptr ) |
| |
| #define stbir__simdi_expand_u8_to_u32(out0,out1,out2,out3,ireg) \ |
| { \ |
| v128_t l = wasm_u16x8_extend_low_u8x16 ( ireg ); \ |
| v128_t h = wasm_u16x8_extend_high_u8x16( ireg ); \ |
| out0 = wasm_u32x4_extend_low_u16x8 ( l ); \ |
| out1 = wasm_u32x4_extend_high_u16x8( l ); \ |
| out2 = wasm_u32x4_extend_low_u16x8 ( h ); \ |
| out3 = wasm_u32x4_extend_high_u16x8( h ); \ |
| } |
| |
| #define stbir__simdi_expand_u8_to_1u32(out,ireg) \ |
| { \ |
| v128_t tmp = wasm_u16x8_extend_low_u8x16(ireg); \ |
| out = wasm_u32x4_extend_low_u16x8(tmp); \ |
| } |
| |
| #define stbir__simdi_expand_u16_to_u32(out0,out1,ireg) \ |
| { \ |
| out0 = wasm_u32x4_extend_low_u16x8 ( ireg ); \ |
| out1 = wasm_u32x4_extend_high_u16x8( ireg ); \ |
| } |
| |
| #define stbir__simdf_convert_float_to_i32( i, f ) (i) = wasm_i32x4_trunc_sat_f32x4(f) |
| #define stbir__simdf_convert_float_to_int( f ) wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(f), 0) |
| #define stbir__simdi_to_int( i ) wasm_i32x4_extract_lane(i, 0) |
| #define stbir__simdf_convert_float_to_uint8( f ) ((unsigned char)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f,STBIR_max_uint8_as_float),wasm_f32x4_const_splat(0))), 0)) |
| #define stbir__simdf_convert_float_to_short( f ) ((unsigned short)wasm_i32x4_extract_lane(wasm_i32x4_trunc_sat_f32x4(wasm_f32x4_max(wasm_f32x4_min(f,STBIR_max_uint16_as_float),wasm_f32x4_const_splat(0))), 0)) |
| #define stbir__simdi_convert_i32_to_float(out, ireg) (out) = wasm_f32x4_convert_i32x4(ireg) |
| #define stbir__simdf_add( out, reg0, reg1 ) (out) = wasm_f32x4_add( reg0, reg1 ) |
| #define stbir__simdf_mult( out, reg0, reg1 ) (out) = wasm_f32x4_mul( reg0, reg1 ) |
| #define stbir__simdf_mult_mem( out, reg, ptr ) (out) = wasm_f32x4_mul( reg, wasm_v128_load( (void const*)(ptr) ) ) |
| #define stbir__simdf_mult1_mem( out, reg, ptr ) (out) = wasm_f32x4_mul( reg, wasm_v128_load32_splat( (void const*)(ptr) ) ) |
| #define stbir__simdf_add_mem( out, reg, ptr ) (out) = wasm_f32x4_add( reg, wasm_v128_load( (void const*)(ptr) ) ) |
| #define stbir__simdf_add1_mem( out, reg, ptr ) (out) = wasm_f32x4_add( reg, wasm_v128_load32_splat( (void const*)(ptr) ) ) |
| |
| #define stbir__simdf_madd( out, add, mul1, mul2 ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul1, mul2 ) ) |
| #define stbir__simdf_madd1( out, add, mul1, mul2 ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul1, mul2 ) ) |
| #define stbir__simdf_madd_mem( out, add, mul, ptr ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul, wasm_v128_load( (void const*)(ptr) ) ) ) |
| #define stbir__simdf_madd1_mem( out, add, mul, ptr ) (out) = wasm_f32x4_add( add, wasm_f32x4_mul( mul, wasm_v128_load32_splat( (void const*)(ptr) ) ) ) |
| |
| #define stbir__simdf_add1( out, reg0, reg1 ) (out) = wasm_f32x4_add( reg0, reg1 ) |
| #define stbir__simdf_mult1( out, reg0, reg1 ) (out) = wasm_f32x4_mul( reg0, reg1 ) |
| |
| #define stbir__simdf_and( out, reg0, reg1 ) (out) = wasm_v128_and( reg0, reg1 ) |
| #define stbir__simdf_or( out, reg0, reg1 ) (out) = wasm_v128_or( reg0, reg1 ) |
| |
| #define stbir__simdf_min( out, reg0, reg1 ) (out) = wasm_f32x4_min( reg0, reg1 ) |
| #define stbir__simdf_max( out, reg0, reg1 ) (out) = wasm_f32x4_max( reg0, reg1 ) |
| #define stbir__simdf_min1( out, reg0, reg1 ) (out) = wasm_f32x4_min( reg0, reg1 ) |
| #define stbir__simdf_max1( out, reg0, reg1 ) (out) = wasm_f32x4_max( reg0, reg1 ) |
| |
| #define stbir__simdf_0123ABCDto3ABx( out, reg0, reg1 ) (out) = wasm_i32x4_shuffle( reg0, reg1, 3, 4, 5, -1 ) |
| #define stbir__simdf_0123ABCDto23Ax( out, reg0, reg1 ) (out) = wasm_i32x4_shuffle( reg0, reg1, 2, 3, 4, -1 ) |
| |
| #define stbir__simdf_aaa1(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 3, 3, 3, 4) |
| #define stbir__simdf_1aaa(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 0, 0) |
| #define stbir__simdf_a1a1(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 1, 4, 3, 4) |
| #define stbir__simdf_1a1a(out,alp,ones) (out) = wasm_i32x4_shuffle(alp, ones, 4, 0, 4, 2) |
| |
| #define stbir__simdf_swiz( reg, one, two, three, four ) wasm_i32x4_shuffle(reg, reg, one, two, three, four) |
| |
| #define stbir__simdi_and( out, reg0, reg1 ) (out) = wasm_v128_and( reg0, reg1 ) |
| #define stbir__simdi_or( out, reg0, reg1 ) (out) = wasm_v128_or( reg0, reg1 ) |
| #define stbir__simdi_16madd( out, reg0, reg1 ) (out) = wasm_i32x4_dot_i16x8( reg0, reg1 ) |
| |
| #define stbir__simdf_pack_to_8bytes(out,aa,bb) \ |
| { \ |
| v128_t af = wasm_f32x4_max( wasm_f32x4_min(aa, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0) ); \ |
| v128_t bf = wasm_f32x4_max( wasm_f32x4_min(bb, STBIR_max_uint8_as_float), wasm_f32x4_const_splat(0) ); \ |
| v128_t ai = wasm_i32x4_trunc_sat_f32x4( af ); \ |
| v128_t bi = wasm_i32x4_trunc_sat_f32x4( bf ); \ |
| v128_t out16 = wasm_i16x8_narrow_i32x4( ai, bi ); \ |
| out = wasm_u8x16_narrow_i16x8( out16, out16 ); \ |
| } |
| |
| #define stbir__simdf_pack_to_8words(out,aa,bb) \ |
| { \ |
| v128_t af = wasm_f32x4_max( wasm_f32x4_min(aa, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \ |
| v128_t bf = wasm_f32x4_max( wasm_f32x4_min(bb, STBIR_max_uint16_as_float), wasm_f32x4_const_splat(0)); \ |
| v128_t ai = wasm_i32x4_trunc_sat_f32x4( af ); \ |
| v128_t bi = wasm_i32x4_trunc_sat_f32x4( bf ); \ |
| out = wasm_u16x8_narrow_i32x4( ai, bi ); \ |
| } |
| |
| #define stbir__interleave_pack_and_store_16_u8( ptr, r0, r1, r2, r3 ) \ |
| { \ |
| v128_t tmp0 = wasm_i16x8_narrow_i32x4(r0, r1); \ |
| v128_t tmp1 = wasm_i16x8_narrow_i32x4(r2, r3); \ |
| v128_t tmp = wasm_u8x16_narrow_i16x8(tmp0, tmp1); \ |
| tmp = wasm_i8x16_shuffle(tmp, tmp, 0, 4, 8, 12, 1, 5, 9, 13, 2, 6, 10, 14, 3, 7, 11, 15); \ |
| wasm_v128_store( (void*)(ptr), tmp); \ |
| } |
| |
| #define stbir__simdf_load4_transposed( o0, o1, o2, o3, ptr ) \ |
| { \ |
| v128_t t0 = wasm_v128_load( ptr ); \ |
| v128_t t1 = wasm_v128_load( ptr+4 ); \ |
| v128_t t2 = wasm_v128_load( ptr+8 ); \ |
| v128_t t3 = wasm_v128_load( ptr+12 ); \ |
| v128_t s0 = wasm_i32x4_shuffle(t0, t1, 0, 4, 2, 6); \ |
| v128_t s1 = wasm_i32x4_shuffle(t0, t1, 1, 5, 3, 7); \ |
| v128_t s2 = wasm_i32x4_shuffle(t2, t3, 0, 4, 2, 6); \ |
| v128_t s3 = wasm_i32x4_shuffle(t2, t3, 1, 5, 3, 7); \ |
| o0 = wasm_i32x4_shuffle(s0, s2, 0, 1, 4, 5); \ |
| o1 = wasm_i32x4_shuffle(s1, s3, 0, 1, 4, 5); \ |
| o2 = wasm_i32x4_shuffle(s0, s2, 2, 3, 6, 7); \ |
| o3 = wasm_i32x4_shuffle(s1, s3, 2, 3, 6, 7); \ |
| } |
| |
| #define stbir__simdi_32shr( out, reg, imm ) out = wasm_u32x4_shr( reg, imm ) |
| |
| typedef float stbir__f32x4 __attribute__((__vector_size__(16), __aligned__(16))); |
| #define STBIR__SIMDF_CONST(var, x) stbir__simdf var = (v128_t)(stbir__f32x4){ x, x, x, x } |
| #define STBIR__SIMDI_CONST(var, x) stbir__simdi var = { x, x, x, x } |
| #define STBIR__CONSTF(var) (var) |
| #define STBIR__CONSTI(var) (var) |
| |
| #ifdef STBIR_FLOORF |
| #undef STBIR_FLOORF |
| #endif |
| #define STBIR_FLOORF stbir_simd_floorf |
| static stbir__inline float stbir_simd_floorf(float x) |
| { |
| return wasm_f32x4_extract_lane( wasm_f32x4_floor( wasm_f32x4_splat(x) ), 0); |
| } |
| |
| #ifdef STBIR_CEILF |
| #undef STBIR_CEILF |
| #endif |
| #define STBIR_CEILF stbir_simd_ceilf |
| static stbir__inline float stbir_simd_ceilf(float x) |
| { |
| return wasm_f32x4_extract_lane( wasm_f32x4_ceil( wasm_f32x4_splat(x) ), 0); |
| } |
| |
| #define STBIR_SIMD |
| |
| #endif // SSE2/NEON/WASM |
| |
| #endif // NO SIMD |
| |
| #ifdef STBIR_SIMD8 |
| #define stbir__simdfX stbir__simdf8 |
| #define stbir__simdiX stbir__simdi8 |
| #define stbir__simdfX_load stbir__simdf8_load |
| #define stbir__simdiX_load stbir__simdi8_load |
| #define stbir__simdfX_mult stbir__simdf8_mult |
| #define stbir__simdfX_add_mem stbir__simdf8_add_mem |
| #define stbir__simdfX_madd_mem stbir__simdf8_madd_mem |
| #define stbir__simdfX_store stbir__simdf8_store |
| #define stbir__simdiX_store stbir__simdi8_store |
| #define stbir__simdf_frepX stbir__simdf8_frep8 |
| #define stbir__simdfX_madd stbir__simdf8_madd |
| #define stbir__simdfX_min stbir__simdf8_min |
| #define stbir__simdfX_max stbir__simdf8_max |
| #define stbir__simdfX_aaa1 stbir__simdf8_aaa1 |
| #define stbir__simdfX_1aaa stbir__simdf8_1aaa |
| #define stbir__simdfX_a1a1 stbir__simdf8_a1a1 |
| #define stbir__simdfX_1a1a stbir__simdf8_1a1a |
| #define stbir__simdfX_convert_float_to_i32 stbir__simdf8_convert_float_to_i32 |
| #define stbir__simdfX_pack_to_words stbir__simdf8_pack_to_16words |
| #define stbir__simdfX_zero stbir__simdf8_zero |
| #define STBIR_onesX STBIR_ones8 |
| #define STBIR_max_uint8_as_floatX STBIR_max_uint8_as_float8 |
| #define STBIR_max_uint16_as_floatX STBIR_max_uint16_as_float8 |
| #define STBIR_simd_point5X STBIR_simd_point58 |
| #define stbir__simdfX_float_count 8 |
| #define stbir__simdfX_0123to1230 stbir__simdf8_0123to12301230 |
| #define stbir__simdfX_0123to2103 stbir__simdf8_0123to21032103 |
| static const stbir__simdf8 STBIR_max_uint16_as_float_inverted8 = { stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted,stbir__max_uint16_as_float_inverted }; |
| static const stbir__simdf8 STBIR_max_uint8_as_float_inverted8 = { stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted,stbir__max_uint8_as_float_inverted }; |
| static const stbir__simdf8 STBIR_ones8 = { 1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0 }; |
| static const stbir__simdf8 STBIR_simd_point58 = { 0.5,0.5,0.5,0.5,0.5,0.5,0.5,0.5 }; |
| static const stbir__simdf8 STBIR_max_uint8_as_float8 = { stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float, stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float,stbir__max_uint8_as_float }; |
| static const stbir__simdf8 STBIR_max_uint16_as_float8 = { stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float, stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float,stbir__max_uint16_as_float }; |
| #else |
| #define stbir__simdfX stbir__simdf |
| #define stbir__simdiX stbir__simdi |
| #define stbir__simdfX_load stbir__simdf_load |
| #define stbir__simdiX_load stbir__simdi_load |
| #define stbir__simdfX_mult stbir__simdf_mult |
| #define stbir__simdfX_add_mem stbir__simdf_add_mem |
| #define stbir__simdfX_madd_mem stbir__simdf_madd_mem |
| #define stbir__simdfX_store stbir__simdf_store |
| #define stbir__simdiX_store stbir__simdi_store |
| #define stbir__simdf_frepX stbir__simdf_frep4 |
| #define stbir__simdfX_madd stbir__simdf_madd |
| #define stbir__simdfX_min stbir__simdf_min |
| #define stbir__simdfX_max stbir__simdf_max |
| #define stbir__simdfX_aaa1 stbir__simdf_aaa1 |
| #define stbir__simdfX_1aaa stbir__simdf_1aaa |
| #define stbir__simdfX_a1a1 stbir__simdf_a1a1 |
| #define stbir__simdfX_1a1a stbir__simdf_1a1a |
| #define stbir__simdfX_convert_float_to_i32 stbir__simdf_convert_float_to_i32 |
| #define stbir__simdfX_pack_to_words stbir__simdf_pack_to_8words |
| #define stbir__simdfX_zero stbir__simdf_zero |
| #define STBIR_onesX STBIR__CONSTF(STBIR_ones) |
| #define STBIR_simd_point5X STBIR__CONSTF(STBIR_simd_point5) |
| #define STBIR_max_uint8_as_floatX STBIR__CONSTF(STBIR_max_uint8_as_float) |
| #define STBIR_max_uint16_as_floatX STBIR__CONSTF(STBIR_max_uint16_as_float) |
| #define stbir__simdfX_float_count 4 |
| #define stbir__if_simdf8_cast_to_simdf4( val ) ( val ) |
| #define stbir__simdfX_0123to1230 stbir__simdf_0123to1230 |
| #define stbir__simdfX_0123to2103 stbir__simdf_0123to2103 |
| #endif |
| |
| |
| #if defined(STBIR_NEON) && !defined(_M_ARM) && !defined(__arm__) |
| |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| typedef __int16 stbir__FP16; |
| #else |
| typedef float16_t stbir__FP16; |
| #endif |
| |
| #else // no NEON, or 32-bit ARM for MSVC |
| |
| typedef union stbir__FP16 |
| { |
| unsigned short u; |
| } stbir__FP16; |
| |
| #endif |
| |
| #if (!defined(STBIR_NEON) && !defined(STBIR_FP16C)) || (defined(STBIR_NEON) && defined(_M_ARM)) || (defined(STBIR_NEON) && defined(__arm__)) |
| |
| // Fabian's half float routines, see: https://gist.github.com/rygorous/2156668 |
| |
| static stbir__inline float stbir__half_to_float( stbir__FP16 h ) |
| { |
| static const stbir__FP32 magic = { (254 - 15) << 23 }; |
| static const stbir__FP32 was_infnan = { (127 + 16) << 23 }; |
| stbir__FP32 o; |
| |
| o.u = (h.u & 0x7fff) << 13; // exponent/mantissa bits |
| o.f *= magic.f; // exponent adjust |
| if (o.f >= was_infnan.f) // make sure Inf/NaN survive |
| o.u |= 255 << 23; |
| o.u |= (h.u & 0x8000) << 16; // sign bit |
| return o.f; |
| } |
| |
| static stbir__inline stbir__FP16 stbir__float_to_half(float val) |
| { |
| stbir__FP32 f32infty = { 255 << 23 }; |
| stbir__FP32 f16max = { (127 + 16) << 23 }; |
| stbir__FP32 denorm_magic = { ((127 - 15) + (23 - 10) + 1) << 23 }; |
| unsigned int sign_mask = 0x80000000u; |
| stbir__FP16 o = { 0 }; |
| stbir__FP32 f; |
| unsigned int sign; |
| |
| f.f = val; |
| sign = f.u & sign_mask; |
| f.u ^= sign; |
| |
| if (f.u >= f16max.u) // result is Inf or NaN (all exponent bits set) |
| o.u = (f.u > f32infty.u) ? 0x7e00 : 0x7c00; // NaN->qNaN and Inf->Inf |
| else // (De)normalized number or zero |
| { |
| if (f.u < (113 << 23)) // resulting FP16 is subnormal or zero |
| { |
| // use a magic value to align our 10 mantissa bits at the bottom of |
| // the float. as long as FP addition is round-to-nearest-even this |
| // just works. |
| f.f += denorm_magic.f; |
| // and one integer subtract of the bias later, we have our final float! |
| o.u = (unsigned short) ( f.u - denorm_magic.u ); |
| } |
| else |
| { |
| unsigned int mant_odd = (f.u >> 13) & 1; // resulting mantissa is odd |
| // update exponent, rounding bias part 1 |
| f.u = f.u + ((15u - 127) << 23) + 0xfff; |
| // rounding bias part 2 |
| f.u += mant_odd; |
| // take the bits! |
| o.u = (unsigned short) ( f.u >> 13 ); |
| } |
| } |
| |
| o.u |= sign >> 16; |
| return o; |
| } |
| |
| #endif |
| |
| |
| #if defined(STBIR_FP16C) |
| |
| #include <immintrin.h> |
| |
| static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) |
| { |
| _mm256_storeu_ps( (float*)output, _mm256_cvtph_ps( _mm_loadu_si128( (__m128i const* )input ) ) ); |
| } |
| |
| static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) |
| { |
| _mm_storeu_si128( (__m128i*)output, _mm256_cvtps_ph( _mm256_loadu_ps( input ), 0 ) ); |
| } |
| |
| static stbir__inline float stbir__half_to_float( stbir__FP16 h ) |
| { |
| return _mm_cvtss_f32( _mm_cvtph_ps( _mm_cvtsi32_si128( (int)h.u ) ) ); |
| } |
| |
| static stbir__inline stbir__FP16 stbir__float_to_half( float f ) |
| { |
| stbir__FP16 h; |
| h.u = (unsigned short) _mm_cvtsi128_si32( _mm_cvtps_ph( _mm_set_ss( f ), 0 ) ); |
| return h; |
| } |
| |
| #elif defined(STBIR_SSE2) |
| |
| // Fabian's half float routines, see: https://gist.github.com/rygorous/2156668 |
| stbir__inline static void stbir__half_to_float_SIMD(float * output, void const * input) |
| { |
| static const STBIR__SIMDI_CONST(mask_nosign, 0x7fff); |
| static const STBIR__SIMDI_CONST(smallest_normal, 0x0400); |
| static const STBIR__SIMDI_CONST(infinity, 0x7c00); |
| static const STBIR__SIMDI_CONST(expadjust_normal, (127 - 15) << 23); |
| static const STBIR__SIMDI_CONST(magic_denorm, 113 << 23); |
| |
| __m128i i = _mm_loadu_si128 ( (__m128i const*)(input) ); |
| __m128i h = _mm_unpacklo_epi16 ( i, _mm_setzero_si128() ); |
| __m128i mnosign = STBIR__CONSTI(mask_nosign); |
| __m128i eadjust = STBIR__CONSTI(expadjust_normal); |
| __m128i smallest = STBIR__CONSTI(smallest_normal); |
| __m128i infty = STBIR__CONSTI(infinity); |
| __m128i expmant = _mm_and_si128(mnosign, h); |
| __m128i justsign = _mm_xor_si128(h, expmant); |
| __m128i b_notinfnan = _mm_cmpgt_epi32(infty, expmant); |
| __m128i b_isdenorm = _mm_cmpgt_epi32(smallest, expmant); |
| __m128i shifted = _mm_slli_epi32(expmant, 13); |
| __m128i adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust); |
| __m128i adjusted = _mm_add_epi32(eadjust, shifted); |
| __m128i den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm)); |
| __m128i adjusted2 = _mm_add_epi32(adjusted, adj_infnan); |
| __m128 den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm); |
| __m128 adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm)); |
| __m128 adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2)); |
| __m128 adjusted5 = _mm_or_ps(adjusted3, adjusted4); |
| __m128i sign = _mm_slli_epi32(justsign, 16); |
| __m128 final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign)); |
| stbir__simdf_store( output + 0, final ); |
| |
| h = _mm_unpackhi_epi16 ( i, _mm_setzero_si128() ); |
| expmant = _mm_and_si128(mnosign, h); |
| justsign = _mm_xor_si128(h, expmant); |
| b_notinfnan = _mm_cmpgt_epi32(infty, expmant); |
| b_isdenorm = _mm_cmpgt_epi32(smallest, expmant); |
| shifted = _mm_slli_epi32(expmant, 13); |
| adj_infnan = _mm_andnot_si128(b_notinfnan, eadjust); |
| adjusted = _mm_add_epi32(eadjust, shifted); |
| den1 = _mm_add_epi32(shifted, STBIR__CONSTI(magic_denorm)); |
| adjusted2 = _mm_add_epi32(adjusted, adj_infnan); |
| den2 = _mm_sub_ps(_mm_castsi128_ps(den1), *(const __m128 *)&magic_denorm); |
| adjusted3 = _mm_and_ps(den2, _mm_castsi128_ps(b_isdenorm)); |
| adjusted4 = _mm_andnot_ps(_mm_castsi128_ps(b_isdenorm), _mm_castsi128_ps(adjusted2)); |
| adjusted5 = _mm_or_ps(adjusted3, adjusted4); |
| sign = _mm_slli_epi32(justsign, 16); |
| final = _mm_or_ps(adjusted5, _mm_castsi128_ps(sign)); |
| stbir__simdf_store( output + 4, final ); |
| |
| // ~38 SSE2 ops for 8 values |
| } |
| |
| // Fabian's round-to-nearest-even float to half |
| // ~48 SSE2 ops for 8 output |
| stbir__inline static void stbir__float_to_half_SIMD(void * output, float const * input) |
| { |
| static const STBIR__SIMDI_CONST(mask_sign, 0x80000000u); |
| static const STBIR__SIMDI_CONST(c_f16max, (127 + 16) << 23); // all FP32 values >=this round to +inf |
| static const STBIR__SIMDI_CONST(c_nanbit, 0x200); |
| static const STBIR__SIMDI_CONST(c_infty_as_fp16, 0x7c00); |
| static const STBIR__SIMDI_CONST(c_min_normal, (127 - 14) << 23); // smallest FP32 that yields a normalized FP16 |
| static const STBIR__SIMDI_CONST(c_subnorm_magic, ((127 - 15) + (23 - 10) + 1) << 23); |
| static const STBIR__SIMDI_CONST(c_normal_bias, 0xfff - ((127 - 15) << 23)); // adjust exponent and add mantissa rounding |
| |
| __m128 f = _mm_loadu_ps(input); |
| __m128 msign = _mm_castsi128_ps(STBIR__CONSTI(mask_sign)); |
| __m128 justsign = _mm_and_ps(msign, f); |
| __m128 absf = _mm_xor_ps(f, justsign); |
| __m128i absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit) |
| __m128i f16max = STBIR__CONSTI(c_f16max); |
| __m128 b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN? |
| __m128i b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special? |
| __m128i nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), STBIR__CONSTI(c_nanbit)); |
| __m128i inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials |
| |
| __m128i min_normal = STBIR__CONSTI(c_min_normal); |
| __m128i b_issub = _mm_cmpgt_epi32(min_normal, absf_int); |
| |
| // "result is subnormal" path |
| __m128 subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa |
| __m128i subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias |
| |
| // "result is normal" path |
| __m128i mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign |
| __m128i mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0 |
| |
| __m128i round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias)); |
| __m128i round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE) |
| __m128i normal = _mm_srli_epi32(round2, 13); // rounded result |
| |
| // combine the two non-specials |
| __m128i nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal)); |
| |
| // merge in specials as well |
| __m128i joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan)); |
| |
| __m128i sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16); |
| __m128i final2, final= _mm_or_si128(joined, sign_shift); |
| |
| f = _mm_loadu_ps(input+4); |
| justsign = _mm_and_ps(msign, f); |
| absf = _mm_xor_ps(f, justsign); |
| absf_int = _mm_castps_si128(absf); // the cast is "free" (extra bypass latency, but no thruput hit) |
| b_isnan = _mm_cmpunord_ps(absf, absf); // is this a NaN? |
| b_isregular = _mm_cmpgt_epi32(f16max, absf_int); // (sub)normalized or special? |
| nanbit = _mm_and_si128(_mm_castps_si128(b_isnan), c_nanbit); |
| inf_or_nan = _mm_or_si128(nanbit, STBIR__CONSTI(c_infty_as_fp16)); // output for specials |
| |
| b_issub = _mm_cmpgt_epi32(min_normal, absf_int); |
| |
| // "result is subnormal" path |
| subnorm1 = _mm_add_ps(absf, _mm_castsi128_ps(STBIR__CONSTI(c_subnorm_magic))); // magic value to round output mantissa |
| subnorm2 = _mm_sub_epi32(_mm_castps_si128(subnorm1), STBIR__CONSTI(c_subnorm_magic)); // subtract out bias |
| |
| // "result is normal" path |
| mantoddbit = _mm_slli_epi32(absf_int, 31 - 13); // shift bit 13 (mantissa LSB) to sign |
| mantodd = _mm_srai_epi32(mantoddbit, 31); // -1 if FP16 mantissa odd, else 0 |
| |
| round1 = _mm_add_epi32(absf_int, STBIR__CONSTI(c_normal_bias)); |
| round2 = _mm_sub_epi32(round1, mantodd); // if mantissa LSB odd, bias towards rounding up (RTNE) |
| normal = _mm_srli_epi32(round2, 13); // rounded result |
| |
| // combine the two non-specials |
| nonspecial = _mm_or_si128(_mm_and_si128(subnorm2, b_issub), _mm_andnot_si128(b_issub, normal)); |
| |
| // merge in specials as well |
| joined = _mm_or_si128(_mm_and_si128(nonspecial, b_isregular), _mm_andnot_si128(b_isregular, inf_or_nan)); |
| |
| sign_shift = _mm_srai_epi32(_mm_castps_si128(justsign), 16); |
| final2 = _mm_or_si128(joined, sign_shift); |
| final = _mm_packs_epi32(final, final2); |
| stbir__simdi_store( output,final ); |
| } |
| |
| #elif defined(STBIR_NEON) && defined(_MSC_VER) && defined(_M_ARM64) && !defined(__clang__) // 64-bit ARM on MSVC (not clang) |
| |
| static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) |
| { |
| float16x4_t in0 = vld1_f16(input + 0); |
| float16x4_t in1 = vld1_f16(input + 4); |
| vst1q_f32(output + 0, vcvt_f32_f16(in0)); |
| vst1q_f32(output + 4, vcvt_f32_f16(in1)); |
| } |
| |
| static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) |
| { |
| float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0)); |
| float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4)); |
| vst1_f16(output+0, out0); |
| vst1_f16(output+4, out1); |
| } |
| |
| static stbir__inline float stbir__half_to_float( stbir__FP16 h ) |
| { |
| return vgetq_lane_f32(vcvt_f32_f16(vld1_dup_f16(&h)), 0); |
| } |
| |
| static stbir__inline stbir__FP16 stbir__float_to_half( float f ) |
| { |
| return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0).n16_u16[0]; |
| } |
| |
| #elif defined(STBIR_NEON) && ( defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) ) // 64-bit ARM |
| |
| static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) |
| { |
| float16x8_t in = vld1q_f16(input); |
| vst1q_f32(output + 0, vcvt_f32_f16(vget_low_f16(in))); |
| vst1q_f32(output + 4, vcvt_f32_f16(vget_high_f16(in))); |
| } |
| |
| static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) |
| { |
| float16x4_t out0 = vcvt_f16_f32(vld1q_f32(input + 0)); |
| float16x4_t out1 = vcvt_f16_f32(vld1q_f32(input + 4)); |
| vst1q_f16(output, vcombine_f16(out0, out1)); |
| } |
| |
| static stbir__inline float stbir__half_to_float( stbir__FP16 h ) |
| { |
| return vgetq_lane_f32(vcvt_f32_f16(vdup_n_f16(h)), 0); |
| } |
| |
| static stbir__inline stbir__FP16 stbir__float_to_half( float f ) |
| { |
| return vget_lane_f16(vcvt_f16_f32(vdupq_n_f32(f)), 0); |
| } |
| |
| #elif defined(STBIR_WASM) || (defined(STBIR_NEON) && (defined(_MSC_VER) || defined(_M_ARM) || defined(__arm__))) // WASM or 32-bit ARM on MSVC/clang |
| |
| static stbir__inline void stbir__half_to_float_SIMD(float * output, stbir__FP16 const * input) |
| { |
| for (int i=0; i<8; i++) |
| { |
| output[i] = stbir__half_to_float(input[i]); |
| } |
| } |
| static stbir__inline void stbir__float_to_half_SIMD(stbir__FP16 * output, float const * input) |
| { |
| for (int i=0; i<8; i++) |
| { |
| output[i] = stbir__float_to_half(input[i]); |
| } |
| } |
| |
| #endif |
| |
| |
| #ifdef STBIR_SIMD |
| |
| #define stbir__simdf_0123to3333( out, reg ) (out) = stbir__simdf_swiz( reg, 3,3,3,3 ) |
| #define stbir__simdf_0123to2222( out, reg ) (out) = stbir__simdf_swiz( reg, 2,2,2,2 ) |
| #define stbir__simdf_0123to1111( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,1,1 ) |
| #define stbir__simdf_0123to0000( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,0 ) |
| #define stbir__simdf_0123to0003( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,3 ) |
| #define stbir__simdf_0123to0001( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,0,1 ) |
| #define stbir__simdf_0123to1122( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,2,2 ) |
| #define stbir__simdf_0123to2333( out, reg ) (out) = stbir__simdf_swiz( reg, 2,3,3,3 ) |
| #define stbir__simdf_0123to0023( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,2,3 ) |
| #define stbir__simdf_0123to1230( out, reg ) (out) = stbir__simdf_swiz( reg, 1,2,3,0 ) |
| #define stbir__simdf_0123to2103( out, reg ) (out) = stbir__simdf_swiz( reg, 2,1,0,3 ) |
| #define stbir__simdf_0123to3210( out, reg ) (out) = stbir__simdf_swiz( reg, 3,2,1,0 ) |
| #define stbir__simdf_0123to2301( out, reg ) (out) = stbir__simdf_swiz( reg, 2,3,0,1 ) |
| #define stbir__simdf_0123to3012( out, reg ) (out) = stbir__simdf_swiz( reg, 3,0,1,2 ) |
| #define stbir__simdf_0123to0011( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,1,1 ) |
| #define stbir__simdf_0123to1100( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,0,0 ) |
| #define stbir__simdf_0123to2233( out, reg ) (out) = stbir__simdf_swiz( reg, 2,2,3,3 ) |
| #define stbir__simdf_0123to1133( out, reg ) (out) = stbir__simdf_swiz( reg, 1,1,3,3 ) |
| #define stbir__simdf_0123to0022( out, reg ) (out) = stbir__simdf_swiz( reg, 0,0,2,2 ) |
| #define stbir__simdf_0123to1032( out, reg ) (out) = stbir__simdf_swiz( reg, 1,0,3,2 ) |
| |
| typedef union stbir__simdi_u32 |
| { |
| stbir_uint32 m128i_u32[4]; |
| int m128i_i32[4]; |
| stbir__simdi m128i_i128; |
| } stbir__simdi_u32; |
| |
| static const int STBIR_mask[9] = { 0,0,0,-1,-1,-1,0,0,0 }; |
| |
| static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float, stbir__max_uint8_as_float); |
| static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float, stbir__max_uint16_as_float); |
| static const STBIR__SIMDF_CONST(STBIR_max_uint8_as_float_inverted, stbir__max_uint8_as_float_inverted); |
| static const STBIR__SIMDF_CONST(STBIR_max_uint16_as_float_inverted, stbir__max_uint16_as_float_inverted); |
| |
| static const STBIR__SIMDF_CONST(STBIR_simd_point5, 0.5f); |
| static const STBIR__SIMDF_CONST(STBIR_ones, 1.0f); |
| static const STBIR__SIMDI_CONST(STBIR_almost_zero, (127 - 13) << 23); |
| static const STBIR__SIMDI_CONST(STBIR_almost_one, 0x3f7fffff); |
| static const STBIR__SIMDI_CONST(STBIR_mastissa_mask, 0xff); |
| static const STBIR__SIMDI_CONST(STBIR_topscale, 0x02000000); |
| |
| // Basically, in simd mode, we unroll the proper amount, and we don't want |
| // the non-simd remnant loops to be unroll because they only run a few times |
| // Adding this switch saves about 5K on clang which is Captain Unroll the 3rd. |
| #define STBIR_SIMD_STREAMOUT_PTR( star ) STBIR_STREAMOUT_PTR( star ) |
| #define STBIR_SIMD_NO_UNROLL(ptr) STBIR_NO_UNROLL(ptr) |
| #define STBIR_SIMD_NO_UNROLL_LOOP_START STBIR_NO_UNROLL_LOOP_START |
| #define STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| |
| #ifdef STBIR_MEMCPY |
| #undef STBIR_MEMCPY |
| #endif |
| #define STBIR_MEMCPY stbir_simd_memcpy |
| |
| // override normal use of memcpy with much simpler copy (faster and smaller with our sized copies) |
| static void stbir_simd_memcpy( void * dest, void const * src, size_t bytes ) |
| { |
| char STBIR_SIMD_STREAMOUT_PTR (*) d = (char*) dest; |
| char STBIR_SIMD_STREAMOUT_PTR( * ) d_end = ((char*) dest) + bytes; |
| ptrdiff_t ofs_to_src = (char*)src - (char*)dest; |
| |
| // check overlaps |
| STBIR_ASSERT( ( ( d >= ( (char*)src) + bytes ) ) || ( ( d + bytes ) <= (char*)src ) ); |
| |
| if ( bytes < (16*stbir__simdfX_float_count) ) |
| { |
| if ( bytes < 16 ) |
| { |
| if ( bytes ) |
| { |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do |
| { |
| STBIR_SIMD_NO_UNROLL(d); |
| d[ 0 ] = d[ ofs_to_src ]; |
| ++d; |
| } while ( d < d_end ); |
| } |
| } |
| else |
| { |
| stbir__simdf x; |
| // do one unaligned to get us aligned for the stream out below |
| stbir__simdf_load( x, ( d + ofs_to_src ) ); |
| stbir__simdf_store( d, x ); |
| d = (char*)( ( ( (size_t)d ) + 16 ) & ~15 ); |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| STBIR_SIMD_NO_UNROLL(d); |
| |
| if ( d > ( d_end - 16 ) ) |
| { |
| if ( d == d_end ) |
| return; |
| d = d_end - 16; |
| } |
| |
| stbir__simdf_load( x, ( d + ofs_to_src ) ); |
| stbir__simdf_store( d, x ); |
| d += 16; |
| } |
| } |
| } |
| else |
| { |
| stbir__simdfX x0,x1,x2,x3; |
| |
| // do one unaligned to get us aligned for the stream out below |
| stbir__simdfX_load( x0, ( d + ofs_to_src ) + 0*stbir__simdfX_float_count ); |
| stbir__simdfX_load( x1, ( d + ofs_to_src ) + 4*stbir__simdfX_float_count ); |
| stbir__simdfX_load( x2, ( d + ofs_to_src ) + 8*stbir__simdfX_float_count ); |
| stbir__simdfX_load( x3, ( d + ofs_to_src ) + 12*stbir__simdfX_float_count ); |
| stbir__simdfX_store( d + 0*stbir__simdfX_float_count, x0 ); |
| stbir__simdfX_store( d + 4*stbir__simdfX_float_count, x1 ); |
| stbir__simdfX_store( d + 8*stbir__simdfX_float_count, x2 ); |
| stbir__simdfX_store( d + 12*stbir__simdfX_float_count, x3 ); |
| d = (char*)( ( ( (size_t)d ) + (16*stbir__simdfX_float_count) ) & ~((16*stbir__simdfX_float_count)-1) ); |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| STBIR_SIMD_NO_UNROLL(d); |
| |
| if ( d > ( d_end - (16*stbir__simdfX_float_count) ) ) |
| { |
| if ( d == d_end ) |
| return; |
| d = d_end - (16*stbir__simdfX_float_count); |
| } |
| |
| stbir__simdfX_load( x0, ( d + ofs_to_src ) + 0*stbir__simdfX_float_count ); |
| stbir__simdfX_load( x1, ( d + ofs_to_src ) + 4*stbir__simdfX_float_count ); |
| stbir__simdfX_load( x2, ( d + ofs_to_src ) + 8*stbir__simdfX_float_count ); |
| stbir__simdfX_load( x3, ( d + ofs_to_src ) + 12*stbir__simdfX_float_count ); |
| stbir__simdfX_store( d + 0*stbir__simdfX_float_count, x0 ); |
| stbir__simdfX_store( d + 4*stbir__simdfX_float_count, x1 ); |
| stbir__simdfX_store( d + 8*stbir__simdfX_float_count, x2 ); |
| stbir__simdfX_store( d + 12*stbir__simdfX_float_count, x3 ); |
| d += (16*stbir__simdfX_float_count); |
| } |
| } |
| } |
| |
| // memcpy that is specically intentionally overlapping (src is smaller then dest, so can be |
| // a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to |
| // the diff between dest and src) |
| static void stbir_overlapping_memcpy( void * dest, void const * src, size_t bytes ) |
| { |
| char STBIR_SIMD_STREAMOUT_PTR (*) sd = (char*) src; |
| char STBIR_SIMD_STREAMOUT_PTR( * ) s_end = ((char*) src) + bytes; |
| ptrdiff_t ofs_to_dest = (char*)dest - (char*)src; |
| |
| if ( ofs_to_dest >= 16 ) // is the overlap more than 16 away? |
| { |
| char STBIR_SIMD_STREAMOUT_PTR( * ) s_end16 = ((char*) src) + (bytes&~15); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do |
| { |
| stbir__simdf x; |
| STBIR_SIMD_NO_UNROLL(sd); |
| stbir__simdf_load( x, sd ); |
| stbir__simdf_store( ( sd + ofs_to_dest ), x ); |
| sd += 16; |
| } while ( sd < s_end16 ); |
| |
| if ( sd == s_end ) |
| return; |
| } |
| |
| do |
| { |
| STBIR_SIMD_NO_UNROLL(sd); |
| *(int*)( sd + ofs_to_dest ) = *(int*) sd; |
| sd += 4; |
| } while ( sd < s_end ); |
| } |
| |
| #else // no SSE2 |
| |
| // when in scalar mode, we let unrolling happen, so this macro just does the __restrict |
| #define STBIR_SIMD_STREAMOUT_PTR( star ) STBIR_STREAMOUT_PTR( star ) |
| #define STBIR_SIMD_NO_UNROLL(ptr) |
| #define STBIR_SIMD_NO_UNROLL_LOOP_START |
| #define STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| |
| #endif // SSE2 |
| |
| |
| #ifdef STBIR_PROFILE |
| |
| #ifndef STBIR_PROFILE_FUNC |
| |
| #if defined(_x86_64) || defined( __x86_64__ ) || defined( _M_X64 ) || defined(__x86_64) || defined(__SSE2__) || defined(STBIR_SSE) || defined( _M_IX86_FP ) || defined(__i386) || defined( __i386__ ) || defined( _M_IX86 ) || defined( _X86_ ) |
| |
| #ifdef _MSC_VER |
| |
| STBIRDEF stbir_uint64 __rdtsc(); |
| #define STBIR_PROFILE_FUNC() __rdtsc() |
| |
| #else // non msvc |
| |
| static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC() |
| { |
| stbir_uint32 lo, hi; |
| asm volatile ("rdtsc" : "=a" (lo), "=d" (hi) ); |
| return ( ( (stbir_uint64) hi ) << 32 ) | ( (stbir_uint64) lo ); |
| } |
| |
| #endif // msvc |
| |
| #elif defined( _M_ARM64 ) || defined( __aarch64__ ) || defined( __arm64__ ) || defined(__ARM_NEON__) |
| |
| #if defined( _MSC_VER ) && !defined(__clang__) |
| |
| #define STBIR_PROFILE_FUNC() _ReadStatusReg(ARM64_CNTVCT) |
| |
| #else |
| |
| static stbir__inline stbir_uint64 STBIR_PROFILE_FUNC() |
| { |
| stbir_uint64 tsc; |
| asm volatile("mrs %0, cntvct_el0" : "=r" (tsc)); |
| return tsc; |
| } |
| |
| #endif |
| |
| #else // x64, arm |
| |
| #error Unknown platform for profiling. |
| |
| #endif // x64, arm |
| |
| #endif // STBIR_PROFILE_FUNC |
| |
| #define STBIR_ONLY_PROFILE_GET_SPLIT_INFO ,stbir__per_split_info * split_info |
| #define STBIR_ONLY_PROFILE_SET_SPLIT_INFO ,split_info |
| |
| #define STBIR_ONLY_PROFILE_BUILD_GET_INFO ,stbir__info * profile_info |
| #define STBIR_ONLY_PROFILE_BUILD_SET_INFO ,profile_info |
| |
| // super light-weight micro profiler |
| #define STBIR_PROFILE_START_ll( info, wh ) { stbir_uint64 wh##thiszonetime = STBIR_PROFILE_FUNC(); stbir_uint64 * wh##save_parent_excluded_ptr = info->current_zone_excluded_ptr; stbir_uint64 wh##current_zone_excluded = 0; info->current_zone_excluded_ptr = &wh##current_zone_excluded; |
| #define STBIR_PROFILE_END_ll( info, wh ) wh##thiszonetime = STBIR_PROFILE_FUNC() - wh##thiszonetime; info->profile.named.wh += wh##thiszonetime - wh##current_zone_excluded; *wh##save_parent_excluded_ptr += wh##thiszonetime; info->current_zone_excluded_ptr = wh##save_parent_excluded_ptr; } |
| #define STBIR_PROFILE_FIRST_START_ll( info, wh ) { int i; info->current_zone_excluded_ptr = &info->profile.named.total; for(i=0;i<STBIR__ARRAY_SIZE(info->profile.array);i++) info->profile.array[i]=0; } STBIR_PROFILE_START_ll( info, wh ); |
| #define STBIR_PROFILE_CLEAR_EXTRAS_ll( info, num ) { int extra; for(extra=1;extra<(num);extra++) { int i; for(i=0;i<STBIR__ARRAY_SIZE((info)->profile.array);i++) (info)[extra].profile.array[i]=0; } } |
| |
| // for thread data |
| #define STBIR_PROFILE_START( wh ) STBIR_PROFILE_START_ll( split_info, wh ) |
| #define STBIR_PROFILE_END( wh ) STBIR_PROFILE_END_ll( split_info, wh ) |
| #define STBIR_PROFILE_FIRST_START( wh ) STBIR_PROFILE_FIRST_START_ll( split_info, wh ) |
| #define STBIR_PROFILE_CLEAR_EXTRAS() STBIR_PROFILE_CLEAR_EXTRAS_ll( split_info, split_count ) |
| |
| // for build data |
| #define STBIR_PROFILE_BUILD_START( wh ) STBIR_PROFILE_START_ll( profile_info, wh ) |
| #define STBIR_PROFILE_BUILD_END( wh ) STBIR_PROFILE_END_ll( profile_info, wh ) |
| #define STBIR_PROFILE_BUILD_FIRST_START( wh ) STBIR_PROFILE_FIRST_START_ll( profile_info, wh ) |
| #define STBIR_PROFILE_BUILD_CLEAR( info ) { int i; for(i=0;i<STBIR__ARRAY_SIZE(info->profile.array);i++) info->profile.array[i]=0; } |
| |
| #else // no profile |
| |
| #define STBIR_ONLY_PROFILE_GET_SPLIT_INFO |
| #define STBIR_ONLY_PROFILE_SET_SPLIT_INFO |
| |
| #define STBIR_ONLY_PROFILE_BUILD_GET_INFO |
| #define STBIR_ONLY_PROFILE_BUILD_SET_INFO |
| |
| #define STBIR_PROFILE_START( wh ) |
| #define STBIR_PROFILE_END( wh ) |
| #define STBIR_PROFILE_FIRST_START( wh ) |
| #define STBIR_PROFILE_CLEAR_EXTRAS( ) |
| |
| #define STBIR_PROFILE_BUILD_START( wh ) |
| #define STBIR_PROFILE_BUILD_END( wh ) |
| #define STBIR_PROFILE_BUILD_FIRST_START( wh ) |
| #define STBIR_PROFILE_BUILD_CLEAR( info ) |
| |
| #endif // stbir_profile |
| |
| #ifndef STBIR_CEILF |
| #include <math.h> |
| #if _MSC_VER <= 1200 // support VC6 for Sean |
| #define STBIR_CEILF(x) ((float)ceil((float)(x))) |
| #define STBIR_FLOORF(x) ((float)floor((float)(x))) |
| #else |
| #define STBIR_CEILF(x) ceilf(x) |
| #define STBIR_FLOORF(x) floorf(x) |
| #endif |
| #endif |
| |
| #ifndef STBIR_MEMCPY |
| // For memcpy |
| #include <string.h> |
| #define STBIR_MEMCPY( dest, src, len ) memcpy( dest, src, len ) |
| #endif |
| |
| #ifndef STBIR_SIMD |
| |
| // memcpy that is specifically intentionally overlapping (src is smaller then dest, so can be |
| // a normal forward copy, bytes is divisible by 4 and bytes is greater than or equal to |
| // the diff between dest and src) |
| static void stbir_overlapping_memcpy( void * dest, void const * src, size_t bytes ) |
| { |
| char STBIR_SIMD_STREAMOUT_PTR (*) sd = (char*) src; |
| char STBIR_SIMD_STREAMOUT_PTR( * ) s_end = ((char*) src) + bytes; |
| ptrdiff_t ofs_to_dest = (char*)dest - (char*)src; |
| |
| if ( ofs_to_dest >= 8 ) // is the overlap more than 8 away? |
| { |
| char STBIR_SIMD_STREAMOUT_PTR( * ) s_end8 = ((char*) src) + (bytes&~7); |
| STBIR_NO_UNROLL_LOOP_START |
| do |
| { |
| STBIR_NO_UNROLL(sd); |
| *(stbir_uint64*)( sd + ofs_to_dest ) = *(stbir_uint64*) sd; |
| sd += 8; |
| } while ( sd < s_end8 ); |
| |
| if ( sd == s_end ) |
| return; |
| } |
| |
| STBIR_NO_UNROLL_LOOP_START |
| do |
| { |
| STBIR_NO_UNROLL(sd); |
| *(int*)( sd + ofs_to_dest ) = *(int*) sd; |
| sd += 4; |
| } while ( sd < s_end ); |
| } |
| |
| #endif |
| |
| static float stbir__filter_trapezoid(float x, float scale, void * user_data) |
| { |
| float halfscale = scale / 2; |
| float t = 0.5f + halfscale; |
| STBIR_ASSERT(scale <= 1); |
| STBIR__UNUSED(user_data); |
| |
| if ( x < 0.0f ) x = -x; |
| |
| if (x >= t) |
| return 0.0f; |
| else |
| { |
| float r = 0.5f - halfscale; |
| if (x <= r) |
| return 1.0f; |
| else |
| return (t - x) / scale; |
| } |
| } |
| |
| static float stbir__support_trapezoid(float scale, void * user_data) |
| { |
| STBIR__UNUSED(user_data); |
| return 0.5f + scale / 2.0f; |
| } |
| |
| static float stbir__filter_triangle(float x, float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| |
| if ( x < 0.0f ) x = -x; |
| |
| if (x <= 1.0f) |
| return 1.0f - x; |
| else |
| return 0.0f; |
| } |
| |
| static float stbir__filter_point(float x, float s, void * user_data) |
| { |
| STBIR__UNUSED(x); |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| |
| return 1.0f; |
| } |
| |
| static float stbir__filter_cubic(float x, float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| |
| if ( x < 0.0f ) x = -x; |
| |
| if (x < 1.0f) |
| return (4.0f + x*x*(3.0f*x - 6.0f))/6.0f; |
| else if (x < 2.0f) |
| return (8.0f + x*(-12.0f + x*(6.0f - x)))/6.0f; |
| |
| return (0.0f); |
| } |
| |
| static float stbir__filter_catmullrom(float x, float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| |
| if ( x < 0.0f ) x = -x; |
| |
| if (x < 1.0f) |
| return 1.0f - x*x*(2.5f - 1.5f*x); |
| else if (x < 2.0f) |
| return 2.0f - x*(4.0f + x*(0.5f*x - 2.5f)); |
| |
| return (0.0f); |
| } |
| |
| static float stbir__filter_mitchell(float x, float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| |
| if ( x < 0.0f ) x = -x; |
| |
| if (x < 1.0f) |
| return (16.0f + x*x*(21.0f * x - 36.0f))/18.0f; |
| else if (x < 2.0f) |
| return (32.0f + x*(-60.0f + x*(36.0f - 7.0f*x)))/18.0f; |
| |
| return (0.0f); |
| } |
| |
| static float stbir__support_zeropoint5(float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| return 0.5f; |
| } |
| |
| static float stbir__support_one(float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| return 1; |
| } |
| |
| static float stbir__support_two(float s, void * user_data) |
| { |
| STBIR__UNUSED(s); |
| STBIR__UNUSED(user_data); |
| return 2; |
| } |
| |
| // This is the maximum number of input samples that can affect an output sample |
| // with the given filter from the output pixel's perspective |
| static int stbir__get_filter_pixel_width(stbir__support_callback * support, float scale, void * user_data) |
| { |
| STBIR_ASSERT(support != 0); |
| |
| if ( scale >= ( 1.0f-stbir__small_float ) ) // upscale |
| return (int)STBIR_CEILF(support(1.0f/scale,user_data) * 2.0f); |
| else |
| return (int)STBIR_CEILF(support(scale,user_data) * 2.0f / scale); |
| } |
| |
| // this is how many coefficents per run of the filter (which is different |
| // from the filter_pixel_width depending on if we are scattering or gathering) |
| static int stbir__get_coefficient_width(stbir__sampler * samp, int is_gather, void * user_data) |
| { |
| float scale = samp->scale_info.scale; |
| stbir__support_callback * support = samp->filter_support; |
| |
| switch( is_gather ) |
| { |
| case 1: |
| return (int)STBIR_CEILF(support(1.0f / scale, user_data) * 2.0f); |
| case 2: |
| return (int)STBIR_CEILF(support(scale, user_data) * 2.0f / scale); |
| case 0: |
| return (int)STBIR_CEILF(support(scale, user_data) * 2.0f); |
| default: |
| STBIR_ASSERT( (is_gather >= 0 ) && (is_gather <= 2 ) ); |
| return 0; |
| } |
| } |
| |
| static int stbir__get_contributors(stbir__sampler * samp, int is_gather) |
| { |
| if (is_gather) |
| return samp->scale_info.output_sub_size; |
| else |
| return (samp->scale_info.input_full_size + samp->filter_pixel_margin * 2); |
| } |
| |
| static int stbir__edge_zero_full( int n, int max ) |
| { |
| STBIR__UNUSED(n); |
| STBIR__UNUSED(max); |
| return 0; // NOTREACHED |
| } |
| |
| static int stbir__edge_clamp_full( int n, int max ) |
| { |
| if (n < 0) |
| return 0; |
| |
| if (n >= max) |
| return max - 1; |
| |
| return n; // NOTREACHED |
| } |
| |
| static int stbir__edge_reflect_full( int n, int max ) |
| { |
| if (n < 0) |
| { |
| if (n > -max) |
| return -n; |
| else |
| return max - 1; |
| } |
| |
| if (n >= max) |
| { |
| int max2 = max * 2; |
| if (n >= max2) |
| return 0; |
| else |
| return max2 - n - 1; |
| } |
| |
| return n; // NOTREACHED |
| } |
| |
| static int stbir__edge_wrap_full( int n, int max ) |
| { |
| if (n >= 0) |
| return (n % max); |
| else |
| { |
| int m = (-n) % max; |
| |
| if (m != 0) |
| m = max - m; |
| |
| return (m); |
| } |
| } |
| |
| typedef int stbir__edge_wrap_func( int n, int max ); |
| static stbir__edge_wrap_func * stbir__edge_wrap_slow[] = |
| { |
| stbir__edge_clamp_full, // STBIR_EDGE_CLAMP |
| stbir__edge_reflect_full, // STBIR_EDGE_REFLECT |
| stbir__edge_wrap_full, // STBIR_EDGE_WRAP |
| stbir__edge_zero_full, // STBIR_EDGE_ZERO |
| }; |
| |
| stbir__inline static int stbir__edge_wrap(stbir_edge edge, int n, int max) |
| { |
| // avoid per-pixel switch |
| if (n >= 0 && n < max) |
| return n; |
| return stbir__edge_wrap_slow[edge]( n, max ); |
| } |
| |
| #define STBIR__MERGE_RUNS_PIXEL_THRESHOLD 16 |
| |
| // get information on the extents of a sampler |
| static void stbir__get_extents( stbir__sampler * samp, stbir__extents * scanline_extents ) |
| { |
| int j, stop; |
| int left_margin, right_margin; |
| int min_n = 0x7fffffff, max_n = -0x7fffffff; |
| int min_left = 0x7fffffff, max_left = -0x7fffffff; |
| int min_right = 0x7fffffff, max_right = -0x7fffffff; |
| stbir_edge edge = samp->edge; |
| stbir__contributors* contributors = samp->contributors; |
| int output_sub_size = samp->scale_info.output_sub_size; |
| int input_full_size = samp->scale_info.input_full_size; |
| int filter_pixel_margin = samp->filter_pixel_margin; |
| |
| STBIR_ASSERT( samp->is_gather ); |
| |
| stop = output_sub_size; |
| for (j = 0; j < stop; j++ ) |
| { |
| STBIR_ASSERT( contributors[j].n1 >= contributors[j].n0 ); |
| if ( contributors[j].n0 < min_n ) |
| { |
| min_n = contributors[j].n0; |
| stop = j + filter_pixel_margin; // if we find a new min, only scan another filter width |
| if ( stop > output_sub_size ) stop = output_sub_size; |
| } |
| } |
| |
| stop = 0; |
| for (j = output_sub_size - 1; j >= stop; j-- ) |
| { |
| STBIR_ASSERT( contributors[j].n1 >= contributors[j].n0 ); |
| if ( contributors[j].n1 > max_n ) |
| { |
| max_n = contributors[j].n1; |
| stop = j - filter_pixel_margin; // if we find a new max, only scan another filter width |
| if (stop<0) stop = 0; |
| } |
| } |
| |
| STBIR_ASSERT( scanline_extents->conservative.n0 <= min_n ); |
| STBIR_ASSERT( scanline_extents->conservative.n1 >= max_n ); |
| |
| // now calculate how much into the margins we really read |
| left_margin = 0; |
| if ( min_n < 0 ) |
| { |
| left_margin = -min_n; |
| min_n = 0; |
| } |
| |
| right_margin = 0; |
| if ( max_n >= input_full_size ) |
| { |
| right_margin = max_n - input_full_size + 1; |
| max_n = input_full_size - 1; |
| } |
| |
| // index 1 is margin pixel extents (how many pixels we hang over the edge) |
| scanline_extents->edge_sizes[0] = left_margin; |
| scanline_extents->edge_sizes[1] = right_margin; |
| |
| // index 2 is pixels read from the input |
| scanline_extents->spans[0].n0 = min_n; |
| scanline_extents->spans[0].n1 = max_n; |
| scanline_extents->spans[0].pixel_offset_for_input = min_n; |
| |
| // default to no other input range |
| scanline_extents->spans[1].n0 = 0; |
| scanline_extents->spans[1].n1 = -1; |
| scanline_extents->spans[1].pixel_offset_for_input = 0; |
| |
| // don't have to do edge calc for zero clamp |
| if ( edge == STBIR_EDGE_ZERO ) |
| return; |
| |
| // convert margin pixels to the pixels within the input (min and max) |
| for( j = -left_margin ; j < 0 ; j++ ) |
| { |
| int p = stbir__edge_wrap( edge, j, input_full_size ); |
| if ( p < min_left ) |
| min_left = p; |
| if ( p > max_left ) |
| max_left = p; |
| } |
| |
| for( j = input_full_size ; j < (input_full_size + right_margin) ; j++ ) |
| { |
| int p = stbir__edge_wrap( edge, j, input_full_size ); |
| if ( p < min_right ) |
| min_right = p; |
| if ( p > max_right ) |
| max_right = p; |
| } |
| |
| // merge the left margin pixel region if it connects within 4 pixels of main pixel region |
| if ( min_left != 0x7fffffff ) |
| { |
| if ( ( ( min_left <= min_n ) && ( ( max_left + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= min_n ) ) || |
| ( ( min_n <= min_left ) && ( ( max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= max_left ) ) ) |
| { |
| scanline_extents->spans[0].n0 = min_n = stbir__min( min_n, min_left ); |
| scanline_extents->spans[0].n1 = max_n = stbir__max( max_n, max_left ); |
| scanline_extents->spans[0].pixel_offset_for_input = min_n; |
| left_margin = 0; |
| } |
| } |
| |
| // merge the right margin pixel region if it connects within 4 pixels of main pixel region |
| if ( min_right != 0x7fffffff ) |
| { |
| if ( ( ( min_right <= min_n ) && ( ( max_right + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= min_n ) ) || |
| ( ( min_n <= min_right ) && ( ( max_n + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= max_right ) ) ) |
| { |
| scanline_extents->spans[0].n0 = min_n = stbir__min( min_n, min_right ); |
| scanline_extents->spans[0].n1 = max_n = stbir__max( max_n, max_right ); |
| scanline_extents->spans[0].pixel_offset_for_input = min_n; |
| right_margin = 0; |
| } |
| } |
| |
| STBIR_ASSERT( scanline_extents->conservative.n0 <= min_n ); |
| STBIR_ASSERT( scanline_extents->conservative.n1 >= max_n ); |
| |
| // you get two ranges when you have the WRAP edge mode and you are doing just the a piece of the resize |
| // so you need to get a second run of pixels from the opposite side of the scanline (which you |
| // wouldn't need except for WRAP) |
| |
| |
| // if we can't merge the min_left range, add it as a second range |
| if ( ( left_margin ) && ( min_left != 0x7fffffff ) ) |
| { |
| stbir__span * newspan = scanline_extents->spans + 1; |
| STBIR_ASSERT( right_margin == 0 ); |
| if ( min_left < scanline_extents->spans[0].n0 ) |
| { |
| scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0; |
| scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0; |
| scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1; |
| --newspan; |
| } |
| newspan->pixel_offset_for_input = min_left; |
| newspan->n0 = -left_margin; |
| newspan->n1 = ( max_left - min_left ) - left_margin; |
| scanline_extents->edge_sizes[0] = 0; // don't need to copy the left margin, since we are directly decoding into the margin |
| return; |
| } |
| |
| // if we can't merge the min_left range, add it as a second range |
| if ( ( right_margin ) && ( min_right != 0x7fffffff ) ) |
| { |
| stbir__span * newspan = scanline_extents->spans + 1; |
| if ( min_right < scanline_extents->spans[0].n0 ) |
| { |
| scanline_extents->spans[1].pixel_offset_for_input = scanline_extents->spans[0].n0; |
| scanline_extents->spans[1].n0 = scanline_extents->spans[0].n0; |
| scanline_extents->spans[1].n1 = scanline_extents->spans[0].n1; |
| --newspan; |
| } |
| newspan->pixel_offset_for_input = min_right; |
| newspan->n0 = scanline_extents->spans[1].n1 + 1; |
| newspan->n1 = scanline_extents->spans[1].n1 + 1 + ( max_right - min_right ); |
| scanline_extents->edge_sizes[1] = 0; // don't need to copy the right margin, since we are directly decoding into the margin |
| return; |
| } |
| } |
| |
| static void stbir__calculate_in_pixel_range( int * first_pixel, int * last_pixel, float out_pixel_center, float out_filter_radius, float inv_scale, float out_shift, int input_size, stbir_edge edge ) |
| { |
| int first, last; |
| float out_pixel_influence_lowerbound = out_pixel_center - out_filter_radius; |
| float out_pixel_influence_upperbound = out_pixel_center + out_filter_radius; |
| |
| float in_pixel_influence_lowerbound = (out_pixel_influence_lowerbound + out_shift) * inv_scale; |
| float in_pixel_influence_upperbound = (out_pixel_influence_upperbound + out_shift) * inv_scale; |
| |
| first = (int)(STBIR_FLOORF(in_pixel_influence_lowerbound + 0.5f)); |
| last = (int)(STBIR_FLOORF(in_pixel_influence_upperbound - 0.5f)); |
| if ( last < first ) last = first; // point sample mode can span a value *right* at 0.5, and cause these to cross |
| |
| if ( edge == STBIR_EDGE_WRAP ) |
| { |
| if ( first < -input_size ) |
| first = -input_size; |
| if ( last >= (input_size*2)) |
| last = (input_size*2) - 1; |
| } |
| |
| *first_pixel = first; |
| *last_pixel = last; |
| } |
| |
| static void stbir__calculate_coefficients_for_gather_upsample( float out_filter_radius, stbir__kernel_callback * kernel, stbir__scale_info * scale_info, int num_contributors, stbir__contributors* contributors, float* coefficient_group, int coefficient_width, stbir_edge edge, void * user_data ) |
| { |
| int n, end; |
| float inv_scale = scale_info->inv_scale; |
| float out_shift = scale_info->pixel_shift; |
| int input_size = scale_info->input_full_size; |
| int numerator = scale_info->scale_numerator; |
| int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < num_contributors ) ); |
| |
| // Looping through out pixels |
| end = num_contributors; if ( polyphase ) end = numerator; |
| for (n = 0; n < end; n++) |
| { |
| int i; |
| int last_non_zero; |
| float out_pixel_center = (float)n + 0.5f; |
| float in_center_of_out = (out_pixel_center + out_shift) * inv_scale; |
| |
| int in_first_pixel, in_last_pixel; |
| |
| stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, out_pixel_center, out_filter_radius, inv_scale, out_shift, input_size, edge ); |
| |
| // make sure we never generate a range larger than our precalculated coeff width |
| // this only happens in point sample mode, but it's a good safe thing to do anyway |
| if ( ( in_last_pixel - in_first_pixel + 1 ) > coefficient_width ) |
| in_last_pixel = in_first_pixel + coefficient_width - 1; |
| |
| last_non_zero = -1; |
| for (i = 0; i <= in_last_pixel - in_first_pixel; i++) |
| { |
| float in_pixel_center = (float)(i + in_first_pixel) + 0.5f; |
| float coeff = kernel(in_center_of_out - in_pixel_center, inv_scale, user_data); |
| |
| // kill denormals |
| if ( ( ( coeff < stbir__small_float ) && ( coeff > -stbir__small_float ) ) ) |
| { |
| if ( i == 0 ) // if we're at the front, just eat zero contributors |
| { |
| STBIR_ASSERT ( ( in_last_pixel - in_first_pixel ) != 0 ); // there should be at least one contrib |
| ++in_first_pixel; |
| i--; |
| continue; |
| } |
| coeff = 0; // make sure is fully zero (should keep denormals away) |
| } |
| else |
| last_non_zero = i; |
| |
| coefficient_group[i] = coeff; |
| } |
| |
| in_last_pixel = last_non_zero+in_first_pixel; // kills trailing zeros |
| contributors->n0 = in_first_pixel; |
| contributors->n1 = in_last_pixel; |
| |
| STBIR_ASSERT(contributors->n1 >= contributors->n0); |
| |
| ++contributors; |
| coefficient_group += coefficient_width; |
| } |
| } |
| |
| static void stbir__insert_coeff( stbir__contributors * contribs, float * coeffs, int new_pixel, float new_coeff, int max_width ) |
| { |
| if ( new_pixel <= contribs->n1 ) // before the end |
| { |
| if ( new_pixel < contribs->n0 ) // before the front? |
| { |
| if ( ( contribs->n1 - new_pixel + 1 ) <= max_width ) |
| { |
| int j, o = contribs->n0 - new_pixel; |
| for ( j = contribs->n1 - contribs->n0 ; j <= 0 ; j-- ) |
| coeffs[ j + o ] = coeffs[ j ]; |
| for ( j = 1 ; j < o ; j-- ) |
| coeffs[ j ] = coeffs[ 0 ]; |
| coeffs[ 0 ] = new_coeff; |
| contribs->n0 = new_pixel; |
| } |
| } |
| else |
| { |
| coeffs[ new_pixel - contribs->n0 ] += new_coeff; |
| } |
| } |
| else |
| { |
| if ( ( new_pixel - contribs->n0 + 1 ) <= max_width ) |
| { |
| int j, e = new_pixel - contribs->n0; |
| for( j = ( contribs->n1 - contribs->n0 ) + 1 ; j < e ; j++ ) // clear in-betweens coeffs if there are any |
| coeffs[j] = 0; |
| |
| coeffs[ e ] = new_coeff; |
| contribs->n1 = new_pixel; |
| } |
| } |
| } |
| |
| static void stbir__calculate_out_pixel_range( int * first_pixel, int * last_pixel, float in_pixel_center, float in_pixels_radius, float scale, float out_shift, int out_size ) |
| { |
| float in_pixel_influence_lowerbound = in_pixel_center - in_pixels_radius; |
| float in_pixel_influence_upperbound = in_pixel_center + in_pixels_radius; |
| float out_pixel_influence_lowerbound = in_pixel_influence_lowerbound * scale - out_shift; |
| float out_pixel_influence_upperbound = in_pixel_influence_upperbound * scale - out_shift; |
| int out_first_pixel = (int)(STBIR_FLOORF(out_pixel_influence_lowerbound + 0.5f)); |
| int out_last_pixel = (int)(STBIR_FLOORF(out_pixel_influence_upperbound - 0.5f)); |
| |
| if ( out_first_pixel < 0 ) |
| out_first_pixel = 0; |
| if ( out_last_pixel >= out_size ) |
| out_last_pixel = out_size - 1; |
| *first_pixel = out_first_pixel; |
| *last_pixel = out_last_pixel; |
| } |
| |
| static void stbir__calculate_coefficients_for_gather_downsample( int start, int end, float in_pixels_radius, stbir__kernel_callback * kernel, stbir__scale_info * scale_info, int coefficient_width, int num_contributors, stbir__contributors * contributors, float * coefficient_group, void * user_data ) |
| { |
| int in_pixel; |
| int i; |
| int first_out_inited = -1; |
| float scale = scale_info->scale; |
| float out_shift = scale_info->pixel_shift; |
| int out_size = scale_info->output_sub_size; |
| int numerator = scale_info->scale_numerator; |
| int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < out_size ) ); |
| |
| STBIR__UNUSED(num_contributors); |
| |
| // Loop through the input pixels |
| for (in_pixel = start; in_pixel < end; in_pixel++) |
| { |
| float in_pixel_center = (float)in_pixel + 0.5f; |
| float out_center_of_in = in_pixel_center * scale - out_shift; |
| int out_first_pixel, out_last_pixel; |
| |
| stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, in_pixel_center, in_pixels_radius, scale, out_shift, out_size ); |
| |
| if ( out_first_pixel > out_last_pixel ) |
| continue; |
| |
| // clamp or exit if we are using polyphase filtering, and the limit is up |
| if ( polyphase ) |
| { |
| // when polyphase, you only have to do coeffs up to the numerator count |
| if ( out_first_pixel == numerator ) |
| break; |
| |
| // don't do any extra work, clamp last pixel at numerator too |
| if ( out_last_pixel >= numerator ) |
| out_last_pixel = numerator - 1; |
| } |
| |
| for (i = 0; i <= out_last_pixel - out_first_pixel; i++) |
| { |
| float out_pixel_center = (float)(i + out_first_pixel) + 0.5f; |
| float x = out_pixel_center - out_center_of_in; |
| float coeff = kernel(x, scale, user_data) * scale; |
| |
| // kill the coeff if it's too small (avoid denormals) |
| if ( ( ( coeff < stbir__small_float ) && ( coeff > -stbir__small_float ) ) ) |
| coeff = 0.0f; |
| |
| { |
| int out = i + out_first_pixel; |
| float * coeffs = coefficient_group + out * coefficient_width; |
| stbir__contributors * contribs = contributors + out; |
| |
| // is this the first time this output pixel has been seen? Init it. |
| if ( out > first_out_inited ) |
| { |
| STBIR_ASSERT( out == ( first_out_inited + 1 ) ); // ensure we have only advanced one at time |
| first_out_inited = out; |
| contribs->n0 = in_pixel; |
| contribs->n1 = in_pixel; |
| coeffs[0] = coeff; |
| } |
| else |
| { |
| // insert on end (always in order) |
| if ( coeffs[0] == 0.0f ) // if the first coefficent is zero, then zap it for this coeffs |
| { |
| STBIR_ASSERT( ( in_pixel - contribs->n0 ) == 1 ); // ensure that when we zap, we're at the 2nd pos |
| contribs->n0 = in_pixel; |
| } |
| contribs->n1 = in_pixel; |
| STBIR_ASSERT( ( in_pixel - contribs->n0 ) < coefficient_width ); |
| coeffs[in_pixel - contribs->n0] = coeff; |
| } |
| } |
| } |
| } |
| } |
| |
| #ifdef STBIR_RENORMALIZE_IN_FLOAT |
| #define STBIR_RENORM_TYPE float |
| #else |
| #define STBIR_RENORM_TYPE double |
| #endif |
| |
| static void stbir__cleanup_gathered_coefficients( stbir_edge edge, stbir__filter_extent_info* filter_info, stbir__scale_info * scale_info, int num_contributors, stbir__contributors* contributors, float * coefficient_group, int coefficient_width ) |
| { |
| int input_size = scale_info->input_full_size; |
| int input_last_n1 = input_size - 1; |
| int n, end; |
| int lowest = 0x7fffffff; |
| int highest = -0x7fffffff; |
| int widest = -1; |
| int numerator = scale_info->scale_numerator; |
| int denominator = scale_info->scale_denominator; |
| int polyphase = ( ( scale_info->scale_is_rational ) && ( numerator < num_contributors ) ); |
| float * coeffs; |
| stbir__contributors * contribs; |
| |
| // weight all the coeffs for each sample |
| coeffs = coefficient_group; |
| contribs = contributors; |
| end = num_contributors; if ( polyphase ) end = numerator; |
| for (n = 0; n < end; n++) |
| { |
| int i; |
| STBIR_RENORM_TYPE filter_scale, total_filter = 0; |
| int e; |
| |
| // add all contribs |
| e = contribs->n1 - contribs->n0; |
| for( i = 0 ; i <= e ; i++ ) |
| { |
| total_filter += (STBIR_RENORM_TYPE) coeffs[i]; |
| STBIR_ASSERT( ( coeffs[i] >= -2.0f ) && ( coeffs[i] <= 2.0f ) ); // check for wonky weights |
| } |
| |
| // rescale |
| if ( ( total_filter < stbir__small_float ) && ( total_filter > -stbir__small_float ) ) |
| { |
| // all coeffs are extremely small, just zero it |
| contribs->n1 = contribs->n0; |
| coeffs[0] = 0.0f; |
| } |
| else |
| { |
| // if the total isn't 1.0, rescale everything |
| if ( ( total_filter < (1.0f-stbir__small_float) ) || ( total_filter > (1.0f+stbir__small_float) ) ) |
| { |
| filter_scale = ((STBIR_RENORM_TYPE)1.0) / total_filter; |
| |
| // scale them all |
| for (i = 0; i <= e; i++) |
| coeffs[i] = (float) ( coeffs[i] * filter_scale ); |
| } |
| } |
| ++contribs; |
| coeffs += coefficient_width; |
| } |
| |
| // if we have a rational for the scale, we can exploit the polyphaseness to not calculate |
| // most of the coefficients, so we copy them here |
| if ( polyphase ) |
| { |
| stbir__contributors * prev_contribs = contributors; |
| stbir__contributors * cur_contribs = contributors + numerator; |
| |
| for( n = numerator ; n < num_contributors ; n++ ) |
| { |
| cur_contribs->n0 = prev_contribs->n0 + denominator; |
| cur_contribs->n1 = prev_contribs->n1 + denominator; |
| ++cur_contribs; |
| ++prev_contribs; |
| } |
| stbir_overlapping_memcpy( coefficient_group + numerator * coefficient_width, coefficient_group, ( num_contributors - numerator ) * coefficient_width * sizeof( coeffs[ 0 ] ) ); |
| } |
| |
| coeffs = coefficient_group; |
| contribs = contributors; |
| |
| for (n = 0; n < num_contributors; n++) |
| { |
| int i; |
| |
| // in zero edge mode, just remove out of bounds contribs completely (since their weights are accounted for now) |
| if ( edge == STBIR_EDGE_ZERO ) |
| { |
| // shrink the right side if necessary |
| if ( contribs->n1 > input_last_n1 ) |
| contribs->n1 = input_last_n1; |
| |
| // shrink the left side |
| if ( contribs->n0 < 0 ) |
| { |
| int j, left, skips = 0; |
| |
| skips = -contribs->n0; |
| contribs->n0 = 0; |
| |
| // now move down the weights |
| left = contribs->n1 - contribs->n0 + 1; |
| if ( left > 0 ) |
| { |
| for( j = 0 ; j < left ; j++ ) |
| coeffs[ j ] = coeffs[ j + skips ]; |
| } |
| } |
| } |
| else if ( ( edge == STBIR_EDGE_CLAMP ) || ( edge == STBIR_EDGE_REFLECT ) ) |
| { |
| // for clamp and reflect, calculate the true inbounds position (based on edge type) and just add that to the existing weight |
| |
| // right hand side first |
| if ( contribs->n1 > input_last_n1 ) |
| { |
| int start = contribs->n0; |
| int endi = contribs->n1; |
| contribs->n1 = input_last_n1; |
| for( i = input_size; i <= endi; i++ ) |
| stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( i, input_size ), coeffs[i-start], coefficient_width ); |
| } |
| |
| // now check left hand edge |
| if ( contribs->n0 < 0 ) |
| { |
| int save_n0; |
| float save_n0_coeff; |
| float * c = coeffs - ( contribs->n0 + 1 ); |
| |
| // reinsert the coeffs with it reflected or clamped (insert accumulates, if the coeffs exist) |
| for( i = -1 ; i > contribs->n0 ; i-- ) |
| stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( i, input_size ), *c--, coefficient_width ); |
| save_n0 = contribs->n0; |
| save_n0_coeff = c[0]; // save it, since we didn't do the final one (i==n0), because there might be too many coeffs to hold (before we resize)! |
| |
| // now slide all the coeffs down (since we have accumulated them in the positive contribs) and reset the first contrib |
| contribs->n0 = 0; |
| for(i = 0 ; i <= contribs->n1 ; i++ ) |
| coeffs[i] = coeffs[i-save_n0]; |
| |
| // now that we have shrunk down the contribs, we insert the first one safely |
| stbir__insert_coeff( contribs, coeffs, stbir__edge_wrap_slow[edge]( save_n0, input_size ), save_n0_coeff, coefficient_width ); |
| } |
| } |
| |
| if ( contribs->n0 <= contribs->n1 ) |
| { |
| int diff = contribs->n1 - contribs->n0 + 1; |
| while ( diff && ( coeffs[ diff-1 ] == 0.0f ) ) |
| --diff; |
| |
| contribs->n1 = contribs->n0 + diff - 1; |
| |
| if ( contribs->n0 <= contribs->n1 ) |
| { |
| if ( contribs->n0 < lowest ) |
| lowest = contribs->n0; |
| if ( contribs->n1 > highest ) |
| highest = contribs->n1; |
| if ( diff > widest ) |
| widest = diff; |
| } |
| |
| // re-zero out unused coefficients (if any) |
| for( i = diff ; i < coefficient_width ; i++ ) |
| coeffs[i] = 0.0f; |
| } |
| |
| ++contribs; |
| coeffs += coefficient_width; |
| } |
| filter_info->lowest = lowest; |
| filter_info->highest = highest; |
| filter_info->widest = widest; |
| } |
| |
| #undef STBIR_RENORM_TYPE |
| |
| static int stbir__pack_coefficients( int num_contributors, stbir__contributors* contributors, float * coefficents, int coefficient_width, int widest, int row0, int row1 ) |
| { |
| #define STBIR_MOVE_1( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint32*)(dest))[0] = ((stbir_uint32*)(src))[0]; } |
| #define STBIR_MOVE_2( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint64*)(dest))[0] = ((stbir_uint64*)(src))[0]; } |
| #ifdef STBIR_SIMD |
| #define STBIR_MOVE_4( dest, src ) { stbir__simdf t; STBIR_NO_UNROLL(dest); stbir__simdf_load( t, src ); stbir__simdf_store( dest, t ); } |
| #else |
| #define STBIR_MOVE_4( dest, src ) { STBIR_NO_UNROLL(dest); ((stbir_uint64*)(dest))[0] = ((stbir_uint64*)(src))[0]; ((stbir_uint64*)(dest))[1] = ((stbir_uint64*)(src))[1]; } |
| #endif |
| |
| int row_end = row1 + 1; |
| STBIR__UNUSED( row0 ); // only used in an assert |
| |
| if ( coefficient_width != widest ) |
| { |
| float * pc = coefficents; |
| float * coeffs = coefficents; |
| float * pc_end = coefficents + num_contributors * widest; |
| switch( widest ) |
| { |
| case 1: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_1( pc, coeffs ); |
| ++pc; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 2: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_2( pc, coeffs ); |
| pc += 2; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 3: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_2( pc, coeffs ); |
| STBIR_MOVE_1( pc+2, coeffs+2 ); |
| pc += 3; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 4: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| pc += 4; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 5: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_1( pc+4, coeffs+4 ); |
| pc += 5; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 6: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_2( pc+4, coeffs+4 ); |
| pc += 6; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 7: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_2( pc+4, coeffs+4 ); |
| STBIR_MOVE_1( pc+6, coeffs+6 ); |
| pc += 7; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 8: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_4( pc+4, coeffs+4 ); |
| pc += 8; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 9: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_4( pc+4, coeffs+4 ); |
| STBIR_MOVE_1( pc+8, coeffs+8 ); |
| pc += 9; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 10: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_4( pc+4, coeffs+4 ); |
| STBIR_MOVE_2( pc+8, coeffs+8 ); |
| pc += 10; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 11: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_4( pc+4, coeffs+4 ); |
| STBIR_MOVE_2( pc+8, coeffs+8 ); |
| STBIR_MOVE_1( pc+10, coeffs+10 ); |
| pc += 11; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| case 12: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| STBIR_MOVE_4( pc, coeffs ); |
| STBIR_MOVE_4( pc+4, coeffs+4 ); |
| STBIR_MOVE_4( pc+8, coeffs+8 ); |
| pc += 12; |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| default: |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| float * copy_end = pc + widest - 4; |
| float * c = coeffs; |
| do { |
| STBIR_NO_UNROLL( pc ); |
| STBIR_MOVE_4( pc, c ); |
| pc += 4; |
| c += 4; |
| } while ( pc <= copy_end ); |
| copy_end += 4; |
| STBIR_NO_UNROLL_LOOP_START |
| while ( pc < copy_end ) |
| { |
| STBIR_MOVE_1( pc, c ); |
| ++pc; ++c; |
| } |
| coeffs += coefficient_width; |
| } while ( pc < pc_end ); |
| break; |
| } |
| } |
| |
| // some horizontal routines read one float off the end (which is then masked off), so put in a sentinal so we don't read an snan or denormal |
| coefficents[ widest * num_contributors ] = 8888.0f; |
| |
| // the minimum we might read for unrolled filters widths is 12. So, we need to |
| // make sure we never read outside the decode buffer, by possibly moving |
| // the sample area back into the scanline, and putting zeros weights first. |
| // we start on the right edge and check until we're well past the possible |
| // clip area (2*widest). |
| { |
| stbir__contributors * contribs = contributors + num_contributors - 1; |
| float * coeffs = coefficents + widest * ( num_contributors - 1 ); |
| |
| // go until no chance of clipping (this is usually less than 8 lops) |
| while ( ( contribs >= contributors ) && ( ( contribs->n0 + widest*2 ) >= row_end ) ) |
| { |
| // might we clip?? |
| if ( ( contribs->n0 + widest ) > row_end ) |
| { |
| int stop_range = widest; |
| |
| // if range is larger than 12, it will be handled by generic loops that can terminate on the exact length |
| // of this contrib n1, instead of a fixed widest amount - so calculate this |
| if ( widest > 12 ) |
| { |
| int mod; |
| |
| // how far will be read in the n_coeff loop (which depends on the widest count mod4); |
| mod = widest & 3; |
| stop_range = ( ( ( contribs->n1 - contribs->n0 + 1 ) - mod + 3 ) & ~3 ) + mod; |
| |
| // the n_coeff loops do a minimum amount of coeffs, so factor that in! |
| if ( stop_range < ( 8 + mod ) ) stop_range = 8 + mod; |
| } |
| |
| // now see if we still clip with the refined range |
| if ( ( contribs->n0 + stop_range ) > row_end ) |
| { |
| int new_n0 = row_end - stop_range; |
| int num = contribs->n1 - contribs->n0 + 1; |
| int backup = contribs->n0 - new_n0; |
| float * from_co = coeffs + num - 1; |
| float * to_co = from_co + backup; |
| |
| STBIR_ASSERT( ( new_n0 >= row0 ) && ( new_n0 < contribs->n0 ) ); |
| |
| // move the coeffs over |
| while( num ) |
| { |
| *to_co-- = *from_co--; |
| --num; |
| } |
| // zero new positions |
| while ( to_co >= coeffs ) |
| *to_co-- = 0; |
| // set new start point |
| contribs->n0 = new_n0; |
| if ( widest > 12 ) |
| { |
| int mod; |
| |
| // how far will be read in the n_coeff loop (which depends on the widest count mod4); |
| mod = widest & 3; |
| stop_range = ( ( ( contribs->n1 - contribs->n0 + 1 ) - mod + 3 ) & ~3 ) + mod; |
| |
| // the n_coeff loops do a minimum amount of coeffs, so factor that in! |
| if ( stop_range < ( 8 + mod ) ) stop_range = 8 + mod; |
| } |
| } |
| } |
| --contribs; |
| coeffs -= widest; |
| } |
| } |
| |
| return widest; |
| #undef STBIR_MOVE_1 |
| #undef STBIR_MOVE_2 |
| #undef STBIR_MOVE_4 |
| } |
| |
| static void stbir__calculate_filters( stbir__sampler * samp, stbir__sampler * other_axis_for_pivot, void * user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO ) |
| { |
| int n; |
| float scale = samp->scale_info.scale; |
| stbir__kernel_callback * kernel = samp->filter_kernel; |
| stbir__support_callback * support = samp->filter_support; |
| float inv_scale = samp->scale_info.inv_scale; |
| int input_full_size = samp->scale_info.input_full_size; |
| int gather_num_contributors = samp->num_contributors; |
| stbir__contributors* gather_contributors = samp->contributors; |
| float * gather_coeffs = samp->coefficients; |
| int gather_coefficient_width = samp->coefficient_width; |
| |
| switch ( samp->is_gather ) |
| { |
| case 1: // gather upsample |
| { |
| float out_pixels_radius = support(inv_scale,user_data) * scale; |
| |
| stbir__calculate_coefficients_for_gather_upsample( out_pixels_radius, kernel, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width, samp->edge, user_data ); |
| |
| STBIR_PROFILE_BUILD_START( cleanup ); |
| stbir__cleanup_gathered_coefficients( samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width ); |
| STBIR_PROFILE_BUILD_END( cleanup ); |
| } |
| break; |
| |
| case 0: // scatter downsample (only on vertical) |
| case 2: // gather downsample |
| { |
| float in_pixels_radius = support(scale,user_data) * inv_scale; |
| int filter_pixel_margin = samp->filter_pixel_margin; |
| int input_end = input_full_size + filter_pixel_margin; |
| |
| // if this is a scatter, we do a downsample gather to get the coeffs, and then pivot after |
| if ( !samp->is_gather ) |
| { |
| // check if we are using the same gather downsample on the horizontal as this vertical, |
| // if so, then we don't have to generate them, we can just pivot from the horizontal. |
| if ( other_axis_for_pivot ) |
| { |
| gather_contributors = other_axis_for_pivot->contributors; |
| gather_coeffs = other_axis_for_pivot->coefficients; |
| gather_coefficient_width = other_axis_for_pivot->coefficient_width; |
| gather_num_contributors = other_axis_for_pivot->num_contributors; |
| samp->extent_info.lowest = other_axis_for_pivot->extent_info.lowest; |
| samp->extent_info.highest = other_axis_for_pivot->extent_info.highest; |
| samp->extent_info.widest = other_axis_for_pivot->extent_info.widest; |
| goto jump_right_to_pivot; |
| } |
| |
| gather_contributors = samp->gather_prescatter_contributors; |
| gather_coeffs = samp->gather_prescatter_coefficients; |
| gather_coefficient_width = samp->gather_prescatter_coefficient_width; |
| gather_num_contributors = samp->gather_prescatter_num_contributors; |
| } |
| |
| stbir__calculate_coefficients_for_gather_downsample( -filter_pixel_margin, input_end, in_pixels_radius, kernel, &samp->scale_info, gather_coefficient_width, gather_num_contributors, gather_contributors, gather_coeffs, user_data ); |
| |
| STBIR_PROFILE_BUILD_START( cleanup ); |
| stbir__cleanup_gathered_coefficients( samp->edge, &samp->extent_info, &samp->scale_info, gather_num_contributors, gather_contributors, gather_coeffs, gather_coefficient_width ); |
| STBIR_PROFILE_BUILD_END( cleanup ); |
| |
| if ( !samp->is_gather ) |
| { |
| // if this is a scatter (vertical only), then we need to pivot the coeffs |
| stbir__contributors * scatter_contributors; |
| int highest_set; |
| |
| jump_right_to_pivot: |
| |
| STBIR_PROFILE_BUILD_START( pivot ); |
| |
| highest_set = (-filter_pixel_margin) - 1; |
| for (n = 0; n < gather_num_contributors; n++) |
| { |
| int k; |
| int gn0 = gather_contributors->n0, gn1 = gather_contributors->n1; |
| int scatter_coefficient_width = samp->coefficient_width; |
| float * scatter_coeffs = samp->coefficients + ( gn0 + filter_pixel_margin ) * scatter_coefficient_width; |
| float * g_coeffs = gather_coeffs; |
| scatter_contributors = samp->contributors + ( gn0 + filter_pixel_margin ); |
| |
| for (k = gn0 ; k <= gn1 ; k++ ) |
| { |
| float gc = *g_coeffs++; |
| |
| // skip zero and denormals - must skip zeros to avoid adding coeffs beyond scatter_coefficient_width |
| // (which happens when pivoting from horizontal, which might have dummy zeros) |
| if ( ( ( gc >= stbir__small_float ) || ( gc <= -stbir__small_float ) ) ) |
| { |
| if ( ( k > highest_set ) || ( scatter_contributors->n0 > scatter_contributors->n1 ) ) |
| { |
| { |
| // if we are skipping over several contributors, we need to clear the skipped ones |
| stbir__contributors * clear_contributors = samp->contributors + ( highest_set + filter_pixel_margin + 1); |
| while ( clear_contributors < scatter_contributors ) |
| { |
| clear_contributors->n0 = 0; |
| clear_contributors->n1 = -1; |
| ++clear_contributors; |
| } |
| } |
| scatter_contributors->n0 = n; |
| scatter_contributors->n1 = n; |
| scatter_coeffs[0] = gc; |
| highest_set = k; |
| } |
| else |
| { |
| stbir__insert_coeff( scatter_contributors, scatter_coeffs, n, gc, scatter_coefficient_width ); |
| } |
| STBIR_ASSERT( ( scatter_contributors->n1 - scatter_contributors->n0 + 1 ) <= scatter_coefficient_width ); |
| } |
| ++scatter_contributors; |
| scatter_coeffs += scatter_coefficient_width; |
| } |
| |
| ++gather_contributors; |
| gather_coeffs += gather_coefficient_width; |
| } |
| |
| // now clear any unset contribs |
| { |
| stbir__contributors * clear_contributors = samp->contributors + ( highest_set + filter_pixel_margin + 1); |
| stbir__contributors * end_contributors = samp->contributors + samp->num_contributors; |
| while ( clear_contributors < end_contributors ) |
| { |
| clear_contributors->n0 = 0; |
| clear_contributors->n1 = -1; |
| ++clear_contributors; |
| } |
| } |
| |
| STBIR_PROFILE_BUILD_END( pivot ); |
| } |
| } |
| break; |
| } |
| } |
| |
| |
| //======================================================================================================== |
| // scanline decoders and encoders |
| |
| #define stbir__coder_min_num 1 |
| #define STB_IMAGE_RESIZE_DO_CODERS |
| #include STBIR__HEADER_FILENAME |
| |
| #define stbir__decode_suffix BGRA |
| #define stbir__decode_swizzle |
| #define stbir__decode_order0 2 |
| #define stbir__decode_order1 1 |
| #define stbir__decode_order2 0 |
| #define stbir__decode_order3 3 |
| #define stbir__encode_order0 2 |
| #define stbir__encode_order1 1 |
| #define stbir__encode_order2 0 |
| #define stbir__encode_order3 3 |
| #define stbir__coder_min_num 4 |
| #define STB_IMAGE_RESIZE_DO_CODERS |
| #include STBIR__HEADER_FILENAME |
| |
| #define stbir__decode_suffix ARGB |
| #define stbir__decode_swizzle |
| #define stbir__decode_order0 1 |
| #define stbir__decode_order1 2 |
| #define stbir__decode_order2 3 |
| #define stbir__decode_order3 0 |
| #define stbir__encode_order0 3 |
| #define stbir__encode_order1 0 |
| #define stbir__encode_order2 1 |
| #define stbir__encode_order3 2 |
| #define stbir__coder_min_num 4 |
| #define STB_IMAGE_RESIZE_DO_CODERS |
| #include STBIR__HEADER_FILENAME |
| |
| #define stbir__decode_suffix ABGR |
| #define stbir__decode_swizzle |
| #define stbir__decode_order0 3 |
| #define stbir__decode_order1 2 |
| #define stbir__decode_order2 1 |
| #define stbir__decode_order3 0 |
| #define stbir__encode_order0 3 |
| #define stbir__encode_order1 2 |
| #define stbir__encode_order2 1 |
| #define stbir__encode_order3 0 |
| #define stbir__coder_min_num 4 |
| #define STB_IMAGE_RESIZE_DO_CODERS |
| #include STBIR__HEADER_FILENAME |
| |
| #define stbir__decode_suffix AR |
| #define stbir__decode_swizzle |
| #define stbir__decode_order0 1 |
| #define stbir__decode_order1 0 |
| #define stbir__decode_order2 3 |
| #define stbir__decode_order3 2 |
| #define stbir__encode_order0 1 |
| #define stbir__encode_order1 0 |
| #define stbir__encode_order2 3 |
| #define stbir__encode_order3 2 |
| #define stbir__coder_min_num 2 |
| #define STB_IMAGE_RESIZE_DO_CODERS |
| #include STBIR__HEADER_FILENAME |
| |
| |
| // fancy alpha means we expand to keep both premultipied and non-premultiplied color channels |
| static void stbir__fancy_alpha_weight_4ch( float * out_buffer, int width_times_channels ) |
| { |
| float STBIR_STREAMOUT_PTR(*) out = out_buffer; |
| float const * end_decode = out_buffer + ( width_times_channels / 4 ) * 7; // decode buffer aligned to end of out_buffer |
| float STBIR_STREAMOUT_PTR(*) decode = (float*)end_decode - width_times_channels; |
| |
| // fancy alpha is stored internally as R G B A Rpm Gpm Bpm |
| |
| #ifdef STBIR_SIMD |
| |
| #ifdef STBIR_SIMD8 |
| decode += 16; |
| STBIR_NO_UNROLL_LOOP_START |
| while ( decode <= end_decode ) |
| { |
| stbir__simdf8 d0,d1,a0,a1,p0,p1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdf8_load( d0, decode-16 ); |
| stbir__simdf8_load( d1, decode-16+8 ); |
| stbir__simdf8_0123to33333333( a0, d0 ); |
| stbir__simdf8_0123to33333333( a1, d1 ); |
| stbir__simdf8_mult( p0, a0, d0 ); |
| stbir__simdf8_mult( p1, a1, d1 ); |
| stbir__simdf8_bot4s( a0, d0, p0 ); |
| stbir__simdf8_bot4s( a1, d1, p1 ); |
| stbir__simdf8_top4s( d0, d0, p0 ); |
| stbir__simdf8_top4s( d1, d1, p1 ); |
| stbir__simdf8_store ( out, a0 ); |
| stbir__simdf8_store ( out+7, d0 ); |
| stbir__simdf8_store ( out+14, a1 ); |
| stbir__simdf8_store ( out+21, d1 ); |
| decode += 16; |
| out += 28; |
| } |
| decode -= 16; |
| #else |
| decode += 8; |
| STBIR_NO_UNROLL_LOOP_START |
| while ( decode <= end_decode ) |
| { |
| stbir__simdf d0,a0,d1,a1,p0,p1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdf_load( d0, decode-8 ); |
| stbir__simdf_load( d1, decode-8+4 ); |
| stbir__simdf_0123to3333( a0, d0 ); |
| stbir__simdf_0123to3333( a1, d1 ); |
| stbir__simdf_mult( p0, a0, d0 ); |
| stbir__simdf_mult( p1, a1, d1 ); |
| stbir__simdf_store ( out, d0 ); |
| stbir__simdf_store ( out+4, p0 ); |
| stbir__simdf_store ( out+7, d1 ); |
| stbir__simdf_store ( out+7+4, p1 ); |
| decode += 8; |
| out += 14; |
| } |
| decode -= 8; |
| #endif |
| |
| // might be one last odd pixel |
| #ifdef STBIR_SIMD8 |
| STBIR_NO_UNROLL_LOOP_START |
| while ( decode < end_decode ) |
| #else |
| if ( decode < end_decode ) |
| #endif |
| { |
| stbir__simdf d,a,p; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdf_load( d, decode ); |
| stbir__simdf_0123to3333( a, d ); |
| stbir__simdf_mult( p, a, d ); |
| stbir__simdf_store ( out, d ); |
| stbir__simdf_store ( out+4, p ); |
| decode += 4; |
| out += 7; |
| } |
| |
| #else |
| |
| while( decode < end_decode ) |
| { |
| float r = decode[0], g = decode[1], b = decode[2], alpha = decode[3]; |
| out[0] = r; |
| out[1] = g; |
| out[2] = b; |
| out[3] = alpha; |
| out[4] = r * alpha; |
| out[5] = g * alpha; |
| out[6] = b * alpha; |
| out += 7; |
| decode += 4; |
| } |
| |
| #endif |
| } |
| |
| static void stbir__fancy_alpha_weight_2ch( float * out_buffer, int width_times_channels ) |
| { |
| float STBIR_STREAMOUT_PTR(*) out = out_buffer; |
| float const * end_decode = out_buffer + ( width_times_channels / 2 ) * 3; |
| float STBIR_STREAMOUT_PTR(*) decode = (float*)end_decode - width_times_channels; |
| |
| // for fancy alpha, turns into: [X A Xpm][X A Xpm],etc |
| |
| #ifdef STBIR_SIMD |
| |
| decode += 8; |
| if ( decode <= end_decode ) |
| { |
| STBIR_NO_UNROLL_LOOP_START |
| do { |
| #ifdef STBIR_SIMD8 |
| stbir__simdf8 d0,a0,p0; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdf8_load( d0, decode-8 ); |
| stbir__simdf8_0123to11331133( p0, d0 ); |
| stbir__simdf8_0123to00220022( a0, d0 ); |
| stbir__simdf8_mult( p0, p0, a0 ); |
| |
| stbir__simdf_store2( out, stbir__if_simdf8_cast_to_simdf4( d0 ) ); |
| stbir__simdf_store( out+2, stbir__if_simdf8_cast_to_simdf4( p0 ) ); |
| stbir__simdf_store2h( out+3, stbir__if_simdf8_cast_to_simdf4( d0 ) ); |
| |
| stbir__simdf_store2( out+6, stbir__simdf8_gettop4( d0 ) ); |
| stbir__simdf_store( out+8, stbir__simdf8_gettop4( p0 ) ); |
| stbir__simdf_store2h( out+9, stbir__simdf8_gettop4( d0 ) ); |
| #else |
| stbir__simdf d0,a0,d1,a1,p0,p1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdf_load( d0, decode-8 ); |
| stbir__simdf_load( d1, decode-8+4 ); |
| stbir__simdf_0123to1133( p0, d0 ); |
| stbir__simdf_0123to1133( p1, d1 ); |
| stbir__simdf_0123to0022( a0, d0 ); |
| stbir__simdf_0123to0022( a1, d1 ); |
| stbir__simdf_mult( p0, p0, a0 ); |
| stbir__simdf_mult( p1, p1, a1 ); |
| |
| stbir__simdf_store2( out, d0 ); |
| stbir__simdf_store( out+2, p0 ); |
| stbir__simdf_store2h( out+3, d0 ); |
| |
| stbir__simdf_store2( out+6, d1 ); |
| stbir__simdf_store( out+8, p1 ); |
| stbir__simdf_store2h( out+9, d1 ); |
| #endif |
| decode += 8; |
| out += 12; |
| } while ( decode <= end_decode ); |
| } |
| decode -= 8; |
| #endif |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode < end_decode ) |
| { |
| float x = decode[0], y = decode[1]; |
| STBIR_SIMD_NO_UNROLL(decode); |
| out[0] = x; |
| out[1] = y; |
| out[2] = x * y; |
| out += 3; |
| decode += 2; |
| } |
| } |
| |
| static void stbir__fancy_alpha_unweight_4ch( float * encode_buffer, int width_times_channels ) |
| { |
| float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; |
| float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer; |
| float const * end_output = encode_buffer + width_times_channels; |
| |
| // fancy RGBA is stored internally as R G B A Rpm Gpm Bpm |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float alpha = input[3]; |
| #ifdef STBIR_SIMD |
| stbir__simdf i,ia; |
| STBIR_SIMD_NO_UNROLL(encode); |
| if ( alpha < stbir__small_float ) |
| { |
| stbir__simdf_load( i, input ); |
| stbir__simdf_store( encode, i ); |
| } |
| else |
| { |
| stbir__simdf_load1frep4( ia, 1.0f / alpha ); |
| stbir__simdf_load( i, input+4 ); |
| stbir__simdf_mult( i, i, ia ); |
| stbir__simdf_store( encode, i ); |
| encode[3] = alpha; |
| } |
| #else |
| if ( alpha < stbir__small_float ) |
| { |
| encode[0] = input[0]; |
| encode[1] = input[1]; |
| encode[2] = input[2]; |
| } |
| else |
| { |
| float ialpha = 1.0f / alpha; |
| encode[0] = input[4] * ialpha; |
| encode[1] = input[5] * ialpha; |
| encode[2] = input[6] * ialpha; |
| } |
| encode[3] = alpha; |
| #endif |
| |
| input += 7; |
| encode += 4; |
| } while ( encode < end_output ); |
| } |
| |
| // format: [X A Xpm][X A Xpm] etc |
| static void stbir__fancy_alpha_unweight_2ch( float * encode_buffer, int width_times_channels ) |
| { |
| float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; |
| float STBIR_SIMD_STREAMOUT_PTR(*) input = encode_buffer; |
| float const * end_output = encode_buffer + width_times_channels; |
| |
| do { |
| float alpha = input[1]; |
| encode[0] = input[0]; |
| if ( alpha >= stbir__small_float ) |
| encode[0] = input[2] / alpha; |
| encode[1] = alpha; |
| |
| input += 3; |
| encode += 2; |
| } while ( encode < end_output ); |
| } |
| |
| static void stbir__simple_alpha_weight_4ch( float * decode_buffer, int width_times_channels ) |
| { |
| float STBIR_STREAMOUT_PTR(*) decode = decode_buffer; |
| float const * end_decode = decode_buffer + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| { |
| decode += 2 * stbir__simdfX_float_count; |
| STBIR_NO_UNROLL_LOOP_START |
| while ( decode <= end_decode ) |
| { |
| stbir__simdfX d0,a0,d1,a1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdfX_load( d0, decode-2*stbir__simdfX_float_count ); |
| stbir__simdfX_load( d1, decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count ); |
| stbir__simdfX_aaa1( a0, d0, STBIR_onesX ); |
| stbir__simdfX_aaa1( a1, d1, STBIR_onesX ); |
| stbir__simdfX_mult( d0, d0, a0 ); |
| stbir__simdfX_mult( d1, d1, a1 ); |
| stbir__simdfX_store ( decode-2*stbir__simdfX_float_count, d0 ); |
| stbir__simdfX_store ( decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count, d1 ); |
| decode += 2 * stbir__simdfX_float_count; |
| } |
| decode -= 2 * stbir__simdfX_float_count; |
| |
| // few last pixels remnants |
| #ifdef STBIR_SIMD8 |
| STBIR_NO_UNROLL_LOOP_START |
| while ( decode < end_decode ) |
| #else |
| if ( decode < end_decode ) |
| #endif |
| { |
| stbir__simdf d,a; |
| stbir__simdf_load( d, decode ); |
| stbir__simdf_aaa1( a, d, STBIR__CONSTF(STBIR_ones) ); |
| stbir__simdf_mult( d, d, a ); |
| stbir__simdf_store ( decode, d ); |
| decode += 4; |
| } |
| } |
| |
| #else |
| |
| while( decode < end_decode ) |
| { |
| float alpha = decode[3]; |
| decode[0] *= alpha; |
| decode[1] *= alpha; |
| decode[2] *= alpha; |
| decode += 4; |
| } |
| |
| #endif |
| } |
| |
| static void stbir__simple_alpha_weight_2ch( float * decode_buffer, int width_times_channels ) |
| { |
| float STBIR_STREAMOUT_PTR(*) decode = decode_buffer; |
| float const * end_decode = decode_buffer + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| decode += 2 * stbir__simdfX_float_count; |
| STBIR_NO_UNROLL_LOOP_START |
| while ( decode <= end_decode ) |
| { |
| stbir__simdfX d0,a0,d1,a1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdfX_load( d0, decode-2*stbir__simdfX_float_count ); |
| stbir__simdfX_load( d1, decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count ); |
| stbir__simdfX_a1a1( a0, d0, STBIR_onesX ); |
| stbir__simdfX_a1a1( a1, d1, STBIR_onesX ); |
| stbir__simdfX_mult( d0, d0, a0 ); |
| stbir__simdfX_mult( d1, d1, a1 ); |
| stbir__simdfX_store ( decode-2*stbir__simdfX_float_count, d0 ); |
| stbir__simdfX_store ( decode-2*stbir__simdfX_float_count+stbir__simdfX_float_count, d1 ); |
| decode += 2 * stbir__simdfX_float_count; |
| } |
| decode -= 2 * stbir__simdfX_float_count; |
| #endif |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode < end_decode ) |
| { |
| float alpha = decode[1]; |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0] *= alpha; |
| decode += 2; |
| } |
| } |
| |
| static void stbir__simple_alpha_unweight_4ch( float * encode_buffer, int width_times_channels ) |
| { |
| float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; |
| float const * end_output = encode_buffer + width_times_channels; |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float alpha = encode[3]; |
| |
| #ifdef STBIR_SIMD |
| stbir__simdf i,ia; |
| STBIR_SIMD_NO_UNROLL(encode); |
| if ( alpha >= stbir__small_float ) |
| { |
| stbir__simdf_load1frep4( ia, 1.0f / alpha ); |
| stbir__simdf_load( i, encode ); |
| stbir__simdf_mult( i, i, ia ); |
| stbir__simdf_store( encode, i ); |
| encode[3] = alpha; |
| } |
| #else |
| if ( alpha >= stbir__small_float ) |
| { |
| float ialpha = 1.0f / alpha; |
| encode[0] *= ialpha; |
| encode[1] *= ialpha; |
| encode[2] *= ialpha; |
| } |
| #endif |
| encode += 4; |
| } while ( encode < end_output ); |
| } |
| |
| static void stbir__simple_alpha_unweight_2ch( float * encode_buffer, int width_times_channels ) |
| { |
| float STBIR_SIMD_STREAMOUT_PTR(*) encode = encode_buffer; |
| float const * end_output = encode_buffer + width_times_channels; |
| |
| do { |
| float alpha = encode[1]; |
| if ( alpha >= stbir__small_float ) |
| encode[0] /= alpha; |
| encode += 2; |
| } while ( encode < end_output ); |
| } |
| |
| |
| // only used in RGB->BGR or BGR->RGB |
| static void stbir__simple_flip_3ch( float * decode_buffer, int width_times_channels ) |
| { |
| float STBIR_STREAMOUT_PTR(*) decode = decode_buffer; |
| float const * end_decode = decode_buffer + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| #ifdef stbir__simdf_swiz2 // do we have two argument swizzles? |
| end_decode -= 12; |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode <= end_decode ) |
| { |
| // on arm64 8 instructions, no overlapping stores |
| stbir__simdf a,b,c,na,nb; |
| STBIR_SIMD_NO_UNROLL(decode); |
| stbir__simdf_load( a, decode ); |
| stbir__simdf_load( b, decode+4 ); |
| stbir__simdf_load( c, decode+8 ); |
| |
| na = stbir__simdf_swiz2( a, b, 2, 1, 0, 5 ); |
| b = stbir__simdf_swiz2( a, b, 4, 3, 6, 7 ); |
| nb = stbir__simdf_swiz2( b, c, 0, 1, 4, 3 ); |
| c = stbir__simdf_swiz2( b, c, 2, 7, 6, 5 ); |
| |
| stbir__simdf_store( decode, na ); |
| stbir__simdf_store( decode+4, nb ); |
| stbir__simdf_store( decode+8, c ); |
| decode += 12; |
| } |
| end_decode += 12; |
| #else |
| end_decode -= 24; |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode <= end_decode ) |
| { |
| // 26 instructions on x64 |
| stbir__simdf a,b,c,d,e,f,g; |
| float i21, i23; |
| STBIR_SIMD_NO_UNROLL(decode); |
| stbir__simdf_load( a, decode ); |
| stbir__simdf_load( b, decode+3 ); |
| stbir__simdf_load( c, decode+6 ); |
| stbir__simdf_load( d, decode+9 ); |
| stbir__simdf_load( e, decode+12 ); |
| stbir__simdf_load( f, decode+15 ); |
| stbir__simdf_load( g, decode+18 ); |
| |
| a = stbir__simdf_swiz( a, 2, 1, 0, 3 ); |
| b = stbir__simdf_swiz( b, 2, 1, 0, 3 ); |
| c = stbir__simdf_swiz( c, 2, 1, 0, 3 ); |
| d = stbir__simdf_swiz( d, 2, 1, 0, 3 ); |
| e = stbir__simdf_swiz( e, 2, 1, 0, 3 ); |
| f = stbir__simdf_swiz( f, 2, 1, 0, 3 ); |
| g = stbir__simdf_swiz( g, 2, 1, 0, 3 ); |
| |
| // stores overlap, need to be in order, |
| stbir__simdf_store( decode, a ); |
| i21 = decode[21]; |
| stbir__simdf_store( decode+3, b ); |
| i23 = decode[23]; |
| stbir__simdf_store( decode+6, c ); |
| stbir__simdf_store( decode+9, d ); |
| stbir__simdf_store( decode+12, e ); |
| stbir__simdf_store( decode+15, f ); |
| stbir__simdf_store( decode+18, g ); |
| decode[21] = i23; |
| decode[23] = i21; |
| decode += 24; |
| } |
| end_decode += 24; |
| #endif |
| #else |
| end_decode -= 12; |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode <= end_decode ) |
| { |
| // 16 instructions |
| float t0,t1,t2,t3; |
| STBIR_NO_UNROLL(decode); |
| t0 = decode[0]; t1 = decode[3]; t2 = decode[6]; t3 = decode[9]; |
| decode[0] = decode[2]; decode[3] = decode[5]; decode[6] = decode[8]; decode[9] = decode[11]; |
| decode[2] = t0; decode[5] = t1; decode[8] = t2; decode[11] = t3; |
| decode += 12; |
| } |
| end_decode += 12; |
| #endif |
| |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < end_decode ) |
| { |
| float t = decode[0]; |
| STBIR_NO_UNROLL(decode); |
| decode[0] = decode[2]; |
| decode[2] = t; |
| decode += 3; |
| } |
| } |
| |
| |
| |
| static void stbir__decode_scanline(stbir__info const * stbir_info, int n, float * output_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO ) |
| { |
| int channels = stbir_info->channels; |
| int effective_channels = stbir_info->effective_channels; |
| int input_sample_in_bytes = stbir__type_size[stbir_info->input_type] * channels; |
| stbir_edge edge_horizontal = stbir_info->horizontal.edge; |
| stbir_edge edge_vertical = stbir_info->vertical.edge; |
| int row = stbir__edge_wrap(edge_vertical, n, stbir_info->vertical.scale_info.input_full_size); |
| const void* input_plane_data = ( (char *) stbir_info->input_data ) + (size_t)row * (size_t) stbir_info->input_stride_bytes; |
| stbir__span const * spans = stbir_info->scanline_extents.spans; |
| float* full_decode_buffer = output_buffer - stbir_info->scanline_extents.conservative.n0 * effective_channels; |
| |
| // if we are on edge_zero, and we get in here with an out of bounds n, then the calculate filters has failed |
| STBIR_ASSERT( !(edge_vertical == STBIR_EDGE_ZERO && (n < 0 || n >= stbir_info->vertical.scale_info.input_full_size)) ); |
| |
| do |
| { |
| float * decode_buffer; |
| void const * input_data; |
| float * end_decode; |
| int width_times_channels; |
| int width; |
| |
| if ( spans->n1 < spans->n0 ) |
| break; |
| |
| width = spans->n1 + 1 - spans->n0; |
| decode_buffer = full_decode_buffer + spans->n0 * effective_channels; |
| end_decode = full_decode_buffer + ( spans->n1 + 1 ) * effective_channels; |
| width_times_channels = width * channels; |
| |
| // read directly out of input plane by default |
| input_data = ( (char*)input_plane_data ) + spans->pixel_offset_for_input * input_sample_in_bytes; |
| |
| // if we have an input callback, call it to get the input data |
| if ( stbir_info->in_pixels_cb ) |
| { |
| // call the callback with a temp buffer (that they can choose to use or not). the temp is just right aligned memory in the decode_buffer itself |
| input_data = stbir_info->in_pixels_cb( ( (char*) end_decode ) - ( width * input_sample_in_bytes ), input_plane_data, width, spans->pixel_offset_for_input, row, stbir_info->user_data ); |
| } |
| |
| STBIR_PROFILE_START( decode ); |
| // convert the pixels info the float decode_buffer, (we index from end_decode, so that when channels<effective_channels, we are right justified in the buffer) |
| stbir_info->decode_pixels( (float*)end_decode - width_times_channels, width_times_channels, input_data ); |
| STBIR_PROFILE_END( decode ); |
| |
| if (stbir_info->alpha_weight) |
| { |
| STBIR_PROFILE_START( alpha ); |
| stbir_info->alpha_weight( decode_buffer, width_times_channels ); |
| STBIR_PROFILE_END( alpha ); |
| } |
| |
| ++spans; |
| } while ( spans <= ( &stbir_info->scanline_extents.spans[1] ) ); |
| |
| // handle the edge_wrap filter (all other types are handled back out at the calculate_filter stage) |
| // basically the idea here is that if we have the whole scanline in memory, we don't redecode the |
| // wrapped edge pixels, and instead just memcpy them from the scanline into the edge positions |
| if ( ( edge_horizontal == STBIR_EDGE_WRAP ) && ( stbir_info->scanline_extents.edge_sizes[0] | stbir_info->scanline_extents.edge_sizes[1] ) ) |
| { |
| // this code only runs if we're in edge_wrap, and we're doing the entire scanline |
| int e, start_x[2]; |
| int input_full_size = stbir_info->horizontal.scale_info.input_full_size; |
| |
| start_x[0] = -stbir_info->scanline_extents.edge_sizes[0]; // left edge start x |
| start_x[1] = input_full_size; // right edge |
| |
| for( e = 0; e < 2 ; e++ ) |
| { |
| // do each margin |
| int margin = stbir_info->scanline_extents.edge_sizes[e]; |
| if ( margin ) |
| { |
| int x = start_x[e]; |
| float * marg = full_decode_buffer + x * effective_channels; |
| float const * src = full_decode_buffer + stbir__edge_wrap(edge_horizontal, x, input_full_size) * effective_channels; |
| STBIR_MEMCPY( marg, src, margin * effective_channels * sizeof(float) ); |
| } |
| } |
| } |
| } |
| |
| |
| //================= |
| // Do 1 channel horizontal routines |
| |
| #ifdef STBIR_SIMD |
| |
| #define stbir__1_coeff_only() \ |
| stbir__simdf tot,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1( c, hc ); \ |
| stbir__simdf_mult1_mem( tot, c, decode ); |
| |
| #define stbir__2_coeff_only() \ |
| stbir__simdf tot,c,d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2z( c, hc ); \ |
| stbir__simdf_load2( d, decode ); \ |
| stbir__simdf_mult( tot, c, d ); \ |
| stbir__simdf_0123to1230( c, tot ); \ |
| stbir__simdf_add1( tot, tot, c ); |
| |
| #define stbir__3_coeff_only() \ |
| stbir__simdf tot,c,t; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( c, hc ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); \ |
| stbir__simdf_0123to1230( c, tot ); \ |
| stbir__simdf_0123to2301( t, tot ); \ |
| stbir__simdf_add1( tot, tot, c ); \ |
| stbir__simdf_add1( tot, tot, t ); |
| |
| #define stbir__store_output_tiny() \ |
| stbir__simdf_store1( output, tot ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 1; |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf tot,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( c, hc ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); \ |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( c, hc + (ofs) ); \ |
| stbir__simdf_madd_mem( tot, tot, c, decode+(ofs) ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| { stbir__simdf d; \ |
| stbir__simdf_load1z( c, hc + (ofs) ); \ |
| stbir__simdf_load1( d, decode + (ofs) ); \ |
| stbir__simdf_madd( tot, tot, d, c ); } |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| { stbir__simdf d; \ |
| stbir__simdf_load2z( c, hc+(ofs) ); \ |
| stbir__simdf_load2( d, decode+(ofs) ); \ |
| stbir__simdf_madd( tot, tot, d, c ); } |
| |
| #define stbir__3_coeff_setup() \ |
| stbir__simdf mask; \ |
| stbir__simdf_load( mask, STBIR_mask + 3 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| stbir__simdf_load( c, hc+(ofs) ); \ |
| stbir__simdf_and( c, c, mask ); \ |
| stbir__simdf_madd_mem( tot, tot, c, decode+(ofs) ); |
| |
| #define stbir__store_output() \ |
| stbir__simdf_0123to2301( c, tot ); \ |
| stbir__simdf_add( tot, tot, c ); \ |
| stbir__simdf_0123to1230( c, tot ); \ |
| stbir__simdf_add1( tot, tot, c ); \ |
| stbir__simdf_store1( output, tot ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 1; |
| |
| #else |
| |
| #define stbir__1_coeff_only() \ |
| float tot; \ |
| tot = decode[0]*hc[0]; |
| |
| #define stbir__2_coeff_only() \ |
| float tot; \ |
| tot = decode[0] * hc[0]; \ |
| tot += decode[1] * hc[1]; |
| |
| #define stbir__3_coeff_only() \ |
| float tot; \ |
| tot = decode[0] * hc[0]; \ |
| tot += decode[1] * hc[1]; \ |
| tot += decode[2] * hc[2]; |
| |
| #define stbir__store_output_tiny() \ |
| output[0] = tot; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 1; |
| |
| #define stbir__4_coeff_start() \ |
| float tot0,tot1,tot2,tot3; \ |
| tot0 = decode[0] * hc[0]; \ |
| tot1 = decode[1] * hc[1]; \ |
| tot2 = decode[2] * hc[2]; \ |
| tot3 = decode[3] * hc[3]; |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \ |
| tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \ |
| tot2 += decode[2+(ofs)] * hc[2+(ofs)]; \ |
| tot3 += decode[3+(ofs)] * hc[3+(ofs)]; |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| tot0 += decode[0+(ofs)] * hc[0+(ofs)]; |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \ |
| tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \ |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| tot0 += decode[0+(ofs)] * hc[0+(ofs)]; \ |
| tot1 += decode[1+(ofs)] * hc[1+(ofs)]; \ |
| tot2 += decode[2+(ofs)] * hc[2+(ofs)]; |
| |
| #define stbir__store_output() \ |
| output[0] = (tot0+tot2)+(tot1+tot3); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 1; |
| |
| #endif |
| |
| #define STBIR__horizontal_channels 1 |
| #define STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #include STBIR__HEADER_FILENAME |
| |
| |
| //================= |
| // Do 2 channel horizontal routines |
| |
| #ifdef STBIR_SIMD |
| |
| #define stbir__1_coeff_only() \ |
| stbir__simdf tot,c,d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1z( c, hc ); \ |
| stbir__simdf_0123to0011( c, c ); \ |
| stbir__simdf_load2( d, decode ); \ |
| stbir__simdf_mult( tot, d, c ); |
| |
| #define stbir__2_coeff_only() \ |
| stbir__simdf tot,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2( c, hc ); \ |
| stbir__simdf_0123to0011( c, c ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); |
| |
| #define stbir__3_coeff_only() \ |
| stbir__simdf tot,c,cs,d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0011( c, cs ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_load2z( d, decode+4 ); \ |
| stbir__simdf_madd( tot, tot, d, c ); |
| |
| #define stbir__store_output_tiny() \ |
| stbir__simdf_0123to2301( c, tot ); \ |
| stbir__simdf_add( tot, tot, c ); \ |
| stbir__simdf_store2( output, tot ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 2; |
| |
| #ifdef STBIR_SIMD8 |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf8 tot0,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc ); \ |
| stbir__simdf8_0123to00112233( c, cs ); \ |
| stbir__simdf8_mult_mem( tot0, c, decode ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00112233( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| { stbir__simdf t,d; \ |
| stbir__simdf_load1z( t, hc + (ofs) ); \ |
| stbir__simdf_load2( d, decode + (ofs) * 2 ); \ |
| stbir__simdf_0123to0011( t, t ); \ |
| stbir__simdf_mult( t, t, d ); \ |
| stbir__simdf8_add4( tot0, tot0, t ); } |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| { stbir__simdf t; \ |
| stbir__simdf_load2( t, hc + (ofs) ); \ |
| stbir__simdf_0123to0011( t, t ); \ |
| stbir__simdf_mult_mem( t, t, decode+(ofs)*2 ); \ |
| stbir__simdf8_add4( tot0, tot0, t ); } |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| { stbir__simdf8 d; \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00112233( c, cs ); \ |
| stbir__simdf8_load6z( d, decode+(ofs)*2 ); \ |
| stbir__simdf8_madd( tot0, tot0, c, d ); } |
| |
| #define stbir__store_output() \ |
| { stbir__simdf t,d; \ |
| stbir__simdf8_add4halves( t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0 ); \ |
| stbir__simdf_0123to2301( d, t ); \ |
| stbir__simdf_add( t, t, d ); \ |
| stbir__simdf_store2( output, t ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 2; } |
| |
| #else |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf tot0,tot1,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0011( c, cs ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_0123to2233( c, cs ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+4 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0011( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); \ |
| stbir__simdf_0123to2233( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*2+4 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| { stbir__simdf d; \ |
| stbir__simdf_load1z( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0011( c, cs ); \ |
| stbir__simdf_load2( d, decode + (ofs) * 2 ); \ |
| stbir__simdf_madd( tot0, tot0, d, c ); } |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| stbir__simdf_load2( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0011( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| { stbir__simdf d; \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0011( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*2 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_load2z( d, decode + (ofs) * 2 + 4 ); \ |
| stbir__simdf_madd( tot1, tot1, d, c ); } |
| |
| #define stbir__store_output() \ |
| stbir__simdf_add( tot0, tot0, tot1 ); \ |
| stbir__simdf_0123to2301( c, tot0 ); \ |
| stbir__simdf_add( tot0, tot0, c ); \ |
| stbir__simdf_store2( output, tot0 ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 2; |
| |
| #endif |
| |
| #else |
| |
| #define stbir__1_coeff_only() \ |
| float tota,totb,c; \ |
| c = hc[0]; \ |
| tota = decode[0]*c; \ |
| totb = decode[1]*c; |
| |
| #define stbir__2_coeff_only() \ |
| float tota,totb,c; \ |
| c = hc[0]; \ |
| tota = decode[0]*c; \ |
| totb = decode[1]*c; \ |
| c = hc[1]; \ |
| tota += decode[2]*c; \ |
| totb += decode[3]*c; |
| |
| // this weird order of add matches the simd |
| #define stbir__3_coeff_only() \ |
| float tota,totb,c; \ |
| c = hc[0]; \ |
| tota = decode[0]*c; \ |
| totb = decode[1]*c; \ |
| c = hc[2]; \ |
| tota += decode[4]*c; \ |
| totb += decode[5]*c; \ |
| c = hc[1]; \ |
| tota += decode[2]*c; \ |
| totb += decode[3]*c; |
| |
| #define stbir__store_output_tiny() \ |
| output[0] = tota; \ |
| output[1] = totb; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 2; |
| |
| #define stbir__4_coeff_start() \ |
| float tota0,tota1,tota2,tota3,totb0,totb1,totb2,totb3,c; \ |
| c = hc[0]; \ |
| tota0 = decode[0]*c; \ |
| totb0 = decode[1]*c; \ |
| c = hc[1]; \ |
| tota1 = decode[2]*c; \ |
| totb1 = decode[3]*c; \ |
| c = hc[2]; \ |
| tota2 = decode[4]*c; \ |
| totb2 = decode[5]*c; \ |
| c = hc[3]; \ |
| tota3 = decode[6]*c; \ |
| totb3 = decode[7]*c; |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*2]*c; \ |
| totb0 += decode[1+(ofs)*2]*c; \ |
| c = hc[1+(ofs)]; \ |
| tota1 += decode[2+(ofs)*2]*c; \ |
| totb1 += decode[3+(ofs)*2]*c; \ |
| c = hc[2+(ofs)]; \ |
| tota2 += decode[4+(ofs)*2]*c; \ |
| totb2 += decode[5+(ofs)*2]*c; \ |
| c = hc[3+(ofs)]; \ |
| tota3 += decode[6+(ofs)*2]*c; \ |
| totb3 += decode[7+(ofs)*2]*c; |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*2] * c; \ |
| totb0 += decode[1+(ofs)*2] * c; |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*2] * c; \ |
| totb0 += decode[1+(ofs)*2] * c; \ |
| c = hc[1+(ofs)]; \ |
| tota1 += decode[2+(ofs)*2] * c; \ |
| totb1 += decode[3+(ofs)*2] * c; |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*2] * c; \ |
| totb0 += decode[1+(ofs)*2] * c; \ |
| c = hc[1+(ofs)]; \ |
| tota1 += decode[2+(ofs)*2] * c; \ |
| totb1 += decode[3+(ofs)*2] * c; \ |
| c = hc[2+(ofs)]; \ |
| tota2 += decode[4+(ofs)*2] * c; \ |
| totb2 += decode[5+(ofs)*2] * c; |
| |
| #define stbir__store_output() \ |
| output[0] = (tota0+tota2)+(tota1+tota3); \ |
| output[1] = (totb0+totb2)+(totb1+totb3); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 2; |
| |
| #endif |
| |
| #define STBIR__horizontal_channels 2 |
| #define STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #include STBIR__HEADER_FILENAME |
| |
| |
| //================= |
| // Do 3 channel horizontal routines |
| |
| #ifdef STBIR_SIMD |
| |
| #define stbir__1_coeff_only() \ |
| stbir__simdf tot,c,d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1z( c, hc ); \ |
| stbir__simdf_0123to0001( c, c ); \ |
| stbir__simdf_load( d, decode ); \ |
| stbir__simdf_mult( tot, d, c ); |
| |
| #define stbir__2_coeff_only() \ |
| stbir__simdf tot,c,cs,d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_load( d, decode ); \ |
| stbir__simdf_mult( tot, d, c ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_load( d, decode+3 ); \ |
| stbir__simdf_madd( tot, tot, d, c ); |
| |
| #define stbir__3_coeff_only() \ |
| stbir__simdf tot,c,d,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_load( d, decode ); \ |
| stbir__simdf_mult( tot, d, c ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_load( d, decode+3 ); \ |
| stbir__simdf_madd( tot, tot, d, c ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_load( d, decode+6 ); \ |
| stbir__simdf_madd( tot, tot, d, c ); |
| |
| #define stbir__store_output_tiny() \ |
| stbir__simdf_store2( output, tot ); \ |
| stbir__simdf_0123to2301( tot, tot ); \ |
| stbir__simdf_store1( output+2, tot ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 3; |
| |
| #ifdef STBIR_SIMD8 |
| |
| // we're loading from the XXXYYY decode by -1 to get the XXXYYY into different halves of the AVX reg fyi |
| #define stbir__4_coeff_start() \ |
| stbir__simdf8 tot0,tot1,c,cs; stbir__simdf t; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc ); \ |
| stbir__simdf8_0123to00001111( c, cs ); \ |
| stbir__simdf8_mult_mem( tot0, c, decode - 1 ); \ |
| stbir__simdf8_0123to22223333( c, cs ); \ |
| stbir__simdf8_mult_mem( tot1, c, decode+6 - 1 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00001111( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); \ |
| stbir__simdf8_0123to22223333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*3 + 6 - 1 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1rep4( t, hc + (ofs) ); \ |
| stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*3 - 1 ); |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) - 2 ); \ |
| stbir__simdf8_0123to22223333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00001111( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*3 - 1 ); \ |
| stbir__simdf8_0123to2222( t, cs ); \ |
| stbir__simdf8_madd_mem4( tot1, tot1, t, decode+(ofs)*3 + 6 - 1 ); |
| |
| #define stbir__store_output() \ |
| stbir__simdf8_add( tot0, tot0, tot1 ); \ |
| stbir__simdf_0123to1230( t, stbir__if_simdf8_cast_to_simdf4( tot0 ) ); \ |
| stbir__simdf8_add4halves( t, t, tot0 ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 3; \ |
| if ( output < output_end ) \ |
| { \ |
| stbir__simdf_store( output-3, t ); \ |
| continue; \ |
| } \ |
| { stbir__simdf tt; stbir__simdf_0123to2301( tt, t ); \ |
| stbir__simdf_store2( output-3, t ); \ |
| stbir__simdf_store1( output+2-3, tt ); } \ |
| break; |
| |
| |
| #else |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf tot0,tot1,tot2,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0001( c, cs ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_0123to1122( c, cs ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+4 ); \ |
| stbir__simdf_0123to2333( c, cs ); \ |
| stbir__simdf_mult_mem( tot2, c, decode+8 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0001( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \ |
| stbir__simdf_0123to1122( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*3+4 ); \ |
| stbir__simdf_0123to2333( c, cs ); \ |
| stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*3+8 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1z( c, hc + (ofs) ); \ |
| stbir__simdf_0123to0001( c, c ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| { stbir__simdf d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2z( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0001( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \ |
| stbir__simdf_0123to1122( c, cs ); \ |
| stbir__simdf_load2z( d, decode+(ofs)*3+4 ); \ |
| stbir__simdf_madd( tot1, tot1, c, d ); } |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| { stbir__simdf d; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0001( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*3 ); \ |
| stbir__simdf_0123to1122( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*3+4 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_load1z( d, decode+(ofs)*3+8 ); \ |
| stbir__simdf_madd( tot2, tot2, c, d ); } |
| |
| #define stbir__store_output() \ |
| stbir__simdf_0123ABCDto3ABx( c, tot0, tot1 ); \ |
| stbir__simdf_0123ABCDto23Ax( cs, tot1, tot2 ); \ |
| stbir__simdf_0123to1230( tot2, tot2 ); \ |
| stbir__simdf_add( tot0, tot0, cs ); \ |
| stbir__simdf_add( c, c, tot2 ); \ |
| stbir__simdf_add( tot0, tot0, c ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 3; \ |
| if ( output < output_end ) \ |
| { \ |
| stbir__simdf_store( output-3, tot0 ); \ |
| continue; \ |
| } \ |
| stbir__simdf_0123to2301( tot1, tot0 ); \ |
| stbir__simdf_store2( output-3, tot0 ); \ |
| stbir__simdf_store1( output+2-3, tot1 ); \ |
| break; |
| |
| #endif |
| |
| #else |
| |
| #define stbir__1_coeff_only() \ |
| float tot0, tot1, tot2, c; \ |
| c = hc[0]; \ |
| tot0 = decode[0]*c; \ |
| tot1 = decode[1]*c; \ |
| tot2 = decode[2]*c; |
| |
| #define stbir__2_coeff_only() \ |
| float tot0, tot1, tot2, c; \ |
| c = hc[0]; \ |
| tot0 = decode[0]*c; \ |
| tot1 = decode[1]*c; \ |
| tot2 = decode[2]*c; \ |
| c = hc[1]; \ |
| tot0 += decode[3]*c; \ |
| tot1 += decode[4]*c; \ |
| tot2 += decode[5]*c; |
| |
| #define stbir__3_coeff_only() \ |
| float tot0, tot1, tot2, c; \ |
| c = hc[0]; \ |
| tot0 = decode[0]*c; \ |
| tot1 = decode[1]*c; \ |
| tot2 = decode[2]*c; \ |
| c = hc[1]; \ |
| tot0 += decode[3]*c; \ |
| tot1 += decode[4]*c; \ |
| tot2 += decode[5]*c; \ |
| c = hc[2]; \ |
| tot0 += decode[6]*c; \ |
| tot1 += decode[7]*c; \ |
| tot2 += decode[8]*c; |
| |
| #define stbir__store_output_tiny() \ |
| output[0] = tot0; \ |
| output[1] = tot1; \ |
| output[2] = tot2; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 3; |
| |
| #define stbir__4_coeff_start() \ |
| float tota0,tota1,tota2,totb0,totb1,totb2,totc0,totc1,totc2,totd0,totd1,totd2,c; \ |
| c = hc[0]; \ |
| tota0 = decode[0]*c; \ |
| tota1 = decode[1]*c; \ |
| tota2 = decode[2]*c; \ |
| c = hc[1]; \ |
| totb0 = decode[3]*c; \ |
| totb1 = decode[4]*c; \ |
| totb2 = decode[5]*c; \ |
| c = hc[2]; \ |
| totc0 = decode[6]*c; \ |
| totc1 = decode[7]*c; \ |
| totc2 = decode[8]*c; \ |
| c = hc[3]; \ |
| totd0 = decode[9]*c; \ |
| totd1 = decode[10]*c; \ |
| totd2 = decode[11]*c; |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*3]*c; \ |
| tota1 += decode[1+(ofs)*3]*c; \ |
| tota2 += decode[2+(ofs)*3]*c; \ |
| c = hc[1+(ofs)]; \ |
| totb0 += decode[3+(ofs)*3]*c; \ |
| totb1 += decode[4+(ofs)*3]*c; \ |
| totb2 += decode[5+(ofs)*3]*c; \ |
| c = hc[2+(ofs)]; \ |
| totc0 += decode[6+(ofs)*3]*c; \ |
| totc1 += decode[7+(ofs)*3]*c; \ |
| totc2 += decode[8+(ofs)*3]*c; \ |
| c = hc[3+(ofs)]; \ |
| totd0 += decode[9+(ofs)*3]*c; \ |
| totd1 += decode[10+(ofs)*3]*c; \ |
| totd2 += decode[11+(ofs)*3]*c; |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*3]*c; \ |
| tota1 += decode[1+(ofs)*3]*c; \ |
| tota2 += decode[2+(ofs)*3]*c; |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*3]*c; \ |
| tota1 += decode[1+(ofs)*3]*c; \ |
| tota2 += decode[2+(ofs)*3]*c; \ |
| c = hc[1+(ofs)]; \ |
| totb0 += decode[3+(ofs)*3]*c; \ |
| totb1 += decode[4+(ofs)*3]*c; \ |
| totb2 += decode[5+(ofs)*3]*c; \ |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| c = hc[0+(ofs)]; \ |
| tota0 += decode[0+(ofs)*3]*c; \ |
| tota1 += decode[1+(ofs)*3]*c; \ |
| tota2 += decode[2+(ofs)*3]*c; \ |
| c = hc[1+(ofs)]; \ |
| totb0 += decode[3+(ofs)*3]*c; \ |
| totb1 += decode[4+(ofs)*3]*c; \ |
| totb2 += decode[5+(ofs)*3]*c; \ |
| c = hc[2+(ofs)]; \ |
| totc0 += decode[6+(ofs)*3]*c; \ |
| totc1 += decode[7+(ofs)*3]*c; \ |
| totc2 += decode[8+(ofs)*3]*c; |
| |
| #define stbir__store_output() \ |
| output[0] = (tota0+totc0)+(totb0+totd0); \ |
| output[1] = (tota1+totc1)+(totb1+totd1); \ |
| output[2] = (tota2+totc2)+(totb2+totd2); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 3; |
| |
| #endif |
| |
| #define STBIR__horizontal_channels 3 |
| #define STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #include STBIR__HEADER_FILENAME |
| |
| //================= |
| // Do 4 channel horizontal routines |
| |
| #ifdef STBIR_SIMD |
| |
| #define stbir__1_coeff_only() \ |
| stbir__simdf tot,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1( c, hc ); \ |
| stbir__simdf_0123to0000( c, c ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); |
| |
| #define stbir__2_coeff_only() \ |
| stbir__simdf tot,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot, tot, c, decode+4 ); |
| |
| #define stbir__3_coeff_only() \ |
| stbir__simdf tot,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_mult_mem( tot, c, decode ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot, tot, c, decode+4 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot, tot, c, decode+8 ); |
| |
| #define stbir__store_output_tiny() \ |
| stbir__simdf_store( output, tot ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 4; |
| |
| #ifdef STBIR_SIMD8 |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf8 tot0,c,cs; stbir__simdf t; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc ); \ |
| stbir__simdf8_0123to00001111( c, cs ); \ |
| stbir__simdf8_mult_mem( tot0, c, decode ); \ |
| stbir__simdf8_0123to22223333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+8 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00001111( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ |
| stbir__simdf8_0123to22223333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1rep4( t, hc + (ofs) ); \ |
| stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*4 ); |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) - 2 ); \ |
| stbir__simdf8_0123to22223333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00001111( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ |
| stbir__simdf8_0123to2222( t, cs ); \ |
| stbir__simdf8_madd_mem4( tot0, tot0, t, decode+(ofs)*4+8 ); |
| |
| #define stbir__store_output() \ |
| stbir__simdf8_add4halves( t, stbir__if_simdf8_cast_to_simdf4(tot0), tot0 ); \ |
| stbir__simdf_store( output, t ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 4; |
| |
| #else |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf tot0,tot1,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+4 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+8 ); \ |
| stbir__simdf_0123to3333( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+12 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); \ |
| stbir__simdf_0123to3333( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+12 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1( c, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, c ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*4+4 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*4+8 ); |
| |
| #define stbir__store_output() \ |
| stbir__simdf_add( tot0, tot0, tot1 ); \ |
| stbir__simdf_store( output, tot0 ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 4; |
| |
| #endif |
| |
| #else |
| |
| #define stbir__1_coeff_only() \ |
| float p0,p1,p2,p3,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0]; \ |
| p0 = decode[0] * c; \ |
| p1 = decode[1] * c; \ |
| p2 = decode[2] * c; \ |
| p3 = decode[3] * c; |
| |
| #define stbir__2_coeff_only() \ |
| float p0,p1,p2,p3,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0]; \ |
| p0 = decode[0] * c; \ |
| p1 = decode[1] * c; \ |
| p2 = decode[2] * c; \ |
| p3 = decode[3] * c; \ |
| c = hc[1]; \ |
| p0 += decode[4] * c; \ |
| p1 += decode[5] * c; \ |
| p2 += decode[6] * c; \ |
| p3 += decode[7] * c; |
| |
| #define stbir__3_coeff_only() \ |
| float p0,p1,p2,p3,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0]; \ |
| p0 = decode[0] * c; \ |
| p1 = decode[1] * c; \ |
| p2 = decode[2] * c; \ |
| p3 = decode[3] * c; \ |
| c = hc[1]; \ |
| p0 += decode[4] * c; \ |
| p1 += decode[5] * c; \ |
| p2 += decode[6] * c; \ |
| p3 += decode[7] * c; \ |
| c = hc[2]; \ |
| p0 += decode[8] * c; \ |
| p1 += decode[9] * c; \ |
| p2 += decode[10] * c; \ |
| p3 += decode[11] * c; |
| |
| #define stbir__store_output_tiny() \ |
| output[0] = p0; \ |
| output[1] = p1; \ |
| output[2] = p2; \ |
| output[3] = p3; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 4; |
| |
| #define stbir__4_coeff_start() \ |
| float x0,x1,x2,x3,y0,y1,y2,y3,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0]; \ |
| x0 = decode[0] * c; \ |
| x1 = decode[1] * c; \ |
| x2 = decode[2] * c; \ |
| x3 = decode[3] * c; \ |
| c = hc[1]; \ |
| y0 = decode[4] * c; \ |
| y1 = decode[5] * c; \ |
| y2 = decode[6] * c; \ |
| y3 = decode[7] * c; \ |
| c = hc[2]; \ |
| x0 += decode[8] * c; \ |
| x1 += decode[9] * c; \ |
| x2 += decode[10] * c; \ |
| x3 += decode[11] * c; \ |
| c = hc[3]; \ |
| y0 += decode[12] * c; \ |
| y1 += decode[13] * c; \ |
| y2 += decode[14] * c; \ |
| y3 += decode[15] * c; |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*4] * c; \ |
| x1 += decode[1+(ofs)*4] * c; \ |
| x2 += decode[2+(ofs)*4] * c; \ |
| x3 += decode[3+(ofs)*4] * c; \ |
| c = hc[1+(ofs)]; \ |
| y0 += decode[4+(ofs)*4] * c; \ |
| y1 += decode[5+(ofs)*4] * c; \ |
| y2 += decode[6+(ofs)*4] * c; \ |
| y3 += decode[7+(ofs)*4] * c; \ |
| c = hc[2+(ofs)]; \ |
| x0 += decode[8+(ofs)*4] * c; \ |
| x1 += decode[9+(ofs)*4] * c; \ |
| x2 += decode[10+(ofs)*4] * c; \ |
| x3 += decode[11+(ofs)*4] * c; \ |
| c = hc[3+(ofs)]; \ |
| y0 += decode[12+(ofs)*4] * c; \ |
| y1 += decode[13+(ofs)*4] * c; \ |
| y2 += decode[14+(ofs)*4] * c; \ |
| y3 += decode[15+(ofs)*4] * c; |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*4] * c; \ |
| x1 += decode[1+(ofs)*4] * c; \ |
| x2 += decode[2+(ofs)*4] * c; \ |
| x3 += decode[3+(ofs)*4] * c; |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*4] * c; \ |
| x1 += decode[1+(ofs)*4] * c; \ |
| x2 += decode[2+(ofs)*4] * c; \ |
| x3 += decode[3+(ofs)*4] * c; \ |
| c = hc[1+(ofs)]; \ |
| y0 += decode[4+(ofs)*4] * c; \ |
| y1 += decode[5+(ofs)*4] * c; \ |
| y2 += decode[6+(ofs)*4] * c; \ |
| y3 += decode[7+(ofs)*4] * c; |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*4] * c; \ |
| x1 += decode[1+(ofs)*4] * c; \ |
| x2 += decode[2+(ofs)*4] * c; \ |
| x3 += decode[3+(ofs)*4] * c; \ |
| c = hc[1+(ofs)]; \ |
| y0 += decode[4+(ofs)*4] * c; \ |
| y1 += decode[5+(ofs)*4] * c; \ |
| y2 += decode[6+(ofs)*4] * c; \ |
| y3 += decode[7+(ofs)*4] * c; \ |
| c = hc[2+(ofs)]; \ |
| x0 += decode[8+(ofs)*4] * c; \ |
| x1 += decode[9+(ofs)*4] * c; \ |
| x2 += decode[10+(ofs)*4] * c; \ |
| x3 += decode[11+(ofs)*4] * c; |
| |
| #define stbir__store_output() \ |
| output[0] = x0 + y0; \ |
| output[1] = x1 + y1; \ |
| output[2] = x2 + y2; \ |
| output[3] = x3 + y3; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 4; |
| |
| #endif |
| |
| #define STBIR__horizontal_channels 4 |
| #define STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #include STBIR__HEADER_FILENAME |
| |
| |
| |
| //================= |
| // Do 7 channel horizontal routines |
| |
| #ifdef STBIR_SIMD |
| |
| #define stbir__1_coeff_only() \ |
| stbir__simdf tot0,tot1,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1( c, hc ); \ |
| stbir__simdf_0123to0000( c, c ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+3 ); |
| |
| #define stbir__2_coeff_only() \ |
| stbir__simdf tot0,tot1,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+3 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+7 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c,decode+10 ); |
| |
| #define stbir__3_coeff_only() \ |
| stbir__simdf tot0,tot1,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+3 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+7 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+10 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+14 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+17 ); |
| |
| #define stbir__store_output_tiny() \ |
| stbir__simdf_store( output+3, tot1 ); \ |
| stbir__simdf_store( output, tot0 ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 7; |
| |
| #ifdef STBIR_SIMD8 |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf8 tot0,tot1,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc ); \ |
| stbir__simdf8_0123to00000000( c, cs ); \ |
| stbir__simdf8_mult_mem( tot0, c, decode ); \ |
| stbir__simdf8_0123to11111111( c, cs ); \ |
| stbir__simdf8_mult_mem( tot1, c, decode+7 ); \ |
| stbir__simdf8_0123to22222222( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+14 ); \ |
| stbir__simdf8_0123to33333333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot1, tot1, c, decode+21 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00000000( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf8_0123to11111111( c, cs ); \ |
| stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); \ |
| stbir__simdf8_0123to22222222( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \ |
| stbir__simdf8_0123to33333333( c, cs ); \ |
| stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+21 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load1b( c, hc + (ofs) ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load1b( c, hc + (ofs) ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf8_load1b( c, hc + (ofs)+1 ); \ |
| stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf8_load4b( cs, hc + (ofs) ); \ |
| stbir__simdf8_0123to00000000( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf8_0123to11111111( c, cs ); \ |
| stbir__simdf8_madd_mem( tot1, tot1, c, decode+(ofs)*7+7 ); \ |
| stbir__simdf8_0123to22222222( c, cs ); \ |
| stbir__simdf8_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); |
| |
| #define stbir__store_output() \ |
| stbir__simdf8_add( tot0, tot0, tot1 ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 7; \ |
| if ( output < output_end ) \ |
| { \ |
| stbir__simdf8_store( output-7, tot0 ); \ |
| continue; \ |
| } \ |
| stbir__simdf_store( output-7+3, stbir__simdf_swiz(stbir__simdf8_gettop4(tot0),0,0,1,2) ); \ |
| stbir__simdf_store( output-7, stbir__if_simdf8_cast_to_simdf4(tot0) ); \ |
| break; |
| |
| #else |
| |
| #define stbir__4_coeff_start() \ |
| stbir__simdf tot0,tot1,tot2,tot3,c,cs; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_mult_mem( tot0, c, decode ); \ |
| stbir__simdf_mult_mem( tot1, c, decode+3 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_mult_mem( tot2, c, decode+7 ); \ |
| stbir__simdf_mult_mem( tot3, c, decode+10 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+14 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+17 ); \ |
| stbir__simdf_0123to3333( c, cs ); \ |
| stbir__simdf_madd_mem( tot2, tot2, c, decode+21 ); \ |
| stbir__simdf_madd_mem( tot3, tot3, c, decode+24 ); |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \ |
| stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+17 ); \ |
| stbir__simdf_0123to3333( c, cs ); \ |
| stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+21 ); \ |
| stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+24 ); |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load1( c, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, c ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load2( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \ |
| stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| stbir__simdf_load( cs, hc + (ofs) ); \ |
| stbir__simdf_0123to0000( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+3 ); \ |
| stbir__simdf_0123to1111( c, cs ); \ |
| stbir__simdf_madd_mem( tot2, tot2, c, decode+(ofs)*7+7 ); \ |
| stbir__simdf_madd_mem( tot3, tot3, c, decode+(ofs)*7+10 ); \ |
| stbir__simdf_0123to2222( c, cs ); \ |
| stbir__simdf_madd_mem( tot0, tot0, c, decode+(ofs)*7+14 ); \ |
| stbir__simdf_madd_mem( tot1, tot1, c, decode+(ofs)*7+17 ); |
| |
| #define stbir__store_output() \ |
| stbir__simdf_add( tot0, tot0, tot2 ); \ |
| stbir__simdf_add( tot1, tot1, tot3 ); \ |
| stbir__simdf_store( output+3, tot1 ); \ |
| stbir__simdf_store( output, tot0 ); \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 7; |
| |
| #endif |
| |
| #else |
| |
| #define stbir__1_coeff_only() \ |
| float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \ |
| c = hc[0]; \ |
| tot0 = decode[0]*c; \ |
| tot1 = decode[1]*c; \ |
| tot2 = decode[2]*c; \ |
| tot3 = decode[3]*c; \ |
| tot4 = decode[4]*c; \ |
| tot5 = decode[5]*c; \ |
| tot6 = decode[6]*c; |
| |
| #define stbir__2_coeff_only() \ |
| float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \ |
| c = hc[0]; \ |
| tot0 = decode[0]*c; \ |
| tot1 = decode[1]*c; \ |
| tot2 = decode[2]*c; \ |
| tot3 = decode[3]*c; \ |
| tot4 = decode[4]*c; \ |
| tot5 = decode[5]*c; \ |
| tot6 = decode[6]*c; \ |
| c = hc[1]; \ |
| tot0 += decode[7]*c; \ |
| tot1 += decode[8]*c; \ |
| tot2 += decode[9]*c; \ |
| tot3 += decode[10]*c; \ |
| tot4 += decode[11]*c; \ |
| tot5 += decode[12]*c; \ |
| tot6 += decode[13]*c; \ |
| |
| #define stbir__3_coeff_only() \ |
| float tot0, tot1, tot2, tot3, tot4, tot5, tot6, c; \ |
| c = hc[0]; \ |
| tot0 = decode[0]*c; \ |
| tot1 = decode[1]*c; \ |
| tot2 = decode[2]*c; \ |
| tot3 = decode[3]*c; \ |
| tot4 = decode[4]*c; \ |
| tot5 = decode[5]*c; \ |
| tot6 = decode[6]*c; \ |
| c = hc[1]; \ |
| tot0 += decode[7]*c; \ |
| tot1 += decode[8]*c; \ |
| tot2 += decode[9]*c; \ |
| tot3 += decode[10]*c; \ |
| tot4 += decode[11]*c; \ |
| tot5 += decode[12]*c; \ |
| tot6 += decode[13]*c; \ |
| c = hc[2]; \ |
| tot0 += decode[14]*c; \ |
| tot1 += decode[15]*c; \ |
| tot2 += decode[16]*c; \ |
| tot3 += decode[17]*c; \ |
| tot4 += decode[18]*c; \ |
| tot5 += decode[19]*c; \ |
| tot6 += decode[20]*c; \ |
| |
| #define stbir__store_output_tiny() \ |
| output[0] = tot0; \ |
| output[1] = tot1; \ |
| output[2] = tot2; \ |
| output[3] = tot3; \ |
| output[4] = tot4; \ |
| output[5] = tot5; \ |
| output[6] = tot6; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 7; |
| |
| #define stbir__4_coeff_start() \ |
| float x0,x1,x2,x3,x4,x5,x6,y0,y1,y2,y3,y4,y5,y6,c; \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0]; \ |
| x0 = decode[0] * c; \ |
| x1 = decode[1] * c; \ |
| x2 = decode[2] * c; \ |
| x3 = decode[3] * c; \ |
| x4 = decode[4] * c; \ |
| x5 = decode[5] * c; \ |
| x6 = decode[6] * c; \ |
| c = hc[1]; \ |
| y0 = decode[7] * c; \ |
| y1 = decode[8] * c; \ |
| y2 = decode[9] * c; \ |
| y3 = decode[10] * c; \ |
| y4 = decode[11] * c; \ |
| y5 = decode[12] * c; \ |
| y6 = decode[13] * c; \ |
| c = hc[2]; \ |
| x0 += decode[14] * c; \ |
| x1 += decode[15] * c; \ |
| x2 += decode[16] * c; \ |
| x3 += decode[17] * c; \ |
| x4 += decode[18] * c; \ |
| x5 += decode[19] * c; \ |
| x6 += decode[20] * c; \ |
| c = hc[3]; \ |
| y0 += decode[21] * c; \ |
| y1 += decode[22] * c; \ |
| y2 += decode[23] * c; \ |
| y3 += decode[24] * c; \ |
| y4 += decode[25] * c; \ |
| y5 += decode[26] * c; \ |
| y6 += decode[27] * c; |
| |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*7] * c; \ |
| x1 += decode[1+(ofs)*7] * c; \ |
| x2 += decode[2+(ofs)*7] * c; \ |
| x3 += decode[3+(ofs)*7] * c; \ |
| x4 += decode[4+(ofs)*7] * c; \ |
| x5 += decode[5+(ofs)*7] * c; \ |
| x6 += decode[6+(ofs)*7] * c; \ |
| c = hc[1+(ofs)]; \ |
| y0 += decode[7+(ofs)*7] * c; \ |
| y1 += decode[8+(ofs)*7] * c; \ |
| y2 += decode[9+(ofs)*7] * c; \ |
| y3 += decode[10+(ofs)*7] * c; \ |
| y4 += decode[11+(ofs)*7] * c; \ |
| y5 += decode[12+(ofs)*7] * c; \ |
| y6 += decode[13+(ofs)*7] * c; \ |
| c = hc[2+(ofs)]; \ |
| x0 += decode[14+(ofs)*7] * c; \ |
| x1 += decode[15+(ofs)*7] * c; \ |
| x2 += decode[16+(ofs)*7] * c; \ |
| x3 += decode[17+(ofs)*7] * c; \ |
| x4 += decode[18+(ofs)*7] * c; \ |
| x5 += decode[19+(ofs)*7] * c; \ |
| x6 += decode[20+(ofs)*7] * c; \ |
| c = hc[3+(ofs)]; \ |
| y0 += decode[21+(ofs)*7] * c; \ |
| y1 += decode[22+(ofs)*7] * c; \ |
| y2 += decode[23+(ofs)*7] * c; \ |
| y3 += decode[24+(ofs)*7] * c; \ |
| y4 += decode[25+(ofs)*7] * c; \ |
| y5 += decode[26+(ofs)*7] * c; \ |
| y6 += decode[27+(ofs)*7] * c; |
| |
| #define stbir__1_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*7] * c; \ |
| x1 += decode[1+(ofs)*7] * c; \ |
| x2 += decode[2+(ofs)*7] * c; \ |
| x3 += decode[3+(ofs)*7] * c; \ |
| x4 += decode[4+(ofs)*7] * c; \ |
| x5 += decode[5+(ofs)*7] * c; \ |
| x6 += decode[6+(ofs)*7] * c; \ |
| |
| #define stbir__2_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*7] * c; \ |
| x1 += decode[1+(ofs)*7] * c; \ |
| x2 += decode[2+(ofs)*7] * c; \ |
| x3 += decode[3+(ofs)*7] * c; \ |
| x4 += decode[4+(ofs)*7] * c; \ |
| x5 += decode[5+(ofs)*7] * c; \ |
| x6 += decode[6+(ofs)*7] * c; \ |
| c = hc[1+(ofs)]; \ |
| y0 += decode[7+(ofs)*7] * c; \ |
| y1 += decode[8+(ofs)*7] * c; \ |
| y2 += decode[9+(ofs)*7] * c; \ |
| y3 += decode[10+(ofs)*7] * c; \ |
| y4 += decode[11+(ofs)*7] * c; \ |
| y5 += decode[12+(ofs)*7] * c; \ |
| y6 += decode[13+(ofs)*7] * c; \ |
| |
| #define stbir__3_coeff_remnant( ofs ) \ |
| STBIR_SIMD_NO_UNROLL(decode); \ |
| c = hc[0+(ofs)]; \ |
| x0 += decode[0+(ofs)*7] * c; \ |
| x1 += decode[1+(ofs)*7] * c; \ |
| x2 += decode[2+(ofs)*7] * c; \ |
| x3 += decode[3+(ofs)*7] * c; \ |
| x4 += decode[4+(ofs)*7] * c; \ |
| x5 += decode[5+(ofs)*7] * c; \ |
| x6 += decode[6+(ofs)*7] * c; \ |
| c = hc[1+(ofs)]; \ |
| y0 += decode[7+(ofs)*7] * c; \ |
| y1 += decode[8+(ofs)*7] * c; \ |
| y2 += decode[9+(ofs)*7] * c; \ |
| y3 += decode[10+(ofs)*7] * c; \ |
| y4 += decode[11+(ofs)*7] * c; \ |
| y5 += decode[12+(ofs)*7] * c; \ |
| y6 += decode[13+(ofs)*7] * c; \ |
| c = hc[2+(ofs)]; \ |
| x0 += decode[14+(ofs)*7] * c; \ |
| x1 += decode[15+(ofs)*7] * c; \ |
| x2 += decode[16+(ofs)*7] * c; \ |
| x3 += decode[17+(ofs)*7] * c; \ |
| x4 += decode[18+(ofs)*7] * c; \ |
| x5 += decode[19+(ofs)*7] * c; \ |
| x6 += decode[20+(ofs)*7] * c; \ |
| |
| #define stbir__store_output() \ |
| output[0] = x0 + y0; \ |
| output[1] = x1 + y1; \ |
| output[2] = x2 + y2; \ |
| output[3] = x3 + y3; \ |
| output[4] = x4 + y4; \ |
| output[5] = x5 + y5; \ |
| output[6] = x6 + y6; \ |
| horizontal_coefficients += coefficient_width; \ |
| ++horizontal_contributors; \ |
| output += 7; |
| |
| #endif |
| |
| #define STBIR__horizontal_channels 7 |
| #define STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #include STBIR__HEADER_FILENAME |
| |
| |
| // include all of the vertical resamplers (both scatter and gather versions) |
| |
| #define STBIR__vertical_channels 1 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 1 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 2 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 2 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 3 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 3 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 4 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 4 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 5 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 5 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 6 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 6 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 7 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 7 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 8 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #include STBIR__HEADER_FILENAME |
| |
| #define STBIR__vertical_channels 8 |
| #define STB_IMAGE_RESIZE_DO_VERTICALS |
| #define STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #include STBIR__HEADER_FILENAME |
| |
| typedef void STBIR_VERTICAL_GATHERFUNC( float * output, float const * coeffs, float const ** inputs, float const * input0_end ); |
| |
| static STBIR_VERTICAL_GATHERFUNC * stbir__vertical_gathers[ 8 ] = |
| { |
| stbir__vertical_gather_with_1_coeffs,stbir__vertical_gather_with_2_coeffs,stbir__vertical_gather_with_3_coeffs,stbir__vertical_gather_with_4_coeffs,stbir__vertical_gather_with_5_coeffs,stbir__vertical_gather_with_6_coeffs,stbir__vertical_gather_with_7_coeffs,stbir__vertical_gather_with_8_coeffs |
| }; |
| |
| static STBIR_VERTICAL_GATHERFUNC * stbir__vertical_gathers_continues[ 8 ] = |
| { |
| stbir__vertical_gather_with_1_coeffs_cont,stbir__vertical_gather_with_2_coeffs_cont,stbir__vertical_gather_with_3_coeffs_cont,stbir__vertical_gather_with_4_coeffs_cont,stbir__vertical_gather_with_5_coeffs_cont,stbir__vertical_gather_with_6_coeffs_cont,stbir__vertical_gather_with_7_coeffs_cont,stbir__vertical_gather_with_8_coeffs_cont |
| }; |
| |
| typedef void STBIR_VERTICAL_SCATTERFUNC( float ** outputs, float const * coeffs, float const * input, float const * input_end ); |
| |
| static STBIR_VERTICAL_SCATTERFUNC * stbir__vertical_scatter_sets[ 8 ] = |
| { |
| stbir__vertical_scatter_with_1_coeffs,stbir__vertical_scatter_with_2_coeffs,stbir__vertical_scatter_with_3_coeffs,stbir__vertical_scatter_with_4_coeffs,stbir__vertical_scatter_with_5_coeffs,stbir__vertical_scatter_with_6_coeffs,stbir__vertical_scatter_with_7_coeffs,stbir__vertical_scatter_with_8_coeffs |
| }; |
| |
| static STBIR_VERTICAL_SCATTERFUNC * stbir__vertical_scatter_blends[ 8 ] = |
| { |
| stbir__vertical_scatter_with_1_coeffs_cont,stbir__vertical_scatter_with_2_coeffs_cont,stbir__vertical_scatter_with_3_coeffs_cont,stbir__vertical_scatter_with_4_coeffs_cont,stbir__vertical_scatter_with_5_coeffs_cont,stbir__vertical_scatter_with_6_coeffs_cont,stbir__vertical_scatter_with_7_coeffs_cont,stbir__vertical_scatter_with_8_coeffs_cont |
| }; |
| |
| |
| static void stbir__encode_scanline( stbir__info const * stbir_info, void *output_buffer_data, float * encode_buffer, int row STBIR_ONLY_PROFILE_GET_SPLIT_INFO ) |
| { |
| int num_pixels = stbir_info->horizontal.scale_info.output_sub_size; |
| int channels = stbir_info->channels; |
| int width_times_channels = num_pixels * channels; |
| void * output_buffer; |
| |
| // un-alpha weight if we need to |
| if ( stbir_info->alpha_unweight ) |
| { |
| STBIR_PROFILE_START( unalpha ); |
| stbir_info->alpha_unweight( encode_buffer, width_times_channels ); |
| STBIR_PROFILE_END( unalpha ); |
| } |
| |
| // write directly into output by default |
| output_buffer = output_buffer_data; |
| |
| // if we have an output callback, we first convert the decode buffer in place (and then hand that to the callback) |
| if ( stbir_info->out_pixels_cb ) |
| output_buffer = encode_buffer; |
| |
| STBIR_PROFILE_START( encode ); |
| // convert into the output buffer |
| stbir_info->encode_pixels( output_buffer, width_times_channels, encode_buffer ); |
| STBIR_PROFILE_END( encode ); |
| |
| // if we have an output callback, call it to send the data |
| if ( stbir_info->out_pixels_cb ) |
| stbir_info->out_pixels_cb( output_buffer, num_pixels, row, stbir_info->user_data ); |
| } |
| |
| |
| // Get the ring buffer pointer for an index |
| static float* stbir__get_ring_buffer_entry(stbir__info const * stbir_info, stbir__per_split_info const * split_info, int index ) |
| { |
| STBIR_ASSERT( index < stbir_info->ring_buffer_num_entries ); |
| |
| #ifdef STBIR__SEPARATE_ALLOCATIONS |
| return split_info->ring_buffers[ index ]; |
| #else |
| return (float*) ( ( (char*) split_info->ring_buffer ) + ( index * stbir_info->ring_buffer_length_bytes ) ); |
| #endif |
| } |
| |
| // Get the specified scan line from the ring buffer |
| static float* stbir__get_ring_buffer_scanline(stbir__info const * stbir_info, stbir__per_split_info const * split_info, int get_scanline) |
| { |
| int ring_buffer_index = (split_info->ring_buffer_begin_index + (get_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries; |
| return stbir__get_ring_buffer_entry( stbir_info, split_info, ring_buffer_index ); |
| } |
| |
| static void stbir__resample_horizontal_gather(stbir__info const * stbir_info, float* output_buffer, float const * input_buffer STBIR_ONLY_PROFILE_GET_SPLIT_INFO ) |
| { |
| float const * decode_buffer = input_buffer - ( stbir_info->scanline_extents.conservative.n0 * stbir_info->effective_channels ); |
| |
| STBIR_PROFILE_START( horizontal ); |
| if ( ( stbir_info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE ) && ( stbir_info->horizontal.scale_info.scale == 1.0f ) ) |
| STBIR_MEMCPY( output_buffer, input_buffer, stbir_info->horizontal.scale_info.output_sub_size * sizeof( float ) * stbir_info->effective_channels ); |
| else |
| stbir_info->horizontal_gather_channels( output_buffer, stbir_info->horizontal.scale_info.output_sub_size, decode_buffer, stbir_info->horizontal.contributors, stbir_info->horizontal.coefficients, stbir_info->horizontal.coefficient_width ); |
| STBIR_PROFILE_END( horizontal ); |
| } |
| |
| static void stbir__resample_vertical_gather(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n, int contrib_n0, int contrib_n1, float const * vertical_coefficients ) |
| { |
| float* encode_buffer = split_info->vertical_buffer; |
| float* decode_buffer = split_info->decode_buffer; |
| int vertical_first = stbir_info->vertical_first; |
| int width = (vertical_first) ? ( stbir_info->scanline_extents.conservative.n1-stbir_info->scanline_extents.conservative.n0+1 ) : stbir_info->horizontal.scale_info.output_sub_size; |
| int width_times_channels = stbir_info->effective_channels * width; |
| |
| STBIR_ASSERT( stbir_info->vertical.is_gather ); |
| |
| // loop over the contributing scanlines and scale into the buffer |
| STBIR_PROFILE_START( vertical ); |
| { |
| int k = 0, total = contrib_n1 - contrib_n0 + 1; |
| STBIR_ASSERT( total > 0 ); |
| do { |
| float const * inputs[8]; |
| int i, cnt = total; if ( cnt > 8 ) cnt = 8; |
| for( i = 0 ; i < cnt ; i++ ) |
| inputs[ i ] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k+i+contrib_n0 ); |
| |
| // call the N scanlines at a time function (up to 8 scanlines of blending at once) |
| ((k==0)?stbir__vertical_gathers:stbir__vertical_gathers_continues)[cnt-1]( (vertical_first) ? decode_buffer : encode_buffer, vertical_coefficients + k, inputs, inputs[0] + width_times_channels ); |
| k += cnt; |
| total -= cnt; |
| } while ( total ); |
| } |
| STBIR_PROFILE_END( vertical ); |
| |
| if ( vertical_first ) |
| { |
| // Now resample the gathered vertical data in the horizontal axis into the encode buffer |
| stbir__resample_horizontal_gather(stbir_info, encode_buffer, decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| } |
| |
| stbir__encode_scanline( stbir_info, ( (char *) stbir_info->output_data ) + ((size_t)n * (size_t)stbir_info->output_stride_bytes), |
| encode_buffer, n STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| } |
| |
| static void stbir__decode_and_resample_for_vertical_gather_loop(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n) |
| { |
| int ring_buffer_index; |
| float* ring_buffer; |
| |
| // Decode the nth scanline from the source image into the decode buffer. |
| stbir__decode_scanline( stbir_info, n, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // update new end scanline |
| split_info->ring_buffer_last_scanline = n; |
| |
| // get ring buffer |
| ring_buffer_index = (split_info->ring_buffer_begin_index + (split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline)) % stbir_info->ring_buffer_num_entries; |
| ring_buffer = stbir__get_ring_buffer_entry(stbir_info, split_info, ring_buffer_index); |
| |
| // Now resample it into the ring buffer. |
| stbir__resample_horizontal_gather( stbir_info, ring_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // Now it's sitting in the ring buffer ready to be used as source for the vertical sampling. |
| } |
| |
| static void stbir__vertical_gather_loop( stbir__info const * stbir_info, stbir__per_split_info* split_info, int split_count ) |
| { |
| int y, start_output_y, end_output_y; |
| stbir__contributors* vertical_contributors = stbir_info->vertical.contributors; |
| float const * vertical_coefficients = stbir_info->vertical.coefficients; |
| |
| STBIR_ASSERT( stbir_info->vertical.is_gather ); |
| |
| start_output_y = split_info->start_output_y; |
| end_output_y = split_info[split_count-1].end_output_y; |
| |
| vertical_contributors += start_output_y; |
| vertical_coefficients += start_output_y * stbir_info->vertical.coefficient_width; |
| |
| // initialize the ring buffer for gathering |
| split_info->ring_buffer_begin_index = 0; |
| split_info->ring_buffer_first_scanline = vertical_contributors->n0; |
| split_info->ring_buffer_last_scanline = split_info->ring_buffer_first_scanline - 1; // means "empty" |
| |
| for (y = start_output_y; y < end_output_y; y++) |
| { |
| int in_first_scanline, in_last_scanline; |
| |
| in_first_scanline = vertical_contributors->n0; |
| in_last_scanline = vertical_contributors->n1; |
| |
| // make sure the indexing hasn't broken |
| STBIR_ASSERT( in_first_scanline >= split_info->ring_buffer_first_scanline ); |
| |
| // Load in new scanlines |
| while (in_last_scanline > split_info->ring_buffer_last_scanline) |
| { |
| STBIR_ASSERT( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) <= stbir_info->ring_buffer_num_entries ); |
| |
| // make sure there was room in the ring buffer when we add new scanlines |
| if ( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) == stbir_info->ring_buffer_num_entries ) |
| { |
| split_info->ring_buffer_first_scanline++; |
| split_info->ring_buffer_begin_index++; |
| } |
| |
| if ( stbir_info->vertical_first ) |
| { |
| float * ring_buffer = stbir__get_ring_buffer_scanline( stbir_info, split_info, ++split_info->ring_buffer_last_scanline ); |
| // Decode the nth scanline from the source image into the decode buffer. |
| stbir__decode_scanline( stbir_info, split_info->ring_buffer_last_scanline, ring_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| } |
| else |
| { |
| stbir__decode_and_resample_for_vertical_gather_loop(stbir_info, split_info, split_info->ring_buffer_last_scanline + 1); |
| } |
| } |
| |
| // Now all buffers should be ready to write a row of vertical sampling, so do it. |
| stbir__resample_vertical_gather(stbir_info, split_info, y, in_first_scanline, in_last_scanline, vertical_coefficients ); |
| |
| ++vertical_contributors; |
| vertical_coefficients += stbir_info->vertical.coefficient_width; |
| } |
| } |
| |
| #define STBIR__FLOAT_EMPTY_MARKER 3.0e+38F |
| #define STBIR__FLOAT_BUFFER_IS_EMPTY(ptr) ((ptr)[0]==STBIR__FLOAT_EMPTY_MARKER) |
| |
| static void stbir__encode_first_scanline_from_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info) |
| { |
| // evict a scanline out into the output buffer |
| float* ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index ); |
| |
| // dump the scanline out |
| stbir__encode_scanline( stbir_info, ( (char *)stbir_info->output_data ) + ( (size_t)split_info->ring_buffer_first_scanline * (size_t)stbir_info->output_stride_bytes ), ring_buffer_entry, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // mark it as empty |
| ring_buffer_entry[ 0 ] = STBIR__FLOAT_EMPTY_MARKER; |
| |
| // advance the first scanline |
| split_info->ring_buffer_first_scanline++; |
| if ( ++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries ) |
| split_info->ring_buffer_begin_index = 0; |
| } |
| |
| static void stbir__horizontal_resample_and_encode_first_scanline_from_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info) |
| { |
| // evict a scanline out into the output buffer |
| |
| float* ring_buffer_entry = stbir__get_ring_buffer_entry(stbir_info, split_info, split_info->ring_buffer_begin_index ); |
| |
| // Now resample it into the buffer. |
| stbir__resample_horizontal_gather( stbir_info, split_info->vertical_buffer, ring_buffer_entry STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // dump the scanline out |
| stbir__encode_scanline( stbir_info, ( (char *)stbir_info->output_data ) + ( (size_t)split_info->ring_buffer_first_scanline * (size_t)stbir_info->output_stride_bytes ), split_info->vertical_buffer, split_info->ring_buffer_first_scanline STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // mark it as empty |
| ring_buffer_entry[ 0 ] = STBIR__FLOAT_EMPTY_MARKER; |
| |
| // advance the first scanline |
| split_info->ring_buffer_first_scanline++; |
| if ( ++split_info->ring_buffer_begin_index == stbir_info->ring_buffer_num_entries ) |
| split_info->ring_buffer_begin_index = 0; |
| } |
| |
| static void stbir__resample_vertical_scatter(stbir__info const * stbir_info, stbir__per_split_info* split_info, int n0, int n1, float const * vertical_coefficients, float const * vertical_buffer, float const * vertical_buffer_end ) |
| { |
| STBIR_ASSERT( !stbir_info->vertical.is_gather ); |
| |
| STBIR_PROFILE_START( vertical ); |
| { |
| int k = 0, total = n1 - n0 + 1; |
| STBIR_ASSERT( total > 0 ); |
| do { |
| float * outputs[8]; |
| int i, n = total; if ( n > 8 ) n = 8; |
| for( i = 0 ; i < n ; i++ ) |
| { |
| outputs[ i ] = stbir__get_ring_buffer_scanline(stbir_info, split_info, k+i+n0 ); |
| if ( ( i ) && ( STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[i] ) != STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[0] ) ) ) // make sure runs are of the same type |
| { |
| n = i; |
| break; |
| } |
| } |
| // call the scatter to N scanlines at a time function (up to 8 scanlines of scattering at once) |
| ((STBIR__FLOAT_BUFFER_IS_EMPTY( outputs[0] ))?stbir__vertical_scatter_sets:stbir__vertical_scatter_blends)[n-1]( outputs, vertical_coefficients + k, vertical_buffer, vertical_buffer_end ); |
| k += n; |
| total -= n; |
| } while ( total ); |
| } |
| |
| STBIR_PROFILE_END( vertical ); |
| } |
| |
| typedef void stbir__handle_scanline_for_scatter_func(stbir__info const * stbir_info, stbir__per_split_info* split_info); |
| |
| static void stbir__vertical_scatter_loop( stbir__info const * stbir_info, stbir__per_split_info* split_info, int split_count ) |
| { |
| int y, start_output_y, end_output_y, start_input_y, end_input_y; |
| stbir__contributors* vertical_contributors = stbir_info->vertical.contributors; |
| float const * vertical_coefficients = stbir_info->vertical.coefficients; |
| stbir__handle_scanline_for_scatter_func * handle_scanline_for_scatter; |
| void * scanline_scatter_buffer; |
| void * scanline_scatter_buffer_end; |
| int on_first_input_y, last_input_y; |
| |
| STBIR_ASSERT( !stbir_info->vertical.is_gather ); |
| |
| start_output_y = split_info->start_output_y; |
| end_output_y = split_info[split_count-1].end_output_y; // may do multiple split counts |
| |
| start_input_y = split_info->start_input_y; |
| end_input_y = split_info[split_count-1].end_input_y; |
| |
| // adjust for starting offset start_input_y |
| y = start_input_y + stbir_info->vertical.filter_pixel_margin; |
| vertical_contributors += y ; |
| vertical_coefficients += stbir_info->vertical.coefficient_width * y; |
| |
| if ( stbir_info->vertical_first ) |
| { |
| handle_scanline_for_scatter = stbir__horizontal_resample_and_encode_first_scanline_from_scatter; |
| scanline_scatter_buffer = split_info->decode_buffer; |
| scanline_scatter_buffer_end = ( (char*) scanline_scatter_buffer ) + sizeof( float ) * stbir_info->effective_channels * (stbir_info->scanline_extents.conservative.n1-stbir_info->scanline_extents.conservative.n0+1); |
| } |
| else |
| { |
| handle_scanline_for_scatter = stbir__encode_first_scanline_from_scatter; |
| scanline_scatter_buffer = split_info->vertical_buffer; |
| scanline_scatter_buffer_end = ( (char*) scanline_scatter_buffer ) + sizeof( float ) * stbir_info->effective_channels * stbir_info->horizontal.scale_info.output_sub_size; |
| } |
| |
| // initialize the ring buffer for scattering |
| split_info->ring_buffer_first_scanline = start_output_y; |
| split_info->ring_buffer_last_scanline = -1; |
| split_info->ring_buffer_begin_index = -1; |
| |
| // mark all the buffers as empty to start |
| for( y = 0 ; y < stbir_info->ring_buffer_num_entries ; y++ ) |
| stbir__get_ring_buffer_entry( stbir_info, split_info, y )[0] = STBIR__FLOAT_EMPTY_MARKER; // only used on scatter |
| |
| // do the loop in input space |
| on_first_input_y = 1; last_input_y = start_input_y; |
| for (y = start_input_y ; y < end_input_y; y++) |
| { |
| int out_first_scanline, out_last_scanline; |
| |
| out_first_scanline = vertical_contributors->n0; |
| out_last_scanline = vertical_contributors->n1; |
| |
| STBIR_ASSERT(out_last_scanline - out_first_scanline + 1 <= stbir_info->ring_buffer_num_entries); |
| |
| if ( ( out_last_scanline >= out_first_scanline ) && ( ( ( out_first_scanline >= start_output_y ) && ( out_first_scanline < end_output_y ) ) || ( ( out_last_scanline >= start_output_y ) && ( out_last_scanline < end_output_y ) ) ) ) |
| { |
| float const * vc = vertical_coefficients; |
| |
| // keep track of the range actually seen for the next resize |
| last_input_y = y; |
| if ( ( on_first_input_y ) && ( y > start_input_y ) ) |
| split_info->start_input_y = y; |
| on_first_input_y = 0; |
| |
| // clip the region |
| if ( out_first_scanline < start_output_y ) |
| { |
| vc += start_output_y - out_first_scanline; |
| out_first_scanline = start_output_y; |
| } |
| |
| if ( out_last_scanline >= end_output_y ) |
| out_last_scanline = end_output_y - 1; |
| |
| // if very first scanline, init the index |
| if (split_info->ring_buffer_begin_index < 0) |
| split_info->ring_buffer_begin_index = out_first_scanline - start_output_y; |
| |
| STBIR_ASSERT( split_info->ring_buffer_begin_index <= out_first_scanline ); |
| |
| // Decode the nth scanline from the source image into the decode buffer. |
| stbir__decode_scanline( stbir_info, y, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // When horizontal first, we resample horizontally into the vertical buffer before we scatter it out |
| if ( !stbir_info->vertical_first ) |
| stbir__resample_horizontal_gather( stbir_info, split_info->vertical_buffer, split_info->decode_buffer STBIR_ONLY_PROFILE_SET_SPLIT_INFO ); |
| |
| // Now it's sitting in the buffer ready to be distributed into the ring buffers. |
| |
| // evict from the ringbuffer, if we need are full |
| if ( ( ( split_info->ring_buffer_last_scanline - split_info->ring_buffer_first_scanline + 1 ) == stbir_info->ring_buffer_num_entries ) && |
| ( out_last_scanline > split_info->ring_buffer_last_scanline ) ) |
| handle_scanline_for_scatter( stbir_info, split_info ); |
| |
| // Now the horizontal buffer is ready to write to all ring buffer rows, so do it. |
| stbir__resample_vertical_scatter(stbir_info, split_info, out_first_scanline, out_last_scanline, vc, (float*)scanline_scatter_buffer, (float*)scanline_scatter_buffer_end ); |
| |
| // update the end of the buffer |
| if ( out_last_scanline > split_info->ring_buffer_last_scanline ) |
| split_info->ring_buffer_last_scanline = out_last_scanline; |
| } |
| ++vertical_contributors; |
| vertical_coefficients += stbir_info->vertical.coefficient_width; |
| } |
| |
| // now evict the scanlines that are left over in the ring buffer |
| while ( split_info->ring_buffer_first_scanline < end_output_y ) |
| handle_scanline_for_scatter(stbir_info, split_info); |
| |
| // update the end_input_y if we do multiple resizes with the same data |
| ++last_input_y; |
| for( y = 0 ; y < split_count; y++ ) |
| if ( split_info[y].end_input_y > last_input_y ) |
| split_info[y].end_input_y = last_input_y; |
| } |
| |
| |
| static stbir__kernel_callback * stbir__builtin_kernels[] = { 0, stbir__filter_trapezoid, stbir__filter_triangle, stbir__filter_cubic, stbir__filter_catmullrom, stbir__filter_mitchell, stbir__filter_point }; |
| static stbir__support_callback * stbir__builtin_supports[] = { 0, stbir__support_trapezoid, stbir__support_one, stbir__support_two, stbir__support_two, stbir__support_two, stbir__support_zeropoint5 }; |
| |
| static void stbir__set_sampler(stbir__sampler * samp, stbir_filter filter, stbir__kernel_callback * kernel, stbir__support_callback * support, stbir_edge edge, stbir__scale_info * scale_info, int always_gather, void * user_data ) |
| { |
| // set filter |
| if (filter == 0) |
| { |
| filter = STBIR_DEFAULT_FILTER_DOWNSAMPLE; // default to downsample |
| if (scale_info->scale >= ( 1.0f - stbir__small_float ) ) |
| { |
| if ( (scale_info->scale <= ( 1.0f + stbir__small_float ) ) && ( STBIR_CEILF(scale_info->pixel_shift) == scale_info->pixel_shift ) ) |
| filter = STBIR_FILTER_POINT_SAMPLE; |
| else |
| filter = STBIR_DEFAULT_FILTER_UPSAMPLE; |
| } |
| } |
| samp->filter_enum = filter; |
| |
| STBIR_ASSERT(samp->filter_enum != 0); |
| STBIR_ASSERT((unsigned)samp->filter_enum < STBIR_FILTER_OTHER); |
| samp->filter_kernel = stbir__builtin_kernels[ filter ]; |
| samp->filter_support = stbir__builtin_supports[ filter ]; |
| |
| if ( kernel && support ) |
| { |
| samp->filter_kernel = kernel; |
| samp->filter_support = support; |
| samp->filter_enum = STBIR_FILTER_OTHER; |
| } |
| |
| samp->edge = edge; |
| samp->filter_pixel_width = stbir__get_filter_pixel_width (samp->filter_support, scale_info->scale, user_data ); |
| // Gather is always better, but in extreme downsamples, you have to most or all of the data in memory |
| // For horizontal, we always have all the pixels, so we always use gather here (always_gather==1). |
| // For vertical, we use gather if scaling up (which means we will have samp->filter_pixel_width |
| // scanlines in memory at once). |
| samp->is_gather = 0; |
| if ( scale_info->scale >= ( 1.0f - stbir__small_float ) ) |
| samp->is_gather = 1; |
| else if ( ( always_gather ) || ( samp->filter_pixel_width <= STBIR_FORCE_GATHER_FILTER_SCANLINES_AMOUNT ) ) |
| samp->is_gather = 2; |
| |
| // pre calculate stuff based on the above |
| samp->coefficient_width = stbir__get_coefficient_width(samp, samp->is_gather, user_data); |
| |
| // filter_pixel_width is the conservative size in pixels of input that affect an output pixel. |
| // In rare cases (only with 2 pix to 1 pix with the default filters), it's possible that the |
| // filter will extend before or after the scanline beyond just one extra entire copy of the |
| // scanline (we would hit the edge twice). We don't let you do that, so we clamp the total |
| // width to 3x the total of input pixel (once for the scanline, once for the left side |
| // overhang, and once for the right side). We only do this for edge mode, since the other |
| // modes can just re-edge clamp back in again. |
| if ( edge == STBIR_EDGE_WRAP ) |
| if ( samp->filter_pixel_width > ( scale_info->input_full_size * 3 ) ) |
| samp->filter_pixel_width = scale_info->input_full_size * 3; |
| |
| // This is how much to expand buffers to account for filters seeking outside |
| // the image boundaries. |
| samp->filter_pixel_margin = samp->filter_pixel_width / 2; |
| |
| // filter_pixel_margin is the amount that this filter can overhang on just one side of either |
| // end of the scanline (left or the right). Since we only allow you to overhang 1 scanline's |
| // worth of pixels, we clamp this one side of overhang to the input scanline size. Again, |
| // this clamping only happens in rare cases with the default filters (2 pix to 1 pix). |
| if ( edge == STBIR_EDGE_WRAP ) |
| if ( samp->filter_pixel_margin > scale_info->input_full_size ) |
| samp->filter_pixel_margin = scale_info->input_full_size; |
| |
| samp->num_contributors = stbir__get_contributors(samp, samp->is_gather); |
| |
| samp->contributors_size = samp->num_contributors * sizeof(stbir__contributors); |
| samp->coefficients_size = samp->num_contributors * samp->coefficient_width * sizeof(float) + sizeof(float); // extra sizeof(float) is padding |
| |
| samp->gather_prescatter_contributors = 0; |
| samp->gather_prescatter_coefficients = 0; |
| if ( samp->is_gather == 0 ) |
| { |
| samp->gather_prescatter_coefficient_width = samp->filter_pixel_width; |
| samp->gather_prescatter_num_contributors = stbir__get_contributors(samp, 2); |
| samp->gather_prescatter_contributors_size = samp->gather_prescatter_num_contributors * sizeof(stbir__contributors); |
| samp->gather_prescatter_coefficients_size = samp->gather_prescatter_num_contributors * samp->gather_prescatter_coefficient_width * sizeof(float); |
| } |
| } |
| |
| static void stbir__get_conservative_extents( stbir__sampler * samp, stbir__contributors * range, void * user_data ) |
| { |
| float scale = samp->scale_info.scale; |
| float out_shift = samp->scale_info.pixel_shift; |
| stbir__support_callback * support = samp->filter_support; |
| int input_full_size = samp->scale_info.input_full_size; |
| stbir_edge edge = samp->edge; |
| float inv_scale = samp->scale_info.inv_scale; |
| |
| STBIR_ASSERT( samp->is_gather != 0 ); |
| |
| if ( samp->is_gather == 1 ) |
| { |
| int in_first_pixel, in_last_pixel; |
| float out_filter_radius = support(inv_scale, user_data) * scale; |
| |
| stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, 0.5, out_filter_radius, inv_scale, out_shift, input_full_size, edge ); |
| range->n0 = in_first_pixel; |
| stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, ( (float)(samp->scale_info.output_sub_size-1) ) + 0.5f, out_filter_radius, inv_scale, out_shift, input_full_size, edge ); |
| range->n1 = in_last_pixel; |
| } |
| else if ( samp->is_gather == 2 ) // downsample gather, refine |
| { |
| float in_pixels_radius = support(scale, user_data) * inv_scale; |
| int filter_pixel_margin = samp->filter_pixel_margin; |
| int output_sub_size = samp->scale_info.output_sub_size; |
| int input_end; |
| int n; |
| int in_first_pixel, in_last_pixel; |
| |
| // get a conservative area of the input range |
| stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, 0, 0, inv_scale, out_shift, input_full_size, edge ); |
| range->n0 = in_first_pixel; |
| stbir__calculate_in_pixel_range( &in_first_pixel, &in_last_pixel, (float)output_sub_size, 0, inv_scale, out_shift, input_full_size, edge ); |
| range->n1 = in_last_pixel; |
| |
| // now go through the margin to the start of area to find bottom |
| n = range->n0 + 1; |
| input_end = -filter_pixel_margin; |
| while( n >= input_end ) |
| { |
| int out_first_pixel, out_last_pixel; |
| stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, ((float)n)+0.5f, in_pixels_radius, scale, out_shift, output_sub_size ); |
| if ( out_first_pixel > out_last_pixel ) |
| break; |
| |
| if ( ( out_first_pixel < output_sub_size ) || ( out_last_pixel >= 0 ) ) |
| range->n0 = n; |
| --n; |
| } |
| |
| // now go through the end of the area through the margin to find top |
| n = range->n1 - 1; |
| input_end = n + 1 + filter_pixel_margin; |
| while( n <= input_end ) |
| { |
| int out_first_pixel, out_last_pixel; |
| stbir__calculate_out_pixel_range( &out_first_pixel, &out_last_pixel, ((float)n)+0.5f, in_pixels_radius, scale, out_shift, output_sub_size ); |
| if ( out_first_pixel > out_last_pixel ) |
| break; |
| if ( ( out_first_pixel < output_sub_size ) || ( out_last_pixel >= 0 ) ) |
| range->n1 = n; |
| ++n; |
| } |
| } |
| |
| if ( samp->edge == STBIR_EDGE_WRAP ) |
| { |
| // if we are wrapping, and we are very close to the image size (so the edges might merge), just use the scanline up to the edge |
| if ( ( range->n0 > 0 ) && ( range->n1 >= input_full_size ) ) |
| { |
| int marg = range->n1 - input_full_size + 1; |
| if ( ( marg + STBIR__MERGE_RUNS_PIXEL_THRESHOLD ) >= range->n0 ) |
| range->n0 = 0; |
| } |
| if ( ( range->n0 < 0 ) && ( range->n1 < (input_full_size-1) ) ) |
| { |
| int marg = -range->n0; |
| if ( ( input_full_size - marg - STBIR__MERGE_RUNS_PIXEL_THRESHOLD - 1 ) <= range->n1 ) |
| range->n1 = input_full_size - 1; |
| } |
| } |
| else |
| { |
| // for non-edge-wrap modes, we never read over the edge, so clamp |
| if ( range->n0 < 0 ) |
| range->n0 = 0; |
| if ( range->n1 >= input_full_size ) |
| range->n1 = input_full_size - 1; |
| } |
| } |
| |
| static void stbir__get_split_info( stbir__per_split_info* split_info, int splits, int output_height, int vertical_pixel_margin, int input_full_height ) |
| { |
| int i, cur; |
| int left = output_height; |
| |
| cur = 0; |
| for( i = 0 ; i < splits ; i++ ) |
| { |
| int each; |
| split_info[i].start_output_y = cur; |
| each = left / ( splits - i ); |
| split_info[i].end_output_y = cur + each; |
| cur += each; |
| left -= each; |
| |
| // scatter range (updated to minimum as you run it) |
| split_info[i].start_input_y = -vertical_pixel_margin; |
| split_info[i].end_input_y = input_full_height + vertical_pixel_margin; |
| } |
| } |
| |
| static void stbir__free_internal_mem( stbir__info *info ) |
| { |
| #define STBIR__FREE_AND_CLEAR( ptr ) { if ( ptr ) { void * p = (ptr); (ptr) = 0; STBIR_FREE( p, info->user_data); } } |
| |
| if ( info ) |
| { |
| #ifndef STBIR__SEPARATE_ALLOCATIONS |
| STBIR__FREE_AND_CLEAR( info->alloced_mem ); |
| #else |
| int i,j; |
| |
| if ( ( info->vertical.gather_prescatter_contributors ) && ( (void*)info->vertical.gather_prescatter_contributors != (void*)info->split_info[0].decode_buffer ) ) |
| { |
| STBIR__FREE_AND_CLEAR( info->vertical.gather_prescatter_coefficients ); |
| STBIR__FREE_AND_CLEAR( info->vertical.gather_prescatter_contributors ); |
| } |
| for( i = 0 ; i < info->splits ; i++ ) |
| { |
| for( j = 0 ; j < info->alloc_ring_buffer_num_entries ; j++ ) |
| { |
| #ifdef STBIR_SIMD8 |
| if ( info->effective_channels == 3 ) |
| --info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer |
| #endif |
| STBIR__FREE_AND_CLEAR( info->split_info[i].ring_buffers[j] ); |
| } |
| |
| #ifdef STBIR_SIMD8 |
| if ( info->effective_channels == 3 ) |
| --info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer |
| #endif |
| STBIR__FREE_AND_CLEAR( info->split_info[i].decode_buffer ); |
| STBIR__FREE_AND_CLEAR( info->split_info[i].ring_buffers ); |
| STBIR__FREE_AND_CLEAR( info->split_info[i].vertical_buffer ); |
| } |
| STBIR__FREE_AND_CLEAR( info->split_info ); |
| if ( info->vertical.coefficients != info->horizontal.coefficients ) |
| { |
| STBIR__FREE_AND_CLEAR( info->vertical.coefficients ); |
| STBIR__FREE_AND_CLEAR( info->vertical.contributors ); |
| } |
| STBIR__FREE_AND_CLEAR( info->horizontal.coefficients ); |
| STBIR__FREE_AND_CLEAR( info->horizontal.contributors ); |
| STBIR__FREE_AND_CLEAR( info->alloced_mem ); |
| STBIR_FREE( info, info->user_data ); |
| #endif |
| } |
| |
| #undef STBIR__FREE_AND_CLEAR |
| } |
| |
| static int stbir__get_max_split( int splits, int height ) |
| { |
| int i; |
| int max = 0; |
| |
| for( i = 0 ; i < splits ; i++ ) |
| { |
| int each = height / ( splits - i ); |
| if ( each > max ) |
| max = each; |
| height -= each; |
| } |
| return max; |
| } |
| |
| static stbir__horizontal_gather_channels_func ** stbir__horizontal_gather_n_coeffs_funcs[8] = |
| { |
| 0, stbir__horizontal_gather_1_channels_with_n_coeffs_funcs, stbir__horizontal_gather_2_channels_with_n_coeffs_funcs, stbir__horizontal_gather_3_channels_with_n_coeffs_funcs, stbir__horizontal_gather_4_channels_with_n_coeffs_funcs, 0,0, stbir__horizontal_gather_7_channels_with_n_coeffs_funcs |
| }; |
| |
| static stbir__horizontal_gather_channels_func ** stbir__horizontal_gather_channels_funcs[8] = |
| { |
| 0, stbir__horizontal_gather_1_channels_funcs, stbir__horizontal_gather_2_channels_funcs, stbir__horizontal_gather_3_channels_funcs, stbir__horizontal_gather_4_channels_funcs, 0,0, stbir__horizontal_gather_7_channels_funcs |
| }; |
| |
| // there are six resize classifications: 0 == vertical scatter, 1 == vertical gather < 1x scale, 2 == vertical gather 1x-2x scale, 4 == vertical gather < 3x scale, 4 == vertical gather > 3x scale, 5 == <=4 pixel height, 6 == <=4 pixel wide column |
| #define STBIR_RESIZE_CLASSIFICATIONS 8 |
| |
| static float stbir__compute_weights[5][STBIR_RESIZE_CLASSIFICATIONS][4]= // 5 = 0=1chan, 1=2chan, 2=3chan, 3=4chan, 4=7chan |
| { |
| { |
| { 1.00000f, 1.00000f, 0.31250f, 1.00000f }, |
| { 0.56250f, 0.59375f, 0.00000f, 0.96875f }, |
| { 1.00000f, 0.06250f, 0.00000f, 1.00000f }, |
| { 0.00000f, 0.09375f, 1.00000f, 1.00000f }, |
| { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, |
| { 0.03125f, 0.12500f, 1.00000f, 1.00000f }, |
| { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, |
| { 0.00000f, 1.00000f, 0.00000f, 0.03125f }, |
| }, { |
| { 0.00000f, 0.84375f, 0.00000f, 0.03125f }, |
| { 0.09375f, 0.93750f, 0.00000f, 0.78125f }, |
| { 0.87500f, 0.21875f, 0.00000f, 0.96875f }, |
| { 0.09375f, 0.09375f, 1.00000f, 1.00000f }, |
| { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, |
| { 0.03125f, 0.12500f, 1.00000f, 1.00000f }, |
| { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, |
| { 0.00000f, 1.00000f, 0.00000f, 0.53125f }, |
| }, { |
| { 0.00000f, 0.53125f, 0.00000f, 0.03125f }, |
| { 0.06250f, 0.96875f, 0.00000f, 0.53125f }, |
| { 0.87500f, 0.18750f, 0.00000f, 0.93750f }, |
| { 0.00000f, 0.09375f, 1.00000f, 1.00000f }, |
| { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, |
| { 0.03125f, 0.12500f, 1.00000f, 1.00000f }, |
| { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, |
| { 0.00000f, 1.00000f, 0.00000f, 0.56250f }, |
| }, { |
| { 0.00000f, 0.50000f, 0.00000f, 0.71875f }, |
| { 0.06250f, 0.84375f, 0.00000f, 0.87500f }, |
| { 1.00000f, 0.50000f, 0.50000f, 0.96875f }, |
| { 1.00000f, 0.09375f, 0.31250f, 0.50000f }, |
| { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, |
| { 1.00000f, 0.03125f, 0.03125f, 0.53125f }, |
| { 0.18750f, 0.12500f, 0.00000f, 1.00000f }, |
| { 0.00000f, 1.00000f, 0.03125f, 0.18750f }, |
| }, { |
| { 0.00000f, 0.59375f, 0.00000f, 0.96875f }, |
| { 0.06250f, 0.81250f, 0.06250f, 0.59375f }, |
| { 0.75000f, 0.43750f, 0.12500f, 0.96875f }, |
| { 0.87500f, 0.06250f, 0.18750f, 0.43750f }, |
| { 1.00000f, 1.00000f, 1.00000f, 1.00000f }, |
| { 0.15625f, 0.12500f, 1.00000f, 1.00000f }, |
| { 0.06250f, 0.12500f, 0.00000f, 1.00000f }, |
| { 0.00000f, 1.00000f, 0.03125f, 0.34375f }, |
| } |
| }; |
| |
| // structure that allow us to query and override info for training the costs |
| typedef struct STBIR__V_FIRST_INFO |
| { |
| double v_cost, h_cost; |
| int control_v_first; // 0 = no control, 1 = force hori, 2 = force vert |
| int v_first; |
| int v_resize_classification; |
| int is_gather; |
| } STBIR__V_FIRST_INFO; |
| |
| #ifdef STBIR__V_FIRST_INFO_BUFFER |
| static STBIR__V_FIRST_INFO STBIR__V_FIRST_INFO_BUFFER = {0}; |
| #define STBIR__V_FIRST_INFO_POINTER &STBIR__V_FIRST_INFO_BUFFER |
| #else |
| #define STBIR__V_FIRST_INFO_POINTER 0 |
| #endif |
| |
| // Figure out whether to scale along the horizontal or vertical first. |
| // This only *super* important when you are scaling by a massively |
| // different amount in the vertical vs the horizontal (for example, if |
| // you are scaling by 2x in the width, and 0.5x in the height, then you |
| // want to do the vertical scale first, because it's around 3x faster |
| // in that order. |
| // |
| // In more normal circumstances, this makes a 20-40% differences, so |
| // it's good to get right, but not critical. The normal way that you |
| // decide which direction goes first is just figuring out which |
| // direction does more multiplies. But with modern CPUs with their |
| // fancy caches and SIMD and high IPC abilities, so there's just a lot |
| // more that goes into it. |
| // |
| // My handwavy sort of solution is to have an app that does a whole |
| // bunch of timing for both vertical and horizontal first modes, |
| // and then another app that can read lots of these timing files |
| // and try to search for the best weights to use. Dotimings.c |
| // is the app that does a bunch of timings, and vf_train.c is the |
| // app that solves for the best weights (and shows how well it |
| // does currently). |
| |
| static int stbir__should_do_vertical_first( float weights_table[STBIR_RESIZE_CLASSIFICATIONS][4], int horizontal_filter_pixel_width, float horizontal_scale, int horizontal_output_size, int vertical_filter_pixel_width, float vertical_scale, int vertical_output_size, int is_gather, STBIR__V_FIRST_INFO * info ) |
| { |
| double v_cost, h_cost; |
| float * weights; |
| int vertical_first; |
| int v_classification; |
| |
| // categorize the resize into buckets |
| if ( ( vertical_output_size <= 4 ) || ( horizontal_output_size <= 4 ) ) |
| v_classification = ( vertical_output_size < horizontal_output_size ) ? 6 : 7; |
| else if ( vertical_scale <= 1.0f ) |
| v_classification = ( is_gather ) ? 1 : 0; |
| else if ( vertical_scale <= 2.0f) |
| v_classification = 2; |
| else if ( vertical_scale <= 3.0f) |
| v_classification = 3; |
| else if ( vertical_scale <= 4.0f) |
| v_classification = 5; |
| else |
| v_classification = 6; |
| |
| // use the right weights |
| weights = weights_table[ v_classification ]; |
| |
| // this is the costs when you don't take into account modern CPUs with high ipc and simd and caches - wish we had a better estimate |
| h_cost = (float)horizontal_filter_pixel_width * weights[0] + horizontal_scale * (float)vertical_filter_pixel_width * weights[1]; |
| v_cost = (float)vertical_filter_pixel_width * weights[2] + vertical_scale * (float)horizontal_filter_pixel_width * weights[3]; |
| |
| // use computation estimate to decide vertical first or not |
| vertical_first = ( v_cost <= h_cost ) ? 1 : 0; |
| |
| // save these, if requested |
| if ( info ) |
| { |
| info->h_cost = h_cost; |
| info->v_cost = v_cost; |
| info->v_resize_classification = v_classification; |
| info->v_first = vertical_first; |
| info->is_gather = is_gather; |
| } |
| |
| // and this allows us to override everything for testing (see dotiming.c) |
| if ( ( info ) && ( info->control_v_first ) ) |
| vertical_first = ( info->control_v_first == 2 ) ? 1 : 0; |
| |
| return vertical_first; |
| } |
| |
| // layout lookups - must match stbir_internal_pixel_layout |
| static unsigned char stbir__pixel_channels[] = { |
| 1,2,3,3,4, // 1ch, 2ch, rgb, bgr, 4ch |
| 4,4,4,4,2,2, // RGBA,BGRA,ARGB,ABGR,RA,AR |
| 4,4,4,4,2,2, // RGBA_PM,BGRA_PM,ARGB_PM,ABGR_PM,RA_PM,AR_PM |
| }; |
| |
| // the internal pixel layout enums are in a different order, so we can easily do range comparisons of types |
| // the public pixel layout is ordered in a way that if you cast num_channels (1-4) to the enum, you get something sensible |
| static stbir_internal_pixel_layout stbir__pixel_layout_convert_public_to_internal[] = { |
| STBIRI_BGR, STBIRI_1CHANNEL, STBIRI_2CHANNEL, STBIRI_RGB, STBIRI_RGBA, |
| STBIRI_4CHANNEL, STBIRI_BGRA, STBIRI_ARGB, STBIRI_ABGR, STBIRI_RA, STBIRI_AR, |
| STBIRI_RGBA_PM, STBIRI_BGRA_PM, STBIRI_ARGB_PM, STBIRI_ABGR_PM, STBIRI_RA_PM, STBIRI_AR_PM, |
| }; |
| |
| static stbir__info * stbir__alloc_internal_mem_and_build_samplers( stbir__sampler * horizontal, stbir__sampler * vertical, stbir__contributors * conservative, stbir_pixel_layout input_pixel_layout_public, stbir_pixel_layout output_pixel_layout_public, int splits, int new_x, int new_y, int fast_alpha, void * user_data STBIR_ONLY_PROFILE_BUILD_GET_INFO ) |
| { |
| static char stbir_channel_count_index[8]={ 9,0,1,2, 3,9,9,4 }; |
| |
| stbir__info * info = 0; |
| void * alloced = 0; |
| size_t alloced_total = 0; |
| int vertical_first; |
| int decode_buffer_size, ring_buffer_length_bytes, ring_buffer_size, vertical_buffer_size, alloc_ring_buffer_num_entries; |
| |
| int alpha_weighting_type = 0; // 0=none, 1=simple, 2=fancy |
| int conservative_split_output_size = stbir__get_max_split( splits, vertical->scale_info.output_sub_size ); |
| stbir_internal_pixel_layout input_pixel_layout = stbir__pixel_layout_convert_public_to_internal[ input_pixel_layout_public ]; |
| stbir_internal_pixel_layout output_pixel_layout = stbir__pixel_layout_convert_public_to_internal[ output_pixel_layout_public ]; |
| int channels = stbir__pixel_channels[ input_pixel_layout ]; |
| int effective_channels = channels; |
| |
| // first figure out what type of alpha weighting to use (if any) |
| if ( ( horizontal->filter_enum != STBIR_FILTER_POINT_SAMPLE ) || ( vertical->filter_enum != STBIR_FILTER_POINT_SAMPLE ) ) // no alpha weighting on point sampling |
| { |
| if ( ( input_pixel_layout >= STBIRI_RGBA ) && ( input_pixel_layout <= STBIRI_AR ) && ( output_pixel_layout >= STBIRI_RGBA ) && ( output_pixel_layout <= STBIRI_AR ) ) |
| { |
| if ( fast_alpha ) |
| { |
| alpha_weighting_type = 4; |
| } |
| else |
| { |
| static int fancy_alpha_effective_cnts[6] = { 7, 7, 7, 7, 3, 3 }; |
| alpha_weighting_type = 2; |
| effective_channels = fancy_alpha_effective_cnts[ input_pixel_layout - STBIRI_RGBA ]; |
| } |
| } |
| else if ( ( input_pixel_layout >= STBIRI_RGBA_PM ) && ( input_pixel_layout <= STBIRI_AR_PM ) && ( output_pixel_layout >= STBIRI_RGBA ) && ( output_pixel_layout <= STBIRI_AR ) ) |
| { |
| // input premult, output non-premult |
| alpha_weighting_type = 3; |
| } |
| else if ( ( input_pixel_layout >= STBIRI_RGBA ) && ( input_pixel_layout <= STBIRI_AR ) && ( output_pixel_layout >= STBIRI_RGBA_PM ) && ( output_pixel_layout <= STBIRI_AR_PM ) ) |
| { |
| // input non-premult, output premult |
| alpha_weighting_type = 1; |
| } |
| } |
| |
| // channel in and out count must match currently |
| if ( channels != stbir__pixel_channels[ output_pixel_layout ] ) |
| return 0; |
| |
| // get vertical first |
| vertical_first = stbir__should_do_vertical_first( stbir__compute_weights[ (int)stbir_channel_count_index[ effective_channels ] ], horizontal->filter_pixel_width, horizontal->scale_info.scale, horizontal->scale_info.output_sub_size, vertical->filter_pixel_width, vertical->scale_info.scale, vertical->scale_info.output_sub_size, vertical->is_gather, STBIR__V_FIRST_INFO_POINTER ); |
| |
| // sometimes read one float off in some of the unrolled loops (with a weight of zero coeff, so it doesn't have an effect) |
| decode_buffer_size = ( conservative->n1 - conservative->n0 + 1 ) * effective_channels * sizeof(float) + sizeof(float); // extra float for padding |
| |
| #if defined( STBIR__SEPARATE_ALLOCATIONS ) && defined(STBIR_SIMD8) |
| if ( effective_channels == 3 ) |
| decode_buffer_size += sizeof(float); // avx in 3 channel mode needs one float at the start of the buffer (only with separate allocations) |
| #endif |
| |
| ring_buffer_length_bytes = horizontal->scale_info.output_sub_size * effective_channels * sizeof(float) + sizeof(float); // extra float for padding |
| |
| // if we do vertical first, the ring buffer holds a whole decoded line |
| if ( vertical_first ) |
| ring_buffer_length_bytes = ( decode_buffer_size + 15 ) & ~15; |
| |
| if ( ( ring_buffer_length_bytes & 4095 ) == 0 ) ring_buffer_length_bytes += 64*3; // avoid 4k alias |
| |
| // One extra entry because floating point precision problems sometimes cause an extra to be necessary. |
| alloc_ring_buffer_num_entries = vertical->filter_pixel_width + 1; |
| |
| // we never need more ring buffer entries than the scanlines we're outputting when in scatter mode |
| if ( ( !vertical->is_gather ) && ( alloc_ring_buffer_num_entries > conservative_split_output_size ) ) |
| alloc_ring_buffer_num_entries = conservative_split_output_size; |
| |
| ring_buffer_size = alloc_ring_buffer_num_entries * ring_buffer_length_bytes; |
| |
| // The vertical buffer is used differently, depending on whether we are scattering |
| // the vertical scanlines, or gathering them. |
| // If scattering, it's used at the temp buffer to accumulate each output. |
| // If gathering, it's just the output buffer. |
| vertical_buffer_size = horizontal->scale_info.output_sub_size * effective_channels * sizeof(float) + sizeof(float); // extra float for padding |
| |
| // we make two passes through this loop, 1st to add everything up, 2nd to allocate and init |
| for(;;) |
| { |
| int i; |
| void * advance_mem = alloced; |
| int copy_horizontal = 0; |
| stbir__sampler * possibly_use_horizontal_for_pivot = 0; |
| |
| #ifdef STBIR__SEPARATE_ALLOCATIONS |
| #define STBIR__NEXT_PTR( ptr, size, ntype ) if ( alloced ) { void * p = STBIR_MALLOC( size, user_data); if ( p == 0 ) { stbir__free_internal_mem( info ); return 0; } (ptr) = (ntype*)p; } |
| #else |
| #define STBIR__NEXT_PTR( ptr, size, ntype ) advance_mem = (void*) ( ( ((size_t)advance_mem) + 15 ) & ~15 ); if ( alloced ) ptr = (ntype*)advance_mem; advance_mem = ((char*)advance_mem) + (size); |
| #endif |
| |
| STBIR__NEXT_PTR( info, sizeof( stbir__info ), stbir__info ); |
| |
| STBIR__NEXT_PTR( info->split_info, sizeof( stbir__per_split_info ) * splits, stbir__per_split_info ); |
| |
| if ( info ) |
| { |
| static stbir__alpha_weight_func * fancy_alpha_weights[6] = { stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_4ch, stbir__fancy_alpha_weight_2ch, stbir__fancy_alpha_weight_2ch }; |
| static stbir__alpha_unweight_func * fancy_alpha_unweights[6] = { stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_4ch, stbir__fancy_alpha_unweight_2ch, stbir__fancy_alpha_unweight_2ch }; |
| static stbir__alpha_weight_func * simple_alpha_weights[6] = { stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_4ch, stbir__simple_alpha_weight_2ch, stbir__simple_alpha_weight_2ch }; |
| static stbir__alpha_unweight_func * simple_alpha_unweights[6] = { stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_4ch, stbir__simple_alpha_unweight_2ch, stbir__simple_alpha_unweight_2ch }; |
| |
| // initialize info fields |
| info->alloced_mem = alloced; |
| info->alloced_total = alloced_total; |
| |
| info->channels = channels; |
| info->effective_channels = effective_channels; |
| |
| info->offset_x = new_x; |
| info->offset_y = new_y; |
| info->alloc_ring_buffer_num_entries = alloc_ring_buffer_num_entries; |
| info->ring_buffer_num_entries = 0; |
| info->ring_buffer_length_bytes = ring_buffer_length_bytes; |
| info->splits = splits; |
| info->vertical_first = vertical_first; |
| |
| info->input_pixel_layout_internal = input_pixel_layout; |
| info->output_pixel_layout_internal = output_pixel_layout; |
| |
| // setup alpha weight functions |
| info->alpha_weight = 0; |
| info->alpha_unweight = 0; |
| |
| // handle alpha weighting functions and overrides |
| if ( alpha_weighting_type == 2 ) |
| { |
| // high quality alpha multiplying on the way in, dividing on the way out |
| info->alpha_weight = fancy_alpha_weights[ input_pixel_layout - STBIRI_RGBA ]; |
| info->alpha_unweight = fancy_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ]; |
| } |
| else if ( alpha_weighting_type == 4 ) |
| { |
| // fast alpha multiplying on the way in, dividing on the way out |
| info->alpha_weight = simple_alpha_weights[ input_pixel_layout - STBIRI_RGBA ]; |
| info->alpha_unweight = simple_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ]; |
| } |
| else if ( alpha_weighting_type == 1 ) |
| { |
| // fast alpha on the way in, leave in premultiplied form on way out |
| info->alpha_weight = simple_alpha_weights[ input_pixel_layout - STBIRI_RGBA ]; |
| } |
| else if ( alpha_weighting_type == 3 ) |
| { |
| // incoming is premultiplied, fast alpha dividing on the way out - non-premultiplied output |
| info->alpha_unweight = simple_alpha_unweights[ output_pixel_layout - STBIRI_RGBA ]; |
| } |
| |
| // handle 3-chan color flipping, using the alpha weight path |
| if ( ( ( input_pixel_layout == STBIRI_RGB ) && ( output_pixel_layout == STBIRI_BGR ) ) || |
| ( ( input_pixel_layout == STBIRI_BGR ) && ( output_pixel_layout == STBIRI_RGB ) ) ) |
| { |
| // do the flipping on the smaller of the two ends |
| if ( horizontal->scale_info.scale < 1.0f ) |
| info->alpha_unweight = stbir__simple_flip_3ch; |
| else |
| info->alpha_weight = stbir__simple_flip_3ch; |
| } |
| |
| } |
| |
| // get all the per-split buffers |
| for( i = 0 ; i < splits ; i++ ) |
| { |
| STBIR__NEXT_PTR( info->split_info[i].decode_buffer, decode_buffer_size, float ); |
| |
| #ifdef STBIR__SEPARATE_ALLOCATIONS |
| |
| #ifdef STBIR_SIMD8 |
| if ( ( info ) && ( effective_channels == 3 ) ) |
| ++info->split_info[i].decode_buffer; // avx in 3 channel mode needs one float at the start of the buffer |
| #endif |
| |
| STBIR__NEXT_PTR( info->split_info[i].ring_buffers, alloc_ring_buffer_num_entries * sizeof(float*), float* ); |
| { |
| int j; |
| for( j = 0 ; j < alloc_ring_buffer_num_entries ; j++ ) |
| { |
| STBIR__NEXT_PTR( info->split_info[i].ring_buffers[j], ring_buffer_length_bytes, float ); |
| #ifdef STBIR_SIMD8 |
| if ( ( info ) && ( effective_channels == 3 ) ) |
| ++info->split_info[i].ring_buffers[j]; // avx in 3 channel mode needs one float at the start of the buffer |
| #endif |
| } |
| } |
| #else |
| STBIR__NEXT_PTR( info->split_info[i].ring_buffer, ring_buffer_size, float ); |
| #endif |
| STBIR__NEXT_PTR( info->split_info[i].vertical_buffer, vertical_buffer_size, float ); |
| } |
| |
| // alloc memory for to-be-pivoted coeffs (if necessary) |
| if ( vertical->is_gather == 0 ) |
| { |
| int both; |
| int temp_mem_amt; |
| |
| // when in vertical scatter mode, we first build the coefficients in gather mode, and then pivot after, |
| // that means we need two buffers, so we try to use the decode buffer and ring buffer for this. if that |
| // is too small, we just allocate extra memory to use as this temp. |
| |
| both = vertical->gather_prescatter_contributors_size + vertical->gather_prescatter_coefficients_size; |
| |
| #ifdef STBIR__SEPARATE_ALLOCATIONS |
| temp_mem_amt = decode_buffer_size; |
| |
| #ifdef STBIR_SIMD8 |
| if ( effective_channels == 3 ) |
| --temp_mem_amt; // avx in 3 channel mode needs one float at the start of the buffer |
| #endif |
| #else |
| temp_mem_amt = ( decode_buffer_size + ring_buffer_size + vertical_buffer_size ) * splits; |
| #endif |
| if ( temp_mem_amt >= both ) |
| { |
| if ( info ) |
| { |
| vertical->gather_prescatter_contributors = (stbir__contributors*)info->split_info[0].decode_buffer; |
| vertical->gather_prescatter_coefficients = (float*) ( ( (char*)info->split_info[0].decode_buffer ) + vertical->gather_prescatter_contributors_size ); |
| } |
| } |
| else |
| { |
| // ring+decode memory is too small, so allocate temp memory |
| STBIR__NEXT_PTR( vertical->gather_prescatter_contributors, vertical->gather_prescatter_contributors_size, stbir__contributors ); |
| STBIR__NEXT_PTR( vertical->gather_prescatter_coefficients, vertical->gather_prescatter_coefficients_size, float ); |
| } |
| } |
| |
| STBIR__NEXT_PTR( horizontal->contributors, horizontal->contributors_size, stbir__contributors ); |
| STBIR__NEXT_PTR( horizontal->coefficients, horizontal->coefficients_size, float ); |
| |
| // are the two filters identical?? (happens a lot with mipmap generation) |
| if ( ( horizontal->filter_kernel == vertical->filter_kernel ) && ( horizontal->filter_support == vertical->filter_support ) && ( horizontal->edge == vertical->edge ) && ( horizontal->scale_info.output_sub_size == vertical->scale_info.output_sub_size ) ) |
| { |
| float diff_scale = horizontal->scale_info.scale - vertical->scale_info.scale; |
| float diff_shift = horizontal->scale_info.pixel_shift - vertical->scale_info.pixel_shift; |
| if ( diff_scale < 0.0f ) diff_scale = -diff_scale; |
| if ( diff_shift < 0.0f ) diff_shift = -diff_shift; |
| if ( ( diff_scale <= stbir__small_float ) && ( diff_shift <= stbir__small_float ) ) |
| { |
| if ( horizontal->is_gather == vertical->is_gather ) |
| { |
| copy_horizontal = 1; |
| goto no_vert_alloc; |
| } |
| // everything matches, but vertical is scatter, horizontal is gather, use horizontal coeffs for vertical pivot coeffs |
| possibly_use_horizontal_for_pivot = horizontal; |
| } |
| } |
| |
| STBIR__NEXT_PTR( vertical->contributors, vertical->contributors_size, stbir__contributors ); |
| STBIR__NEXT_PTR( vertical->coefficients, vertical->coefficients_size, float ); |
| |
| no_vert_alloc: |
| |
| if ( info ) |
| { |
| STBIR_PROFILE_BUILD_START( horizontal ); |
| |
| stbir__calculate_filters( horizontal, 0, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO ); |
| |
| // setup the horizontal gather functions |
| // start with defaulting to the n_coeffs functions (specialized on channels and remnant leftover) |
| info->horizontal_gather_channels = stbir__horizontal_gather_n_coeffs_funcs[ effective_channels ][ horizontal->extent_info.widest & 3 ]; |
| // but if the number of coeffs <= 12, use another set of special cases. <=12 coeffs is any enlarging resize, or shrinking resize down to about 1/3 size |
| if ( horizontal->extent_info.widest <= 12 ) |
| info->horizontal_gather_channels = stbir__horizontal_gather_channels_funcs[ effective_channels ][ horizontal->extent_info.widest - 1 ]; |
| |
| info->scanline_extents.conservative.n0 = conservative->n0; |
| info->scanline_extents.conservative.n1 = conservative->n1; |
| |
| // get exact extents |
| stbir__get_extents( horizontal, &info->scanline_extents ); |
| |
| // pack the horizontal coeffs |
| horizontal->coefficient_width = stbir__pack_coefficients(horizontal->num_contributors, horizontal->contributors, horizontal->coefficients, horizontal->coefficient_width, horizontal->extent_info.widest, info->scanline_extents.conservative.n0, info->scanline_extents.conservative.n1 ); |
| |
| STBIR_MEMCPY( &info->horizontal, horizontal, sizeof( stbir__sampler ) ); |
| |
| STBIR_PROFILE_BUILD_END( horizontal ); |
| |
| if ( copy_horizontal ) |
| { |
| STBIR_MEMCPY( &info->vertical, horizontal, sizeof( stbir__sampler ) ); |
| } |
| else |
| { |
| STBIR_PROFILE_BUILD_START( vertical ); |
| |
| stbir__calculate_filters( vertical, possibly_use_horizontal_for_pivot, user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO ); |
| STBIR_MEMCPY( &info->vertical, vertical, sizeof( stbir__sampler ) ); |
| |
| STBIR_PROFILE_BUILD_END( vertical ); |
| } |
| |
| // setup the vertical split ranges |
| stbir__get_split_info( info->split_info, info->splits, info->vertical.scale_info.output_sub_size, info->vertical.filter_pixel_margin, info->vertical.scale_info.input_full_size ); |
| |
| // now we know precisely how many entries we need |
| info->ring_buffer_num_entries = info->vertical.extent_info.widest; |
| |
| // we never need more ring buffer entries than the scanlines we're outputting |
| if ( ( !info->vertical.is_gather ) && ( info->ring_buffer_num_entries > conservative_split_output_size ) ) |
| info->ring_buffer_num_entries = conservative_split_output_size; |
| STBIR_ASSERT( info->ring_buffer_num_entries <= info->alloc_ring_buffer_num_entries ); |
| |
| // a few of the horizontal gather functions read past the end of the decode (but mask it out), |
| // so put in normal values so no snans or denormals accidentally sneak in (also, in the ring |
| // buffer for vertical first) |
| for( i = 0 ; i < splits ; i++ ) |
| { |
| int t, ofs, start; |
| |
| ofs = decode_buffer_size / 4; |
| |
| #if defined( STBIR__SEPARATE_ALLOCATIONS ) && defined(STBIR_SIMD8) |
| if ( effective_channels == 3 ) |
| --ofs; // avx in 3 channel mode needs one float at the start of the buffer, so we snap back for clearing |
| #endif |
| |
| start = ofs - 4; |
| if ( start < 0 ) start = 0; |
| |
| for( t = start ; t < ofs; t++ ) |
| info->split_info[i].decode_buffer[ t ] = 9999.0f; |
| |
| if ( vertical_first ) |
| { |
| int j; |
| for( j = 0; j < info->ring_buffer_num_entries ; j++ ) |
| { |
| for( t = start ; t < ofs; t++ ) |
| stbir__get_ring_buffer_entry( info, info->split_info + i, j )[ t ] = 9999.0f; |
| } |
| } |
| } |
| } |
| |
| #undef STBIR__NEXT_PTR |
| |
| |
| // is this the first time through loop? |
| if ( info == 0 ) |
| { |
| alloced_total = ( 15 + (size_t)advance_mem ); |
| alloced = STBIR_MALLOC( alloced_total, user_data ); |
| if ( alloced == 0 ) |
| return 0; |
| } |
| else |
| return info; // success |
| } |
| } |
| |
| static int stbir__perform_resize( stbir__info const * info, int split_start, int split_count ) |
| { |
| stbir__per_split_info * split_info = info->split_info + split_start; |
| |
| STBIR_PROFILE_CLEAR_EXTRAS(); |
| |
| STBIR_PROFILE_FIRST_START( looping ); |
| if (info->vertical.is_gather) |
| stbir__vertical_gather_loop( info, split_info, split_count ); |
| else |
| stbir__vertical_scatter_loop( info, split_info, split_count ); |
| STBIR_PROFILE_END( looping ); |
| |
| return 1; |
| } |
| |
| static void stbir__update_info_from_resize( stbir__info * info, STBIR_RESIZE * resize ) |
| { |
| static stbir__decode_pixels_func * decode_simple[STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= |
| { |
| /* 1ch-4ch */ stbir__decode_uint8_srgb, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear, |
| }; |
| |
| static stbir__decode_pixels_func * decode_alphas[STBIRI_AR-STBIRI_RGBA+1][STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= |
| { |
| { /* RGBA */ stbir__decode_uint8_srgb4_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear }, |
| { /* BGRA */ stbir__decode_uint8_srgb4_linearalpha_BGRA, stbir__decode_uint8_srgb_BGRA, 0, stbir__decode_float_linear_BGRA, stbir__decode_half_float_linear_BGRA }, |
| { /* ARGB */ stbir__decode_uint8_srgb4_linearalpha_ARGB, stbir__decode_uint8_srgb_ARGB, 0, stbir__decode_float_linear_ARGB, stbir__decode_half_float_linear_ARGB }, |
| { /* ABGR */ stbir__decode_uint8_srgb4_linearalpha_ABGR, stbir__decode_uint8_srgb_ABGR, 0, stbir__decode_float_linear_ABGR, stbir__decode_half_float_linear_ABGR }, |
| { /* RA */ stbir__decode_uint8_srgb2_linearalpha, stbir__decode_uint8_srgb, 0, stbir__decode_float_linear, stbir__decode_half_float_linear }, |
| { /* AR */ stbir__decode_uint8_srgb2_linearalpha_AR, stbir__decode_uint8_srgb_AR, 0, stbir__decode_float_linear_AR, stbir__decode_half_float_linear_AR }, |
| }; |
| |
| static stbir__decode_pixels_func * decode_simple_scaled_or_not[2][2]= |
| { |
| { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear }, |
| }; |
| |
| static stbir__decode_pixels_func * decode_alphas_scaled_or_not[STBIRI_AR-STBIRI_RGBA+1][2][2]= |
| { |
| { /* RGBA */ { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear } }, |
| { /* BGRA */ { stbir__decode_uint8_linear_scaled_BGRA, stbir__decode_uint8_linear_BGRA }, { stbir__decode_uint16_linear_scaled_BGRA, stbir__decode_uint16_linear_BGRA } }, |
| { /* ARGB */ { stbir__decode_uint8_linear_scaled_ARGB, stbir__decode_uint8_linear_ARGB }, { stbir__decode_uint16_linear_scaled_ARGB, stbir__decode_uint16_linear_ARGB } }, |
| { /* ABGR */ { stbir__decode_uint8_linear_scaled_ABGR, stbir__decode_uint8_linear_ABGR }, { stbir__decode_uint16_linear_scaled_ABGR, stbir__decode_uint16_linear_ABGR } }, |
| { /* RA */ { stbir__decode_uint8_linear_scaled, stbir__decode_uint8_linear }, { stbir__decode_uint16_linear_scaled, stbir__decode_uint16_linear } }, |
| { /* AR */ { stbir__decode_uint8_linear_scaled_AR, stbir__decode_uint8_linear_AR }, { stbir__decode_uint16_linear_scaled_AR, stbir__decode_uint16_linear_AR } } |
| }; |
| |
| static stbir__encode_pixels_func * encode_simple[STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= |
| { |
| /* 1ch-4ch */ stbir__encode_uint8_srgb, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear, |
| }; |
| |
| static stbir__encode_pixels_func * encode_alphas[STBIRI_AR-STBIRI_RGBA+1][STBIR_TYPE_HALF_FLOAT-STBIR_TYPE_UINT8_SRGB+1]= |
| { |
| { /* RGBA */ stbir__encode_uint8_srgb4_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear }, |
| { /* BGRA */ stbir__encode_uint8_srgb4_linearalpha_BGRA, stbir__encode_uint8_srgb_BGRA, 0, stbir__encode_float_linear_BGRA, stbir__encode_half_float_linear_BGRA }, |
| { /* ARGB */ stbir__encode_uint8_srgb4_linearalpha_ARGB, stbir__encode_uint8_srgb_ARGB, 0, stbir__encode_float_linear_ARGB, stbir__encode_half_float_linear_ARGB }, |
| { /* ABGR */ stbir__encode_uint8_srgb4_linearalpha_ABGR, stbir__encode_uint8_srgb_ABGR, 0, stbir__encode_float_linear_ABGR, stbir__encode_half_float_linear_ABGR }, |
| { /* RA */ stbir__encode_uint8_srgb2_linearalpha, stbir__encode_uint8_srgb, 0, stbir__encode_float_linear, stbir__encode_half_float_linear }, |
| { /* AR */ stbir__encode_uint8_srgb2_linearalpha_AR, stbir__encode_uint8_srgb_AR, 0, stbir__encode_float_linear_AR, stbir__encode_half_float_linear_AR } |
| }; |
| |
| static stbir__encode_pixels_func * encode_simple_scaled_or_not[2][2]= |
| { |
| { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear }, |
| }; |
| |
| static stbir__encode_pixels_func * encode_alphas_scaled_or_not[STBIRI_AR-STBIRI_RGBA+1][2][2]= |
| { |
| { /* RGBA */ { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear } }, |
| { /* BGRA */ { stbir__encode_uint8_linear_scaled_BGRA, stbir__encode_uint8_linear_BGRA }, { stbir__encode_uint16_linear_scaled_BGRA, stbir__encode_uint16_linear_BGRA } }, |
| { /* ARGB */ { stbir__encode_uint8_linear_scaled_ARGB, stbir__encode_uint8_linear_ARGB }, { stbir__encode_uint16_linear_scaled_ARGB, stbir__encode_uint16_linear_ARGB } }, |
| { /* ABGR */ { stbir__encode_uint8_linear_scaled_ABGR, stbir__encode_uint8_linear_ABGR }, { stbir__encode_uint16_linear_scaled_ABGR, stbir__encode_uint16_linear_ABGR } }, |
| { /* RA */ { stbir__encode_uint8_linear_scaled, stbir__encode_uint8_linear }, { stbir__encode_uint16_linear_scaled, stbir__encode_uint16_linear } }, |
| { /* AR */ { stbir__encode_uint8_linear_scaled_AR, stbir__encode_uint8_linear_AR }, { stbir__encode_uint16_linear_scaled_AR, stbir__encode_uint16_linear_AR } } |
| }; |
| |
| stbir__decode_pixels_func * decode_pixels = 0; |
| stbir__encode_pixels_func * encode_pixels = 0; |
| stbir_datatype input_type, output_type; |
| |
| input_type = resize->input_data_type; |
| output_type = resize->output_data_type; |
| info->input_data = resize->input_pixels; |
| info->input_stride_bytes = resize->input_stride_in_bytes; |
| info->output_stride_bytes = resize->output_stride_in_bytes; |
| |
| // if we're completely point sampling, then we can turn off SRGB |
| if ( ( info->horizontal.filter_enum == STBIR_FILTER_POINT_SAMPLE ) && ( info->vertical.filter_enum == STBIR_FILTER_POINT_SAMPLE ) ) |
| { |
| if ( ( ( input_type == STBIR_TYPE_UINT8_SRGB ) || ( input_type == STBIR_TYPE_UINT8_SRGB_ALPHA ) ) && |
| ( ( output_type == STBIR_TYPE_UINT8_SRGB ) || ( output_type == STBIR_TYPE_UINT8_SRGB_ALPHA ) ) ) |
| { |
| input_type = STBIR_TYPE_UINT8; |
| output_type = STBIR_TYPE_UINT8; |
| } |
| } |
| |
| // recalc the output and input strides |
| if ( info->input_stride_bytes == 0 ) |
| info->input_stride_bytes = info->channels * info->horizontal.scale_info.input_full_size * stbir__type_size[input_type]; |
| |
| if ( info->output_stride_bytes == 0 ) |
| info->output_stride_bytes = info->channels * info->horizontal.scale_info.output_sub_size * stbir__type_size[output_type]; |
| |
| // calc offset |
| info->output_data = ( (char*) resize->output_pixels ) + ( (size_t) info->offset_y * (size_t) resize->output_stride_in_bytes ) + ( info->offset_x * info->channels * stbir__type_size[output_type] ); |
| |
| info->in_pixels_cb = resize->input_cb; |
| info->user_data = resize->user_data; |
| info->out_pixels_cb = resize->output_cb; |
| |
| // setup the input format converters |
| if ( ( input_type == STBIR_TYPE_UINT8 ) || ( input_type == STBIR_TYPE_UINT16 ) ) |
| { |
| int non_scaled = 0; |
| |
| // check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16) |
| if ( ( !info->alpha_weight ) && ( !info->alpha_unweight ) ) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual) |
| if ( ( ( input_type == STBIR_TYPE_UINT8 ) && ( output_type == STBIR_TYPE_UINT8 ) ) || ( ( input_type == STBIR_TYPE_UINT16 ) && ( output_type == STBIR_TYPE_UINT16 ) ) ) |
| non_scaled = 1; |
| |
| if ( info->input_pixel_layout_internal <= STBIRI_4CHANNEL ) |
| decode_pixels = decode_simple_scaled_or_not[ input_type == STBIR_TYPE_UINT16 ][ non_scaled ]; |
| else |
| decode_pixels = decode_alphas_scaled_or_not[ ( info->input_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ input_type == STBIR_TYPE_UINT16 ][ non_scaled ]; |
| } |
| else |
| { |
| if ( info->input_pixel_layout_internal <= STBIRI_4CHANNEL ) |
| decode_pixels = decode_simple[ input_type - STBIR_TYPE_UINT8_SRGB ]; |
| else |
| decode_pixels = decode_alphas[ ( info->input_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ input_type - STBIR_TYPE_UINT8_SRGB ]; |
| } |
| |
| // setup the output format converters |
| if ( ( output_type == STBIR_TYPE_UINT8 ) || ( output_type == STBIR_TYPE_UINT16 ) ) |
| { |
| int non_scaled = 0; |
| |
| // check if we can run unscaled - 0-255.0/0-65535.0 instead of 0-1.0 (which is a tiny bit faster when doing linear 8->8 or 16->16) |
| if ( ( !info->alpha_weight ) && ( !info->alpha_unweight ) ) // don't short circuit when alpha weighting (get everything to 0-1.0 as usual) |
| if ( ( ( input_type == STBIR_TYPE_UINT8 ) && ( output_type == STBIR_TYPE_UINT8 ) ) || ( ( input_type == STBIR_TYPE_UINT16 ) && ( output_type == STBIR_TYPE_UINT16 ) ) ) |
| non_scaled = 1; |
| |
| if ( info->output_pixel_layout_internal <= STBIRI_4CHANNEL ) |
| encode_pixels = encode_simple_scaled_or_not[ output_type == STBIR_TYPE_UINT16 ][ non_scaled ]; |
| else |
| encode_pixels = encode_alphas_scaled_or_not[ ( info->output_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ output_type == STBIR_TYPE_UINT16 ][ non_scaled ]; |
| } |
| else |
| { |
| if ( info->output_pixel_layout_internal <= STBIRI_4CHANNEL ) |
| encode_pixels = encode_simple[ output_type - STBIR_TYPE_UINT8_SRGB ]; |
| else |
| encode_pixels = encode_alphas[ ( info->output_pixel_layout_internal - STBIRI_RGBA ) % ( STBIRI_AR-STBIRI_RGBA+1 ) ][ output_type - STBIR_TYPE_UINT8_SRGB ]; |
| } |
| |
| info->input_type = input_type; |
| info->output_type = output_type; |
| info->decode_pixels = decode_pixels; |
| info->encode_pixels = encode_pixels; |
| } |
| |
| static void stbir__clip( int * outx, int * outsubw, int outw, double * u0, double * u1 ) |
| { |
| double per, adj; |
| int over; |
| |
| // do left/top edge |
| if ( *outx < 0 ) |
| { |
| per = ( (double)*outx ) / ( (double)*outsubw ); // is negative |
| adj = per * ( *u1 - *u0 ); |
| *u0 -= adj; // increases u0 |
| *outx = 0; |
| } |
| |
| // do right/bot edge |
| over = outw - ( *outx + *outsubw ); |
| if ( over < 0 ) |
| { |
| per = ( (double)over ) / ( (double)*outsubw ); // is negative |
| adj = per * ( *u1 - *u0 ); |
| *u1 += adj; // decrease u1 |
| *outsubw = outw - *outx; |
| } |
| } |
| |
| // converts a double to a rational that has less than one float bit of error (returns 0 if unable to do so) |
| static int stbir__double_to_rational(double f, stbir_uint32 limit, stbir_uint32 *numer, stbir_uint32 *denom, int limit_denom ) // limit_denom (1) or limit numer (0) |
| { |
| double err; |
| stbir_uint64 top, bot; |
| stbir_uint64 numer_last = 0; |
| stbir_uint64 denom_last = 1; |
| stbir_uint64 numer_estimate = 1; |
| stbir_uint64 denom_estimate = 0; |
| |
| // scale to past float error range |
| top = (stbir_uint64)( f * (double)(1 << 25) ); |
| bot = 1 << 25; |
| |
| // keep refining, but usually stops in a few loops - usually 5 for bad cases |
| for(;;) |
| { |
| stbir_uint64 est, temp; |
| |
| // hit limit, break out and do best full range estimate |
| if ( ( ( limit_denom ) ? denom_estimate : numer_estimate ) >= limit ) |
| break; |
| |
| // is the current error less than 1 bit of a float? if so, we're done |
| if ( denom_estimate ) |
| { |
| err = ( (double)numer_estimate / (double)denom_estimate ) - f; |
| if ( err < 0.0 ) err = -err; |
| if ( err < ( 1.0 / (double)(1<<24) ) ) |
| { |
| // yup, found it |
| *numer = (stbir_uint32) numer_estimate; |
| *denom = (stbir_uint32) denom_estimate; |
| return 1; |
| } |
| } |
| |
| // no more refinement bits left? break out and do full range estimate |
| if ( bot == 0 ) |
| break; |
| |
| // gcd the estimate bits |
| est = top / bot; |
| temp = top % bot; |
| top = bot; |
| bot = temp; |
| |
| // move remainders |
| temp = est * denom_estimate + denom_last; |
| denom_last = denom_estimate; |
| denom_estimate = temp; |
| |
| // move remainders |
| temp = est * numer_estimate + numer_last; |
| numer_last = numer_estimate; |
| numer_estimate = temp; |
| } |
| |
| // we didn't fine anything good enough for float, use a full range estimate |
| if ( limit_denom ) |
| { |
| numer_estimate= (stbir_uint64)( f * (double)limit + 0.5 ); |
| denom_estimate = limit; |
| } |
| else |
| { |
| numer_estimate = limit; |
| denom_estimate = (stbir_uint64)( ( (double)limit / f ) + 0.5 ); |
| } |
| |
| *numer = (stbir_uint32) numer_estimate; |
| *denom = (stbir_uint32) denom_estimate; |
| |
| err = ( denom_estimate ) ? ( ( (double)(stbir_uint32)numer_estimate / (double)(stbir_uint32)denom_estimate ) - f ) : 1.0; |
| if ( err < 0.0 ) err = -err; |
| return ( err < ( 1.0 / (double)(1<<24) ) ) ? 1 : 0; |
| } |
| |
| static int stbir__calculate_region_transform( stbir__scale_info * scale_info, int output_full_range, int * output_offset, int output_sub_range, int input_full_range, double input_s0, double input_s1 ) |
| { |
| double output_range, input_range, output_s, input_s, ratio, scale; |
| |
| input_s = input_s1 - input_s0; |
| |
| // null area |
| if ( ( output_full_range == 0 ) || ( input_full_range == 0 ) || |
| ( output_sub_range == 0 ) || ( input_s <= stbir__small_float ) ) |
| return 0; |
| |
| // are either of the ranges completely out of bounds? |
| if ( ( *output_offset >= output_full_range ) || ( ( *output_offset + output_sub_range ) <= 0 ) || ( input_s0 >= (1.0f-stbir__small_float) ) || ( input_s1 <= stbir__small_float ) ) |
| return 0; |
| |
| output_range = (double)output_full_range; |
| input_range = (double)input_full_range; |
| |
| output_s = ( (double)output_sub_range) / output_range; |
| |
| // figure out the scaling to use |
| ratio = output_s / input_s; |
| |
| // save scale before clipping |
| scale = ( output_range / input_range ) * ratio; |
| scale_info->scale = (float)scale; |
| scale_info->inv_scale = (float)( 1.0 / scale ); |
| |
| // clip output area to left/right output edges (and adjust input area) |
| stbir__clip( output_offset, &output_sub_range, output_full_range, &input_s0, &input_s1 ); |
| |
| // recalc input area |
| input_s = input_s1 - input_s0; |
| |
| // after clipping do we have zero input area? |
| if ( input_s <= stbir__small_float ) |
| return 0; |
| |
| // calculate and store the starting source offsets in output pixel space |
| scale_info->pixel_shift = (float) ( input_s0 * ratio * output_range ); |
| |
| scale_info->scale_is_rational = stbir__double_to_rational( scale, ( scale <= 1.0 ) ? output_full_range : input_full_range, &scale_info->scale_numerator, &scale_info->scale_denominator, ( scale >= 1.0 ) ); |
| |
| scale_info->input_full_size = input_full_range; |
| scale_info->output_sub_size = output_sub_range; |
| |
| return 1; |
| } |
| |
| |
| static void stbir__init_and_set_layout( STBIR_RESIZE * resize, stbir_pixel_layout pixel_layout, stbir_datatype data_type ) |
| { |
| resize->input_cb = 0; |
| resize->output_cb = 0; |
| resize->user_data = resize; |
| resize->samplers = 0; |
| resize->called_alloc = 0; |
| resize->horizontal_filter = STBIR_FILTER_DEFAULT; |
| resize->horizontal_filter_kernel = 0; resize->horizontal_filter_support = 0; |
| resize->vertical_filter = STBIR_FILTER_DEFAULT; |
| resize->vertical_filter_kernel = 0; resize->vertical_filter_support = 0; |
| resize->horizontal_edge = STBIR_EDGE_CLAMP; |
| resize->vertical_edge = STBIR_EDGE_CLAMP; |
| resize->input_s0 = 0; resize->input_t0 = 0; resize->input_s1 = 1; resize->input_t1 = 1; |
| resize->output_subx = 0; resize->output_suby = 0; resize->output_subw = resize->output_w; resize->output_subh = resize->output_h; |
| resize->input_data_type = data_type; |
| resize->output_data_type = data_type; |
| resize->input_pixel_layout_public = pixel_layout; |
| resize->output_pixel_layout_public = pixel_layout; |
| resize->needs_rebuild = 1; |
| } |
| |
| STBIRDEF void stbir_resize_init( STBIR_RESIZE * resize, |
| const void *input_pixels, int input_w, int input_h, int input_stride_in_bytes, // stride can be zero |
| void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, // stride can be zero |
| stbir_pixel_layout pixel_layout, stbir_datatype data_type ) |
| { |
| resize->input_pixels = input_pixels; |
| resize->input_w = input_w; |
| resize->input_h = input_h; |
| resize->input_stride_in_bytes = input_stride_in_bytes; |
| resize->output_pixels = output_pixels; |
| resize->output_w = output_w; |
| resize->output_h = output_h; |
| resize->output_stride_in_bytes = output_stride_in_bytes; |
| resize->fast_alpha = 0; |
| |
| stbir__init_and_set_layout( resize, pixel_layout, data_type ); |
| } |
| |
| // You can update parameters any time after resize_init |
| STBIRDEF void stbir_set_datatypes( STBIR_RESIZE * resize, stbir_datatype input_type, stbir_datatype output_type ) // by default, datatype from resize_init |
| { |
| resize->input_data_type = input_type; |
| resize->output_data_type = output_type; |
| if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) |
| stbir__update_info_from_resize( resize->samplers, resize ); |
| } |
| |
| STBIRDEF void stbir_set_pixel_callbacks( STBIR_RESIZE * resize, stbir_input_callback * input_cb, stbir_output_callback * output_cb ) // no callbacks by default |
| { |
| resize->input_cb = input_cb; |
| resize->output_cb = output_cb; |
| |
| if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) |
| { |
| resize->samplers->in_pixels_cb = input_cb; |
| resize->samplers->out_pixels_cb = output_cb; |
| } |
| } |
| |
| STBIRDEF void stbir_set_user_data( STBIR_RESIZE * resize, void * user_data ) // pass back STBIR_RESIZE* by default |
| { |
| resize->user_data = user_data; |
| if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) |
| resize->samplers->user_data = user_data; |
| } |
| |
| STBIRDEF void stbir_set_buffer_ptrs( STBIR_RESIZE * resize, const void * input_pixels, int input_stride_in_bytes, void * output_pixels, int output_stride_in_bytes ) |
| { |
| resize->input_pixels = input_pixels; |
| resize->input_stride_in_bytes = input_stride_in_bytes; |
| resize->output_pixels = output_pixels; |
| resize->output_stride_in_bytes = output_stride_in_bytes; |
| if ( ( resize->samplers ) && ( !resize->needs_rebuild ) ) |
| stbir__update_info_from_resize( resize->samplers, resize ); |
| } |
| |
| |
| STBIRDEF int stbir_set_edgemodes( STBIR_RESIZE * resize, stbir_edge horizontal_edge, stbir_edge vertical_edge ) // CLAMP by default |
| { |
| resize->horizontal_edge = horizontal_edge; |
| resize->vertical_edge = vertical_edge; |
| resize->needs_rebuild = 1; |
| return 1; |
| } |
| |
| STBIRDEF int stbir_set_filters( STBIR_RESIZE * resize, stbir_filter horizontal_filter, stbir_filter vertical_filter ) // STBIR_DEFAULT_FILTER_UPSAMPLE/DOWNSAMPLE by default |
| { |
| resize->horizontal_filter = horizontal_filter; |
| resize->vertical_filter = vertical_filter; |
| resize->needs_rebuild = 1; |
| return 1; |
| } |
| |
| STBIRDEF int stbir_set_filter_callbacks( STBIR_RESIZE * resize, stbir__kernel_callback * horizontal_filter, stbir__support_callback * horizontal_support, stbir__kernel_callback * vertical_filter, stbir__support_callback * vertical_support ) |
| { |
| resize->horizontal_filter_kernel = horizontal_filter; resize->horizontal_filter_support = horizontal_support; |
| resize->vertical_filter_kernel = vertical_filter; resize->vertical_filter_support = vertical_support; |
| resize->needs_rebuild = 1; |
| return 1; |
| } |
| |
| STBIRDEF int stbir_set_pixel_layouts( STBIR_RESIZE * resize, stbir_pixel_layout input_pixel_layout, stbir_pixel_layout output_pixel_layout ) // sets new pixel layouts |
| { |
| resize->input_pixel_layout_public = input_pixel_layout; |
| resize->output_pixel_layout_public = output_pixel_layout; |
| resize->needs_rebuild = 1; |
| return 1; |
| } |
| |
| |
| STBIRDEF int stbir_set_non_pm_alpha_speed_over_quality( STBIR_RESIZE * resize, int non_pma_alpha_speed_over_quality ) // sets alpha speed |
| { |
| resize->fast_alpha = non_pma_alpha_speed_over_quality; |
| resize->needs_rebuild = 1; |
| return 1; |
| } |
| |
| STBIRDEF int stbir_set_input_subrect( STBIR_RESIZE * resize, double s0, double t0, double s1, double t1 ) // sets input region (full region by default) |
| { |
| resize->input_s0 = s0; |
| resize->input_t0 = t0; |
| resize->input_s1 = s1; |
| resize->input_t1 = t1; |
| resize->needs_rebuild = 1; |
| |
| // are we inbounds? |
| if ( ( s1 < stbir__small_float ) || ( (s1-s0) < stbir__small_float ) || |
| ( t1 < stbir__small_float ) || ( (t1-t0) < stbir__small_float ) || |
| ( s0 > (1.0f-stbir__small_float) ) || |
| ( t0 > (1.0f-stbir__small_float) ) ) |
| return 0; |
| |
| return 1; |
| } |
| |
| STBIRDEF int stbir_set_output_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ) // sets input region (full region by default) |
| { |
| resize->output_subx = subx; |
| resize->output_suby = suby; |
| resize->output_subw = subw; |
| resize->output_subh = subh; |
| resize->needs_rebuild = 1; |
| |
| // are we inbounds? |
| if ( ( subx >= resize->output_w ) || ( ( subx + subw ) <= 0 ) || ( suby >= resize->output_h ) || ( ( suby + subh ) <= 0 ) || ( subw == 0 ) || ( subh == 0 ) ) |
| return 0; |
| |
| return 1; |
| } |
| |
| STBIRDEF int stbir_set_pixel_subrect( STBIR_RESIZE * resize, int subx, int suby, int subw, int subh ) // sets both regions (full regions by default) |
| { |
| double s0, t0, s1, t1; |
| |
| s0 = ( (double)subx ) / ( (double)resize->output_w ); |
| t0 = ( (double)suby ) / ( (double)resize->output_h ); |
| s1 = ( (double)(subx+subw) ) / ( (double)resize->output_w ); |
| t1 = ( (double)(suby+subh) ) / ( (double)resize->output_h ); |
| |
| resize->input_s0 = s0; |
| resize->input_t0 = t0; |
| resize->input_s1 = s1; |
| resize->input_t1 = t1; |
| resize->output_subx = subx; |
| resize->output_suby = suby; |
| resize->output_subw = subw; |
| resize->output_subh = subh; |
| resize->needs_rebuild = 1; |
| |
| // are we inbounds? |
| if ( ( subx >= resize->output_w ) || ( ( subx + subw ) <= 0 ) || ( suby >= resize->output_h ) || ( ( suby + subh ) <= 0 ) || ( subw == 0 ) || ( subh == 0 ) ) |
| return 0; |
| |
| return 1; |
| } |
| |
| static int stbir__perform_build( STBIR_RESIZE * resize, int splits ) |
| { |
| stbir__contributors conservative = { 0, 0 }; |
| stbir__sampler horizontal, vertical; |
| int new_output_subx, new_output_suby; |
| stbir__info * out_info; |
| #ifdef STBIR_PROFILE |
| stbir__info profile_infod; // used to contain building profile info before everything is allocated |
| stbir__info * profile_info = &profile_infod; |
| #endif |
| |
| // have we already built the samplers? |
| if ( resize->samplers ) |
| return 0; |
| |
| #define STBIR_RETURN_ERROR_AND_ASSERT( exp ) STBIR_ASSERT( !(exp) ); if (exp) return 0; |
| STBIR_RETURN_ERROR_AND_ASSERT( (unsigned)resize->horizontal_filter >= STBIR_FILTER_OTHER) |
| STBIR_RETURN_ERROR_AND_ASSERT( (unsigned)resize->vertical_filter >= STBIR_FILTER_OTHER) |
| #undef STBIR_RETURN_ERROR_AND_ASSERT |
| |
| if ( splits <= 0 ) |
| return 0; |
| |
| STBIR_PROFILE_BUILD_FIRST_START( build ); |
| |
| new_output_subx = resize->output_subx; |
| new_output_suby = resize->output_suby; |
| |
| // do horizontal clip and scale calcs |
| if ( !stbir__calculate_region_transform( &horizontal.scale_info, resize->output_w, &new_output_subx, resize->output_subw, resize->input_w, resize->input_s0, resize->input_s1 ) ) |
| return 0; |
| |
| // do vertical clip and scale calcs |
| if ( !stbir__calculate_region_transform( &vertical.scale_info, resize->output_h, &new_output_suby, resize->output_subh, resize->input_h, resize->input_t0, resize->input_t1 ) ) |
| return 0; |
| |
| // if nothing to do, just return |
| if ( ( horizontal.scale_info.output_sub_size == 0 ) || ( vertical.scale_info.output_sub_size == 0 ) ) |
| return 0; |
| |
| stbir__set_sampler(&horizontal, resize->horizontal_filter, resize->horizontal_filter_kernel, resize->horizontal_filter_support, resize->horizontal_edge, &horizontal.scale_info, 1, resize->user_data ); |
| stbir__get_conservative_extents( &horizontal, &conservative, resize->user_data ); |
| stbir__set_sampler(&vertical, resize->vertical_filter, resize->horizontal_filter_kernel, resize->vertical_filter_support, resize->vertical_edge, &vertical.scale_info, 0, resize->user_data ); |
| |
| if ( ( vertical.scale_info.output_sub_size / splits ) < STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS ) // each split should be a minimum of 4 scanlines (handwavey choice) |
| { |
| splits = vertical.scale_info.output_sub_size / STBIR_FORCE_MINIMUM_SCANLINES_FOR_SPLITS; |
| if ( splits == 0 ) splits = 1; |
| } |
| |
| STBIR_PROFILE_BUILD_START( alloc ); |
| out_info = stbir__alloc_internal_mem_and_build_samplers( &horizontal, &vertical, &conservative, resize->input_pixel_layout_public, resize->output_pixel_layout_public, splits, new_output_subx, new_output_suby, resize->fast_alpha, resize->user_data STBIR_ONLY_PROFILE_BUILD_SET_INFO ); |
| STBIR_PROFILE_BUILD_END( alloc ); |
| STBIR_PROFILE_BUILD_END( build ); |
| |
| if ( out_info ) |
| { |
| resize->splits = splits; |
| resize->samplers = out_info; |
| resize->needs_rebuild = 0; |
| #ifdef STBIR_PROFILE |
| STBIR_MEMCPY( &out_info->profile, &profile_infod.profile, sizeof( out_info->profile ) ); |
| #endif |
| |
| // update anything that can be changed without recalcing samplers |
| stbir__update_info_from_resize( out_info, resize ); |
| |
| return splits; |
| } |
| |
| return 0; |
| } |
| |
| void stbir_free_samplers( STBIR_RESIZE * resize ) |
| { |
| if ( resize->samplers ) |
| { |
| stbir__free_internal_mem( resize->samplers ); |
| resize->samplers = 0; |
| resize->called_alloc = 0; |
| } |
| } |
| |
| STBIRDEF int stbir_build_samplers_with_splits( STBIR_RESIZE * resize, int splits ) |
| { |
| if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) ) |
| { |
| if ( resize->samplers ) |
| stbir_free_samplers( resize ); |
| |
| resize->called_alloc = 1; |
| return stbir__perform_build( resize, splits ); |
| } |
| |
| STBIR_PROFILE_BUILD_CLEAR( resize->samplers ); |
| |
| return 1; |
| } |
| |
| STBIRDEF int stbir_build_samplers( STBIR_RESIZE * resize ) |
| { |
| return stbir_build_samplers_with_splits( resize, 1 ); |
| } |
| |
| STBIRDEF int stbir_resize_extended( STBIR_RESIZE * resize ) |
| { |
| int result; |
| |
| if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) ) |
| { |
| int alloc_state = resize->called_alloc; // remember allocated state |
| |
| if ( resize->samplers ) |
| { |
| stbir__free_internal_mem( resize->samplers ); |
| resize->samplers = 0; |
| } |
| |
| if ( !stbir_build_samplers( resize ) ) |
| return 0; |
| |
| resize->called_alloc = alloc_state; |
| |
| // if build_samplers succeeded (above), but there are no samplers set, then |
| // the area to stretch into was zero pixels, so don't do anything and return |
| // success |
| if ( resize->samplers == 0 ) |
| return 1; |
| } |
| else |
| { |
| // didn't build anything - clear it |
| STBIR_PROFILE_BUILD_CLEAR( resize->samplers ); |
| } |
| |
| // do resize |
| result = stbir__perform_resize( resize->samplers, 0, resize->splits ); |
| |
| // if we alloced, then free |
| if ( !resize->called_alloc ) |
| { |
| stbir_free_samplers( resize ); |
| resize->samplers = 0; |
| } |
| |
| return result; |
| } |
| |
| STBIRDEF int stbir_resize_extended_split( STBIR_RESIZE * resize, int split_start, int split_count ) |
| { |
| STBIR_ASSERT( resize->samplers ); |
| |
| // if we're just doing the whole thing, call full |
| if ( ( split_start == -1 ) || ( ( split_start == 0 ) && ( split_count == resize->splits ) ) ) |
| return stbir_resize_extended( resize ); |
| |
| // you **must** build samplers first when using split resize |
| if ( ( resize->samplers == 0 ) || ( resize->needs_rebuild ) ) |
| return 0; |
| |
| if ( ( split_start >= resize->splits ) || ( split_start < 0 ) || ( ( split_start + split_count ) > resize->splits ) || ( split_count <= 0 ) ) |
| return 0; |
| |
| // do resize |
| return stbir__perform_resize( resize->samplers, split_start, split_count ); |
| } |
| |
| static int stbir__check_output_stuff( void ** ret_ptr, int * ret_pitch, void * output_pixels, int type_size, int output_w, int output_h, int output_stride_in_bytes, stbir_internal_pixel_layout pixel_layout ) |
| { |
| size_t size; |
| int pitch; |
| void * ptr; |
| |
| pitch = output_w * type_size * stbir__pixel_channels[ pixel_layout ]; |
| if ( pitch == 0 ) |
| return 0; |
| |
| if ( output_stride_in_bytes == 0 ) |
| output_stride_in_bytes = pitch; |
| |
| if ( output_stride_in_bytes < pitch ) |
| return 0; |
| |
| size = (size_t)output_stride_in_bytes * (size_t)output_h; |
| if ( size == 0 ) |
| return 0; |
| |
| *ret_ptr = 0; |
| *ret_pitch = output_stride_in_bytes; |
| |
| if ( output_pixels == 0 ) |
| { |
| ptr = STBIR_MALLOC( size, 0 ); |
| if ( ptr == 0 ) |
| return 0; |
| |
| *ret_ptr = ptr; |
| *ret_pitch = pitch; |
| } |
| |
| return 1; |
| } |
| |
| |
| STBIRDEF unsigned char * stbir_resize_uint8_linear( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_layout ) |
| { |
| STBIR_RESIZE resize; |
| unsigned char * optr; |
| int opitch; |
| |
| if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( unsigned char ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) |
| return 0; |
| |
| stbir_resize_init( &resize, |
| input_pixels, input_w, input_h, input_stride_in_bytes, |
| (optr) ? optr : output_pixels, output_w, output_h, opitch, |
| pixel_layout, STBIR_TYPE_UINT8 ); |
| |
| if ( !stbir_resize_extended( &resize ) ) |
| { |
| if ( optr ) |
| STBIR_FREE( optr, 0 ); |
| return 0; |
| } |
| |
| return (optr) ? optr : output_pixels; |
| } |
| |
| STBIRDEF unsigned char * stbir_resize_uint8_srgb( const unsigned char *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| unsigned char *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_layout ) |
| { |
| STBIR_RESIZE resize; |
| unsigned char * optr; |
| int opitch; |
| |
| if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( unsigned char ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) |
| return 0; |
| |
| stbir_resize_init( &resize, |
| input_pixels, input_w, input_h, input_stride_in_bytes, |
| (optr) ? optr : output_pixels, output_w, output_h, opitch, |
| pixel_layout, STBIR_TYPE_UINT8_SRGB ); |
| |
| if ( !stbir_resize_extended( &resize ) ) |
| { |
| if ( optr ) |
| STBIR_FREE( optr, 0 ); |
| return 0; |
| } |
| |
| return (optr) ? optr : output_pixels; |
| } |
| |
| |
| STBIRDEF float * stbir_resize_float_linear( const float *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| float *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_layout ) |
| { |
| STBIR_RESIZE resize; |
| float * optr; |
| int opitch; |
| |
| if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, sizeof( float ), output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) |
| return 0; |
| |
| stbir_resize_init( &resize, |
| input_pixels, input_w, input_h, input_stride_in_bytes, |
| (optr) ? optr : output_pixels, output_w, output_h, opitch, |
| pixel_layout, STBIR_TYPE_FLOAT ); |
| |
| if ( !stbir_resize_extended( &resize ) ) |
| { |
| if ( optr ) |
| STBIR_FREE( optr, 0 ); |
| return 0; |
| } |
| |
| return (optr) ? optr : output_pixels; |
| } |
| |
| |
| STBIRDEF void * stbir_resize( const void *input_pixels , int input_w , int input_h, int input_stride_in_bytes, |
| void *output_pixels, int output_w, int output_h, int output_stride_in_bytes, |
| stbir_pixel_layout pixel_layout, stbir_datatype data_type, |
| stbir_edge edge, stbir_filter filter ) |
| { |
| STBIR_RESIZE resize; |
| float * optr; |
| int opitch; |
| |
| if ( !stbir__check_output_stuff( (void**)&optr, &opitch, output_pixels, stbir__type_size[data_type], output_w, output_h, output_stride_in_bytes, stbir__pixel_layout_convert_public_to_internal[ pixel_layout ] ) ) |
| return 0; |
| |
| stbir_resize_init( &resize, |
| input_pixels, input_w, input_h, input_stride_in_bytes, |
| (optr) ? optr : output_pixels, output_w, output_h, output_stride_in_bytes, |
| pixel_layout, data_type ); |
| |
| resize.horizontal_edge = edge; |
| resize.vertical_edge = edge; |
| resize.horizontal_filter = filter; |
| resize.vertical_filter = filter; |
| |
| if ( !stbir_resize_extended( &resize ) ) |
| { |
| if ( optr ) |
| STBIR_FREE( optr, 0 ); |
| return 0; |
| } |
| |
| return (optr) ? optr : output_pixels; |
| } |
| |
| #ifdef STBIR_PROFILE |
| |
| STBIRDEF void stbir_resize_build_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize ) |
| { |
| static char const * bdescriptions[6] = { "Building", "Allocating", "Horizontal sampler", "Vertical sampler", "Coefficient cleanup", "Coefficient piovot" } ; |
| stbir__info* samp = resize->samplers; |
| int i; |
| |
| typedef int testa[ (STBIR__ARRAY_SIZE( bdescriptions ) == (STBIR__ARRAY_SIZE( samp->profile.array )-1) )?1:-1]; |
| typedef int testb[ (sizeof( samp->profile.array ) == (sizeof(samp->profile.named)) )?1:-1]; |
| typedef int testc[ (sizeof( info->clocks ) >= (sizeof(samp->profile.named)) )?1:-1]; |
| |
| for( i = 0 ; i < STBIR__ARRAY_SIZE( bdescriptions ) ; i++) |
| info->clocks[i] = samp->profile.array[i+1]; |
| |
| info->total_clocks = samp->profile.named.total; |
| info->descriptions = bdescriptions; |
| info->count = STBIR__ARRAY_SIZE( bdescriptions ); |
| } |
| |
| STBIRDEF void stbir_resize_split_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize, int split_start, int split_count ) |
| { |
| static char const * descriptions[7] = { "Looping", "Vertical sampling", "Horizontal sampling", "Scanline input", "Scanline output", "Alpha weighting", "Alpha unweighting" }; |
| stbir__per_split_info * split_info; |
| int s, i; |
| |
| typedef int testa[ (STBIR__ARRAY_SIZE( descriptions ) == (STBIR__ARRAY_SIZE( split_info->profile.array )-1) )?1:-1]; |
| typedef int testb[ (sizeof( split_info->profile.array ) == (sizeof(split_info->profile.named)) )?1:-1]; |
| typedef int testc[ (sizeof( info->clocks ) >= (sizeof(split_info->profile.named)) )?1:-1]; |
| |
| if ( split_start == -1 ) |
| { |
| split_start = 0; |
| split_count = resize->samplers->splits; |
| } |
| |
| if ( ( split_start >= resize->splits ) || ( split_start < 0 ) || ( ( split_start + split_count ) > resize->splits ) || ( split_count <= 0 ) ) |
| { |
| info->total_clocks = 0; |
| info->descriptions = 0; |
| info->count = 0; |
| return; |
| } |
| |
| split_info = resize->samplers->split_info + split_start; |
| |
| // sum up the profile from all the splits |
| for( i = 0 ; i < STBIR__ARRAY_SIZE( descriptions ) ; i++ ) |
| { |
| stbir_uint64 sum = 0; |
| for( s = 0 ; s < split_count ; s++ ) |
| sum += split_info[s].profile.array[i+1]; |
| info->clocks[i] = sum; |
| } |
| |
| info->total_clocks = split_info->profile.named.total; |
| info->descriptions = descriptions; |
| info->count = STBIR__ARRAY_SIZE( descriptions ); |
| } |
| |
| STBIRDEF void stbir_resize_extended_profile_info( STBIR_PROFILE_INFO * info, STBIR_RESIZE const * resize ) |
| { |
| stbir_resize_split_profile_info( info, resize, -1, 0 ); |
| } |
| |
| #endif // STBIR_PROFILE |
| |
| #undef STBIR_BGR |
| #undef STBIR_1CHANNEL |
| #undef STBIR_2CHANNEL |
| #undef STBIR_RGB |
| #undef STBIR_RGBA |
| #undef STBIR_4CHANNEL |
| #undef STBIR_BGRA |
| #undef STBIR_ARGB |
| #undef STBIR_ABGR |
| #undef STBIR_RA |
| #undef STBIR_AR |
| #undef STBIR_RGBA_PM |
| #undef STBIR_BGRA_PM |
| #undef STBIR_ARGB_PM |
| #undef STBIR_ABGR_PM |
| #undef STBIR_RA_PM |
| #undef STBIR_AR_PM |
| |
| #endif // STB_IMAGE_RESIZE_IMPLEMENTATION |
| |
| #else // STB_IMAGE_RESIZE_HORIZONTALS&STB_IMAGE_RESIZE_DO_VERTICALS |
| |
| // we reinclude the header file to define all the horizontal functions |
| // specializing each function for the number of coeffs is 20-40% faster *OVERALL* |
| |
| // by including the header file again this way, we can still debug the functions |
| |
| #define STBIR_strs_join2( start, mid, end ) start##mid##end |
| #define STBIR_strs_join1( start, mid, end ) STBIR_strs_join2( start, mid, end ) |
| |
| #define STBIR_strs_join24( start, mid1, mid2, end ) start##mid1##mid2##end |
| #define STBIR_strs_join14( start, mid1, mid2, end ) STBIR_strs_join24( start, mid1, mid2, end ) |
| |
| #ifdef STB_IMAGE_RESIZE_DO_CODERS |
| |
| #ifdef stbir__decode_suffix |
| #define STBIR__CODER_NAME( name ) STBIR_strs_join1( name, _, stbir__decode_suffix ) |
| #else |
| #define STBIR__CODER_NAME( name ) name |
| #endif |
| |
| #ifdef stbir__decode_swizzle |
| #define stbir__decode_simdf8_flip(reg) STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( stbir__simdf8_0123to,stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3),stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3)(reg, reg) |
| #define stbir__decode_simdf4_flip(reg) STBIR_strs_join1( STBIR_strs_join1( stbir__simdf_0123to,stbir__decode_order0,stbir__decode_order1),stbir__decode_order2,stbir__decode_order3)(reg, reg) |
| #define stbir__encode_simdf8_unflip(reg) STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( STBIR_strs_join1( stbir__simdf8_0123to,stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3),stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3)(reg, reg) |
| #define stbir__encode_simdf4_unflip(reg) STBIR_strs_join1( STBIR_strs_join1( stbir__simdf_0123to,stbir__encode_order0,stbir__encode_order1),stbir__encode_order2,stbir__encode_order3)(reg, reg) |
| #else |
| #define stbir__decode_order0 0 |
| #define stbir__decode_order1 1 |
| #define stbir__decode_order2 2 |
| #define stbir__decode_order3 3 |
| #define stbir__encode_order0 0 |
| #define stbir__encode_order1 1 |
| #define stbir__encode_order2 2 |
| #define stbir__encode_order3 3 |
| #define stbir__decode_simdf8_flip(reg) |
| #define stbir__decode_simdf4_flip(reg) |
| #define stbir__encode_simdf8_unflip(reg) |
| #define stbir__encode_simdf4_unflip(reg) |
| #endif |
| |
| #ifdef STBIR_SIMD8 |
| #define stbir__encode_simdfX_unflip stbir__encode_simdf8_unflip |
| #else |
| #define stbir__encode_simdfX_unflip stbir__encode_simdf4_unflip |
| #endif |
| |
| static void STBIR__CODER_NAME( stbir__decode_uint8_linear_scaled )( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float * decode_end = (float*) decode + width_times_channels; |
| unsigned char const * input = (unsigned char const*)inputp; |
| |
| #ifdef STBIR_SIMD |
| unsigned char const * end_input_m16 = input + width_times_channels - 16; |
| if ( width_times_channels >= 16 ) |
| { |
| decode_end -= 16; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| #ifdef STBIR_SIMD8 |
| stbir__simdi i; stbir__simdi8 o0,o1; |
| stbir__simdf8 of0, of1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi8_expand_u8_to_u32( o0, o1, i ); |
| stbir__simdi8_convert_i32_to_float( of0, o0 ); |
| stbir__simdi8_convert_i32_to_float( of1, o1 ); |
| stbir__simdf8_mult( of0, of0, STBIR_max_uint8_as_float_inverted8); |
| stbir__simdf8_mult( of1, of1, STBIR_max_uint8_as_float_inverted8); |
| stbir__decode_simdf8_flip( of0 ); |
| stbir__decode_simdf8_flip( of1 ); |
| stbir__simdf8_store( decode + 0, of0 ); |
| stbir__simdf8_store( decode + 8, of1 ); |
| #else |
| stbir__simdi i, o0, o1, o2, o3; |
| stbir__simdf of0, of1, of2, of3; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi_expand_u8_to_u32( o0,o1,o2,o3,i); |
| stbir__simdi_convert_i32_to_float( of0, o0 ); |
| stbir__simdi_convert_i32_to_float( of1, o1 ); |
| stbir__simdi_convert_i32_to_float( of2, o2 ); |
| stbir__simdi_convert_i32_to_float( of3, o3 ); |
| stbir__simdf_mult( of0, of0, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); |
| stbir__simdf_mult( of1, of1, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); |
| stbir__simdf_mult( of2, of2, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); |
| stbir__simdf_mult( of3, of3, STBIR__CONSTF(STBIR_max_uint8_as_float_inverted) ); |
| stbir__decode_simdf4_flip( of0 ); |
| stbir__decode_simdf4_flip( of1 ); |
| stbir__decode_simdf4_flip( of2 ); |
| stbir__decode_simdf4_flip( of3 ); |
| stbir__simdf_store( decode + 0, of0 ); |
| stbir__simdf_store( decode + 4, of1 ); |
| stbir__simdf_store( decode + 8, of2 ); |
| stbir__simdf_store( decode + 12, of3 ); |
| #endif |
| decode += 16; |
| input += 16; |
| if ( decode <= decode_end ) |
| continue; |
| if ( decode == ( decode_end + 16 ) ) |
| break; |
| decode = decode_end; // backup and do last couple |
| input = end_input_m16; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode <= decode_end ) |
| { |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0-4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted; |
| decode[1-4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted; |
| decode[2-4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted; |
| decode[3-4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint8_as_float_inverted; |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint8_as_float_inverted; |
| #if stbir__coder_min_num >= 2 |
| decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint8_as_float_inverted; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint8_as_float_inverted; |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME( stbir__encode_uint8_linear_scaled )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char *) outputp; |
| unsigned char * end_output = ( (unsigned char *) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| if ( width_times_channels >= stbir__simdfX_float_count*2 ) |
| { |
| float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; |
| end_output -= stbir__simdfX_float_count*2; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdfX e0, e1; |
| stbir__simdi i; |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdfX_madd_mem( e0, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode ); |
| stbir__simdfX_madd_mem( e1, STBIR_simd_point5X, STBIR_max_uint8_as_floatX, encode+stbir__simdfX_float_count ); |
| stbir__encode_simdfX_unflip( e0 ); |
| stbir__encode_simdfX_unflip( e1 ); |
| #ifdef STBIR_SIMD8 |
| stbir__simdf8_pack_to_16bytes( i, e0, e1 ); |
| stbir__simdi_store( output, i ); |
| #else |
| stbir__simdf_pack_to_8bytes( i, e0, e1 ); |
| stbir__simdi_store2( output, i ); |
| #endif |
| encode += stbir__simdfX_float_count*2; |
| output += stbir__simdfX_float_count*2; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m8; |
| } |
| return; |
| } |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| stbir__simdf e0; |
| stbir__simdi i0; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_load( e0, encode ); |
| stbir__simdf_madd( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), e0 ); |
| stbir__encode_simdf4_unflip( e0 ); |
| stbir__simdf_pack_to_8bytes( i0, e0, e0 ); // only use first 4 |
| *(int*)(output-4) = stbir__simdi_to_int( i0 ); |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| stbir__simdf e0; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order0 ); output[0] = stbir__simdf_convert_float_to_uint8( e0 ); |
| #if stbir__coder_min_num >= 2 |
| stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order1 ); output[1] = stbir__simdf_convert_float_to_uint8( e0 ); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| stbir__simdf_madd1_mem( e0, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint8_as_float), encode+stbir__encode_order2 ); output[2] = stbir__simdf_convert_float_to_uint8( e0 ); |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| |
| #else |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| while( output <= end_output ) |
| { |
| float f; |
| f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[0-4] = (unsigned char)f; |
| f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[1-4] = (unsigned char)f; |
| f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[2-4] = (unsigned char)f; |
| f = encode[stbir__encode_order3] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[3-4] = (unsigned char)f; |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| float f; |
| STBIR_NO_UNROLL(encode); |
| f = encode[stbir__encode_order0] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[0] = (unsigned char)f; |
| #if stbir__coder_min_num >= 2 |
| f = encode[stbir__encode_order1] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[1] = (unsigned char)f; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| f = encode[stbir__encode_order2] * stbir__max_uint8_as_float + 0.5f; STBIR_CLAMP(f, 0, 255); output[2] = (unsigned char)f; |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME(stbir__decode_uint8_linear)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float * decode_end = (float*) decode + width_times_channels; |
| unsigned char const * input = (unsigned char const*)inputp; |
| |
| #ifdef STBIR_SIMD |
| unsigned char const * end_input_m16 = input + width_times_channels - 16; |
| if ( width_times_channels >= 16 ) |
| { |
| decode_end -= 16; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| #ifdef STBIR_SIMD8 |
| stbir__simdi i; stbir__simdi8 o0,o1; |
| stbir__simdf8 of0, of1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi8_expand_u8_to_u32( o0, o1, i ); |
| stbir__simdi8_convert_i32_to_float( of0, o0 ); |
| stbir__simdi8_convert_i32_to_float( of1, o1 ); |
| stbir__decode_simdf8_flip( of0 ); |
| stbir__decode_simdf8_flip( of1 ); |
| stbir__simdf8_store( decode + 0, of0 ); |
| stbir__simdf8_store( decode + 8, of1 ); |
| #else |
| stbir__simdi i, o0, o1, o2, o3; |
| stbir__simdf of0, of1, of2, of3; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi_expand_u8_to_u32( o0,o1,o2,o3,i); |
| stbir__simdi_convert_i32_to_float( of0, o0 ); |
| stbir__simdi_convert_i32_to_float( of1, o1 ); |
| stbir__simdi_convert_i32_to_float( of2, o2 ); |
| stbir__simdi_convert_i32_to_float( of3, o3 ); |
| stbir__decode_simdf4_flip( of0 ); |
| stbir__decode_simdf4_flip( of1 ); |
| stbir__decode_simdf4_flip( of2 ); |
| stbir__decode_simdf4_flip( of3 ); |
| stbir__simdf_store( decode + 0, of0 ); |
| stbir__simdf_store( decode + 4, of1 ); |
| stbir__simdf_store( decode + 8, of2 ); |
| stbir__simdf_store( decode + 12, of3 ); |
| #endif |
| decode += 16; |
| input += 16; |
| if ( decode <= decode_end ) |
| continue; |
| if ( decode == ( decode_end + 16 ) ) |
| break; |
| decode = decode_end; // backup and do last couple |
| input = end_input_m16; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode <= decode_end ) |
| { |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0-4] = ((float)(input[stbir__decode_order0])); |
| decode[1-4] = ((float)(input[stbir__decode_order1])); |
| decode[2-4] = ((float)(input[stbir__decode_order2])); |
| decode[3-4] = ((float)(input[stbir__decode_order3])); |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = ((float)(input[stbir__decode_order0])); |
| #if stbir__coder_min_num >= 2 |
| decode[1] = ((float)(input[stbir__decode_order1])); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = ((float)(input[stbir__decode_order2])); |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME( stbir__encode_uint8_linear )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char *) outputp; |
| unsigned char * end_output = ( (unsigned char *) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| if ( width_times_channels >= stbir__simdfX_float_count*2 ) |
| { |
| float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; |
| end_output -= stbir__simdfX_float_count*2; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdfX e0, e1; |
| stbir__simdi i; |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdfX_add_mem( e0, STBIR_simd_point5X, encode ); |
| stbir__simdfX_add_mem( e1, STBIR_simd_point5X, encode+stbir__simdfX_float_count ); |
| stbir__encode_simdfX_unflip( e0 ); |
| stbir__encode_simdfX_unflip( e1 ); |
| #ifdef STBIR_SIMD8 |
| stbir__simdf8_pack_to_16bytes( i, e0, e1 ); |
| stbir__simdi_store( output, i ); |
| #else |
| stbir__simdf_pack_to_8bytes( i, e0, e1 ); |
| stbir__simdi_store2( output, i ); |
| #endif |
| encode += stbir__simdfX_float_count*2; |
| output += stbir__simdfX_float_count*2; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m8; |
| } |
| return; |
| } |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| stbir__simdf e0; |
| stbir__simdi i0; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_load( e0, encode ); |
| stbir__simdf_add( e0, STBIR__CONSTF(STBIR_simd_point5), e0 ); |
| stbir__encode_simdf4_unflip( e0 ); |
| stbir__simdf_pack_to_8bytes( i0, e0, e0 ); // only use first 4 |
| *(int*)(output-4) = stbir__simdi_to_int( i0 ); |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| #else |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| while( output <= end_output ) |
| { |
| float f; |
| f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 255); output[0-4] = (unsigned char)f; |
| f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 255); output[1-4] = (unsigned char)f; |
| f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 255); output[2-4] = (unsigned char)f; |
| f = encode[stbir__encode_order3] + 0.5f; STBIR_CLAMP(f, 0, 255); output[3-4] = (unsigned char)f; |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| float f; |
| STBIR_NO_UNROLL(encode); |
| f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 255); output[0] = (unsigned char)f; |
| #if stbir__coder_min_num >= 2 |
| f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 255); output[1] = (unsigned char)f; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 255); output[2] = (unsigned char)f; |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME(stbir__decode_uint8_srgb)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float const * decode_end = (float*) decode + width_times_channels; |
| unsigned char const * input = (unsigned char const *)inputp; |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| while( decode <= decode_end ) |
| { |
| decode[0-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order0 ] ]; |
| decode[1-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order1 ] ]; |
| decode[2-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order2 ] ]; |
| decode[3-4] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order3 ] ]; |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order0 ] ]; |
| #if stbir__coder_min_num >= 2 |
| decode[1] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order1 ] ]; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = stbir__srgb_uchar_to_linear_float[ input[ stbir__decode_order2 ] ]; |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| #define stbir__min_max_shift20( i, f ) \ |
| stbir__simdf_max( f, f, stbir_simdf_casti(STBIR__CONSTI( STBIR_almost_zero )) ); \ |
| stbir__simdf_min( f, f, stbir_simdf_casti(STBIR__CONSTI( STBIR_almost_one )) ); \ |
| stbir__simdi_32shr( i, stbir_simdi_castf( f ), 20 ); |
| |
| #define stbir__scale_and_convert( i, f ) \ |
| stbir__simdf_madd( f, STBIR__CONSTF( STBIR_simd_point5 ), STBIR__CONSTF( STBIR_max_uint8_as_float ), f ); \ |
| stbir__simdf_max( f, f, stbir__simdf_zeroP() ); \ |
| stbir__simdf_min( f, f, STBIR__CONSTF( STBIR_max_uint8_as_float ) ); \ |
| stbir__simdf_convert_float_to_i32( i, f ); |
| |
| #define stbir__linear_to_srgb_finish( i, f ) \ |
| { \ |
| stbir__simdi temp; \ |
| stbir__simdi_32shr( temp, stbir_simdi_castf( f ), 12 ) ; \ |
| stbir__simdi_and( temp, temp, STBIR__CONSTI(STBIR_mastissa_mask) ); \ |
| stbir__simdi_or( temp, temp, STBIR__CONSTI(STBIR_topscale) ); \ |
| stbir__simdi_16madd( i, i, temp ); \ |
| stbir__simdi_32shr( i, i, 16 ); \ |
| } |
| |
| #define stbir__simdi_table_lookup2( v0,v1, table ) \ |
| { \ |
| stbir__simdi_u32 temp0,temp1; \ |
| temp0.m128i_i128 = v0; \ |
| temp1.m128i_i128 = v1; \ |
| temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \ |
| temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \ |
| v0 = temp0.m128i_i128; \ |
| v1 = temp1.m128i_i128; \ |
| } |
| |
| #define stbir__simdi_table_lookup3( v0,v1,v2, table ) \ |
| { \ |
| stbir__simdi_u32 temp0,temp1,temp2; \ |
| temp0.m128i_i128 = v0; \ |
| temp1.m128i_i128 = v1; \ |
| temp2.m128i_i128 = v2; \ |
| temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \ |
| temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \ |
| temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \ |
| v0 = temp0.m128i_i128; \ |
| v1 = temp1.m128i_i128; \ |
| v2 = temp2.m128i_i128; \ |
| } |
| |
| #define stbir__simdi_table_lookup4( v0,v1,v2,v3, table ) \ |
| { \ |
| stbir__simdi_u32 temp0,temp1,temp2,temp3; \ |
| temp0.m128i_i128 = v0; \ |
| temp1.m128i_i128 = v1; \ |
| temp2.m128i_i128 = v2; \ |
| temp3.m128i_i128 = v3; \ |
| temp0.m128i_u32[0] = table[temp0.m128i_i32[0]]; temp0.m128i_u32[1] = table[temp0.m128i_i32[1]]; temp0.m128i_u32[2] = table[temp0.m128i_i32[2]]; temp0.m128i_u32[3] = table[temp0.m128i_i32[3]]; \ |
| temp1.m128i_u32[0] = table[temp1.m128i_i32[0]]; temp1.m128i_u32[1] = table[temp1.m128i_i32[1]]; temp1.m128i_u32[2] = table[temp1.m128i_i32[2]]; temp1.m128i_u32[3] = table[temp1.m128i_i32[3]]; \ |
| temp2.m128i_u32[0] = table[temp2.m128i_i32[0]]; temp2.m128i_u32[1] = table[temp2.m128i_i32[1]]; temp2.m128i_u32[2] = table[temp2.m128i_i32[2]]; temp2.m128i_u32[3] = table[temp2.m128i_i32[3]]; \ |
| temp3.m128i_u32[0] = table[temp3.m128i_i32[0]]; temp3.m128i_u32[1] = table[temp3.m128i_i32[1]]; temp3.m128i_u32[2] = table[temp3.m128i_i32[2]]; temp3.m128i_u32[3] = table[temp3.m128i_i32[3]]; \ |
| v0 = temp0.m128i_i128; \ |
| v1 = temp1.m128i_i128; \ |
| v2 = temp2.m128i_i128; \ |
| v3 = temp3.m128i_i128; \ |
| } |
| |
| static void STBIR__CODER_NAME( stbir__encode_uint8_srgb )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp; |
| unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| |
| if ( width_times_channels >= 16 ) |
| { |
| float const * end_encode_m16 = encode + width_times_channels - 16; |
| end_output -= 16; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdf f0, f1, f2, f3; |
| stbir__simdi i0, i1, i2, i3; |
| STBIR_SIMD_NO_UNROLL(encode); |
| |
| stbir__simdf_load4_transposed( f0, f1, f2, f3, encode ); |
| |
| stbir__min_max_shift20( i0, f0 ); |
| stbir__min_max_shift20( i1, f1 ); |
| stbir__min_max_shift20( i2, f2 ); |
| stbir__min_max_shift20( i3, f3 ); |
| |
| stbir__simdi_table_lookup4( i0, i1, i2, i3, ( fp32_to_srgb8_tab4 - (127-13)*8 ) ); |
| |
| stbir__linear_to_srgb_finish( i0, f0 ); |
| stbir__linear_to_srgb_finish( i1, f1 ); |
| stbir__linear_to_srgb_finish( i2, f2 ); |
| stbir__linear_to_srgb_finish( i3, f3 ); |
| |
| stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) ); |
| |
| encode += 16; |
| output += 16; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + 16 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m16; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while ( output <= end_output ) |
| { |
| STBIR_SIMD_NO_UNROLL(encode); |
| |
| output[0-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order0] ); |
| output[1-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order1] ); |
| output[2-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order2] ); |
| output[3-4] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order3] ); |
| |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| STBIR_NO_UNROLL(encode); |
| output[0] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order0] ); |
| #if stbir__coder_min_num >= 2 |
| output[1] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order1] ); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| output[2] = stbir__linear_to_srgb_uchar( encode[stbir__encode_order2] ); |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| #if ( stbir__coder_min_num == 4 ) || ( ( stbir__coder_min_num == 1 ) && ( !defined(stbir__decode_swizzle) ) ) |
| |
| static void STBIR__CODER_NAME(stbir__decode_uint8_srgb4_linearalpha)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float const * decode_end = (float*) decode + width_times_channels; |
| unsigned char const * input = (unsigned char const *)inputp; |
| do { |
| decode[0] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0] ]; |
| decode[1] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order1] ]; |
| decode[2] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order2] ]; |
| decode[3] = ( (float) input[stbir__decode_order3] ) * stbir__max_uint8_as_float_inverted; |
| input += 4; |
| decode += 4; |
| } while( decode < decode_end ); |
| } |
| |
| |
| static void STBIR__CODER_NAME( stbir__encode_uint8_srgb4_linearalpha )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp; |
| unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| |
| if ( width_times_channels >= 16 ) |
| { |
| float const * end_encode_m16 = encode + width_times_channels - 16; |
| end_output -= 16; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdf f0, f1, f2, f3; |
| stbir__simdi i0, i1, i2, i3; |
| |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdf_load4_transposed( f0, f1, f2, f3, encode ); |
| |
| stbir__min_max_shift20( i0, f0 ); |
| stbir__min_max_shift20( i1, f1 ); |
| stbir__min_max_shift20( i2, f2 ); |
| stbir__scale_and_convert( i3, f3 ); |
| |
| stbir__simdi_table_lookup3( i0, i1, i2, ( fp32_to_srgb8_tab4 - (127-13)*8 ) ); |
| |
| stbir__linear_to_srgb_finish( i0, f0 ); |
| stbir__linear_to_srgb_finish( i1, f1 ); |
| stbir__linear_to_srgb_finish( i2, f2 ); |
| |
| stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) ); |
| |
| output += 16; |
| encode += 16; |
| |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + 16 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m16; |
| } |
| return; |
| } |
| #endif |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float f; |
| STBIR_SIMD_NO_UNROLL(encode); |
| |
| output[stbir__decode_order0] = stbir__linear_to_srgb_uchar( encode[0] ); |
| output[stbir__decode_order1] = stbir__linear_to_srgb_uchar( encode[1] ); |
| output[stbir__decode_order2] = stbir__linear_to_srgb_uchar( encode[2] ); |
| |
| f = encode[3] * stbir__max_uint8_as_float + 0.5f; |
| STBIR_CLAMP(f, 0, 255); |
| output[stbir__decode_order3] = (unsigned char) f; |
| |
| output += 4; |
| encode += 4; |
| } while( output < end_output ); |
| } |
| |
| #endif |
| |
| #if ( stbir__coder_min_num == 2 ) || ( ( stbir__coder_min_num == 1 ) && ( !defined(stbir__decode_swizzle) ) ) |
| |
| static void STBIR__CODER_NAME(stbir__decode_uint8_srgb2_linearalpha)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float const * decode_end = (float*) decode + width_times_channels; |
| unsigned char const * input = (unsigned char const *)inputp; |
| decode += 4; |
| while( decode <= decode_end ) |
| { |
| decode[0-4] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0] ]; |
| decode[1-4] = ( (float) input[stbir__decode_order1] ) * stbir__max_uint8_as_float_inverted; |
| decode[2-4] = stbir__srgb_uchar_to_linear_float[ input[stbir__decode_order0+2] ]; |
| decode[3-4] = ( (float) input[stbir__decode_order1+2] ) * stbir__max_uint8_as_float_inverted; |
| input += 4; |
| decode += 4; |
| } |
| decode -= 4; |
| if( decode < decode_end ) |
| { |
| decode[0] = stbir__srgb_uchar_to_linear_float[ stbir__decode_order0 ]; |
| decode[1] = ( (float) input[stbir__decode_order1] ) * stbir__max_uint8_as_float_inverted; |
| } |
| } |
| |
| static void STBIR__CODER_NAME( stbir__encode_uint8_srgb2_linearalpha )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned char STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned char*) outputp; |
| unsigned char * end_output = ( (unsigned char*) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| |
| if ( width_times_channels >= 16 ) |
| { |
| float const * end_encode_m16 = encode + width_times_channels - 16; |
| end_output -= 16; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdf f0, f1, f2, f3; |
| stbir__simdi i0, i1, i2, i3; |
| |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdf_load4_transposed( f0, f1, f2, f3, encode ); |
| |
| stbir__min_max_shift20( i0, f0 ); |
| stbir__scale_and_convert( i1, f1 ); |
| stbir__min_max_shift20( i2, f2 ); |
| stbir__scale_and_convert( i3, f3 ); |
| |
| stbir__simdi_table_lookup2( i0, i2, ( fp32_to_srgb8_tab4 - (127-13)*8 ) ); |
| |
| stbir__linear_to_srgb_finish( i0, f0 ); |
| stbir__linear_to_srgb_finish( i2, f2 ); |
| |
| stbir__interleave_pack_and_store_16_u8( output, STBIR_strs_join1(i, ,stbir__encode_order0), STBIR_strs_join1(i, ,stbir__encode_order1), STBIR_strs_join1(i, ,stbir__encode_order2), STBIR_strs_join1(i, ,stbir__encode_order3) ); |
| |
| output += 16; |
| encode += 16; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + 16 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m16; |
| } |
| return; |
| } |
| #endif |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float f; |
| STBIR_SIMD_NO_UNROLL(encode); |
| |
| output[stbir__decode_order0] = stbir__linear_to_srgb_uchar( encode[0] ); |
| |
| f = encode[1] * stbir__max_uint8_as_float + 0.5f; |
| STBIR_CLAMP(f, 0, 255); |
| output[stbir__decode_order1] = (unsigned char) f; |
| |
| output += 2; |
| encode += 2; |
| } while( output < end_output ); |
| } |
| |
| #endif |
| |
| static void STBIR__CODER_NAME(stbir__decode_uint16_linear_scaled)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float * decode_end = (float*) decode + width_times_channels; |
| unsigned short const * input = (unsigned short const *)inputp; |
| |
| #ifdef STBIR_SIMD |
| unsigned short const * end_input_m8 = input + width_times_channels - 8; |
| if ( width_times_channels >= 8 ) |
| { |
| decode_end -= 8; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| #ifdef STBIR_SIMD8 |
| stbir__simdi i; stbir__simdi8 o; |
| stbir__simdf8 of; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi8_expand_u16_to_u32( o, i ); |
| stbir__simdi8_convert_i32_to_float( of, o ); |
| stbir__simdf8_mult( of, of, STBIR_max_uint16_as_float_inverted8); |
| stbir__decode_simdf8_flip( of ); |
| stbir__simdf8_store( decode + 0, of ); |
| #else |
| stbir__simdi i, o0, o1; |
| stbir__simdf of0, of1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi_expand_u16_to_u32( o0,o1,i ); |
| stbir__simdi_convert_i32_to_float( of0, o0 ); |
| stbir__simdi_convert_i32_to_float( of1, o1 ); |
| stbir__simdf_mult( of0, of0, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted) ); |
| stbir__simdf_mult( of1, of1, STBIR__CONSTF(STBIR_max_uint16_as_float_inverted)); |
| stbir__decode_simdf4_flip( of0 ); |
| stbir__decode_simdf4_flip( of1 ); |
| stbir__simdf_store( decode + 0, of0 ); |
| stbir__simdf_store( decode + 4, of1 ); |
| #endif |
| decode += 8; |
| input += 8; |
| if ( decode <= decode_end ) |
| continue; |
| if ( decode == ( decode_end + 8 ) ) |
| break; |
| decode = decode_end; // backup and do last couple |
| input = end_input_m8; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode <= decode_end ) |
| { |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0-4] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted; |
| decode[1-4] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted; |
| decode[2-4] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted; |
| decode[3-4] = ((float)(input[stbir__decode_order3])) * stbir__max_uint16_as_float_inverted; |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = ((float)(input[stbir__decode_order0])) * stbir__max_uint16_as_float_inverted; |
| #if stbir__coder_min_num >= 2 |
| decode[1] = ((float)(input[stbir__decode_order1])) * stbir__max_uint16_as_float_inverted; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = ((float)(input[stbir__decode_order2])) * stbir__max_uint16_as_float_inverted; |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| |
| static void STBIR__CODER_NAME(stbir__encode_uint16_linear_scaled)( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned short STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned short*) outputp; |
| unsigned short * end_output = ( (unsigned short*) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| { |
| if ( width_times_channels >= stbir__simdfX_float_count*2 ) |
| { |
| float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; |
| end_output -= stbir__simdfX_float_count*2; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdfX e0, e1; |
| stbir__simdiX i; |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdfX_madd_mem( e0, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode ); |
| stbir__simdfX_madd_mem( e1, STBIR_simd_point5X, STBIR_max_uint16_as_floatX, encode+stbir__simdfX_float_count ); |
| stbir__encode_simdfX_unflip( e0 ); |
| stbir__encode_simdfX_unflip( e1 ); |
| stbir__simdfX_pack_to_words( i, e0, e1 ); |
| stbir__simdiX_store( output, i ); |
| encode += stbir__simdfX_float_count*2; |
| output += stbir__simdfX_float_count*2; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m8; |
| } |
| return; |
| } |
| } |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| stbir__simdf e; |
| stbir__simdi i; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_load( e, encode ); |
| stbir__simdf_madd( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), e ); |
| stbir__encode_simdf4_unflip( e ); |
| stbir__simdf_pack_to_8words( i, e, e ); // only use first 4 |
| stbir__simdi_store2( output-4, i ); |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| stbir__simdf e; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order0 ); output[0] = stbir__simdf_convert_float_to_short( e ); |
| #if stbir__coder_min_num >= 2 |
| stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order1 ); output[1] = stbir__simdf_convert_float_to_short( e ); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| stbir__simdf_madd1_mem( e, STBIR__CONSTF(STBIR_simd_point5), STBIR__CONSTF(STBIR_max_uint16_as_float), encode+stbir__encode_order2 ); output[2] = stbir__simdf_convert_float_to_short( e ); |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| |
| #else |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| float f; |
| STBIR_SIMD_NO_UNROLL(encode); |
| f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0-4] = (unsigned short)f; |
| f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1-4] = (unsigned short)f; |
| f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2-4] = (unsigned short)f; |
| f = encode[stbir__encode_order3] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[3-4] = (unsigned short)f; |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| float f; |
| STBIR_NO_UNROLL(encode); |
| f = encode[stbir__encode_order0] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0] = (unsigned short)f; |
| #if stbir__coder_min_num >= 2 |
| f = encode[stbir__encode_order1] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1] = (unsigned short)f; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| f = encode[stbir__encode_order2] * stbir__max_uint16_as_float + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2] = (unsigned short)f; |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME(stbir__decode_uint16_linear)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float * decode_end = (float*) decode + width_times_channels; |
| unsigned short const * input = (unsigned short const *)inputp; |
| |
| #ifdef STBIR_SIMD |
| unsigned short const * end_input_m8 = input + width_times_channels - 8; |
| if ( width_times_channels >= 8 ) |
| { |
| decode_end -= 8; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| #ifdef STBIR_SIMD8 |
| stbir__simdi i; stbir__simdi8 o; |
| stbir__simdf8 of; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi8_expand_u16_to_u32( o, i ); |
| stbir__simdi8_convert_i32_to_float( of, o ); |
| stbir__decode_simdf8_flip( of ); |
| stbir__simdf8_store( decode + 0, of ); |
| #else |
| stbir__simdi i, o0, o1; |
| stbir__simdf of0, of1; |
| STBIR_NO_UNROLL(decode); |
| stbir__simdi_load( i, input ); |
| stbir__simdi_expand_u16_to_u32( o0, o1, i ); |
| stbir__simdi_convert_i32_to_float( of0, o0 ); |
| stbir__simdi_convert_i32_to_float( of1, o1 ); |
| stbir__decode_simdf4_flip( of0 ); |
| stbir__decode_simdf4_flip( of1 ); |
| stbir__simdf_store( decode + 0, of0 ); |
| stbir__simdf_store( decode + 4, of1 ); |
| #endif |
| decode += 8; |
| input += 8; |
| if ( decode <= decode_end ) |
| continue; |
| if ( decode == ( decode_end + 8 ) ) |
| break; |
| decode = decode_end; // backup and do last couple |
| input = end_input_m8; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode <= decode_end ) |
| { |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0-4] = ((float)(input[stbir__decode_order0])); |
| decode[1-4] = ((float)(input[stbir__decode_order1])); |
| decode[2-4] = ((float)(input[stbir__decode_order2])); |
| decode[3-4] = ((float)(input[stbir__decode_order3])); |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = ((float)(input[stbir__decode_order0])); |
| #if stbir__coder_min_num >= 2 |
| decode[1] = ((float)(input[stbir__decode_order1])); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = ((float)(input[stbir__decode_order2])); |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME(stbir__encode_uint16_linear)( void * outputp, int width_times_channels, float const * encode ) |
| { |
| unsigned short STBIR_SIMD_STREAMOUT_PTR( * ) output = (unsigned short*) outputp; |
| unsigned short * end_output = ( (unsigned short*) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| { |
| if ( width_times_channels >= stbir__simdfX_float_count*2 ) |
| { |
| float const * end_encode_m8 = encode + width_times_channels - stbir__simdfX_float_count*2; |
| end_output -= stbir__simdfX_float_count*2; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdfX e0, e1; |
| stbir__simdiX i; |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdfX_add_mem( e0, STBIR_simd_point5X, encode ); |
| stbir__simdfX_add_mem( e1, STBIR_simd_point5X, encode+stbir__simdfX_float_count ); |
| stbir__encode_simdfX_unflip( e0 ); |
| stbir__encode_simdfX_unflip( e1 ); |
| stbir__simdfX_pack_to_words( i, e0, e1 ); |
| stbir__simdiX_store( output, i ); |
| encode += stbir__simdfX_float_count*2; |
| output += stbir__simdfX_float_count*2; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + stbir__simdfX_float_count*2 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m8; |
| } |
| return; |
| } |
| } |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| stbir__simdf e; |
| stbir__simdi i; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_load( e, encode ); |
| stbir__simdf_add( e, STBIR__CONSTF(STBIR_simd_point5), e ); |
| stbir__encode_simdf4_unflip( e ); |
| stbir__simdf_pack_to_8words( i, e, e ); // only use first 4 |
| stbir__simdi_store2( output-4, i ); |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| #else |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| float f; |
| STBIR_SIMD_NO_UNROLL(encode); |
| f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0-4] = (unsigned short)f; |
| f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1-4] = (unsigned short)f; |
| f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2-4] = (unsigned short)f; |
| f = encode[stbir__encode_order3] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[3-4] = (unsigned short)f; |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| float f; |
| STBIR_NO_UNROLL(encode); |
| f = encode[stbir__encode_order0] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[0] = (unsigned short)f; |
| #if stbir__coder_min_num >= 2 |
| f = encode[stbir__encode_order1] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[1] = (unsigned short)f; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| f = encode[stbir__encode_order2] + 0.5f; STBIR_CLAMP(f, 0, 65535); output[2] = (unsigned short)f; |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME(stbir__decode_half_float_linear)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float * decode_end = (float*) decode + width_times_channels; |
| stbir__FP16 const * input = (stbir__FP16 const *)inputp; |
| |
| #ifdef STBIR_SIMD |
| if ( width_times_channels >= 8 ) |
| { |
| stbir__FP16 const * end_input_m8 = input + width_times_channels - 8; |
| decode_end -= 8; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| STBIR_NO_UNROLL(decode); |
| |
| stbir__half_to_float_SIMD( decode, input ); |
| #ifdef stbir__decode_swizzle |
| #ifdef STBIR_SIMD8 |
| { |
| stbir__simdf8 of; |
| stbir__simdf8_load( of, decode ); |
| stbir__decode_simdf8_flip( of ); |
| stbir__simdf8_store( decode, of ); |
| } |
| #else |
| { |
| stbir__simdf of0,of1; |
| stbir__simdf_load( of0, decode ); |
| stbir__simdf_load( of1, decode+4 ); |
| stbir__decode_simdf4_flip( of0 ); |
| stbir__decode_simdf4_flip( of1 ); |
| stbir__simdf_store( decode, of0 ); |
| stbir__simdf_store( decode+4, of1 ); |
| } |
| #endif |
| #endif |
| decode += 8; |
| input += 8; |
| if ( decode <= decode_end ) |
| continue; |
| if ( decode == ( decode_end + 8 ) ) |
| break; |
| decode = decode_end; // backup and do last couple |
| input = end_input_m8; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode <= decode_end ) |
| { |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0-4] = stbir__half_to_float(input[stbir__decode_order0]); |
| decode[1-4] = stbir__half_to_float(input[stbir__decode_order1]); |
| decode[2-4] = stbir__half_to_float(input[stbir__decode_order2]); |
| decode[3-4] = stbir__half_to_float(input[stbir__decode_order3]); |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = stbir__half_to_float(input[stbir__decode_order0]); |
| #if stbir__coder_min_num >= 2 |
| decode[1] = stbir__half_to_float(input[stbir__decode_order1]); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = stbir__half_to_float(input[stbir__decode_order2]); |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME( stbir__encode_half_float_linear )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| stbir__FP16 STBIR_SIMD_STREAMOUT_PTR( * ) output = (stbir__FP16*) outputp; |
| stbir__FP16 * end_output = ( (stbir__FP16*) output ) + width_times_channels; |
| |
| #ifdef STBIR_SIMD |
| if ( width_times_channels >= 8 ) |
| { |
| float const * end_encode_m8 = encode + width_times_channels - 8; |
| end_output -= 8; |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| STBIR_SIMD_NO_UNROLL(encode); |
| #ifdef stbir__decode_swizzle |
| #ifdef STBIR_SIMD8 |
| { |
| stbir__simdf8 of; |
| stbir__simdf8_load( of, encode ); |
| stbir__encode_simdf8_unflip( of ); |
| stbir__float_to_half_SIMD( output, (float*)&of ); |
| } |
| #else |
| { |
| stbir__simdf of[2]; |
| stbir__simdf_load( of[0], encode ); |
| stbir__simdf_load( of[1], encode+4 ); |
| stbir__encode_simdf4_unflip( of[0] ); |
| stbir__encode_simdf4_unflip( of[1] ); |
| stbir__float_to_half_SIMD( output, (float*)of ); |
| } |
| #endif |
| #else |
| stbir__float_to_half_SIMD( output, encode ); |
| #endif |
| encode += 8; |
| output += 8; |
| if ( output <= end_output ) |
| continue; |
| if ( output == ( end_output + 8 ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m8; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| STBIR_SIMD_NO_UNROLL(output); |
| output[0-4] = stbir__float_to_half(encode[stbir__encode_order0]); |
| output[1-4] = stbir__float_to_half(encode[stbir__encode_order1]); |
| output[2-4] = stbir__float_to_half(encode[stbir__encode_order2]); |
| output[3-4] = stbir__float_to_half(encode[stbir__encode_order3]); |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| STBIR_NO_UNROLL(output); |
| output[0] = stbir__float_to_half(encode[stbir__encode_order0]); |
| #if stbir__coder_min_num >= 2 |
| output[1] = stbir__float_to_half(encode[stbir__encode_order1]); |
| #endif |
| #if stbir__coder_min_num >= 3 |
| output[2] = stbir__float_to_half(encode[stbir__encode_order2]); |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME(stbir__decode_float_linear)( float * decodep, int width_times_channels, void const * inputp ) |
| { |
| #ifdef stbir__decode_swizzle |
| float STBIR_STREAMOUT_PTR( * ) decode = decodep; |
| float * decode_end = (float*) decode + width_times_channels; |
| float const * input = (float const *)inputp; |
| |
| #ifdef STBIR_SIMD |
| if ( width_times_channels >= 16 ) |
| { |
| float const * end_input_m16 = input + width_times_channels - 16; |
| decode_end -= 16; |
| STBIR_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| STBIR_NO_UNROLL(decode); |
| #ifdef stbir__decode_swizzle |
| #ifdef STBIR_SIMD8 |
| { |
| stbir__simdf8 of0,of1; |
| stbir__simdf8_load( of0, input ); |
| stbir__simdf8_load( of1, input+8 ); |
| stbir__decode_simdf8_flip( of0 ); |
| stbir__decode_simdf8_flip( of1 ); |
| stbir__simdf8_store( decode, of0 ); |
| stbir__simdf8_store( decode+8, of1 ); |
| } |
| #else |
| { |
| stbir__simdf of0,of1,of2,of3; |
| stbir__simdf_load( of0, input ); |
| stbir__simdf_load( of1, input+4 ); |
| stbir__simdf_load( of2, input+8 ); |
| stbir__simdf_load( of3, input+12 ); |
| stbir__decode_simdf4_flip( of0 ); |
| stbir__decode_simdf4_flip( of1 ); |
| stbir__decode_simdf4_flip( of2 ); |
| stbir__decode_simdf4_flip( of3 ); |
| stbir__simdf_store( decode, of0 ); |
| stbir__simdf_store( decode+4, of1 ); |
| stbir__simdf_store( decode+8, of2 ); |
| stbir__simdf_store( decode+12, of3 ); |
| } |
| #endif |
| #endif |
| decode += 16; |
| input += 16; |
| if ( decode <= decode_end ) |
| continue; |
| if ( decode == ( decode_end + 16 ) ) |
| break; |
| decode = decode_end; // backup and do last couple |
| input = end_input_m16; |
| } |
| return; |
| } |
| #endif |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| decode += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( decode <= decode_end ) |
| { |
| STBIR_SIMD_NO_UNROLL(decode); |
| decode[0-4] = input[stbir__decode_order0]; |
| decode[1-4] = input[stbir__decode_order1]; |
| decode[2-4] = input[stbir__decode_order2]; |
| decode[3-4] = input[stbir__decode_order3]; |
| decode += 4; |
| input += 4; |
| } |
| decode -= 4; |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( decode < decode_end ) |
| { |
| STBIR_NO_UNROLL(decode); |
| decode[0] = input[stbir__decode_order0]; |
| #if stbir__coder_min_num >= 2 |
| decode[1] = input[stbir__decode_order1]; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| decode[2] = input[stbir__decode_order2]; |
| #endif |
| decode += stbir__coder_min_num; |
| input += stbir__coder_min_num; |
| } |
| #endif |
| |
| #else |
| |
| if ( (void*)decodep != inputp ) |
| STBIR_MEMCPY( decodep, inputp, width_times_channels * sizeof( float ) ); |
| |
| #endif |
| } |
| |
| static void STBIR__CODER_NAME( stbir__encode_float_linear )( void * outputp, int width_times_channels, float const * encode ) |
| { |
| #if !defined( STBIR_FLOAT_HIGH_CLAMP ) && !defined(STBIR_FLOAT_LO_CLAMP) && !defined(stbir__decode_swizzle) |
| |
| if ( (void*)outputp != (void*) encode ) |
| STBIR_MEMCPY( outputp, encode, width_times_channels * sizeof( float ) ); |
| |
| #else |
| |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = (float*) outputp; |
| float * end_output = ( (float*) output ) + width_times_channels; |
| |
| #ifdef STBIR_FLOAT_HIGH_CLAMP |
| #define stbir_scalar_hi_clamp( v ) if ( v > STBIR_FLOAT_HIGH_CLAMP ) v = STBIR_FLOAT_HIGH_CLAMP; |
| #else |
| #define stbir_scalar_hi_clamp( v ) |
| #endif |
| #ifdef STBIR_FLOAT_LOW_CLAMP |
| #define stbir_scalar_lo_clamp( v ) if ( v < STBIR_FLOAT_LOW_CLAMP ) v = STBIR_FLOAT_LOW_CLAMP; |
| #else |
| #define stbir_scalar_lo_clamp( v ) |
| #endif |
| |
| #ifdef STBIR_SIMD |
| |
| #ifdef STBIR_FLOAT_HIGH_CLAMP |
| const stbir__simdfX high_clamp = stbir__simdf_frepX(STBIR_FLOAT_HIGH_CLAMP); |
| #endif |
| #ifdef STBIR_FLOAT_LOW_CLAMP |
| const stbir__simdfX low_clamp = stbir__simdf_frepX(STBIR_FLOAT_LOW_CLAMP); |
| #endif |
| |
| if ( width_times_channels >= ( stbir__simdfX_float_count * 2 ) ) |
| { |
| float const * end_encode_m8 = encode + width_times_channels - ( stbir__simdfX_float_count * 2 ); |
| end_output -= ( stbir__simdfX_float_count * 2 ); |
| STBIR_SIMD_NO_UNROLL_LOOP_START_INF_FOR |
| for(;;) |
| { |
| stbir__simdfX e0, e1; |
| STBIR_SIMD_NO_UNROLL(encode); |
| stbir__simdfX_load( e0, encode ); |
| stbir__simdfX_load( e1, encode+stbir__simdfX_float_count ); |
| #ifdef STBIR_FLOAT_HIGH_CLAMP |
| stbir__simdfX_min( e0, e0, high_clamp ); |
| stbir__simdfX_min( e1, e1, high_clamp ); |
| #endif |
| #ifdef STBIR_FLOAT_LOW_CLAMP |
| stbir__simdfX_max( e0, e0, low_clamp ); |
| stbir__simdfX_max( e1, e1, low_clamp ); |
| #endif |
| stbir__encode_simdfX_unflip( e0 ); |
| stbir__encode_simdfX_unflip( e1 ); |
| stbir__simdfX_store( output, e0 ); |
| stbir__simdfX_store( output+stbir__simdfX_float_count, e1 ); |
| encode += stbir__simdfX_float_count * 2; |
| output += stbir__simdfX_float_count * 2; |
| if ( output < end_output ) |
| continue; |
| if ( output == ( end_output + ( stbir__simdfX_float_count * 2 ) ) ) |
| break; |
| output = end_output; // backup and do last couple |
| encode = end_encode_m8; |
| } |
| return; |
| } |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| stbir__simdf e0; |
| STBIR_NO_UNROLL(encode); |
| stbir__simdf_load( e0, encode ); |
| #ifdef STBIR_FLOAT_HIGH_CLAMP |
| stbir__simdf_min( e0, e0, high_clamp ); |
| #endif |
| #ifdef STBIR_FLOAT_LOW_CLAMP |
| stbir__simdf_max( e0, e0, low_clamp ); |
| #endif |
| stbir__encode_simdf4_unflip( e0 ); |
| stbir__simdf_store( output-4, e0 ); |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| #endif |
| |
| #else |
| |
| // try to do blocks of 4 when you can |
| #if stbir__coder_min_num != 3 // doesn't divide cleanly by four |
| output += 4; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while( output <= end_output ) |
| { |
| float e; |
| STBIR_SIMD_NO_UNROLL(encode); |
| e = encode[ stbir__encode_order0 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[0-4] = e; |
| e = encode[ stbir__encode_order1 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[1-4] = e; |
| e = encode[ stbir__encode_order2 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[2-4] = e; |
| e = encode[ stbir__encode_order3 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[3-4] = e; |
| output += 4; |
| encode += 4; |
| } |
| output -= 4; |
| |
| #endif |
| |
| #endif |
| |
| // do the remnants |
| #if stbir__coder_min_num < 4 |
| STBIR_NO_UNROLL_LOOP_START |
| while( output < end_output ) |
| { |
| float e; |
| STBIR_NO_UNROLL(encode); |
| e = encode[ stbir__encode_order0 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[0] = e; |
| #if stbir__coder_min_num >= 2 |
| e = encode[ stbir__encode_order1 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[1] = e; |
| #endif |
| #if stbir__coder_min_num >= 3 |
| e = encode[ stbir__encode_order2 ]; stbir_scalar_hi_clamp( e ); stbir_scalar_lo_clamp( e ); output[2] = e; |
| #endif |
| output += stbir__coder_min_num; |
| encode += stbir__coder_min_num; |
| } |
| #endif |
| |
| #endif |
| } |
| |
| #undef stbir__decode_suffix |
| #undef stbir__decode_simdf8_flip |
| #undef stbir__decode_simdf4_flip |
| #undef stbir__decode_order0 |
| #undef stbir__decode_order1 |
| #undef stbir__decode_order2 |
| #undef stbir__decode_order3 |
| #undef stbir__encode_order0 |
| #undef stbir__encode_order1 |
| #undef stbir__encode_order2 |
| #undef stbir__encode_order3 |
| #undef stbir__encode_simdf8_unflip |
| #undef stbir__encode_simdf4_unflip |
| #undef stbir__encode_simdfX_unflip |
| #undef STBIR__CODER_NAME |
| #undef stbir__coder_min_num |
| #undef stbir__decode_swizzle |
| #undef stbir_scalar_hi_clamp |
| #undef stbir_scalar_lo_clamp |
| #undef STB_IMAGE_RESIZE_DO_CODERS |
| |
| #elif defined( STB_IMAGE_RESIZE_DO_VERTICALS) |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #define STBIR_chans( start, end ) STBIR_strs_join14(start,STBIR__vertical_channels,end,_cont) |
| #else |
| #define STBIR_chans( start, end ) STBIR_strs_join1(start,STBIR__vertical_channels,end) |
| #endif |
| |
| #if STBIR__vertical_channels >= 1 |
| #define stbIF0( code ) code |
| #else |
| #define stbIF0( code ) |
| #endif |
| #if STBIR__vertical_channels >= 2 |
| #define stbIF1( code ) code |
| #else |
| #define stbIF1( code ) |
| #endif |
| #if STBIR__vertical_channels >= 3 |
| #define stbIF2( code ) code |
| #else |
| #define stbIF2( code ) |
| #endif |
| #if STBIR__vertical_channels >= 4 |
| #define stbIF3( code ) code |
| #else |
| #define stbIF3( code ) |
| #endif |
| #if STBIR__vertical_channels >= 5 |
| #define stbIF4( code ) code |
| #else |
| #define stbIF4( code ) |
| #endif |
| #if STBIR__vertical_channels >= 6 |
| #define stbIF5( code ) code |
| #else |
| #define stbIF5( code ) |
| #endif |
| #if STBIR__vertical_channels >= 7 |
| #define stbIF6( code ) code |
| #else |
| #define stbIF6( code ) |
| #endif |
| #if STBIR__vertical_channels >= 8 |
| #define stbIF7( code ) code |
| #else |
| #define stbIF7( code ) |
| #endif |
| |
| static void STBIR_chans( stbir__vertical_scatter_with_,_coeffs)( float ** outputs, float const * vertical_coefficients, float const * input, float const * input_end ) |
| { |
| stbIF0( float STBIR_SIMD_STREAMOUT_PTR( * ) output0 = outputs[0]; float c0s = vertical_coefficients[0]; ) |
| stbIF1( float STBIR_SIMD_STREAMOUT_PTR( * ) output1 = outputs[1]; float c1s = vertical_coefficients[1]; ) |
| stbIF2( float STBIR_SIMD_STREAMOUT_PTR( * ) output2 = outputs[2]; float c2s = vertical_coefficients[2]; ) |
| stbIF3( float STBIR_SIMD_STREAMOUT_PTR( * ) output3 = outputs[3]; float c3s = vertical_coefficients[3]; ) |
| stbIF4( float STBIR_SIMD_STREAMOUT_PTR( * ) output4 = outputs[4]; float c4s = vertical_coefficients[4]; ) |
| stbIF5( float STBIR_SIMD_STREAMOUT_PTR( * ) output5 = outputs[5]; float c5s = vertical_coefficients[5]; ) |
| stbIF6( float STBIR_SIMD_STREAMOUT_PTR( * ) output6 = outputs[6]; float c6s = vertical_coefficients[6]; ) |
| stbIF7( float STBIR_SIMD_STREAMOUT_PTR( * ) output7 = outputs[7]; float c7s = vertical_coefficients[7]; ) |
| |
| #ifdef STBIR_SIMD |
| { |
| stbIF0(stbir__simdfX c0 = stbir__simdf_frepX( c0s ); ) |
| stbIF1(stbir__simdfX c1 = stbir__simdf_frepX( c1s ); ) |
| stbIF2(stbir__simdfX c2 = stbir__simdf_frepX( c2s ); ) |
| stbIF3(stbir__simdfX c3 = stbir__simdf_frepX( c3s ); ) |
| stbIF4(stbir__simdfX c4 = stbir__simdf_frepX( c4s ); ) |
| stbIF5(stbir__simdfX c5 = stbir__simdf_frepX( c5s ); ) |
| stbIF6(stbir__simdfX c6 = stbir__simdf_frepX( c6s ); ) |
| stbIF7(stbir__simdfX c7 = stbir__simdf_frepX( c7s ); ) |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while ( ( (char*)input_end - (char*) input ) >= (16*stbir__simdfX_float_count) ) |
| { |
| stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3; |
| STBIR_SIMD_NO_UNROLL(output0); |
| |
| stbir__simdfX_load( r0, input ); stbir__simdfX_load( r1, input+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input+(3*stbir__simdfX_float_count) ); |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( stbir__simdfX_load( o0, output0 ); stbir__simdfX_load( o1, output0+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output0+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c0 ); stbir__simdfX_madd( o1, o1, r1, c0 ); stbir__simdfX_madd( o2, o2, r2, c0 ); stbir__simdfX_madd( o3, o3, r3, c0 ); |
| stbir__simdfX_store( output0, o0 ); stbir__simdfX_store( output0+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output0+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output0+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF1( stbir__simdfX_load( o0, output1 ); stbir__simdfX_load( o1, output1+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output1+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output1+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c1 ); stbir__simdfX_madd( o1, o1, r1, c1 ); stbir__simdfX_madd( o2, o2, r2, c1 ); stbir__simdfX_madd( o3, o3, r3, c1 ); |
| stbir__simdfX_store( output1, o0 ); stbir__simdfX_store( output1+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output1+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output1+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF2( stbir__simdfX_load( o0, output2 ); stbir__simdfX_load( o1, output2+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output2+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output2+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c2 ); stbir__simdfX_madd( o1, o1, r1, c2 ); stbir__simdfX_madd( o2, o2, r2, c2 ); stbir__simdfX_madd( o3, o3, r3, c2 ); |
| stbir__simdfX_store( output2, o0 ); stbir__simdfX_store( output2+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output2+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output2+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF3( stbir__simdfX_load( o0, output3 ); stbir__simdfX_load( o1, output3+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output3+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output3+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c3 ); stbir__simdfX_madd( o1, o1, r1, c3 ); stbir__simdfX_madd( o2, o2, r2, c3 ); stbir__simdfX_madd( o3, o3, r3, c3 ); |
| stbir__simdfX_store( output3, o0 ); stbir__simdfX_store( output3+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output3+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output3+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF4( stbir__simdfX_load( o0, output4 ); stbir__simdfX_load( o1, output4+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output4+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output4+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c4 ); stbir__simdfX_madd( o1, o1, r1, c4 ); stbir__simdfX_madd( o2, o2, r2, c4 ); stbir__simdfX_madd( o3, o3, r3, c4 ); |
| stbir__simdfX_store( output4, o0 ); stbir__simdfX_store( output4+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output4+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output4+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF5( stbir__simdfX_load( o0, output5 ); stbir__simdfX_load( o1, output5+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output5+(2*stbir__simdfX_float_count)); stbir__simdfX_load( o3, output5+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c5 ); stbir__simdfX_madd( o1, o1, r1, c5 ); stbir__simdfX_madd( o2, o2, r2, c5 ); stbir__simdfX_madd( o3, o3, r3, c5 ); |
| stbir__simdfX_store( output5, o0 ); stbir__simdfX_store( output5+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output5+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output5+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF6( stbir__simdfX_load( o0, output6 ); stbir__simdfX_load( o1, output6+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output6+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output6+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c6 ); stbir__simdfX_madd( o1, o1, r1, c6 ); stbir__simdfX_madd( o2, o2, r2, c6 ); stbir__simdfX_madd( o3, o3, r3, c6 ); |
| stbir__simdfX_store( output6, o0 ); stbir__simdfX_store( output6+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output6+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output6+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF7( stbir__simdfX_load( o0, output7 ); stbir__simdfX_load( o1, output7+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output7+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output7+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c7 ); stbir__simdfX_madd( o1, o1, r1, c7 ); stbir__simdfX_madd( o2, o2, r2, c7 ); stbir__simdfX_madd( o3, o3, r3, c7 ); |
| stbir__simdfX_store( output7, o0 ); stbir__simdfX_store( output7+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output7+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output7+(3*stbir__simdfX_float_count), o3 ); ) |
| #else |
| stbIF0( stbir__simdfX_mult( o0, r0, c0 ); stbir__simdfX_mult( o1, r1, c0 ); stbir__simdfX_mult( o2, r2, c0 ); stbir__simdfX_mult( o3, r3, c0 ); |
| stbir__simdfX_store( output0, o0 ); stbir__simdfX_store( output0+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output0+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output0+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF1( stbir__simdfX_mult( o0, r0, c1 ); stbir__simdfX_mult( o1, r1, c1 ); stbir__simdfX_mult( o2, r2, c1 ); stbir__simdfX_mult( o3, r3, c1 ); |
| stbir__simdfX_store( output1, o0 ); stbir__simdfX_store( output1+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output1+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output1+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF2( stbir__simdfX_mult( o0, r0, c2 ); stbir__simdfX_mult( o1, r1, c2 ); stbir__simdfX_mult( o2, r2, c2 ); stbir__simdfX_mult( o3, r3, c2 ); |
| stbir__simdfX_store( output2, o0 ); stbir__simdfX_store( output2+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output2+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output2+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF3( stbir__simdfX_mult( o0, r0, c3 ); stbir__simdfX_mult( o1, r1, c3 ); stbir__simdfX_mult( o2, r2, c3 ); stbir__simdfX_mult( o3, r3, c3 ); |
| stbir__simdfX_store( output3, o0 ); stbir__simdfX_store( output3+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output3+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output3+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF4( stbir__simdfX_mult( o0, r0, c4 ); stbir__simdfX_mult( o1, r1, c4 ); stbir__simdfX_mult( o2, r2, c4 ); stbir__simdfX_mult( o3, r3, c4 ); |
| stbir__simdfX_store( output4, o0 ); stbir__simdfX_store( output4+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output4+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output4+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF5( stbir__simdfX_mult( o0, r0, c5 ); stbir__simdfX_mult( o1, r1, c5 ); stbir__simdfX_mult( o2, r2, c5 ); stbir__simdfX_mult( o3, r3, c5 ); |
| stbir__simdfX_store( output5, o0 ); stbir__simdfX_store( output5+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output5+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output5+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF6( stbir__simdfX_mult( o0, r0, c6 ); stbir__simdfX_mult( o1, r1, c6 ); stbir__simdfX_mult( o2, r2, c6 ); stbir__simdfX_mult( o3, r3, c6 ); |
| stbir__simdfX_store( output6, o0 ); stbir__simdfX_store( output6+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output6+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output6+(3*stbir__simdfX_float_count), o3 ); ) |
| stbIF7( stbir__simdfX_mult( o0, r0, c7 ); stbir__simdfX_mult( o1, r1, c7 ); stbir__simdfX_mult( o2, r2, c7 ); stbir__simdfX_mult( o3, r3, c7 ); |
| stbir__simdfX_store( output7, o0 ); stbir__simdfX_store( output7+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output7+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output7+(3*stbir__simdfX_float_count), o3 ); ) |
| #endif |
| |
| input += (4*stbir__simdfX_float_count); |
| stbIF0( output0 += (4*stbir__simdfX_float_count); ) stbIF1( output1 += (4*stbir__simdfX_float_count); ) stbIF2( output2 += (4*stbir__simdfX_float_count); ) stbIF3( output3 += (4*stbir__simdfX_float_count); ) stbIF4( output4 += (4*stbir__simdfX_float_count); ) stbIF5( output5 += (4*stbir__simdfX_float_count); ) stbIF6( output6 += (4*stbir__simdfX_float_count); ) stbIF7( output7 += (4*stbir__simdfX_float_count); ) |
| } |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while ( ( (char*)input_end - (char*) input ) >= 16 ) |
| { |
| stbir__simdf o0, r0; |
| STBIR_SIMD_NO_UNROLL(output0); |
| |
| stbir__simdf_load( r0, input ); |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( stbir__simdf_load( o0, output0 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); stbir__simdf_store( output0, o0 ); ) |
| stbIF1( stbir__simdf_load( o0, output1 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); stbir__simdf_store( output1, o0 ); ) |
| stbIF2( stbir__simdf_load( o0, output2 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); stbir__simdf_store( output2, o0 ); ) |
| stbIF3( stbir__simdf_load( o0, output3 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); stbir__simdf_store( output3, o0 ); ) |
| stbIF4( stbir__simdf_load( o0, output4 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); stbir__simdf_store( output4, o0 ); ) |
| stbIF5( stbir__simdf_load( o0, output5 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); stbir__simdf_store( output5, o0 ); ) |
| stbIF6( stbir__simdf_load( o0, output6 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); stbir__simdf_store( output6, o0 ); ) |
| stbIF7( stbir__simdf_load( o0, output7 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); stbir__simdf_store( output7, o0 ); ) |
| #else |
| stbIF0( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); stbir__simdf_store( output0, o0 ); ) |
| stbIF1( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); stbir__simdf_store( output1, o0 ); ) |
| stbIF2( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); stbir__simdf_store( output2, o0 ); ) |
| stbIF3( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); stbir__simdf_store( output3, o0 ); ) |
| stbIF4( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); stbir__simdf_store( output4, o0 ); ) |
| stbIF5( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); stbir__simdf_store( output5, o0 ); ) |
| stbIF6( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); stbir__simdf_store( output6, o0 ); ) |
| stbIF7( stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); stbir__simdf_store( output7, o0 ); ) |
| #endif |
| |
| input += 4; |
| stbIF0( output0 += 4; ) stbIF1( output1 += 4; ) stbIF2( output2 += 4; ) stbIF3( output3 += 4; ) stbIF4( output4 += 4; ) stbIF5( output5 += 4; ) stbIF6( output6 += 4; ) stbIF7( output7 += 4; ) |
| } |
| } |
| #else |
| STBIR_NO_UNROLL_LOOP_START |
| while ( ( (char*)input_end - (char*) input ) >= 16 ) |
| { |
| float r0, r1, r2, r3; |
| STBIR_NO_UNROLL(input); |
| |
| r0 = input[0], r1 = input[1], r2 = input[2], r3 = input[3]; |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( output0[0] += ( r0 * c0s ); output0[1] += ( r1 * c0s ); output0[2] += ( r2 * c0s ); output0[3] += ( r3 * c0s ); ) |
| stbIF1( output1[0] += ( r0 * c1s ); output1[1] += ( r1 * c1s ); output1[2] += ( r2 * c1s ); output1[3] += ( r3 * c1s ); ) |
| stbIF2( output2[0] += ( r0 * c2s ); output2[1] += ( r1 * c2s ); output2[2] += ( r2 * c2s ); output2[3] += ( r3 * c2s ); ) |
| stbIF3( output3[0] += ( r0 * c3s ); output3[1] += ( r1 * c3s ); output3[2] += ( r2 * c3s ); output3[3] += ( r3 * c3s ); ) |
| stbIF4( output4[0] += ( r0 * c4s ); output4[1] += ( r1 * c4s ); output4[2] += ( r2 * c4s ); output4[3] += ( r3 * c4s ); ) |
| stbIF5( output5[0] += ( r0 * c5s ); output5[1] += ( r1 * c5s ); output5[2] += ( r2 * c5s ); output5[3] += ( r3 * c5s ); ) |
| stbIF6( output6[0] += ( r0 * c6s ); output6[1] += ( r1 * c6s ); output6[2] += ( r2 * c6s ); output6[3] += ( r3 * c6s ); ) |
| stbIF7( output7[0] += ( r0 * c7s ); output7[1] += ( r1 * c7s ); output7[2] += ( r2 * c7s ); output7[3] += ( r3 * c7s ); ) |
| #else |
| stbIF0( output0[0] = ( r0 * c0s ); output0[1] = ( r1 * c0s ); output0[2] = ( r2 * c0s ); output0[3] = ( r3 * c0s ); ) |
| stbIF1( output1[0] = ( r0 * c1s ); output1[1] = ( r1 * c1s ); output1[2] = ( r2 * c1s ); output1[3] = ( r3 * c1s ); ) |
| stbIF2( output2[0] = ( r0 * c2s ); output2[1] = ( r1 * c2s ); output2[2] = ( r2 * c2s ); output2[3] = ( r3 * c2s ); ) |
| stbIF3( output3[0] = ( r0 * c3s ); output3[1] = ( r1 * c3s ); output3[2] = ( r2 * c3s ); output3[3] = ( r3 * c3s ); ) |
| stbIF4( output4[0] = ( r0 * c4s ); output4[1] = ( r1 * c4s ); output4[2] = ( r2 * c4s ); output4[3] = ( r3 * c4s ); ) |
| stbIF5( output5[0] = ( r0 * c5s ); output5[1] = ( r1 * c5s ); output5[2] = ( r2 * c5s ); output5[3] = ( r3 * c5s ); ) |
| stbIF6( output6[0] = ( r0 * c6s ); output6[1] = ( r1 * c6s ); output6[2] = ( r2 * c6s ); output6[3] = ( r3 * c6s ); ) |
| stbIF7( output7[0] = ( r0 * c7s ); output7[1] = ( r1 * c7s ); output7[2] = ( r2 * c7s ); output7[3] = ( r3 * c7s ); ) |
| #endif |
| |
| input += 4; |
| stbIF0( output0 += 4; ) stbIF1( output1 += 4; ) stbIF2( output2 += 4; ) stbIF3( output3 += 4; ) stbIF4( output4 += 4; ) stbIF5( output5 += 4; ) stbIF6( output6 += 4; ) stbIF7( output7 += 4; ) |
| } |
| #endif |
| STBIR_NO_UNROLL_LOOP_START |
| while ( input < input_end ) |
| { |
| float r = input[0]; |
| STBIR_NO_UNROLL(output0); |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( output0[0] += ( r * c0s ); ) |
| stbIF1( output1[0] += ( r * c1s ); ) |
| stbIF2( output2[0] += ( r * c2s ); ) |
| stbIF3( output3[0] += ( r * c3s ); ) |
| stbIF4( output4[0] += ( r * c4s ); ) |
| stbIF5( output5[0] += ( r * c5s ); ) |
| stbIF6( output6[0] += ( r * c6s ); ) |
| stbIF7( output7[0] += ( r * c7s ); ) |
| #else |
| stbIF0( output0[0] = ( r * c0s ); ) |
| stbIF1( output1[0] = ( r * c1s ); ) |
| stbIF2( output2[0] = ( r * c2s ); ) |
| stbIF3( output3[0] = ( r * c3s ); ) |
| stbIF4( output4[0] = ( r * c4s ); ) |
| stbIF5( output5[0] = ( r * c5s ); ) |
| stbIF6( output6[0] = ( r * c6s ); ) |
| stbIF7( output7[0] = ( r * c7s ); ) |
| #endif |
| |
| ++input; |
| stbIF0( ++output0; ) stbIF1( ++output1; ) stbIF2( ++output2; ) stbIF3( ++output3; ) stbIF4( ++output4; ) stbIF5( ++output5; ) stbIF6( ++output6; ) stbIF7( ++output7; ) |
| } |
| } |
| |
| static void STBIR_chans( stbir__vertical_gather_with_,_coeffs)( float * outputp, float const * vertical_coefficients, float const ** inputs, float const * input0_end ) |
| { |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = outputp; |
| |
| stbIF0( float const * input0 = inputs[0]; float c0s = vertical_coefficients[0]; ) |
| stbIF1( float const * input1 = inputs[1]; float c1s = vertical_coefficients[1]; ) |
| stbIF2( float const * input2 = inputs[2]; float c2s = vertical_coefficients[2]; ) |
| stbIF3( float const * input3 = inputs[3]; float c3s = vertical_coefficients[3]; ) |
| stbIF4( float const * input4 = inputs[4]; float c4s = vertical_coefficients[4]; ) |
| stbIF5( float const * input5 = inputs[5]; float c5s = vertical_coefficients[5]; ) |
| stbIF6( float const * input6 = inputs[6]; float c6s = vertical_coefficients[6]; ) |
| stbIF7( float const * input7 = inputs[7]; float c7s = vertical_coefficients[7]; ) |
| |
| #if ( STBIR__vertical_channels == 1 ) && !defined(STB_IMAGE_RESIZE_VERTICAL_CONTINUE) |
| // check single channel one weight |
| if ( ( c0s >= (1.0f-0.000001f) ) && ( c0s <= (1.0f+0.000001f) ) ) |
| { |
| STBIR_MEMCPY( output, input0, (char*)input0_end - (char*)input0 ); |
| return; |
| } |
| #endif |
| |
| #ifdef STBIR_SIMD |
| { |
| stbIF0(stbir__simdfX c0 = stbir__simdf_frepX( c0s ); ) |
| stbIF1(stbir__simdfX c1 = stbir__simdf_frepX( c1s ); ) |
| stbIF2(stbir__simdfX c2 = stbir__simdf_frepX( c2s ); ) |
| stbIF3(stbir__simdfX c3 = stbir__simdf_frepX( c3s ); ) |
| stbIF4(stbir__simdfX c4 = stbir__simdf_frepX( c4s ); ) |
| stbIF5(stbir__simdfX c5 = stbir__simdf_frepX( c5s ); ) |
| stbIF6(stbir__simdfX c6 = stbir__simdf_frepX( c6s ); ) |
| stbIF7(stbir__simdfX c7 = stbir__simdf_frepX( c7s ); ) |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while ( ( (char*)input0_end - (char*) input0 ) >= (16*stbir__simdfX_float_count) ) |
| { |
| stbir__simdfX o0, o1, o2, o3, r0, r1, r2, r3; |
| STBIR_SIMD_NO_UNROLL(output); |
| |
| // prefetch four loop iterations ahead (doesn't affect much for small resizes, but helps with big ones) |
| stbIF0( stbir__prefetch( input0 + (16*stbir__simdfX_float_count) ); ) |
| stbIF1( stbir__prefetch( input1 + (16*stbir__simdfX_float_count) ); ) |
| stbIF2( stbir__prefetch( input2 + (16*stbir__simdfX_float_count) ); ) |
| stbIF3( stbir__prefetch( input3 + (16*stbir__simdfX_float_count) ); ) |
| stbIF4( stbir__prefetch( input4 + (16*stbir__simdfX_float_count) ); ) |
| stbIF5( stbir__prefetch( input5 + (16*stbir__simdfX_float_count) ); ) |
| stbIF6( stbir__prefetch( input6 + (16*stbir__simdfX_float_count) ); ) |
| stbIF7( stbir__prefetch( input7 + (16*stbir__simdfX_float_count) ); ) |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( stbir__simdfX_load( o0, output ); stbir__simdfX_load( o1, output+stbir__simdfX_float_count ); stbir__simdfX_load( o2, output+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( o3, output+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_load( r0, input0 ); stbir__simdfX_load( r1, input0+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input0+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c0 ); stbir__simdfX_madd( o1, o1, r1, c0 ); stbir__simdfX_madd( o2, o2, r2, c0 ); stbir__simdfX_madd( o3, o3, r3, c0 ); ) |
| #else |
| stbIF0( stbir__simdfX_load( r0, input0 ); stbir__simdfX_load( r1, input0+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input0+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input0+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_mult( o0, r0, c0 ); stbir__simdfX_mult( o1, r1, c0 ); stbir__simdfX_mult( o2, r2, c0 ); stbir__simdfX_mult( o3, r3, c0 ); ) |
| #endif |
| |
| stbIF1( stbir__simdfX_load( r0, input1 ); stbir__simdfX_load( r1, input1+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input1+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input1+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c1 ); stbir__simdfX_madd( o1, o1, r1, c1 ); stbir__simdfX_madd( o2, o2, r2, c1 ); stbir__simdfX_madd( o3, o3, r3, c1 ); ) |
| stbIF2( stbir__simdfX_load( r0, input2 ); stbir__simdfX_load( r1, input2+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input2+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input2+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c2 ); stbir__simdfX_madd( o1, o1, r1, c2 ); stbir__simdfX_madd( o2, o2, r2, c2 ); stbir__simdfX_madd( o3, o3, r3, c2 ); ) |
| stbIF3( stbir__simdfX_load( r0, input3 ); stbir__simdfX_load( r1, input3+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input3+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input3+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c3 ); stbir__simdfX_madd( o1, o1, r1, c3 ); stbir__simdfX_madd( o2, o2, r2, c3 ); stbir__simdfX_madd( o3, o3, r3, c3 ); ) |
| stbIF4( stbir__simdfX_load( r0, input4 ); stbir__simdfX_load( r1, input4+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input4+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input4+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c4 ); stbir__simdfX_madd( o1, o1, r1, c4 ); stbir__simdfX_madd( o2, o2, r2, c4 ); stbir__simdfX_madd( o3, o3, r3, c4 ); ) |
| stbIF5( stbir__simdfX_load( r0, input5 ); stbir__simdfX_load( r1, input5+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input5+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input5+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c5 ); stbir__simdfX_madd( o1, o1, r1, c5 ); stbir__simdfX_madd( o2, o2, r2, c5 ); stbir__simdfX_madd( o3, o3, r3, c5 ); ) |
| stbIF6( stbir__simdfX_load( r0, input6 ); stbir__simdfX_load( r1, input6+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input6+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input6+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c6 ); stbir__simdfX_madd( o1, o1, r1, c6 ); stbir__simdfX_madd( o2, o2, r2, c6 ); stbir__simdfX_madd( o3, o3, r3, c6 ); ) |
| stbIF7( stbir__simdfX_load( r0, input7 ); stbir__simdfX_load( r1, input7+stbir__simdfX_float_count ); stbir__simdfX_load( r2, input7+(2*stbir__simdfX_float_count) ); stbir__simdfX_load( r3, input7+(3*stbir__simdfX_float_count) ); |
| stbir__simdfX_madd( o0, o0, r0, c7 ); stbir__simdfX_madd( o1, o1, r1, c7 ); stbir__simdfX_madd( o2, o2, r2, c7 ); stbir__simdfX_madd( o3, o3, r3, c7 ); ) |
| |
| stbir__simdfX_store( output, o0 ); stbir__simdfX_store( output+stbir__simdfX_float_count, o1 ); stbir__simdfX_store( output+(2*stbir__simdfX_float_count), o2 ); stbir__simdfX_store( output+(3*stbir__simdfX_float_count), o3 ); |
| output += (4*stbir__simdfX_float_count); |
| stbIF0( input0 += (4*stbir__simdfX_float_count); ) stbIF1( input1 += (4*stbir__simdfX_float_count); ) stbIF2( input2 += (4*stbir__simdfX_float_count); ) stbIF3( input3 += (4*stbir__simdfX_float_count); ) stbIF4( input4 += (4*stbir__simdfX_float_count); ) stbIF5( input5 += (4*stbir__simdfX_float_count); ) stbIF6( input6 += (4*stbir__simdfX_float_count); ) stbIF7( input7 += (4*stbir__simdfX_float_count); ) |
| } |
| |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| while ( ( (char*)input0_end - (char*) input0 ) >= 16 ) |
| { |
| stbir__simdf o0, r0; |
| STBIR_SIMD_NO_UNROLL(output); |
| |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( stbir__simdf_load( o0, output ); stbir__simdf_load( r0, input0 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); ) |
| #else |
| stbIF0( stbir__simdf_load( r0, input0 ); stbir__simdf_mult( o0, r0, stbir__if_simdf8_cast_to_simdf4( c0 ) ); ) |
| #endif |
| stbIF1( stbir__simdf_load( r0, input1 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c1 ) ); ) |
| stbIF2( stbir__simdf_load( r0, input2 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c2 ) ); ) |
| stbIF3( stbir__simdf_load( r0, input3 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c3 ) ); ) |
| stbIF4( stbir__simdf_load( r0, input4 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c4 ) ); ) |
| stbIF5( stbir__simdf_load( r0, input5 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c5 ) ); ) |
| stbIF6( stbir__simdf_load( r0, input6 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c6 ) ); ) |
| stbIF7( stbir__simdf_load( r0, input7 ); stbir__simdf_madd( o0, o0, r0, stbir__if_simdf8_cast_to_simdf4( c7 ) ); ) |
| |
| stbir__simdf_store( output, o0 ); |
| output += 4; |
| stbIF0( input0 += 4; ) stbIF1( input1 += 4; ) stbIF2( input2 += 4; ) stbIF3( input3 += 4; ) stbIF4( input4 += 4; ) stbIF5( input5 += 4; ) stbIF6( input6 += 4; ) stbIF7( input7 += 4; ) |
| } |
| } |
| #else |
| STBIR_NO_UNROLL_LOOP_START |
| while ( ( (char*)input0_end - (char*) input0 ) >= 16 ) |
| { |
| float o0, o1, o2, o3; |
| STBIR_NO_UNROLL(output); |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( o0 = output[0] + input0[0] * c0s; o1 = output[1] + input0[1] * c0s; o2 = output[2] + input0[2] * c0s; o3 = output[3] + input0[3] * c0s; ) |
| #else |
| stbIF0( o0 = input0[0] * c0s; o1 = input0[1] * c0s; o2 = input0[2] * c0s; o3 = input0[3] * c0s; ) |
| #endif |
| stbIF1( o0 += input1[0] * c1s; o1 += input1[1] * c1s; o2 += input1[2] * c1s; o3 += input1[3] * c1s; ) |
| stbIF2( o0 += input2[0] * c2s; o1 += input2[1] * c2s; o2 += input2[2] * c2s; o3 += input2[3] * c2s; ) |
| stbIF3( o0 += input3[0] * c3s; o1 += input3[1] * c3s; o2 += input3[2] * c3s; o3 += input3[3] * c3s; ) |
| stbIF4( o0 += input4[0] * c4s; o1 += input4[1] * c4s; o2 += input4[2] * c4s; o3 += input4[3] * c4s; ) |
| stbIF5( o0 += input5[0] * c5s; o1 += input5[1] * c5s; o2 += input5[2] * c5s; o3 += input5[3] * c5s; ) |
| stbIF6( o0 += input6[0] * c6s; o1 += input6[1] * c6s; o2 += input6[2] * c6s; o3 += input6[3] * c6s; ) |
| stbIF7( o0 += input7[0] * c7s; o1 += input7[1] * c7s; o2 += input7[2] * c7s; o3 += input7[3] * c7s; ) |
| output[0] = o0; output[1] = o1; output[2] = o2; output[3] = o3; |
| output += 4; |
| stbIF0( input0 += 4; ) stbIF1( input1 += 4; ) stbIF2( input2 += 4; ) stbIF3( input3 += 4; ) stbIF4( input4 += 4; ) stbIF5( input5 += 4; ) stbIF6( input6 += 4; ) stbIF7( input7 += 4; ) |
| } |
| #endif |
| STBIR_NO_UNROLL_LOOP_START |
| while ( input0 < input0_end ) |
| { |
| float o0; |
| STBIR_NO_UNROLL(output); |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| stbIF0( o0 = output[0] + input0[0] * c0s; ) |
| #else |
| stbIF0( o0 = input0[0] * c0s; ) |
| #endif |
| stbIF1( o0 += input1[0] * c1s; ) |
| stbIF2( o0 += input2[0] * c2s; ) |
| stbIF3( o0 += input3[0] * c3s; ) |
| stbIF4( o0 += input4[0] * c4s; ) |
| stbIF5( o0 += input5[0] * c5s; ) |
| stbIF6( o0 += input6[0] * c6s; ) |
| stbIF7( o0 += input7[0] * c7s; ) |
| output[0] = o0; |
| ++output; |
| stbIF0( ++input0; ) stbIF1( ++input1; ) stbIF2( ++input2; ) stbIF3( ++input3; ) stbIF4( ++input4; ) stbIF5( ++input5; ) stbIF6( ++input6; ) stbIF7( ++input7; ) |
| } |
| } |
| |
| #undef stbIF0 |
| #undef stbIF1 |
| #undef stbIF2 |
| #undef stbIF3 |
| #undef stbIF4 |
| #undef stbIF5 |
| #undef stbIF6 |
| #undef stbIF7 |
| #undef STB_IMAGE_RESIZE_DO_VERTICALS |
| #undef STBIR__vertical_channels |
| #undef STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #undef STBIR_strs_join24 |
| #undef STBIR_strs_join14 |
| #undef STBIR_chans |
| #ifdef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #undef STB_IMAGE_RESIZE_VERTICAL_CONTINUE |
| #endif |
| |
| #else // !STB_IMAGE_RESIZE_DO_VERTICALS |
| |
| #define STBIR_chans( start, end ) STBIR_strs_join1(start,STBIR__horizontal_channels,end) |
| |
| #ifndef stbir__2_coeff_only |
| #define stbir__2_coeff_only() \ |
| stbir__1_coeff_only(); \ |
| stbir__1_coeff_remnant(1); |
| #endif |
| |
| #ifndef stbir__2_coeff_remnant |
| #define stbir__2_coeff_remnant( ofs ) \ |
| stbir__1_coeff_remnant(ofs); \ |
| stbir__1_coeff_remnant((ofs)+1); |
| #endif |
| |
| #ifndef stbir__3_coeff_only |
| #define stbir__3_coeff_only() \ |
| stbir__2_coeff_only(); \ |
| stbir__1_coeff_remnant(2); |
| #endif |
| |
| #ifndef stbir__3_coeff_remnant |
| #define stbir__3_coeff_remnant( ofs ) \ |
| stbir__2_coeff_remnant(ofs); \ |
| stbir__1_coeff_remnant((ofs)+2); |
| #endif |
| |
| #ifndef stbir__3_coeff_setup |
| #define stbir__3_coeff_setup() |
| #endif |
| |
| #ifndef stbir__4_coeff_start |
| #define stbir__4_coeff_start() \ |
| stbir__2_coeff_only(); \ |
| stbir__2_coeff_remnant(2); |
| #endif |
| |
| #ifndef stbir__4_coeff_continue_from_4 |
| #define stbir__4_coeff_continue_from_4( ofs ) \ |
| stbir__2_coeff_remnant(ofs); \ |
| stbir__2_coeff_remnant((ofs)+2); |
| #endif |
| |
| #ifndef stbir__store_output_tiny |
| #define stbir__store_output_tiny stbir__store_output |
| #endif |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_1_coeff)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__1_coeff_only(); |
| stbir__store_output_tiny(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_2_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__2_coeff_only(); |
| stbir__store_output_tiny(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_3_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__3_coeff_only(); |
| stbir__store_output_tiny(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_4_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_5_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__1_coeff_remnant(4); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_6_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__2_coeff_remnant(4); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_7_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| stbir__3_coeff_setup(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| |
| stbir__4_coeff_start(); |
| stbir__3_coeff_remnant(4); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_8_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__4_coeff_continue_from_4(4); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_9_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__4_coeff_continue_from_4(4); |
| stbir__1_coeff_remnant(8); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_10_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__4_coeff_continue_from_4(4); |
| stbir__2_coeff_remnant(8); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_11_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| stbir__3_coeff_setup(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__4_coeff_continue_from_4(4); |
| stbir__3_coeff_remnant(8); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_12_coeffs)( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| float const * hc = horizontal_coefficients; |
| stbir__4_coeff_start(); |
| stbir__4_coeff_continue_from_4(4); |
| stbir__4_coeff_continue_from_4(8); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod0 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 4 + 3 ) >> 2; |
| float const * hc = horizontal_coefficients; |
| |
| stbir__4_coeff_start(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| hc += 4; |
| decode += STBIR__horizontal_channels * 4; |
| stbir__4_coeff_continue_from_4( 0 ); |
| --n; |
| } while ( n > 0 ); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod1 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 5 + 3 ) >> 2; |
| float const * hc = horizontal_coefficients; |
| |
| stbir__4_coeff_start(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| hc += 4; |
| decode += STBIR__horizontal_channels * 4; |
| stbir__4_coeff_continue_from_4( 0 ); |
| --n; |
| } while ( n > 0 ); |
| stbir__1_coeff_remnant( 4 ); |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod2 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 6 + 3 ) >> 2; |
| float const * hc = horizontal_coefficients; |
| |
| stbir__4_coeff_start(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| hc += 4; |
| decode += STBIR__horizontal_channels * 4; |
| stbir__4_coeff_continue_from_4( 0 ); |
| --n; |
| } while ( n > 0 ); |
| stbir__2_coeff_remnant( 4 ); |
| |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static void STBIR_chans( stbir__horizontal_gather_,_channels_with_n_coeffs_mod3 )( float * output_buffer, unsigned int output_sub_size, float const * decode_buffer, stbir__contributors const * horizontal_contributors, float const * horizontal_coefficients, int coefficient_width ) |
| { |
| float const * output_end = output_buffer + output_sub_size * STBIR__horizontal_channels; |
| float STBIR_SIMD_STREAMOUT_PTR( * ) output = output_buffer; |
| stbir__3_coeff_setup(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| float const * decode = decode_buffer + horizontal_contributors->n0 * STBIR__horizontal_channels; |
| int n = ( ( horizontal_contributors->n1 - horizontal_contributors->n0 + 1 ) - 7 + 3 ) >> 2; |
| float const * hc = horizontal_coefficients; |
| |
| stbir__4_coeff_start(); |
| STBIR_SIMD_NO_UNROLL_LOOP_START |
| do { |
| hc += 4; |
| decode += STBIR__horizontal_channels * 4; |
| stbir__4_coeff_continue_from_4( 0 ); |
| --n; |
| } while ( n > 0 ); |
| stbir__3_coeff_remnant( 4 ); |
| |
| stbir__store_output(); |
| } while ( output < output_end ); |
| } |
| |
| static stbir__horizontal_gather_channels_func * STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_funcs)[4]= |
| { |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod0), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod1), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod2), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_n_coeffs_mod3), |
| }; |
| |
| static stbir__horizontal_gather_channels_func * STBIR_chans(stbir__horizontal_gather_,_channels_funcs)[12]= |
| { |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_1_coeff), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_2_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_3_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_4_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_5_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_6_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_7_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_8_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_9_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_10_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_11_coeffs), |
| STBIR_chans(stbir__horizontal_gather_,_channels_with_12_coeffs), |
| }; |
| |
| #undef STBIR__horizontal_channels |
| #undef STB_IMAGE_RESIZE_DO_HORIZONTALS |
| #undef stbir__1_coeff_only |
| #undef stbir__1_coeff_remnant |
| #undef stbir__2_coeff_only |
| #undef stbir__2_coeff_remnant |
| #undef stbir__3_coeff_only |
| #undef stbir__3_coeff_remnant |
| #undef stbir__3_coeff_setup |
| #undef stbir__4_coeff_start |
| #undef stbir__4_coeff_continue_from_4 |
| #undef stbir__store_output |
| #undef stbir__store_output_tiny |
| #undef STBIR_chans |
| |
| #endif // HORIZONALS |
| |
| #undef STBIR_strs_join2 |
| #undef STBIR_strs_join1 |
| |
| #endif // STB_IMAGE_RESIZE_DO_HORIZONTALS/VERTICALS/CODERS |
| |
| /* |
| ------------------------------------------------------------------------------ |
| This software is available under 2 licenses -- choose whichever you prefer. |
| ------------------------------------------------------------------------------ |
| ALTERNATIVE A - MIT License |
| Copyright (c) 2017 Sean Barrett |
| Permission is hereby granted, free of charge, to any person obtaining a copy of |
| this software and associated documentation files (the "Software"), to deal in |
| the Software without restriction, including without limitation the rights to |
| use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| of the Software, and to permit persons to whom the Software is furnished to do |
| so, subject to the following conditions: |
| The above copyright notice and this permission notice shall be included in all |
| copies or substantial portions of the Software. |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| SOFTWARE. |
| ------------------------------------------------------------------------------ |
| ALTERNATIVE B - Public Domain (www.unlicense.org) |
| This is free and unencumbered software released into the public domain. |
| Anyone is free to copy, modify, publish, use, compile, sell, or distribute this |
| software, either in source code form or as a compiled binary, for any purpose, |
| commercial or non-commercial, and by any means. |
| In jurisdictions that recognize copyright laws, the author or authors of this |
| software dedicate any and all copyright interest in the software to the public |
| domain. We make this dedication for the benefit of the public at large and to |
| the detriment of our heirs and successors. We intend this dedication to be an |
| overt act of relinquishment in perpetuity of all present and future rights to |
| this software under copyright law. |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| ------------------------------------------------------------------------------ |
| */ |