| // Ogg Vorbis audio decoder - v1.22 - public domain |
| // http://nothings.org/stb_vorbis/ |
| // |
| // Original version written by Sean Barrett in 2007. |
| // |
| // Originally sponsored by RAD Game Tools. Seeking implementation |
| // sponsored by Phillip Bennefall, Marc Andersen, Aaron Baker, |
| // Elias Software, Aras Pranckevicius, and Sean Barrett. |
| // |
| // LICENSE |
| // |
| // See end of file for license information. |
| // |
| // Limitations: |
| // |
| // - floor 0 not supported (used in old ogg vorbis files pre-2004) |
| // - lossless sample-truncation at beginning ignored |
| // - cannot concatenate multiple vorbis streams |
| // - sample positions are 32-bit, limiting seekable 192Khz |
| // files to around 6 hours (Ogg supports 64-bit) |
| // |
| // Feature contributors: |
| // Dougall Johnson (sample-exact seeking) |
| // |
| // Bugfix/warning contributors: |
| // Terje Mathisen Niklas Frykholm Andy Hill |
| // Casey Muratori John Bolton Gargaj |
| // Laurent Gomila Marc LeBlanc Ronny Chevalier |
| // Bernhard Wodo Evan Balster github:alxprd |
| // Tom Beaumont Ingo Leitgeb Nicolas Guillemot |
| // Phillip Bennefall Rohit Thiago Goulart |
| // github:manxorist Saga Musix github:infatum |
| // Timur Gagiev Maxwell Koo Peter Waller |
| // github:audinowho Dougall Johnson David Reid |
| // github:Clownacy Pedro J. Estebanez Remi Verschelde |
| // AnthoFoxo github:morlat Gabriel Ravier |
| // |
| // Partial history: |
| // 1.22 - 2021-07-11 - various small fixes |
| // 1.21 - 2021-07-02 - fix bug for files with no comments |
| // 1.20 - 2020-07-11 - several small fixes |
| // 1.19 - 2020-02-05 - warnings |
| // 1.18 - 2020-02-02 - fix seek bugs; parse header comments; misc warnings etc. |
| // 1.17 - 2019-07-08 - fix CVE-2019-13217..CVE-2019-13223 (by ForAllSecure) |
| // 1.16 - 2019-03-04 - fix warnings |
| // 1.15 - 2019-02-07 - explicit failure if Ogg Skeleton data is found |
| // 1.14 - 2018-02-11 - delete bogus dealloca usage |
| // 1.13 - 2018-01-29 - fix truncation of last frame (hopefully) |
| // 1.12 - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files |
| // 1.11 - 2017-07-23 - fix MinGW compilation |
| // 1.10 - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory |
| // 1.09 - 2016-04-04 - back out 'truncation of last frame' fix from previous version |
| // 1.08 - 2016-04-02 - warnings; setup memory leaks; truncation of last frame |
| // 1.07 - 2015-01-16 - fixes for crashes on invalid files; warning fixes; const |
| // 1.06 - 2015-08-31 - full, correct support for seeking API (Dougall Johnson) |
| // some crash fixes when out of memory or with corrupt files |
| // fix some inappropriately signed shifts |
| // 1.05 - 2015-04-19 - don't define __forceinline if it's redundant |
| // 1.04 - 2014-08-27 - fix missing const-correct case in API |
| // 1.03 - 2014-08-07 - warning fixes |
| // 1.02 - 2014-07-09 - declare qsort comparison as explicitly _cdecl in Windows |
| // 1.01 - 2014-06-18 - fix stb_vorbis_get_samples_float (interleaved was correct) |
| // 1.0 - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in >2-channel; |
| // (API change) report sample rate for decode-full-file funcs |
| // |
| // See end of file for full version history. |
| |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| // |
| // HEADER BEGINS HERE |
| // |
| |
| #ifndef STB_VORBIS_INCLUDE_STB_VORBIS_H |
| #define STB_VORBIS_INCLUDE_STB_VORBIS_H |
| |
| #if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO) |
| #define STB_VORBIS_NO_STDIO 1 |
| #endif |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| #include <stdio.h> |
| #endif |
| |
| #ifdef __cplusplus |
| extern "C" { |
| #endif |
| |
| /////////// THREAD SAFETY |
| |
| // Individual stb_vorbis* handles are not thread-safe; you cannot decode from |
| // them from multiple threads at the same time. However, you can have multiple |
| // stb_vorbis* handles and decode from them independently in multiple thrads. |
| |
| |
| /////////// MEMORY ALLOCATION |
| |
| // normally stb_vorbis uses malloc() to allocate memory at startup, |
| // and alloca() to allocate temporary memory during a frame on the |
| // stack. (Memory consumption will depend on the amount of setup |
| // data in the file and how you set the compile flags for speed |
| // vs. size. In my test files the maximal-size usage is ~150KB.) |
| // |
| // You can modify the wrapper functions in the source (setup_malloc, |
| // setup_temp_malloc, temp_malloc) to change this behavior, or you |
| // can use a simpler allocation model: you pass in a buffer from |
| // which stb_vorbis will allocate _all_ its memory (including the |
| // temp memory). "open" may fail with a VORBIS_outofmem if you |
| // do not pass in enough data; there is no way to determine how |
| // much you do need except to succeed (at which point you can |
| // query get_info to find the exact amount required. yes I know |
| // this is lame). |
| // |
| // If you pass in a non-NULL buffer of the type below, allocation |
| // will occur from it as described above. Otherwise just pass NULL |
| // to use malloc()/alloca() |
| |
| typedef struct |
| { |
| char *alloc_buffer; |
| int alloc_buffer_length_in_bytes; |
| } stb_vorbis_alloc; |
| |
| |
| /////////// FUNCTIONS USEABLE WITH ALL INPUT MODES |
| |
| typedef struct stb_vorbis stb_vorbis; |
| |
| typedef struct |
| { |
| unsigned int sample_rate; |
| int channels; |
| |
| unsigned int setup_memory_required; |
| unsigned int setup_temp_memory_required; |
| unsigned int temp_memory_required; |
| |
| int max_frame_size; |
| } stb_vorbis_info; |
| |
| typedef struct |
| { |
| char *vendor; |
| |
| int comment_list_length; |
| char **comment_list; |
| } stb_vorbis_comment; |
| |
| // get general information about the file |
| extern stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f); |
| |
| // get ogg comments |
| extern stb_vorbis_comment stb_vorbis_get_comment(stb_vorbis *f); |
| |
| // get the last error detected (clears it, too) |
| extern int stb_vorbis_get_error(stb_vorbis *f); |
| |
| // close an ogg vorbis file and free all memory in use |
| extern void stb_vorbis_close(stb_vorbis *f); |
| |
| // this function returns the offset (in samples) from the beginning of the |
| // file that will be returned by the next decode, if it is known, or -1 |
| // otherwise. after a flush_pushdata() call, this may take a while before |
| // it becomes valid again. |
| // NOT WORKING YET after a seek with PULLDATA API |
| extern int stb_vorbis_get_sample_offset(stb_vorbis *f); |
| |
| // returns the current seek point within the file, or offset from the beginning |
| // of the memory buffer. In pushdata mode it returns 0. |
| extern unsigned int stb_vorbis_get_file_offset(stb_vorbis *f); |
| |
| /////////// PUSHDATA API |
| |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| |
| // this API allows you to get blocks of data from any source and hand |
| // them to stb_vorbis. you have to buffer them; stb_vorbis will tell |
| // you how much it used, and you have to give it the rest next time; |
| // and stb_vorbis may not have enough data to work with and you will |
| // need to give it the same data again PLUS more. Note that the Vorbis |
| // specification does not bound the size of an individual frame. |
| |
| extern stb_vorbis *stb_vorbis_open_pushdata( |
| const unsigned char * datablock, int datablock_length_in_bytes, |
| int *datablock_memory_consumed_in_bytes, |
| int *error, |
| const stb_vorbis_alloc *alloc_buffer); |
| // create a vorbis decoder by passing in the initial data block containing |
| // the ogg&vorbis headers (you don't need to do parse them, just provide |
| // the first N bytes of the file--you're told if it's not enough, see below) |
| // on success, returns an stb_vorbis *, does not set error, returns the amount of |
| // data parsed/consumed on this call in *datablock_memory_consumed_in_bytes; |
| // on failure, returns NULL on error and sets *error, does not change *datablock_memory_consumed |
| // if returns NULL and *error is VORBIS_need_more_data, then the input block was |
| // incomplete and you need to pass in a larger block from the start of the file |
| |
| extern int stb_vorbis_decode_frame_pushdata( |
| stb_vorbis *f, |
| const unsigned char *datablock, int datablock_length_in_bytes, |
| int *channels, // place to write number of float * buffers |
| float ***output, // place to write float ** array of float * buffers |
| int *samples // place to write number of output samples |
| ); |
| // decode a frame of audio sample data if possible from the passed-in data block |
| // |
| // return value: number of bytes we used from datablock |
| // |
| // possible cases: |
| // 0 bytes used, 0 samples output (need more data) |
| // N bytes used, 0 samples output (resynching the stream, keep going) |
| // N bytes used, M samples output (one frame of data) |
| // note that after opening a file, you will ALWAYS get one N-bytes,0-sample |
| // frame, because Vorbis always "discards" the first frame. |
| // |
| // Note that on resynch, stb_vorbis will rarely consume all of the buffer, |
| // instead only datablock_length_in_bytes-3 or less. This is because it wants |
| // to avoid missing parts of a page header if they cross a datablock boundary, |
| // without writing state-machiney code to record a partial detection. |
| // |
| // The number of channels returned are stored in *channels (which can be |
| // NULL--it is always the same as the number of channels reported by |
| // get_info). *output will contain an array of float* buffers, one per |
| // channel. In other words, (*output)[0][0] contains the first sample from |
| // the first channel, and (*output)[1][0] contains the first sample from |
| // the second channel. |
| // |
| // *output points into stb_vorbis's internal output buffer storage; these |
| // buffers are owned by stb_vorbis and application code should not free |
| // them or modify their contents. They are transient and will be overwritten |
| // once you ask for more data to get decoded, so be sure to grab any data |
| // you need before then. |
| |
| extern void stb_vorbis_flush_pushdata(stb_vorbis *f); |
| // inform stb_vorbis that your next datablock will not be contiguous with |
| // previous ones (e.g. you've seeked in the data); future attempts to decode |
| // frames will cause stb_vorbis to resynchronize (as noted above), and |
| // once it sees a valid Ogg page (typically 4-8KB, as large as 64KB), it |
| // will begin decoding the _next_ frame. |
| // |
| // if you want to seek using pushdata, you need to seek in your file, then |
| // call stb_vorbis_flush_pushdata(), then start calling decoding, then once |
| // decoding is returning you data, call stb_vorbis_get_sample_offset, and |
| // if you don't like the result, seek your file again and repeat. |
| #endif |
| |
| |
| ////////// PULLING INPUT API |
| |
| #ifndef STB_VORBIS_NO_PULLDATA_API |
| // This API assumes stb_vorbis is allowed to pull data from a source-- |
| // either a block of memory containing the _entire_ vorbis stream, or a |
| // FILE * that you or it create, or possibly some other reading mechanism |
| // if you go modify the source to replace the FILE * case with some kind |
| // of callback to your code. (But if you don't support seeking, you may |
| // just want to go ahead and use pushdata.) |
| |
| #if !defined(STB_VORBIS_NO_STDIO) && !defined(STB_VORBIS_NO_INTEGER_CONVERSION) |
| extern int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output); |
| #endif |
| #if !defined(STB_VORBIS_NO_INTEGER_CONVERSION) |
| extern int stb_vorbis_decode_memory(const unsigned char *mem, int len, int *channels, int *sample_rate, short **output); |
| #endif |
| // decode an entire file and output the data interleaved into a malloc()ed |
| // buffer stored in *output. The return value is the number of samples |
| // decoded, or -1 if the file could not be opened or was not an ogg vorbis file. |
| // When you're done with it, just free() the pointer returned in *output. |
| |
| extern stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, |
| int *error, const stb_vorbis_alloc *alloc_buffer); |
| // create an ogg vorbis decoder from an ogg vorbis stream in memory (note |
| // this must be the entire stream!). on failure, returns NULL and sets *error |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| extern stb_vorbis * stb_vorbis_open_filename(const char *filename, |
| int *error, const stb_vorbis_alloc *alloc_buffer); |
| // create an ogg vorbis decoder from a filename via fopen(). on failure, |
| // returns NULL and sets *error (possibly to VORBIS_file_open_failure). |
| |
| extern stb_vorbis * stb_vorbis_open_file(FILE *f, int close_handle_on_close, |
| int *error, const stb_vorbis_alloc *alloc_buffer); |
| // create an ogg vorbis decoder from an open FILE *, looking for a stream at |
| // the _current_ seek point (ftell). on failure, returns NULL and sets *error. |
| // note that stb_vorbis must "own" this stream; if you seek it in between |
| // calls to stb_vorbis, it will become confused. Moreover, if you attempt to |
| // perform stb_vorbis_seek_*() operations on this file, it will assume it |
| // owns the _entire_ rest of the file after the start point. Use the next |
| // function, stb_vorbis_open_file_section(), to limit it. |
| |
| extern stb_vorbis * stb_vorbis_open_file_section(FILE *f, int close_handle_on_close, |
| int *error, const stb_vorbis_alloc *alloc_buffer, unsigned int len); |
| // create an ogg vorbis decoder from an open FILE *, looking for a stream at |
| // the _current_ seek point (ftell); the stream will be of length 'len' bytes. |
| // on failure, returns NULL and sets *error. note that stb_vorbis must "own" |
| // this stream; if you seek it in between calls to stb_vorbis, it will become |
| // confused. |
| #endif |
| |
| extern int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number); |
| extern int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number); |
| // these functions seek in the Vorbis file to (approximately) 'sample_number'. |
| // after calling seek_frame(), the next call to get_frame_*() will include |
| // the specified sample. after calling stb_vorbis_seek(), the next call to |
| // stb_vorbis_get_samples_* will start with the specified sample. If you |
| // do not need to seek to EXACTLY the target sample when using get_samples_*, |
| // you can also use seek_frame(). |
| |
| extern int stb_vorbis_seek_start(stb_vorbis *f); |
| // this function is equivalent to stb_vorbis_seek(f,0) |
| |
| extern unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f); |
| extern float stb_vorbis_stream_length_in_seconds(stb_vorbis *f); |
| // these functions return the total length of the vorbis stream |
| |
| extern int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output); |
| // decode the next frame and return the number of samples. the number of |
| // channels returned are stored in *channels (which can be NULL--it is always |
| // the same as the number of channels reported by get_info). *output will |
| // contain an array of float* buffers, one per channel. These outputs will |
| // be overwritten on the next call to stb_vorbis_get_frame_*. |
| // |
| // You generally should not intermix calls to stb_vorbis_get_frame_*() |
| // and stb_vorbis_get_samples_*(), since the latter calls the former. |
| |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION |
| extern int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts); |
| extern int stb_vorbis_get_frame_short (stb_vorbis *f, int num_c, short **buffer, int num_samples); |
| #endif |
| // decode the next frame and return the number of *samples* per channel. |
| // Note that for interleaved data, you pass in the number of shorts (the |
| // size of your array), but the return value is the number of samples per |
| // channel, not the total number of samples. |
| // |
| // The data is coerced to the number of channels you request according to the |
| // channel coercion rules (see below). You must pass in the size of your |
| // buffer(s) so that stb_vorbis will not overwrite the end of the buffer. |
| // The maximum buffer size needed can be gotten from get_info(); however, |
| // the Vorbis I specification implies an absolute maximum of 4096 samples |
| // per channel. |
| |
| // Channel coercion rules: |
| // Let M be the number of channels requested, and N the number of channels present, |
| // and Cn be the nth channel; let stereo L be the sum of all L and center channels, |
| // and stereo R be the sum of all R and center channels (channel assignment from the |
| // vorbis spec). |
| // M N output |
| // 1 k sum(Ck) for all k |
| // 2 * stereo L, stereo R |
| // k l k > l, the first l channels, then 0s |
| // k l k <= l, the first k channels |
| // Note that this is not _good_ surround etc. mixing at all! It's just so |
| // you get something useful. |
| |
| extern int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats); |
| extern int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples); |
| // gets num_samples samples, not necessarily on a frame boundary--this requires |
| // buffering so you have to supply the buffers. DOES NOT APPLY THE COERCION RULES. |
| // Returns the number of samples stored per channel; it may be less than requested |
| // at the end of the file. If there are no more samples in the file, returns 0. |
| |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION |
| extern int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts); |
| extern int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int num_samples); |
| #endif |
| // gets num_samples samples, not necessarily on a frame boundary--this requires |
| // buffering so you have to supply the buffers. Applies the coercion rules above |
| // to produce 'channels' channels. Returns the number of samples stored per channel; |
| // it may be less than requested at the end of the file. If there are no more |
| // samples in the file, returns 0. |
| |
| #endif |
| |
| //////// ERROR CODES |
| |
| enum STBVorbisError |
| { |
| VORBIS__no_error, |
| |
| VORBIS_need_more_data=1, // not a real error |
| |
| VORBIS_invalid_api_mixing, // can't mix API modes |
| VORBIS_outofmem, // not enough memory |
| VORBIS_feature_not_supported, // uses floor 0 |
| VORBIS_too_many_channels, // STB_VORBIS_MAX_CHANNELS is too small |
| VORBIS_file_open_failure, // fopen() failed |
| VORBIS_seek_without_length, // can't seek in unknown-length file |
| |
| VORBIS_unexpected_eof=10, // file is truncated? |
| VORBIS_seek_invalid, // seek past EOF |
| |
| // decoding errors (corrupt/invalid stream) -- you probably |
| // don't care about the exact details of these |
| |
| // vorbis errors: |
| VORBIS_invalid_setup=20, |
| VORBIS_invalid_stream, |
| |
| // ogg errors: |
| VORBIS_missing_capture_pattern=30, |
| VORBIS_invalid_stream_structure_version, |
| VORBIS_continued_packet_flag_invalid, |
| VORBIS_incorrect_stream_serial_number, |
| VORBIS_invalid_first_page, |
| VORBIS_bad_packet_type, |
| VORBIS_cant_find_last_page, |
| VORBIS_seek_failed, |
| VORBIS_ogg_skeleton_not_supported |
| }; |
| |
| |
| #ifdef __cplusplus |
| } |
| #endif |
| |
| #endif // STB_VORBIS_INCLUDE_STB_VORBIS_H |
| // |
| // HEADER ENDS HERE |
| // |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| #ifndef STB_VORBIS_HEADER_ONLY |
| |
| // global configuration settings (e.g. set these in the project/makefile), |
| // or just set them in this file at the top (although ideally the first few |
| // should be visible when the header file is compiled too, although it's not |
| // crucial) |
| |
| // STB_VORBIS_NO_PUSHDATA_API |
| // does not compile the code for the various stb_vorbis_*_pushdata() |
| // functions |
| // #define STB_VORBIS_NO_PUSHDATA_API |
| |
| // STB_VORBIS_NO_PULLDATA_API |
| // does not compile the code for the non-pushdata APIs |
| // #define STB_VORBIS_NO_PULLDATA_API |
| |
| // STB_VORBIS_NO_STDIO |
| // does not compile the code for the APIs that use FILE *s internally |
| // or externally (implied by STB_VORBIS_NO_PULLDATA_API) |
| // #define STB_VORBIS_NO_STDIO |
| |
| // STB_VORBIS_NO_INTEGER_CONVERSION |
| // does not compile the code for converting audio sample data from |
| // float to integer (implied by STB_VORBIS_NO_PULLDATA_API) |
| // #define STB_VORBIS_NO_INTEGER_CONVERSION |
| |
| // STB_VORBIS_NO_FAST_SCALED_FLOAT |
| // does not use a fast float-to-int trick to accelerate float-to-int on |
| // most platforms which requires endianness be defined correctly. |
| //#define STB_VORBIS_NO_FAST_SCALED_FLOAT |
| |
| |
| // STB_VORBIS_MAX_CHANNELS [number] |
| // globally define this to the maximum number of channels you need. |
| // The spec does not put a restriction on channels except that |
| // the count is stored in a byte, so 255 is the hard limit. |
| // Reducing this saves about 16 bytes per value, so using 16 saves |
| // (255-16)*16 or around 4KB. Plus anything other memory usage |
| // I forgot to account for. Can probably go as low as 8 (7.1 audio), |
| // 6 (5.1 audio), or 2 (stereo only). |
| #ifndef STB_VORBIS_MAX_CHANNELS |
| #define STB_VORBIS_MAX_CHANNELS 16 // enough for anyone? |
| #endif |
| |
| // STB_VORBIS_PUSHDATA_CRC_COUNT [number] |
| // after a flush_pushdata(), stb_vorbis begins scanning for the |
| // next valid page, without backtracking. when it finds something |
| // that looks like a page, it streams through it and verifies its |
| // CRC32. Should that validation fail, it keeps scanning. But it's |
| // possible that _while_ streaming through to check the CRC32 of |
| // one candidate page, it sees another candidate page. This #define |
| // determines how many "overlapping" candidate pages it can search |
| // at once. Note that "real" pages are typically ~4KB to ~8KB, whereas |
| // garbage pages could be as big as 64KB, but probably average ~16KB. |
| // So don't hose ourselves by scanning an apparent 64KB page and |
| // missing a ton of real ones in the interim; so minimum of 2 |
| #ifndef STB_VORBIS_PUSHDATA_CRC_COUNT |
| #define STB_VORBIS_PUSHDATA_CRC_COUNT 4 |
| #endif |
| |
| // STB_VORBIS_FAST_HUFFMAN_LENGTH [number] |
| // sets the log size of the huffman-acceleration table. Maximum |
| // supported value is 24. with larger numbers, more decodings are O(1), |
| // but the table size is larger so worse cache missing, so you'll have |
| // to probe (and try multiple ogg vorbis files) to find the sweet spot. |
| #ifndef STB_VORBIS_FAST_HUFFMAN_LENGTH |
| #define STB_VORBIS_FAST_HUFFMAN_LENGTH 10 |
| #endif |
| |
| // STB_VORBIS_FAST_BINARY_LENGTH [number] |
| // sets the log size of the binary-search acceleration table. this |
| // is used in similar fashion to the fast-huffman size to set initial |
| // parameters for the binary search |
| |
| // STB_VORBIS_FAST_HUFFMAN_INT |
| // The fast huffman tables are much more efficient if they can be |
| // stored as 16-bit results instead of 32-bit results. This restricts |
| // the codebooks to having only 65535 possible outcomes, though. |
| // (At least, accelerated by the huffman table.) |
| #ifndef STB_VORBIS_FAST_HUFFMAN_INT |
| #define STB_VORBIS_FAST_HUFFMAN_SHORT |
| #endif |
| |
| // STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH |
| // If the 'fast huffman' search doesn't succeed, then stb_vorbis falls |
| // back on binary searching for the correct one. This requires storing |
| // extra tables with the huffman codes in sorted order. Defining this |
| // symbol trades off space for speed by forcing a linear search in the |
| // non-fast case, except for "sparse" codebooks. |
| // #define STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH |
| |
| // STB_VORBIS_DIVIDES_IN_RESIDUE |
| // stb_vorbis precomputes the result of the scalar residue decoding |
| // that would otherwise require a divide per chunk. you can trade off |
| // space for time by defining this symbol. |
| // #define STB_VORBIS_DIVIDES_IN_RESIDUE |
| |
| // STB_VORBIS_DIVIDES_IN_CODEBOOK |
| // vorbis VQ codebooks can be encoded two ways: with every case explicitly |
| // stored, or with all elements being chosen from a small range of values, |
| // and all values possible in all elements. By default, stb_vorbis expands |
| // this latter kind out to look like the former kind for ease of decoding, |
| // because otherwise an integer divide-per-vector-element is required to |
| // unpack the index. If you define STB_VORBIS_DIVIDES_IN_CODEBOOK, you can |
| // trade off storage for speed. |
| //#define STB_VORBIS_DIVIDES_IN_CODEBOOK |
| |
| #ifdef STB_VORBIS_CODEBOOK_SHORTS |
| #error "STB_VORBIS_CODEBOOK_SHORTS is no longer supported as it produced incorrect results for some input formats" |
| #endif |
| |
| // STB_VORBIS_DIVIDE_TABLE |
| // this replaces small integer divides in the floor decode loop with |
| // table lookups. made less than 1% difference, so disabled by default. |
| |
| // STB_VORBIS_NO_INLINE_DECODE |
| // disables the inlining of the scalar codebook fast-huffman decode. |
| // might save a little codespace; useful for debugging |
| // #define STB_VORBIS_NO_INLINE_DECODE |
| |
| // STB_VORBIS_NO_DEFER_FLOOR |
| // Normally we only decode the floor without synthesizing the actual |
| // full curve. We can instead synthesize the curve immediately. This |
| // requires more memory and is very likely slower, so I don't think |
| // you'd ever want to do it except for debugging. |
| // #define STB_VORBIS_NO_DEFER_FLOOR |
| |
| |
| |
| |
| ////////////////////////////////////////////////////////////////////////////// |
| |
| #ifdef STB_VORBIS_NO_PULLDATA_API |
| #define STB_VORBIS_NO_INTEGER_CONVERSION |
| #define STB_VORBIS_NO_STDIO |
| #endif |
| |
| #if defined(STB_VORBIS_NO_CRT) && !defined(STB_VORBIS_NO_STDIO) |
| #define STB_VORBIS_NO_STDIO 1 |
| #endif |
| |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION |
| #ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT |
| |
| // only need endianness for fast-float-to-int, which we don't |
| // use for pushdata |
| |
| #ifndef STB_VORBIS_BIG_ENDIAN |
| #define STB_VORBIS_ENDIAN 0 |
| #else |
| #define STB_VORBIS_ENDIAN 1 |
| #endif |
| |
| #endif |
| #endif |
| |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| #include <stdio.h> |
| #endif |
| |
| #ifndef STB_VORBIS_NO_CRT |
| #include <stdlib.h> |
| #include <string.h> |
| #include <assert.h> |
| #include <math.h> |
| |
| // find definition of alloca if it's not in stdlib.h: |
| #if defined(_MSC_VER) || defined(__MINGW32__) |
| #include <malloc.h> |
| #endif |
| #if defined(__linux__) || defined(__linux) || defined(__sun__) || defined(__EMSCRIPTEN__) || defined(__NEWLIB__) |
| #include <alloca.h> |
| #endif |
| #else // STB_VORBIS_NO_CRT |
| #define NULL 0 |
| #define malloc(s) 0 |
| #define free(s) ((void) 0) |
| #define realloc(s) 0 |
| #endif // STB_VORBIS_NO_CRT |
| |
| #include <limits.h> |
| |
| #ifdef __MINGW32__ |
| // eff you mingw: |
| // "fixed": |
| // http://sourceforge.net/p/mingw-w64/mailman/message/32882927/ |
| // "no that broke the build, reverted, who cares about C": |
| // http://sourceforge.net/p/mingw-w64/mailman/message/32890381/ |
| #ifdef __forceinline |
| #undef __forceinline |
| #endif |
| #define __forceinline |
| #ifndef alloca |
| #define alloca __builtin_alloca |
| #endif |
| #elif !defined(_MSC_VER) |
| #if __GNUC__ |
| #define __forceinline inline |
| #else |
| #define __forceinline |
| #endif |
| #endif |
| |
| #if STB_VORBIS_MAX_CHANNELS > 256 |
| #error "Value of STB_VORBIS_MAX_CHANNELS outside of allowed range" |
| #endif |
| |
| #if STB_VORBIS_FAST_HUFFMAN_LENGTH > 24 |
| #error "Value of STB_VORBIS_FAST_HUFFMAN_LENGTH outside of allowed range" |
| #endif |
| |
| |
| #if 0 |
| #include <crtdbg.h> |
| #define CHECK(f) _CrtIsValidHeapPointer(f->channel_buffers[1]) |
| #else |
| #define CHECK(f) ((void) 0) |
| #endif |
| |
| #define MAX_BLOCKSIZE_LOG 13 // from specification |
| #define MAX_BLOCKSIZE (1 << MAX_BLOCKSIZE_LOG) |
| |
| |
| typedef unsigned char uint8; |
| typedef signed char int8; |
| typedef unsigned short uint16; |
| typedef signed short int16; |
| typedef unsigned int uint32; |
| typedef signed int int32; |
| |
| #ifndef TRUE |
| #define TRUE 1 |
| #define FALSE 0 |
| #endif |
| |
| typedef float codetype; |
| |
| #ifdef _MSC_VER |
| #define STBV_NOTUSED(v) (void)(v) |
| #else |
| #define STBV_NOTUSED(v) (void)sizeof(v) |
| #endif |
| |
| // @NOTE |
| // |
| // Some arrays below are tagged "//varies", which means it's actually |
| // a variable-sized piece of data, but rather than malloc I assume it's |
| // small enough it's better to just allocate it all together with the |
| // main thing |
| // |
| // Most of the variables are specified with the smallest size I could pack |
| // them into. It might give better performance to make them all full-sized |
| // integers. It should be safe to freely rearrange the structures or change |
| // the sizes larger--nothing relies on silently truncating etc., nor the |
| // order of variables. |
| |
| #define FAST_HUFFMAN_TABLE_SIZE (1 << STB_VORBIS_FAST_HUFFMAN_LENGTH) |
| #define FAST_HUFFMAN_TABLE_MASK (FAST_HUFFMAN_TABLE_SIZE - 1) |
| |
| typedef struct |
| { |
| int dimensions, entries; |
| uint8 *codeword_lengths; |
| float minimum_value; |
| float delta_value; |
| uint8 value_bits; |
| uint8 lookup_type; |
| uint8 sequence_p; |
| uint8 sparse; |
| uint32 lookup_values; |
| codetype *multiplicands; |
| uint32 *codewords; |
| #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT |
| int16 fast_huffman[FAST_HUFFMAN_TABLE_SIZE]; |
| #else |
| int32 fast_huffman[FAST_HUFFMAN_TABLE_SIZE]; |
| #endif |
| uint32 *sorted_codewords; |
| int *sorted_values; |
| int sorted_entries; |
| } Codebook; |
| |
| typedef struct |
| { |
| uint8 order; |
| uint16 rate; |
| uint16 bark_map_size; |
| uint8 amplitude_bits; |
| uint8 amplitude_offset; |
| uint8 number_of_books; |
| uint8 book_list[16]; // varies |
| } Floor0; |
| |
| typedef struct |
| { |
| uint8 partitions; |
| uint8 partition_class_list[32]; // varies |
| uint8 class_dimensions[16]; // varies |
| uint8 class_subclasses[16]; // varies |
| uint8 class_masterbooks[16]; // varies |
| int16 subclass_books[16][8]; // varies |
| uint16 Xlist[31*8+2]; // varies |
| uint8 sorted_order[31*8+2]; |
| uint8 neighbors[31*8+2][2]; |
| uint8 floor1_multiplier; |
| uint8 rangebits; |
| int values; |
| } Floor1; |
| |
| typedef union |
| { |
| Floor0 floor0; |
| Floor1 floor1; |
| } Floor; |
| |
| typedef struct |
| { |
| uint32 begin, end; |
| uint32 part_size; |
| uint8 classifications; |
| uint8 classbook; |
| uint8 **classdata; |
| int16 (*residue_books)[8]; |
| } Residue; |
| |
| typedef struct |
| { |
| uint8 magnitude; |
| uint8 angle; |
| uint8 mux; |
| } MappingChannel; |
| |
| typedef struct |
| { |
| uint16 coupling_steps; |
| MappingChannel *chan; |
| uint8 submaps; |
| uint8 submap_floor[15]; // varies |
| uint8 submap_residue[15]; // varies |
| } Mapping; |
| |
| typedef struct |
| { |
| uint8 blockflag; |
| uint8 mapping; |
| uint16 windowtype; |
| uint16 transformtype; |
| } Mode; |
| |
| typedef struct |
| { |
| uint32 goal_crc; // expected crc if match |
| int bytes_left; // bytes left in packet |
| uint32 crc_so_far; // running crc |
| int bytes_done; // bytes processed in _current_ chunk |
| uint32 sample_loc; // granule pos encoded in page |
| } CRCscan; |
| |
| typedef struct |
| { |
| uint32 page_start, page_end; |
| uint32 last_decoded_sample; |
| } ProbedPage; |
| |
| struct stb_vorbis |
| { |
| // user-accessible info |
| unsigned int sample_rate; |
| int channels; |
| |
| unsigned int setup_memory_required; |
| unsigned int temp_memory_required; |
| unsigned int setup_temp_memory_required; |
| |
| char *vendor; |
| int comment_list_length; |
| char **comment_list; |
| |
| // input config |
| #ifndef STB_VORBIS_NO_STDIO |
| FILE *f; |
| uint32 f_start; |
| int close_on_free; |
| #endif |
| |
| uint8 *stream; |
| uint8 *stream_start; |
| uint8 *stream_end; |
| |
| uint32 stream_len; |
| |
| uint8 push_mode; |
| |
| // the page to seek to when seeking to start, may be zero |
| uint32 first_audio_page_offset; |
| |
| // p_first is the page on which the first audio packet ends |
| // (but not necessarily the page on which it starts) |
| ProbedPage p_first, p_last; |
| |
| // memory management |
| stb_vorbis_alloc alloc; |
| int setup_offset; |
| int temp_offset; |
| |
| // run-time results |
| int eof; |
| enum STBVorbisError error; |
| |
| // user-useful data |
| |
| // header info |
| int blocksize[2]; |
| int blocksize_0, blocksize_1; |
| int codebook_count; |
| Codebook *codebooks; |
| int floor_count; |
| uint16 floor_types[64]; // varies |
| Floor *floor_config; |
| int residue_count; |
| uint16 residue_types[64]; // varies |
| Residue *residue_config; |
| int mapping_count; |
| Mapping *mapping; |
| int mode_count; |
| Mode mode_config[64]; // varies |
| |
| uint32 total_samples; |
| |
| // decode buffer |
| float *channel_buffers[STB_VORBIS_MAX_CHANNELS]; |
| float *outputs [STB_VORBIS_MAX_CHANNELS]; |
| |
| float *previous_window[STB_VORBIS_MAX_CHANNELS]; |
| int previous_length; |
| |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR |
| int16 *finalY[STB_VORBIS_MAX_CHANNELS]; |
| #else |
| float *floor_buffers[STB_VORBIS_MAX_CHANNELS]; |
| #endif |
| |
| uint32 current_loc; // sample location of next frame to decode |
| int current_loc_valid; |
| |
| // per-blocksize precomputed data |
| |
| // twiddle factors |
| float *A[2],*B[2],*C[2]; |
| float *window[2]; |
| uint16 *bit_reverse[2]; |
| |
| // current page/packet/segment streaming info |
| uint32 serial; // stream serial number for verification |
| int last_page; |
| int segment_count; |
| uint8 segments[255]; |
| uint8 page_flag; |
| uint8 bytes_in_seg; |
| uint8 first_decode; |
| int next_seg; |
| int last_seg; // flag that we're on the last segment |
| int last_seg_which; // what was the segment number of the last seg? |
| uint32 acc; |
| int valid_bits; |
| int packet_bytes; |
| int end_seg_with_known_loc; |
| uint32 known_loc_for_packet; |
| int discard_samples_deferred; |
| uint32 samples_output; |
| |
| // push mode scanning |
| int page_crc_tests; // only in push_mode: number of tests active; -1 if not searching |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| CRCscan scan[STB_VORBIS_PUSHDATA_CRC_COUNT]; |
| #endif |
| |
| // sample-access |
| int channel_buffer_start; |
| int channel_buffer_end; |
| }; |
| |
| #if defined(STB_VORBIS_NO_PUSHDATA_API) |
| #define IS_PUSH_MODE(f) FALSE |
| #elif defined(STB_VORBIS_NO_PULLDATA_API) |
| #define IS_PUSH_MODE(f) TRUE |
| #else |
| #define IS_PUSH_MODE(f) ((f)->push_mode) |
| #endif |
| |
| typedef struct stb_vorbis vorb; |
| |
| static int error(vorb *f, enum STBVorbisError e) |
| { |
| f->error = e; |
| if (!f->eof && e != VORBIS_need_more_data) { |
| f->error=e; // breakpoint for debugging |
| } |
| return 0; |
| } |
| |
| |
| // these functions are used for allocating temporary memory |
| // while decoding. if you can afford the stack space, use |
| // alloca(); otherwise, provide a temp buffer and it will |
| // allocate out of those. |
| |
| #define array_size_required(count,size) (count*(sizeof(void *)+(size))) |
| |
| #define temp_alloc(f,size) (f->alloc.alloc_buffer ? setup_temp_malloc(f,size) : alloca(size)) |
| #define temp_free(f,p) (void)0 |
| #define temp_alloc_save(f) ((f)->temp_offset) |
| #define temp_alloc_restore(f,p) ((f)->temp_offset = (p)) |
| |
| #define temp_block_array(f,count,size) make_block_array(temp_alloc(f,array_size_required(count,size)), count, size) |
| |
| // given a sufficiently large block of memory, make an array of pointers to subblocks of it |
| static void *make_block_array(void *mem, int count, int size) |
| { |
| int i; |
| void ** p = (void **) mem; |
| char *q = (char *) (p + count); |
| for (i=0; i < count; ++i) { |
| p[i] = q; |
| q += size; |
| } |
| return p; |
| } |
| |
| static void *setup_malloc(vorb *f, int sz) |
| { |
| sz = (sz+7) & ~7; // round up to nearest 8 for alignment of future allocs. |
| f->setup_memory_required += sz; |
| if (f->alloc.alloc_buffer) { |
| void *p = (char *) f->alloc.alloc_buffer + f->setup_offset; |
| if (f->setup_offset + sz > f->temp_offset) return NULL; |
| f->setup_offset += sz; |
| return p; |
| } |
| return sz ? malloc(sz) : NULL; |
| } |
| |
| static void setup_free(vorb *f, void *p) |
| { |
| if (f->alloc.alloc_buffer) return; // do nothing; setup mem is a stack |
| free(p); |
| } |
| |
| static void *setup_temp_malloc(vorb *f, int sz) |
| { |
| sz = (sz+7) & ~7; // round up to nearest 8 for alignment of future allocs. |
| if (f->alloc.alloc_buffer) { |
| if (f->temp_offset - sz < f->setup_offset) return NULL; |
| f->temp_offset -= sz; |
| return (char *) f->alloc.alloc_buffer + f->temp_offset; |
| } |
| return malloc(sz); |
| } |
| |
| static void setup_temp_free(vorb *f, void *p, int sz) |
| { |
| if (f->alloc.alloc_buffer) { |
| f->temp_offset += (sz+7)&~7; |
| return; |
| } |
| free(p); |
| } |
| |
| #define CRC32_POLY 0x04c11db7 // from spec |
| |
| static uint32 crc_table[256]; |
| static void crc32_init(void) |
| { |
| int i,j; |
| uint32 s; |
| for(i=0; i < 256; i++) { |
| for (s=(uint32) i << 24, j=0; j < 8; ++j) |
| s = (s << 1) ^ (s >= (1U<<31) ? CRC32_POLY : 0); |
| crc_table[i] = s; |
| } |
| } |
| |
| static __forceinline uint32 crc32_update(uint32 crc, uint8 byte) |
| { |
| return (crc << 8) ^ crc_table[byte ^ (crc >> 24)]; |
| } |
| |
| |
| // used in setup, and for huffman that doesn't go fast path |
| static unsigned int bit_reverse(unsigned int n) |
| { |
| n = ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1); |
| n = ((n & 0xCCCCCCCC) >> 2) | ((n & 0x33333333) << 2); |
| n = ((n & 0xF0F0F0F0) >> 4) | ((n & 0x0F0F0F0F) << 4); |
| n = ((n & 0xFF00FF00) >> 8) | ((n & 0x00FF00FF) << 8); |
| return (n >> 16) | (n << 16); |
| } |
| |
| static float square(float x) |
| { |
| return x*x; |
| } |
| |
| // this is a weird definition of log2() for which log2(1) = 1, log2(2) = 2, log2(4) = 3 |
| // as required by the specification. fast(?) implementation from stb.h |
| // @OPTIMIZE: called multiple times per-packet with "constants"; move to setup |
| static int ilog(int32 n) |
| { |
| static signed char log2_4[16] = { 0,1,2,2,3,3,3,3,4,4,4,4,4,4,4,4 }; |
| |
| if (n < 0) return 0; // signed n returns 0 |
| |
| // 2 compares if n < 16, 3 compares otherwise (4 if signed or n > 1<<29) |
| if (n < (1 << 14)) |
| if (n < (1 << 4)) return 0 + log2_4[n ]; |
| else if (n < (1 << 9)) return 5 + log2_4[n >> 5]; |
| else return 10 + log2_4[n >> 10]; |
| else if (n < (1 << 24)) |
| if (n < (1 << 19)) return 15 + log2_4[n >> 15]; |
| else return 20 + log2_4[n >> 20]; |
| else if (n < (1 << 29)) return 25 + log2_4[n >> 25]; |
| else return 30 + log2_4[n >> 30]; |
| } |
| |
| #ifndef M_PI |
| #define M_PI 3.14159265358979323846264f // from CRC |
| #endif |
| |
| // code length assigned to a value with no huffman encoding |
| #define NO_CODE 255 |
| |
| /////////////////////// LEAF SETUP FUNCTIONS ////////////////////////// |
| // |
| // these functions are only called at setup, and only a few times |
| // per file |
| |
| static float float32_unpack(uint32 x) |
| { |
| // from the specification |
| uint32 mantissa = x & 0x1fffff; |
| uint32 sign = x & 0x80000000; |
| uint32 exp = (x & 0x7fe00000) >> 21; |
| double res = sign ? -(double)mantissa : (double)mantissa; |
| return (float) ldexp((float)res, (int)exp-788); |
| } |
| |
| |
| // zlib & jpeg huffman tables assume that the output symbols |
| // can either be arbitrarily arranged, or have monotonically |
| // increasing frequencies--they rely on the lengths being sorted; |
| // this makes for a very simple generation algorithm. |
| // vorbis allows a huffman table with non-sorted lengths. This |
| // requires a more sophisticated construction, since symbols in |
| // order do not map to huffman codes "in order". |
| static void add_entry(Codebook *c, uint32 huff_code, int symbol, int count, int len, uint32 *values) |
| { |
| if (!c->sparse) { |
| c->codewords [symbol] = huff_code; |
| } else { |
| c->codewords [count] = huff_code; |
| c->codeword_lengths[count] = len; |
| values [count] = symbol; |
| } |
| } |
| |
| static int compute_codewords(Codebook *c, uint8 *len, int n, uint32 *values) |
| { |
| int i,k,m=0; |
| uint32 available[32]; |
| |
| memset(available, 0, sizeof(available)); |
| // find the first entry |
| for (k=0; k < n; ++k) if (len[k] < NO_CODE) break; |
| if (k == n) { assert(c->sorted_entries == 0); return TRUE; } |
| assert(len[k] < 32); // no error return required, code reading lens checks this |
| // add to the list |
| add_entry(c, 0, k, m++, len[k], values); |
| // add all available leaves |
| for (i=1; i <= len[k]; ++i) |
| available[i] = 1U << (32-i); |
| // note that the above code treats the first case specially, |
| // but it's really the same as the following code, so they |
| // could probably be combined (except the initial code is 0, |
| // and I use 0 in available[] to mean 'empty') |
| for (i=k+1; i < n; ++i) { |
| uint32 res; |
| int z = len[i], y; |
| if (z == NO_CODE) continue; |
| assert(z < 32); // no error return required, code reading lens checks this |
| // find lowest available leaf (should always be earliest, |
| // which is what the specification calls for) |
| // note that this property, and the fact we can never have |
| // more than one free leaf at a given level, isn't totally |
| // trivial to prove, but it seems true and the assert never |
| // fires, so! |
| while (z > 0 && !available[z]) --z; |
| if (z == 0) { return FALSE; } |
| res = available[z]; |
| available[z] = 0; |
| add_entry(c, bit_reverse(res), i, m++, len[i], values); |
| // propagate availability up the tree |
| if (z != len[i]) { |
| for (y=len[i]; y > z; --y) { |
| assert(available[y] == 0); |
| available[y] = res + (1 << (32-y)); |
| } |
| } |
| } |
| return TRUE; |
| } |
| |
| // accelerated huffman table allows fast O(1) match of all symbols |
| // of length <= STB_VORBIS_FAST_HUFFMAN_LENGTH |
| static void compute_accelerated_huffman(Codebook *c) |
| { |
| int i, len; |
| for (i=0; i < FAST_HUFFMAN_TABLE_SIZE; ++i) |
| c->fast_huffman[i] = -1; |
| |
| len = c->sparse ? c->sorted_entries : c->entries; |
| #ifdef STB_VORBIS_FAST_HUFFMAN_SHORT |
| if (len > 32767) len = 32767; // largest possible value we can encode! |
| #endif |
| for (i=0; i < len; ++i) { |
| if (c->codeword_lengths[i] <= STB_VORBIS_FAST_HUFFMAN_LENGTH) { |
| uint32 z = c->sparse ? bit_reverse(c->sorted_codewords[i]) : c->codewords[i]; |
| // set table entries for all bit combinations in the higher bits |
| while (z < FAST_HUFFMAN_TABLE_SIZE) { |
| c->fast_huffman[z] = i; |
| z += 1 << c->codeword_lengths[i]; |
| } |
| } |
| } |
| } |
| |
| #ifdef _MSC_VER |
| #define STBV_CDECL __cdecl |
| #else |
| #define STBV_CDECL |
| #endif |
| |
| static int STBV_CDECL uint32_compare(const void *p, const void *q) |
| { |
| uint32 x = * (uint32 *) p; |
| uint32 y = * (uint32 *) q; |
| return x < y ? -1 : x > y; |
| } |
| |
| static int include_in_sort(Codebook *c, uint8 len) |
| { |
| if (c->sparse) { assert(len != NO_CODE); return TRUE; } |
| if (len == NO_CODE) return FALSE; |
| if (len > STB_VORBIS_FAST_HUFFMAN_LENGTH) return TRUE; |
| return FALSE; |
| } |
| |
| // if the fast table above doesn't work, we want to binary |
| // search them... need to reverse the bits |
| static void compute_sorted_huffman(Codebook *c, uint8 *lengths, uint32 *values) |
| { |
| int i, len; |
| // build a list of all the entries |
| // OPTIMIZATION: don't include the short ones, since they'll be caught by FAST_HUFFMAN. |
| // this is kind of a frivolous optimization--I don't see any performance improvement, |
| // but it's like 4 extra lines of code, so. |
| if (!c->sparse) { |
| int k = 0; |
| for (i=0; i < c->entries; ++i) |
| if (include_in_sort(c, lengths[i])) |
| c->sorted_codewords[k++] = bit_reverse(c->codewords[i]); |
| assert(k == c->sorted_entries); |
| } else { |
| for (i=0; i < c->sorted_entries; ++i) |
| c->sorted_codewords[i] = bit_reverse(c->codewords[i]); |
| } |
| |
| qsort(c->sorted_codewords, c->sorted_entries, sizeof(c->sorted_codewords[0]), uint32_compare); |
| c->sorted_codewords[c->sorted_entries] = 0xffffffff; |
| |
| len = c->sparse ? c->sorted_entries : c->entries; |
| // now we need to indicate how they correspond; we could either |
| // #1: sort a different data structure that says who they correspond to |
| // #2: for each sorted entry, search the original list to find who corresponds |
| // #3: for each original entry, find the sorted entry |
| // #1 requires extra storage, #2 is slow, #3 can use binary search! |
| for (i=0; i < len; ++i) { |
| int huff_len = c->sparse ? lengths[values[i]] : lengths[i]; |
| if (include_in_sort(c,huff_len)) { |
| uint32 code = bit_reverse(c->codewords[i]); |
| int x=0, n=c->sorted_entries; |
| while (n > 1) { |
| // invariant: sc[x] <= code < sc[x+n] |
| int m = x + (n >> 1); |
| if (c->sorted_codewords[m] <= code) { |
| x = m; |
| n -= (n>>1); |
| } else { |
| n >>= 1; |
| } |
| } |
| assert(c->sorted_codewords[x] == code); |
| if (c->sparse) { |
| c->sorted_values[x] = values[i]; |
| c->codeword_lengths[x] = huff_len; |
| } else { |
| c->sorted_values[x] = i; |
| } |
| } |
| } |
| } |
| |
| // only run while parsing the header (3 times) |
| static int vorbis_validate(uint8 *data) |
| { |
| static uint8 vorbis[6] = { 'v', 'o', 'r', 'b', 'i', 's' }; |
| return memcmp(data, vorbis, 6) == 0; |
| } |
| |
| // called from setup only, once per code book |
| // (formula implied by specification) |
| static int lookup1_values(int entries, int dim) |
| { |
| int r = (int) floor(exp((float) log((float) entries) / dim)); |
| if ((int) floor(pow((float) r+1, dim)) <= entries) // (int) cast for MinGW warning; |
| ++r; // floor() to avoid _ftol() when non-CRT |
| if (pow((float) r+1, dim) <= entries) |
| return -1; |
| if ((int) floor(pow((float) r, dim)) > entries) |
| return -1; |
| return r; |
| } |
| |
| // called twice per file |
| static void compute_twiddle_factors(int n, float *A, float *B, float *C) |
| { |
| int n4 = n >> 2, n8 = n >> 3; |
| int k,k2; |
| |
| for (k=k2=0; k < n4; ++k,k2+=2) { |
| A[k2 ] = (float) cos(4*k*M_PI/n); |
| A[k2+1] = (float) -sin(4*k*M_PI/n); |
| B[k2 ] = (float) cos((k2+1)*M_PI/n/2) * 0.5f; |
| B[k2+1] = (float) sin((k2+1)*M_PI/n/2) * 0.5f; |
| } |
| for (k=k2=0; k < n8; ++k,k2+=2) { |
| C[k2 ] = (float) cos(2*(k2+1)*M_PI/n); |
| C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n); |
| } |
| } |
| |
| static void compute_window(int n, float *window) |
| { |
| int n2 = n >> 1, i; |
| for (i=0; i < n2; ++i) |
| window[i] = (float) sin(0.5 * M_PI * square((float) sin((i - 0 + 0.5) / n2 * 0.5 * M_PI))); |
| } |
| |
| static void compute_bitreverse(int n, uint16 *rev) |
| { |
| int ld = ilog(n) - 1; // ilog is off-by-one from normal definitions |
| int i, n8 = n >> 3; |
| for (i=0; i < n8; ++i) |
| rev[i] = (bit_reverse(i) >> (32-ld+3)) << 2; |
| } |
| |
| static int init_blocksize(vorb *f, int b, int n) |
| { |
| int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3; |
| f->A[b] = (float *) setup_malloc(f, sizeof(float) * n2); |
| f->B[b] = (float *) setup_malloc(f, sizeof(float) * n2); |
| f->C[b] = (float *) setup_malloc(f, sizeof(float) * n4); |
| if (!f->A[b] || !f->B[b] || !f->C[b]) return error(f, VORBIS_outofmem); |
| compute_twiddle_factors(n, f->A[b], f->B[b], f->C[b]); |
| f->window[b] = (float *) setup_malloc(f, sizeof(float) * n2); |
| if (!f->window[b]) return error(f, VORBIS_outofmem); |
| compute_window(n, f->window[b]); |
| f->bit_reverse[b] = (uint16 *) setup_malloc(f, sizeof(uint16) * n8); |
| if (!f->bit_reverse[b]) return error(f, VORBIS_outofmem); |
| compute_bitreverse(n, f->bit_reverse[b]); |
| return TRUE; |
| } |
| |
| static void neighbors(uint16 *x, int n, int *plow, int *phigh) |
| { |
| int low = -1; |
| int high = 65536; |
| int i; |
| for (i=0; i < n; ++i) { |
| if (x[i] > low && x[i] < x[n]) { *plow = i; low = x[i]; } |
| if (x[i] < high && x[i] > x[n]) { *phigh = i; high = x[i]; } |
| } |
| } |
| |
| // this has been repurposed so y is now the original index instead of y |
| typedef struct |
| { |
| uint16 x,id; |
| } stbv__floor_ordering; |
| |
| static int STBV_CDECL point_compare(const void *p, const void *q) |
| { |
| stbv__floor_ordering *a = (stbv__floor_ordering *) p; |
| stbv__floor_ordering *b = (stbv__floor_ordering *) q; |
| return a->x < b->x ? -1 : a->x > b->x; |
| } |
| |
| // |
| /////////////////////// END LEAF SETUP FUNCTIONS ////////////////////////// |
| |
| |
| #if defined(STB_VORBIS_NO_STDIO) |
| #define USE_MEMORY(z) TRUE |
| #else |
| #define USE_MEMORY(z) ((z)->stream) |
| #endif |
| |
| static uint8 get8(vorb *z) |
| { |
| if (USE_MEMORY(z)) { |
| if (z->stream >= z->stream_end) { z->eof = TRUE; return 0; } |
| return *z->stream++; |
| } |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| { |
| int c = fgetc(z->f); |
| if (c == EOF) { z->eof = TRUE; return 0; } |
| return c; |
| } |
| #endif |
| } |
| |
| static uint32 get32(vorb *f) |
| { |
| uint32 x; |
| x = get8(f); |
| x += get8(f) << 8; |
| x += get8(f) << 16; |
| x += (uint32) get8(f) << 24; |
| return x; |
| } |
| |
| static int getn(vorb *z, uint8 *data, int n) |
| { |
| if (USE_MEMORY(z)) { |
| if (z->stream+n > z->stream_end) { z->eof = 1; return 0; } |
| memcpy(data, z->stream, n); |
| z->stream += n; |
| return 1; |
| } |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| if (fread(data, n, 1, z->f) == 1) |
| return 1; |
| else { |
| z->eof = 1; |
| return 0; |
| } |
| #endif |
| } |
| |
| static void skip(vorb *z, int n) |
| { |
| if (USE_MEMORY(z)) { |
| z->stream += n; |
| if (z->stream >= z->stream_end) z->eof = 1; |
| return; |
| } |
| #ifndef STB_VORBIS_NO_STDIO |
| { |
| long x = ftell(z->f); |
| fseek(z->f, x+n, SEEK_SET); |
| } |
| #endif |
| } |
| |
| static int set_file_offset(stb_vorbis *f, unsigned int loc) |
| { |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| if (f->push_mode) return 0; |
| #endif |
| f->eof = 0; |
| if (USE_MEMORY(f)) { |
| if (f->stream_start + loc >= f->stream_end || f->stream_start + loc < f->stream_start) { |
| f->stream = f->stream_end; |
| f->eof = 1; |
| return 0; |
| } else { |
| f->stream = f->stream_start + loc; |
| return 1; |
| } |
| } |
| #ifndef STB_VORBIS_NO_STDIO |
| if (loc + f->f_start < loc || loc >= 0x80000000) { |
| loc = 0x7fffffff; |
| f->eof = 1; |
| } else { |
| loc += f->f_start; |
| } |
| if (!fseek(f->f, loc, SEEK_SET)) |
| return 1; |
| f->eof = 1; |
| fseek(f->f, f->f_start, SEEK_END); |
| return 0; |
| #endif |
| } |
| |
| |
| static uint8 ogg_page_header[4] = { 0x4f, 0x67, 0x67, 0x53 }; |
| |
| static int capture_pattern(vorb *f) |
| { |
| if (0x4f != get8(f)) return FALSE; |
| if (0x67 != get8(f)) return FALSE; |
| if (0x67 != get8(f)) return FALSE; |
| if (0x53 != get8(f)) return FALSE; |
| return TRUE; |
| } |
| |
| #define PAGEFLAG_continued_packet 1 |
| #define PAGEFLAG_first_page 2 |
| #define PAGEFLAG_last_page 4 |
| |
| static int start_page_no_capturepattern(vorb *f) |
| { |
| uint32 loc0,loc1,n; |
| if (f->first_decode && !IS_PUSH_MODE(f)) { |
| f->p_first.page_start = stb_vorbis_get_file_offset(f) - 4; |
| } |
| // stream structure version |
| if (0 != get8(f)) return error(f, VORBIS_invalid_stream_structure_version); |
| // header flag |
| f->page_flag = get8(f); |
| // absolute granule position |
| loc0 = get32(f); |
| loc1 = get32(f); |
| // @TODO: validate loc0,loc1 as valid positions? |
| // stream serial number -- vorbis doesn't interleave, so discard |
| get32(f); |
| //if (f->serial != get32(f)) return error(f, VORBIS_incorrect_stream_serial_number); |
| // page sequence number |
| n = get32(f); |
| f->last_page = n; |
| // CRC32 |
| get32(f); |
| // page_segments |
| f->segment_count = get8(f); |
| if (!getn(f, f->segments, f->segment_count)) |
| return error(f, VORBIS_unexpected_eof); |
| // assume we _don't_ know any the sample position of any segments |
| f->end_seg_with_known_loc = -2; |
| if (loc0 != ~0U || loc1 != ~0U) { |
| int i; |
| // determine which packet is the last one that will complete |
| for (i=f->segment_count-1; i >= 0; --i) |
| if (f->segments[i] < 255) |
| break; |
| // 'i' is now the index of the _last_ segment of a packet that ends |
| if (i >= 0) { |
| f->end_seg_with_known_loc = i; |
| f->known_loc_for_packet = loc0; |
| } |
| } |
| if (f->first_decode) { |
| int i,len; |
| len = 0; |
| for (i=0; i < f->segment_count; ++i) |
| len += f->segments[i]; |
| len += 27 + f->segment_count; |
| f->p_first.page_end = f->p_first.page_start + len; |
| f->p_first.last_decoded_sample = loc0; |
| } |
| f->next_seg = 0; |
| return TRUE; |
| } |
| |
| static int start_page(vorb *f) |
| { |
| if (!capture_pattern(f)) return error(f, VORBIS_missing_capture_pattern); |
| return start_page_no_capturepattern(f); |
| } |
| |
| static int start_packet(vorb *f) |
| { |
| while (f->next_seg == -1) { |
| if (!start_page(f)) return FALSE; |
| if (f->page_flag & PAGEFLAG_continued_packet) |
| return error(f, VORBIS_continued_packet_flag_invalid); |
| } |
| f->last_seg = FALSE; |
| f->valid_bits = 0; |
| f->packet_bytes = 0; |
| f->bytes_in_seg = 0; |
| // f->next_seg is now valid |
| return TRUE; |
| } |
| |
| static int maybe_start_packet(vorb *f) |
| { |
| if (f->next_seg == -1) { |
| int x = get8(f); |
| if (f->eof) return FALSE; // EOF at page boundary is not an error! |
| if (0x4f != x ) return error(f, VORBIS_missing_capture_pattern); |
| if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern); |
| if (0x67 != get8(f)) return error(f, VORBIS_missing_capture_pattern); |
| if (0x53 != get8(f)) return error(f, VORBIS_missing_capture_pattern); |
| if (!start_page_no_capturepattern(f)) return FALSE; |
| if (f->page_flag & PAGEFLAG_continued_packet) { |
| // set up enough state that we can read this packet if we want, |
| // e.g. during recovery |
| f->last_seg = FALSE; |
| f->bytes_in_seg = 0; |
| return error(f, VORBIS_continued_packet_flag_invalid); |
| } |
| } |
| return start_packet(f); |
| } |
| |
| static int next_segment(vorb *f) |
| { |
| int len; |
| if (f->last_seg) return 0; |
| if (f->next_seg == -1) { |
| f->last_seg_which = f->segment_count-1; // in case start_page fails |
| if (!start_page(f)) { f->last_seg = 1; return 0; } |
| if (!(f->page_flag & PAGEFLAG_continued_packet)) return error(f, VORBIS_continued_packet_flag_invalid); |
| } |
| len = f->segments[f->next_seg++]; |
| if (len < 255) { |
| f->last_seg = TRUE; |
| f->last_seg_which = f->next_seg-1; |
| } |
| if (f->next_seg >= f->segment_count) |
| f->next_seg = -1; |
| assert(f->bytes_in_seg == 0); |
| f->bytes_in_seg = len; |
| return len; |
| } |
| |
| #define EOP (-1) |
| #define INVALID_BITS (-1) |
| |
| static int get8_packet_raw(vorb *f) |
| { |
| if (!f->bytes_in_seg) { // CLANG! |
| if (f->last_seg) return EOP; |
| else if (!next_segment(f)) return EOP; |
| } |
| assert(f->bytes_in_seg > 0); |
| --f->bytes_in_seg; |
| ++f->packet_bytes; |
| return get8(f); |
| } |
| |
| static int get8_packet(vorb *f) |
| { |
| int x = get8_packet_raw(f); |
| f->valid_bits = 0; |
| return x; |
| } |
| |
| static int get32_packet(vorb *f) |
| { |
| uint32 x; |
| x = get8_packet(f); |
| x += get8_packet(f) << 8; |
| x += get8_packet(f) << 16; |
| x += (uint32) get8_packet(f) << 24; |
| return x; |
| } |
| |
| static void flush_packet(vorb *f) |
| { |
| while (get8_packet_raw(f) != EOP); |
| } |
| |
| // @OPTIMIZE: this is the secondary bit decoder, so it's probably not as important |
| // as the huffman decoder? |
| static uint32 get_bits(vorb *f, int n) |
| { |
| uint32 z; |
| |
| if (f->valid_bits < 0) return 0; |
| if (f->valid_bits < n) { |
| if (n > 24) { |
| // the accumulator technique below would not work correctly in this case |
| z = get_bits(f, 24); |
| z += get_bits(f, n-24) << 24; |
| return z; |
| } |
| if (f->valid_bits == 0) f->acc = 0; |
| while (f->valid_bits < n) { |
| int z = get8_packet_raw(f); |
| if (z == EOP) { |
| f->valid_bits = INVALID_BITS; |
| return 0; |
| } |
| f->acc += z << f->valid_bits; |
| f->valid_bits += 8; |
| } |
| } |
| |
| assert(f->valid_bits >= n); |
| z = f->acc & ((1 << n)-1); |
| f->acc >>= n; |
| f->valid_bits -= n; |
| return z; |
| } |
| |
| // @OPTIMIZE: primary accumulator for huffman |
| // expand the buffer to as many bits as possible without reading off end of packet |
| // it might be nice to allow f->valid_bits and f->acc to be stored in registers, |
| // e.g. cache them locally and decode locally |
| static __forceinline void prep_huffman(vorb *f) |
| { |
| if (f->valid_bits <= 24) { |
| if (f->valid_bits == 0) f->acc = 0; |
| do { |
| int z; |
| if (f->last_seg && !f->bytes_in_seg) return; |
| z = get8_packet_raw(f); |
| if (z == EOP) return; |
| f->acc += (unsigned) z << f->valid_bits; |
| f->valid_bits += 8; |
| } while (f->valid_bits <= 24); |
| } |
| } |
| |
| enum |
| { |
| VORBIS_packet_id = 1, |
| VORBIS_packet_comment = 3, |
| VORBIS_packet_setup = 5 |
| }; |
| |
| static int codebook_decode_scalar_raw(vorb *f, Codebook *c) |
| { |
| int i; |
| prep_huffman(f); |
| |
| if (c->codewords == NULL && c->sorted_codewords == NULL) |
| return -1; |
| |
| // cases to use binary search: sorted_codewords && !c->codewords |
| // sorted_codewords && c->entries > 8 |
| if (c->entries > 8 ? c->sorted_codewords!=NULL : !c->codewords) { |
| // binary search |
| uint32 code = bit_reverse(f->acc); |
| int x=0, n=c->sorted_entries, len; |
| |
| while (n > 1) { |
| // invariant: sc[x] <= code < sc[x+n] |
| int m = x + (n >> 1); |
| if (c->sorted_codewords[m] <= code) { |
| x = m; |
| n -= (n>>1); |
| } else { |
| n >>= 1; |
| } |
| } |
| // x is now the sorted index |
| if (!c->sparse) x = c->sorted_values[x]; |
| // x is now sorted index if sparse, or symbol otherwise |
| len = c->codeword_lengths[x]; |
| if (f->valid_bits >= len) { |
| f->acc >>= len; |
| f->valid_bits -= len; |
| return x; |
| } |
| |
| f->valid_bits = 0; |
| return -1; |
| } |
| |
| // if small, linear search |
| assert(!c->sparse); |
| for (i=0; i < c->entries; ++i) { |
| if (c->codeword_lengths[i] == NO_CODE) continue; |
| if (c->codewords[i] == (f->acc & ((1 << c->codeword_lengths[i])-1))) { |
| if (f->valid_bits >= c->codeword_lengths[i]) { |
| f->acc >>= c->codeword_lengths[i]; |
| f->valid_bits -= c->codeword_lengths[i]; |
| return i; |
| } |
| f->valid_bits = 0; |
| return -1; |
| } |
| } |
| |
| error(f, VORBIS_invalid_stream); |
| f->valid_bits = 0; |
| return -1; |
| } |
| |
| #ifndef STB_VORBIS_NO_INLINE_DECODE |
| |
| #define DECODE_RAW(var, f,c) \ |
| if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH) \ |
| prep_huffman(f); \ |
| var = f->acc & FAST_HUFFMAN_TABLE_MASK; \ |
| var = c->fast_huffman[var]; \ |
| if (var >= 0) { \ |
| int n = c->codeword_lengths[var]; \ |
| f->acc >>= n; \ |
| f->valid_bits -= n; \ |
| if (f->valid_bits < 0) { f->valid_bits = 0; var = -1; } \ |
| } else { \ |
| var = codebook_decode_scalar_raw(f,c); \ |
| } |
| |
| #else |
| |
| static int codebook_decode_scalar(vorb *f, Codebook *c) |
| { |
| int i; |
| if (f->valid_bits < STB_VORBIS_FAST_HUFFMAN_LENGTH) |
| prep_huffman(f); |
| // fast huffman table lookup |
| i = f->acc & FAST_HUFFMAN_TABLE_MASK; |
| i = c->fast_huffman[i]; |
| if (i >= 0) { |
| f->acc >>= c->codeword_lengths[i]; |
| f->valid_bits -= c->codeword_lengths[i]; |
| if (f->valid_bits < 0) { f->valid_bits = 0; return -1; } |
| return i; |
| } |
| return codebook_decode_scalar_raw(f,c); |
| } |
| |
| #define DECODE_RAW(var,f,c) var = codebook_decode_scalar(f,c); |
| |
| #endif |
| |
| #define DECODE(var,f,c) \ |
| DECODE_RAW(var,f,c) \ |
| if (c->sparse) var = c->sorted_values[var]; |
| |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| #define DECODE_VQ(var,f,c) DECODE_RAW(var,f,c) |
| #else |
| #define DECODE_VQ(var,f,c) DECODE(var,f,c) |
| #endif |
| |
| |
| |
| |
| |
| |
| // CODEBOOK_ELEMENT_FAST is an optimization for the CODEBOOK_FLOATS case |
| // where we avoid one addition |
| #define CODEBOOK_ELEMENT(c,off) (c->multiplicands[off]) |
| #define CODEBOOK_ELEMENT_FAST(c,off) (c->multiplicands[off]) |
| #define CODEBOOK_ELEMENT_BASE(c) (0) |
| |
| static int codebook_decode_start(vorb *f, Codebook *c) |
| { |
| int z = -1; |
| |
| // type 0 is only legal in a scalar context |
| if (c->lookup_type == 0) |
| error(f, VORBIS_invalid_stream); |
| else { |
| DECODE_VQ(z,f,c); |
| if (c->sparse) assert(z < c->sorted_entries); |
| if (z < 0) { // check for EOP |
| if (!f->bytes_in_seg) |
| if (f->last_seg) |
| return z; |
| error(f, VORBIS_invalid_stream); |
| } |
| } |
| return z; |
| } |
| |
| static int codebook_decode(vorb *f, Codebook *c, float *output, int len) |
| { |
| int i,z = codebook_decode_start(f,c); |
| if (z < 0) return FALSE; |
| if (len > c->dimensions) len = c->dimensions; |
| |
| #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| if (c->lookup_type == 1) { |
| float last = CODEBOOK_ELEMENT_BASE(c); |
| int div = 1; |
| for (i=0; i < len; ++i) { |
| int off = (z / div) % c->lookup_values; |
| float val = CODEBOOK_ELEMENT_FAST(c,off) + last; |
| output[i] += val; |
| if (c->sequence_p) last = val + c->minimum_value; |
| div *= c->lookup_values; |
| } |
| return TRUE; |
| } |
| #endif |
| |
| z *= c->dimensions; |
| if (c->sequence_p) { |
| float last = CODEBOOK_ELEMENT_BASE(c); |
| for (i=0; i < len; ++i) { |
| float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; |
| output[i] += val; |
| last = val + c->minimum_value; |
| } |
| } else { |
| float last = CODEBOOK_ELEMENT_BASE(c); |
| for (i=0; i < len; ++i) { |
| output[i] += CODEBOOK_ELEMENT_FAST(c,z+i) + last; |
| } |
| } |
| |
| return TRUE; |
| } |
| |
| static int codebook_decode_step(vorb *f, Codebook *c, float *output, int len, int step) |
| { |
| int i,z = codebook_decode_start(f,c); |
| float last = CODEBOOK_ELEMENT_BASE(c); |
| if (z < 0) return FALSE; |
| if (len > c->dimensions) len = c->dimensions; |
| |
| #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| if (c->lookup_type == 1) { |
| int div = 1; |
| for (i=0; i < len; ++i) { |
| int off = (z / div) % c->lookup_values; |
| float val = CODEBOOK_ELEMENT_FAST(c,off) + last; |
| output[i*step] += val; |
| if (c->sequence_p) last = val; |
| div *= c->lookup_values; |
| } |
| return TRUE; |
| } |
| #endif |
| |
| z *= c->dimensions; |
| for (i=0; i < len; ++i) { |
| float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; |
| output[i*step] += val; |
| if (c->sequence_p) last = val; |
| } |
| |
| return TRUE; |
| } |
| |
| static int codebook_decode_deinterleave_repeat(vorb *f, Codebook *c, float **outputs, int ch, int *c_inter_p, int *p_inter_p, int len, int total_decode) |
| { |
| int c_inter = *c_inter_p; |
| int p_inter = *p_inter_p; |
| int i,z, effective = c->dimensions; |
| |
| // type 0 is only legal in a scalar context |
| if (c->lookup_type == 0) return error(f, VORBIS_invalid_stream); |
| |
| while (total_decode > 0) { |
| float last = CODEBOOK_ELEMENT_BASE(c); |
| DECODE_VQ(z,f,c); |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| assert(!c->sparse || z < c->sorted_entries); |
| #endif |
| if (z < 0) { |
| if (!f->bytes_in_seg) |
| if (f->last_seg) return FALSE; |
| return error(f, VORBIS_invalid_stream); |
| } |
| |
| // if this will take us off the end of the buffers, stop short! |
| // we check by computing the length of the virtual interleaved |
| // buffer (len*ch), our current offset within it (p_inter*ch)+(c_inter), |
| // and the length we'll be using (effective) |
| if (c_inter + p_inter*ch + effective > len * ch) { |
| effective = len*ch - (p_inter*ch - c_inter); |
| } |
| |
| #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| if (c->lookup_type == 1) { |
| int div = 1; |
| for (i=0; i < effective; ++i) { |
| int off = (z / div) % c->lookup_values; |
| float val = CODEBOOK_ELEMENT_FAST(c,off) + last; |
| if (outputs[c_inter]) |
| outputs[c_inter][p_inter] += val; |
| if (++c_inter == ch) { c_inter = 0; ++p_inter; } |
| if (c->sequence_p) last = val; |
| div *= c->lookup_values; |
| } |
| } else |
| #endif |
| { |
| z *= c->dimensions; |
| if (c->sequence_p) { |
| for (i=0; i < effective; ++i) { |
| float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; |
| if (outputs[c_inter]) |
| outputs[c_inter][p_inter] += val; |
| if (++c_inter == ch) { c_inter = 0; ++p_inter; } |
| last = val; |
| } |
| } else { |
| for (i=0; i < effective; ++i) { |
| float val = CODEBOOK_ELEMENT_FAST(c,z+i) + last; |
| if (outputs[c_inter]) |
| outputs[c_inter][p_inter] += val; |
| if (++c_inter == ch) { c_inter = 0; ++p_inter; } |
| } |
| } |
| } |
| |
| total_decode -= effective; |
| } |
| *c_inter_p = c_inter; |
| *p_inter_p = p_inter; |
| return TRUE; |
| } |
| |
| static int predict_point(int x, int x0, int x1, int y0, int y1) |
| { |
| int dy = y1 - y0; |
| int adx = x1 - x0; |
| // @OPTIMIZE: force int division to round in the right direction... is this necessary on x86? |
| int err = abs(dy) * (x - x0); |
| int off = err / adx; |
| return dy < 0 ? y0 - off : y0 + off; |
| } |
| |
| // the following table is block-copied from the specification |
| static float inverse_db_table[256] = |
| { |
| 1.0649863e-07f, 1.1341951e-07f, 1.2079015e-07f, 1.2863978e-07f, |
| 1.3699951e-07f, 1.4590251e-07f, 1.5538408e-07f, 1.6548181e-07f, |
| 1.7623575e-07f, 1.8768855e-07f, 1.9988561e-07f, 2.1287530e-07f, |
| 2.2670913e-07f, 2.4144197e-07f, 2.5713223e-07f, 2.7384213e-07f, |
| 2.9163793e-07f, 3.1059021e-07f, 3.3077411e-07f, 3.5226968e-07f, |
| 3.7516214e-07f, 3.9954229e-07f, 4.2550680e-07f, 4.5315863e-07f, |
| 4.8260743e-07f, 5.1396998e-07f, 5.4737065e-07f, 5.8294187e-07f, |
| 6.2082472e-07f, 6.6116941e-07f, 7.0413592e-07f, 7.4989464e-07f, |
| 7.9862701e-07f, 8.5052630e-07f, 9.0579828e-07f, 9.6466216e-07f, |
| 1.0273513e-06f, 1.0941144e-06f, 1.1652161e-06f, 1.2409384e-06f, |
| 1.3215816e-06f, 1.4074654e-06f, 1.4989305e-06f, 1.5963394e-06f, |
| 1.7000785e-06f, 1.8105592e-06f, 1.9282195e-06f, 2.0535261e-06f, |
| 2.1869758e-06f, 2.3290978e-06f, 2.4804557e-06f, 2.6416497e-06f, |
| 2.8133190e-06f, 2.9961443e-06f, 3.1908506e-06f, 3.3982101e-06f, |
| 3.6190449e-06f, 3.8542308e-06f, 4.1047004e-06f, 4.3714470e-06f, |
| 4.6555282e-06f, 4.9580707e-06f, 5.2802740e-06f, 5.6234160e-06f, |
| 5.9888572e-06f, 6.3780469e-06f, 6.7925283e-06f, 7.2339451e-06f, |
| 7.7040476e-06f, 8.2047000e-06f, 8.7378876e-06f, 9.3057248e-06f, |
| 9.9104632e-06f, 1.0554501e-05f, 1.1240392e-05f, 1.1970856e-05f, |
| 1.2748789e-05f, 1.3577278e-05f, 1.4459606e-05f, 1.5399272e-05f, |
| 1.6400004e-05f, 1.7465768e-05f, 1.8600792e-05f, 1.9809576e-05f, |
| 2.1096914e-05f, 2.2467911e-05f, 2.3928002e-05f, 2.5482978e-05f, |
| 2.7139006e-05f, 2.8902651e-05f, 3.0780908e-05f, 3.2781225e-05f, |
| 3.4911534e-05f, 3.7180282e-05f, 3.9596466e-05f, 4.2169667e-05f, |
| 4.4910090e-05f, 4.7828601e-05f, 5.0936773e-05f, 5.4246931e-05f, |
| 5.7772202e-05f, 6.1526565e-05f, 6.5524908e-05f, 6.9783085e-05f, |
| 7.4317983e-05f, 7.9147585e-05f, 8.4291040e-05f, 8.9768747e-05f, |
| 9.5602426e-05f, 0.00010181521f, 0.00010843174f, 0.00011547824f, |
| 0.00012298267f, 0.00013097477f, 0.00013948625f, 0.00014855085f, |
| 0.00015820453f, 0.00016848555f, 0.00017943469f, 0.00019109536f, |
| 0.00020351382f, 0.00021673929f, 0.00023082423f, 0.00024582449f, |
| 0.00026179955f, 0.00027881276f, 0.00029693158f, 0.00031622787f, |
| 0.00033677814f, 0.00035866388f, 0.00038197188f, 0.00040679456f, |
| 0.00043323036f, 0.00046138411f, 0.00049136745f, 0.00052329927f, |
| 0.00055730621f, 0.00059352311f, 0.00063209358f, 0.00067317058f, |
| 0.00071691700f, 0.00076350630f, 0.00081312324f, 0.00086596457f, |
| 0.00092223983f, 0.00098217216f, 0.0010459992f, 0.0011139742f, |
| 0.0011863665f, 0.0012634633f, 0.0013455702f, 0.0014330129f, |
| 0.0015261382f, 0.0016253153f, 0.0017309374f, 0.0018434235f, |
| 0.0019632195f, 0.0020908006f, 0.0022266726f, 0.0023713743f, |
| 0.0025254795f, 0.0026895994f, 0.0028643847f, 0.0030505286f, |
| 0.0032487691f, 0.0034598925f, 0.0036847358f, 0.0039241906f, |
| 0.0041792066f, 0.0044507950f, 0.0047400328f, 0.0050480668f, |
| 0.0053761186f, 0.0057254891f, 0.0060975636f, 0.0064938176f, |
| 0.0069158225f, 0.0073652516f, 0.0078438871f, 0.0083536271f, |
| 0.0088964928f, 0.009474637f, 0.010090352f, 0.010746080f, |
| 0.011444421f, 0.012188144f, 0.012980198f, 0.013823725f, |
| 0.014722068f, 0.015678791f, 0.016697687f, 0.017782797f, |
| 0.018938423f, 0.020169149f, 0.021479854f, 0.022875735f, |
| 0.024362330f, 0.025945531f, 0.027631618f, 0.029427276f, |
| 0.031339626f, 0.033376252f, 0.035545228f, 0.037855157f, |
| 0.040315199f, 0.042935108f, 0.045725273f, 0.048696758f, |
| 0.051861348f, 0.055231591f, 0.058820850f, 0.062643361f, |
| 0.066714279f, 0.071049749f, 0.075666962f, 0.080584227f, |
| 0.085821044f, 0.091398179f, 0.097337747f, 0.10366330f, |
| 0.11039993f, 0.11757434f, 0.12521498f, 0.13335215f, |
| 0.14201813f, 0.15124727f, 0.16107617f, 0.17154380f, |
| 0.18269168f, 0.19456402f, 0.20720788f, 0.22067342f, |
| 0.23501402f, 0.25028656f, 0.26655159f, 0.28387361f, |
| 0.30232132f, 0.32196786f, 0.34289114f, 0.36517414f, |
| 0.38890521f, 0.41417847f, 0.44109412f, 0.46975890f, |
| 0.50028648f, 0.53279791f, 0.56742212f, 0.60429640f, |
| 0.64356699f, 0.68538959f, 0.72993007f, 0.77736504f, |
| 0.82788260f, 0.88168307f, 0.9389798f, 1.0f |
| }; |
| |
| |
| // @OPTIMIZE: if you want to replace this bresenham line-drawing routine, |
| // note that you must produce bit-identical output to decode correctly; |
| // this specific sequence of operations is specified in the spec (it's |
| // drawing integer-quantized frequency-space lines that the encoder |
| // expects to be exactly the same) |
| // ... also, isn't the whole point of Bresenham's algorithm to NOT |
| // have to divide in the setup? sigh. |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR |
| #define LINE_OP(a,b) a *= b |
| #else |
| #define LINE_OP(a,b) a = b |
| #endif |
| |
| #ifdef STB_VORBIS_DIVIDE_TABLE |
| #define DIVTAB_NUMER 32 |
| #define DIVTAB_DENOM 64 |
| int8 integer_divide_table[DIVTAB_NUMER][DIVTAB_DENOM]; // 2KB |
| #endif |
| |
| static __forceinline void draw_line(float *output, int x0, int y0, int x1, int y1, int n) |
| { |
| int dy = y1 - y0; |
| int adx = x1 - x0; |
| int ady = abs(dy); |
| int base; |
| int x=x0,y=y0; |
| int err = 0; |
| int sy; |
| |
| #ifdef STB_VORBIS_DIVIDE_TABLE |
| if (adx < DIVTAB_DENOM && ady < DIVTAB_NUMER) { |
| if (dy < 0) { |
| base = -integer_divide_table[ady][adx]; |
| sy = base-1; |
| } else { |
| base = integer_divide_table[ady][adx]; |
| sy = base+1; |
| } |
| } else { |
| base = dy / adx; |
| if (dy < 0) |
| sy = base - 1; |
| else |
| sy = base+1; |
| } |
| #else |
| base = dy / adx; |
| if (dy < 0) |
| sy = base - 1; |
| else |
| sy = base+1; |
| #endif |
| ady -= abs(base) * adx; |
| if (x1 > n) x1 = n; |
| if (x < x1) { |
| LINE_OP(output[x], inverse_db_table[y&255]); |
| for (++x; x < x1; ++x) { |
| err += ady; |
| if (err >= adx) { |
| err -= adx; |
| y += sy; |
| } else |
| y += base; |
| LINE_OP(output[x], inverse_db_table[y&255]); |
| } |
| } |
| } |
| |
| static int residue_decode(vorb *f, Codebook *book, float *target, int offset, int n, int rtype) |
| { |
| int k; |
| if (rtype == 0) { |
| int step = n / book->dimensions; |
| for (k=0; k < step; ++k) |
| if (!codebook_decode_step(f, book, target+offset+k, n-offset-k, step)) |
| return FALSE; |
| } else { |
| for (k=0; k < n; ) { |
| if (!codebook_decode(f, book, target+offset, n-k)) |
| return FALSE; |
| k += book->dimensions; |
| offset += book->dimensions; |
| } |
| } |
| return TRUE; |
| } |
| |
| // n is 1/2 of the blocksize -- |
| // specification: "Correct per-vector decode length is [n]/2" |
| static void decode_residue(vorb *f, float *residue_buffers[], int ch, int n, int rn, uint8 *do_not_decode) |
| { |
| int i,j,pass; |
| Residue *r = f->residue_config + rn; |
| int rtype = f->residue_types[rn]; |
| int c = r->classbook; |
| int classwords = f->codebooks[c].dimensions; |
| unsigned int actual_size = rtype == 2 ? n*2 : n; |
| unsigned int limit_r_begin = (r->begin < actual_size ? r->begin : actual_size); |
| unsigned int limit_r_end = (r->end < actual_size ? r->end : actual_size); |
| int n_read = limit_r_end - limit_r_begin; |
| int part_read = n_read / r->part_size; |
| int temp_alloc_point = temp_alloc_save(f); |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| uint8 ***part_classdata = (uint8 ***) temp_block_array(f,f->channels, part_read * sizeof(**part_classdata)); |
| #else |
| int **classifications = (int **) temp_block_array(f,f->channels, part_read * sizeof(**classifications)); |
| #endif |
| |
| CHECK(f); |
| |
| for (i=0; i < ch; ++i) |
| if (!do_not_decode[i]) |
| memset(residue_buffers[i], 0, sizeof(float) * n); |
| |
| if (rtype == 2 && ch != 1) { |
| for (j=0; j < ch; ++j) |
| if (!do_not_decode[j]) |
| break; |
| if (j == ch) |
| goto done; |
| |
| for (pass=0; pass < 8; ++pass) { |
| int pcount = 0, class_set = 0; |
| if (ch == 2) { |
| while (pcount < part_read) { |
| int z = r->begin + pcount*r->part_size; |
| int c_inter = (z & 1), p_inter = z>>1; |
| if (pass == 0) { |
| Codebook *c = f->codebooks+r->classbook; |
| int q; |
| DECODE(q,f,c); |
| if (q == EOP) goto done; |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| part_classdata[0][class_set] = r->classdata[q]; |
| #else |
| for (i=classwords-1; i >= 0; --i) { |
| classifications[0][i+pcount] = q % r->classifications; |
| q /= r->classifications; |
| } |
| #endif |
| } |
| for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { |
| int z = r->begin + pcount*r->part_size; |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| int c = part_classdata[0][class_set][i]; |
| #else |
| int c = classifications[0][pcount]; |
| #endif |
| int b = r->residue_books[c][pass]; |
| if (b >= 0) { |
| Codebook *book = f->codebooks + b; |
| #ifdef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) |
| goto done; |
| #else |
| // saves 1% |
| if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) |
| goto done; |
| #endif |
| } else { |
| z += r->part_size; |
| c_inter = z & 1; |
| p_inter = z >> 1; |
| } |
| } |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| ++class_set; |
| #endif |
| } |
| } else if (ch > 2) { |
| while (pcount < part_read) { |
| int z = r->begin + pcount*r->part_size; |
| int c_inter = z % ch, p_inter = z/ch; |
| if (pass == 0) { |
| Codebook *c = f->codebooks+r->classbook; |
| int q; |
| DECODE(q,f,c); |
| if (q == EOP) goto done; |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| part_classdata[0][class_set] = r->classdata[q]; |
| #else |
| for (i=classwords-1; i >= 0; --i) { |
| classifications[0][i+pcount] = q % r->classifications; |
| q /= r->classifications; |
| } |
| #endif |
| } |
| for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { |
| int z = r->begin + pcount*r->part_size; |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| int c = part_classdata[0][class_set][i]; |
| #else |
| int c = classifications[0][pcount]; |
| #endif |
| int b = r->residue_books[c][pass]; |
| if (b >= 0) { |
| Codebook *book = f->codebooks + b; |
| if (!codebook_decode_deinterleave_repeat(f, book, residue_buffers, ch, &c_inter, &p_inter, n, r->part_size)) |
| goto done; |
| } else { |
| z += r->part_size; |
| c_inter = z % ch; |
| p_inter = z / ch; |
| } |
| } |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| ++class_set; |
| #endif |
| } |
| } |
| } |
| goto done; |
| } |
| CHECK(f); |
| |
| for (pass=0; pass < 8; ++pass) { |
| int pcount = 0, class_set=0; |
| while (pcount < part_read) { |
| if (pass == 0) { |
| for (j=0; j < ch; ++j) { |
| if (!do_not_decode[j]) { |
| Codebook *c = f->codebooks+r->classbook; |
| int temp; |
| DECODE(temp,f,c); |
| if (temp == EOP) goto done; |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| part_classdata[j][class_set] = r->classdata[temp]; |
| #else |
| for (i=classwords-1; i >= 0; --i) { |
| classifications[j][i+pcount] = temp % r->classifications; |
| temp /= r->classifications; |
| } |
| #endif |
| } |
| } |
| } |
| for (i=0; i < classwords && pcount < part_read; ++i, ++pcount) { |
| for (j=0; j < ch; ++j) { |
| if (!do_not_decode[j]) { |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| int c = part_classdata[j][class_set][i]; |
| #else |
| int c = classifications[j][pcount]; |
| #endif |
| int b = r->residue_books[c][pass]; |
| if (b >= 0) { |
| float *target = residue_buffers[j]; |
| int offset = r->begin + pcount * r->part_size; |
| int n = r->part_size; |
| Codebook *book = f->codebooks + b; |
| if (!residue_decode(f, book, target, offset, n, rtype)) |
| goto done; |
| } |
| } |
| } |
| } |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| ++class_set; |
| #endif |
| } |
| } |
| done: |
| CHECK(f); |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| temp_free(f,part_classdata); |
| #else |
| temp_free(f,classifications); |
| #endif |
| temp_alloc_restore(f,temp_alloc_point); |
| } |
| |
| |
| #if 0 |
| // slow way for debugging |
| void inverse_mdct_slow(float *buffer, int n) |
| { |
| int i,j; |
| int n2 = n >> 1; |
| float *x = (float *) malloc(sizeof(*x) * n2); |
| memcpy(x, buffer, sizeof(*x) * n2); |
| for (i=0; i < n; ++i) { |
| float acc = 0; |
| for (j=0; j < n2; ++j) |
| // formula from paper: |
| //acc += n/4.0f * x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1)); |
| // formula from wikipedia |
| //acc += 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5)); |
| // these are equivalent, except the formula from the paper inverts the multiplier! |
| // however, what actually works is NO MULTIPLIER!?! |
| //acc += 64 * 2.0f / n2 * x[j] * (float) cos(M_PI/n2 * (i + 0.5 + n2/2)*(j + 0.5)); |
| acc += x[j] * (float) cos(M_PI / 2 / n * (2 * i + 1 + n/2.0)*(2*j+1)); |
| buffer[i] = acc; |
| } |
| free(x); |
| } |
| #elif 0 |
| // same as above, but just barely able to run in real time on modern machines |
| void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype) |
| { |
| float mcos[16384]; |
| int i,j; |
| int n2 = n >> 1, nmask = (n << 2) -1; |
| float *x = (float *) malloc(sizeof(*x) * n2); |
| memcpy(x, buffer, sizeof(*x) * n2); |
| for (i=0; i < 4*n; ++i) |
| mcos[i] = (float) cos(M_PI / 2 * i / n); |
| |
| for (i=0; i < n; ++i) { |
| float acc = 0; |
| for (j=0; j < n2; ++j) |
| acc += x[j] * mcos[(2 * i + 1 + n2)*(2*j+1) & nmask]; |
| buffer[i] = acc; |
| } |
| free(x); |
| } |
| #elif 0 |
| // transform to use a slow dct-iv; this is STILL basically trivial, |
| // but only requires half as many ops |
| void dct_iv_slow(float *buffer, int n) |
| { |
| float mcos[16384]; |
| float x[2048]; |
| int i,j; |
| int n2 = n >> 1, nmask = (n << 3) - 1; |
| memcpy(x, buffer, sizeof(*x) * n); |
| for (i=0; i < 8*n; ++i) |
| mcos[i] = (float) cos(M_PI / 4 * i / n); |
| for (i=0; i < n; ++i) { |
| float acc = 0; |
| for (j=0; j < n; ++j) |
| acc += x[j] * mcos[((2 * i + 1)*(2*j+1)) & nmask]; |
| buffer[i] = acc; |
| } |
| } |
| |
| void inverse_mdct_slow(float *buffer, int n, vorb *f, int blocktype) |
| { |
| int i, n4 = n >> 2, n2 = n >> 1, n3_4 = n - n4; |
| float temp[4096]; |
| |
| memcpy(temp, buffer, n2 * sizeof(float)); |
| dct_iv_slow(temp, n2); // returns -c'-d, a-b' |
| |
| for (i=0; i < n4 ; ++i) buffer[i] = temp[i+n4]; // a-b' |
| for ( ; i < n3_4; ++i) buffer[i] = -temp[n3_4 - i - 1]; // b-a', c+d' |
| for ( ; i < n ; ++i) buffer[i] = -temp[i - n3_4]; // c'+d |
| } |
| #endif |
| |
| #ifndef LIBVORBIS_MDCT |
| #define LIBVORBIS_MDCT 0 |
| #endif |
| |
| #if LIBVORBIS_MDCT |
| // directly call the vorbis MDCT using an interface documented |
| // by Jeff Roberts... useful for performance comparison |
| typedef struct |
| { |
| int n; |
| int log2n; |
| |
| float *trig; |
| int *bitrev; |
| |
| float scale; |
| } mdct_lookup; |
| |
| extern void mdct_init(mdct_lookup *lookup, int n); |
| extern void mdct_clear(mdct_lookup *l); |
| extern void mdct_backward(mdct_lookup *init, float *in, float *out); |
| |
| mdct_lookup M1,M2; |
| |
| void inverse_mdct(float *buffer, int n, vorb *f, int blocktype) |
| { |
| mdct_lookup *M; |
| if (M1.n == n) M = &M1; |
| else if (M2.n == n) M = &M2; |
| else if (M1.n == 0) { mdct_init(&M1, n); M = &M1; } |
| else { |
| if (M2.n) __asm int 3; |
| mdct_init(&M2, n); |
| M = &M2; |
| } |
| |
| mdct_backward(M, buffer, buffer); |
| } |
| #endif |
| |
| |
| // the following were split out into separate functions while optimizing; |
| // they could be pushed back up but eh. __forceinline showed no change; |
| // they're probably already being inlined. |
| static void imdct_step3_iter0_loop(int n, float *e, int i_off, int k_off, float *A) |
| { |
| float *ee0 = e + i_off; |
| float *ee2 = ee0 + k_off; |
| int i; |
| |
| assert((n & 3) == 0); |
| for (i=(n>>2); i > 0; --i) { |
| float k00_20, k01_21; |
| k00_20 = ee0[ 0] - ee2[ 0]; |
| k01_21 = ee0[-1] - ee2[-1]; |
| ee0[ 0] += ee2[ 0];//ee0[ 0] = ee0[ 0] + ee2[ 0]; |
| ee0[-1] += ee2[-1];//ee0[-1] = ee0[-1] + ee2[-1]; |
| ee2[ 0] = k00_20 * A[0] - k01_21 * A[1]; |
| ee2[-1] = k01_21 * A[0] + k00_20 * A[1]; |
| A += 8; |
| |
| k00_20 = ee0[-2] - ee2[-2]; |
| k01_21 = ee0[-3] - ee2[-3]; |
| ee0[-2] += ee2[-2];//ee0[-2] = ee0[-2] + ee2[-2]; |
| ee0[-3] += ee2[-3];//ee0[-3] = ee0[-3] + ee2[-3]; |
| ee2[-2] = k00_20 * A[0] - k01_21 * A[1]; |
| ee2[-3] = k01_21 * A[0] + k00_20 * A[1]; |
| A += 8; |
| |
| k00_20 = ee0[-4] - ee2[-4]; |
| k01_21 = ee0[-5] - ee2[-5]; |
| ee0[-4] += ee2[-4];//ee0[-4] = ee0[-4] + ee2[-4]; |
| ee0[-5] += ee2[-5];//ee0[-5] = ee0[-5] + ee2[-5]; |
| ee2[-4] = k00_20 * A[0] - k01_21 * A[1]; |
| ee2[-5] = k01_21 * A[0] + k00_20 * A[1]; |
| A += 8; |
| |
| k00_20 = ee0[-6] - ee2[-6]; |
| k01_21 = ee0[-7] - ee2[-7]; |
| ee0[-6] += ee2[-6];//ee0[-6] = ee0[-6] + ee2[-6]; |
| ee0[-7] += ee2[-7];//ee0[-7] = ee0[-7] + ee2[-7]; |
| ee2[-6] = k00_20 * A[0] - k01_21 * A[1]; |
| ee2[-7] = k01_21 * A[0] + k00_20 * A[1]; |
| A += 8; |
| ee0 -= 8; |
| ee2 -= 8; |
| } |
| } |
| |
| static void imdct_step3_inner_r_loop(int lim, float *e, int d0, int k_off, float *A, int k1) |
| { |
| int i; |
| float k00_20, k01_21; |
| |
| float *e0 = e + d0; |
| float *e2 = e0 + k_off; |
| |
| for (i=lim >> 2; i > 0; --i) { |
| k00_20 = e0[-0] - e2[-0]; |
| k01_21 = e0[-1] - e2[-1]; |
| e0[-0] += e2[-0];//e0[-0] = e0[-0] + e2[-0]; |
| e0[-1] += e2[-1];//e0[-1] = e0[-1] + e2[-1]; |
| e2[-0] = (k00_20)*A[0] - (k01_21) * A[1]; |
| e2[-1] = (k01_21)*A[0] + (k00_20) * A[1]; |
| |
| A += k1; |
| |
| k00_20 = e0[-2] - e2[-2]; |
| k01_21 = e0[-3] - e2[-3]; |
| e0[-2] += e2[-2];//e0[-2] = e0[-2] + e2[-2]; |
| e0[-3] += e2[-3];//e0[-3] = e0[-3] + e2[-3]; |
| e2[-2] = (k00_20)*A[0] - (k01_21) * A[1]; |
| e2[-3] = (k01_21)*A[0] + (k00_20) * A[1]; |
| |
| A += k1; |
| |
| k00_20 = e0[-4] - e2[-4]; |
| k01_21 = e0[-5] - e2[-5]; |
| e0[-4] += e2[-4];//e0[-4] = e0[-4] + e2[-4]; |
| e0[-5] += e2[-5];//e0[-5] = e0[-5] + e2[-5]; |
| e2[-4] = (k00_20)*A[0] - (k01_21) * A[1]; |
| e2[-5] = (k01_21)*A[0] + (k00_20) * A[1]; |
| |
| A += k1; |
| |
| k00_20 = e0[-6] - e2[-6]; |
| k01_21 = e0[-7] - e2[-7]; |
| e0[-6] += e2[-6];//e0[-6] = e0[-6] + e2[-6]; |
| e0[-7] += e2[-7];//e0[-7] = e0[-7] + e2[-7]; |
| e2[-6] = (k00_20)*A[0] - (k01_21) * A[1]; |
| e2[-7] = (k01_21)*A[0] + (k00_20) * A[1]; |
| |
| e0 -= 8; |
| e2 -= 8; |
| |
| A += k1; |
| } |
| } |
| |
| static void imdct_step3_inner_s_loop(int n, float *e, int i_off, int k_off, float *A, int a_off, int k0) |
| { |
| int i; |
| float A0 = A[0]; |
| float A1 = A[0+1]; |
| float A2 = A[0+a_off]; |
| float A3 = A[0+a_off+1]; |
| float A4 = A[0+a_off*2+0]; |
| float A5 = A[0+a_off*2+1]; |
| float A6 = A[0+a_off*3+0]; |
| float A7 = A[0+a_off*3+1]; |
| |
| float k00,k11; |
| |
| float *ee0 = e +i_off; |
| float *ee2 = ee0+k_off; |
| |
| for (i=n; i > 0; --i) { |
| k00 = ee0[ 0] - ee2[ 0]; |
| k11 = ee0[-1] - ee2[-1]; |
| ee0[ 0] = ee0[ 0] + ee2[ 0]; |
| ee0[-1] = ee0[-1] + ee2[-1]; |
| ee2[ 0] = (k00) * A0 - (k11) * A1; |
| ee2[-1] = (k11) * A0 + (k00) * A1; |
| |
| k00 = ee0[-2] - ee2[-2]; |
| k11 = ee0[-3] - ee2[-3]; |
| ee0[-2] = ee0[-2] + ee2[-2]; |
| ee0[-3] = ee0[-3] + ee2[-3]; |
| ee2[-2] = (k00) * A2 - (k11) * A3; |
| ee2[-3] = (k11) * A2 + (k00) * A3; |
| |
| k00 = ee0[-4] - ee2[-4]; |
| k11 = ee0[-5] - ee2[-5]; |
| ee0[-4] = ee0[-4] + ee2[-4]; |
| ee0[-5] = ee0[-5] + ee2[-5]; |
| ee2[-4] = (k00) * A4 - (k11) * A5; |
| ee2[-5] = (k11) * A4 + (k00) * A5; |
| |
| k00 = ee0[-6] - ee2[-6]; |
| k11 = ee0[-7] - ee2[-7]; |
| ee0[-6] = ee0[-6] + ee2[-6]; |
| ee0[-7] = ee0[-7] + ee2[-7]; |
| ee2[-6] = (k00) * A6 - (k11) * A7; |
| ee2[-7] = (k11) * A6 + (k00) * A7; |
| |
| ee0 -= k0; |
| ee2 -= k0; |
| } |
| } |
| |
| static __forceinline void iter_54(float *z) |
| { |
| float k00,k11,k22,k33; |
| float y0,y1,y2,y3; |
| |
| k00 = z[ 0] - z[-4]; |
| y0 = z[ 0] + z[-4]; |
| y2 = z[-2] + z[-6]; |
| k22 = z[-2] - z[-6]; |
| |
| z[-0] = y0 + y2; // z0 + z4 + z2 + z6 |
| z[-2] = y0 - y2; // z0 + z4 - z2 - z6 |
| |
| // done with y0,y2 |
| |
| k33 = z[-3] - z[-7]; |
| |
| z[-4] = k00 + k33; // z0 - z4 + z3 - z7 |
| z[-6] = k00 - k33; // z0 - z4 - z3 + z7 |
| |
| // done with k33 |
| |
| k11 = z[-1] - z[-5]; |
| y1 = z[-1] + z[-5]; |
| y3 = z[-3] + z[-7]; |
| |
| z[-1] = y1 + y3; // z1 + z5 + z3 + z7 |
| z[-3] = y1 - y3; // z1 + z5 - z3 - z7 |
| z[-5] = k11 - k22; // z1 - z5 + z2 - z6 |
| z[-7] = k11 + k22; // z1 - z5 - z2 + z6 |
| } |
| |
| static void imdct_step3_inner_s_loop_ld654(int n, float *e, int i_off, float *A, int base_n) |
| { |
| int a_off = base_n >> 3; |
| float A2 = A[0+a_off]; |
| float *z = e + i_off; |
| float *base = z - 16 * n; |
| |
| while (z > base) { |
| float k00,k11; |
| float l00,l11; |
| |
| k00 = z[-0] - z[ -8]; |
| k11 = z[-1] - z[ -9]; |
| l00 = z[-2] - z[-10]; |
| l11 = z[-3] - z[-11]; |
| z[ -0] = z[-0] + z[ -8]; |
| z[ -1] = z[-1] + z[ -9]; |
| z[ -2] = z[-2] + z[-10]; |
| z[ -3] = z[-3] + z[-11]; |
| z[ -8] = k00; |
| z[ -9] = k11; |
| z[-10] = (l00+l11) * A2; |
| z[-11] = (l11-l00) * A2; |
| |
| k00 = z[ -4] - z[-12]; |
| k11 = z[ -5] - z[-13]; |
| l00 = z[ -6] - z[-14]; |
| l11 = z[ -7] - z[-15]; |
| z[ -4] = z[ -4] + z[-12]; |
| z[ -5] = z[ -5] + z[-13]; |
| z[ -6] = z[ -6] + z[-14]; |
| z[ -7] = z[ -7] + z[-15]; |
| z[-12] = k11; |
| z[-13] = -k00; |
| z[-14] = (l11-l00) * A2; |
| z[-15] = (l00+l11) * -A2; |
| |
| iter_54(z); |
| iter_54(z-8); |
| z -= 16; |
| } |
| } |
| |
| static void inverse_mdct(float *buffer, int n, vorb *f, int blocktype) |
| { |
| int n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l; |
| int ld; |
| // @OPTIMIZE: reduce register pressure by using fewer variables? |
| int save_point = temp_alloc_save(f); |
| float *buf2 = (float *) temp_alloc(f, n2 * sizeof(*buf2)); |
| float *u=NULL,*v=NULL; |
| // twiddle factors |
| float *A = f->A[blocktype]; |
| |
| // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio" |
| // See notes about bugs in that paper in less-optimal implementation 'inverse_mdct_old' after this function. |
| |
| // kernel from paper |
| |
| |
| // merged: |
| // copy and reflect spectral data |
| // step 0 |
| |
| // note that it turns out that the items added together during |
| // this step are, in fact, being added to themselves (as reflected |
| // by step 0). inexplicable inefficiency! this became obvious |
| // once I combined the passes. |
| |
| // so there's a missing 'times 2' here (for adding X to itself). |
| // this propagates through linearly to the end, where the numbers |
| // are 1/2 too small, and need to be compensated for. |
| |
| { |
| float *d,*e, *AA, *e_stop; |
| d = &buf2[n2-2]; |
| AA = A; |
| e = &buffer[0]; |
| e_stop = &buffer[n2]; |
| while (e != e_stop) { |
| d[1] = (e[0] * AA[0] - e[2]*AA[1]); |
| d[0] = (e[0] * AA[1] + e[2]*AA[0]); |
| d -= 2; |
| AA += 2; |
| e += 4; |
| } |
| |
| e = &buffer[n2-3]; |
| while (d >= buf2) { |
| d[1] = (-e[2] * AA[0] - -e[0]*AA[1]); |
| d[0] = (-e[2] * AA[1] + -e[0]*AA[0]); |
| d -= 2; |
| AA += 2; |
| e -= 4; |
| } |
| } |
| |
| // now we use symbolic names for these, so that we can |
| // possibly swap their meaning as we change which operations |
| // are in place |
| |
| u = buffer; |
| v = buf2; |
| |
| // step 2 (paper output is w, now u) |
| // this could be in place, but the data ends up in the wrong |
| // place... _somebody_'s got to swap it, so this is nominated |
| { |
| float *AA = &A[n2-8]; |
| float *d0,*d1, *e0, *e1; |
| |
| e0 = &v[n4]; |
| e1 = &v[0]; |
| |
| d0 = &u[n4]; |
| d1 = &u[0]; |
| |
| while (AA >= A) { |
| float v40_20, v41_21; |
| |
| v41_21 = e0[1] - e1[1]; |
| v40_20 = e0[0] - e1[0]; |
| d0[1] = e0[1] + e1[1]; |
| d0[0] = e0[0] + e1[0]; |
| d1[1] = v41_21*AA[4] - v40_20*AA[5]; |
| d1[0] = v40_20*AA[4] + v41_21*AA[5]; |
| |
| v41_21 = e0[3] - e1[3]; |
| v40_20 = e0[2] - e1[2]; |
| d0[3] = e0[3] + e1[3]; |
| d0[2] = e0[2] + e1[2]; |
| d1[3] = v41_21*AA[0] - v40_20*AA[1]; |
| d1[2] = v40_20*AA[0] + v41_21*AA[1]; |
| |
| AA -= 8; |
| |
| d0 += 4; |
| d1 += 4; |
| e0 += 4; |
| e1 += 4; |
| } |
| } |
| |
| // step 3 |
| ld = ilog(n) - 1; // ilog is off-by-one from normal definitions |
| |
| // optimized step 3: |
| |
| // the original step3 loop can be nested r inside s or s inside r; |
| // it's written originally as s inside r, but this is dumb when r |
| // iterates many times, and s few. So I have two copies of it and |
| // switch between them halfway. |
| |
| // this is iteration 0 of step 3 |
| imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*0, -(n >> 3), A); |
| imdct_step3_iter0_loop(n >> 4, u, n2-1-n4*1, -(n >> 3), A); |
| |
| // this is iteration 1 of step 3 |
| imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*0, -(n >> 4), A, 16); |
| imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*1, -(n >> 4), A, 16); |
| imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*2, -(n >> 4), A, 16); |
| imdct_step3_inner_r_loop(n >> 5, u, n2-1 - n8*3, -(n >> 4), A, 16); |
| |
| l=2; |
| for (; l < (ld-3)>>1; ++l) { |
| int k0 = n >> (l+2), k0_2 = k0>>1; |
| int lim = 1 << (l+1); |
| int i; |
| for (i=0; i < lim; ++i) |
| imdct_step3_inner_r_loop(n >> (l+4), u, n2-1 - k0*i, -k0_2, A, 1 << (l+3)); |
| } |
| |
| for (; l < ld-6; ++l) { |
| int k0 = n >> (l+2), k1 = 1 << (l+3), k0_2 = k0>>1; |
| int rlim = n >> (l+6), r; |
| int lim = 1 << (l+1); |
| int i_off; |
| float *A0 = A; |
| i_off = n2-1; |
| for (r=rlim; r > 0; --r) { |
| imdct_step3_inner_s_loop(lim, u, i_off, -k0_2, A0, k1, k0); |
| A0 += k1*4; |
| i_off -= 8; |
| } |
| } |
| |
| // iterations with count: |
| // ld-6,-5,-4 all interleaved together |
| // the big win comes from getting rid of needless flops |
| // due to the constants on pass 5 & 4 being all 1 and 0; |
| // combining them to be simultaneous to improve cache made little difference |
| imdct_step3_inner_s_loop_ld654(n >> 5, u, n2-1, A, n); |
| |
| // output is u |
| |
| // step 4, 5, and 6 |
| // cannot be in-place because of step 5 |
| { |
| uint16 *bitrev = f->bit_reverse[blocktype]; |
| // weirdly, I'd have thought reading sequentially and writing |
| // erratically would have been better than vice-versa, but in |
| // fact that's not what my testing showed. (That is, with |
| // j = bitreverse(i), do you read i and write j, or read j and write i.) |
| |
| float *d0 = &v[n4-4]; |
| float *d1 = &v[n2-4]; |
| while (d0 >= v) { |
| int k4; |
| |
| k4 = bitrev[0]; |
| d1[3] = u[k4+0]; |
| d1[2] = u[k4+1]; |
| d0[3] = u[k4+2]; |
| d0[2] = u[k4+3]; |
| |
| k4 = bitrev[1]; |
| d1[1] = u[k4+0]; |
| d1[0] = u[k4+1]; |
| d0[1] = u[k4+2]; |
| d0[0] = u[k4+3]; |
| |
| d0 -= 4; |
| d1 -= 4; |
| bitrev += 2; |
| } |
| } |
| // (paper output is u, now v) |
| |
| |
| // data must be in buf2 |
| assert(v == buf2); |
| |
| // step 7 (paper output is v, now v) |
| // this is now in place |
| { |
| float *C = f->C[blocktype]; |
| float *d, *e; |
| |
| d = v; |
| e = v + n2 - 4; |
| |
| while (d < e) { |
| float a02,a11,b0,b1,b2,b3; |
| |
| a02 = d[0] - e[2]; |
| a11 = d[1] + e[3]; |
| |
| b0 = C[1]*a02 + C[0]*a11; |
| b1 = C[1]*a11 - C[0]*a02; |
| |
| b2 = d[0] + e[ 2]; |
| b3 = d[1] - e[ 3]; |
| |
| d[0] = b2 + b0; |
| d[1] = b3 + b1; |
| e[2] = b2 - b0; |
| e[3] = b1 - b3; |
| |
| a02 = d[2] - e[0]; |
| a11 = d[3] + e[1]; |
| |
| b0 = C[3]*a02 + C[2]*a11; |
| b1 = C[3]*a11 - C[2]*a02; |
| |
| b2 = d[2] + e[ 0]; |
| b3 = d[3] - e[ 1]; |
| |
| d[2] = b2 + b0; |
| d[3] = b3 + b1; |
| e[0] = b2 - b0; |
| e[1] = b1 - b3; |
| |
| C += 4; |
| d += 4; |
| e -= 4; |
| } |
| } |
| |
| // data must be in buf2 |
| |
| |
| // step 8+decode (paper output is X, now buffer) |
| // this generates pairs of data a la 8 and pushes them directly through |
| // the decode kernel (pushing rather than pulling) to avoid having |
| // to make another pass later |
| |
| // this cannot POSSIBLY be in place, so we refer to the buffers directly |
| |
| { |
| float *d0,*d1,*d2,*d3; |
| |
| float *B = f->B[blocktype] + n2 - 8; |
| float *e = buf2 + n2 - 8; |
| d0 = &buffer[0]; |
| d1 = &buffer[n2-4]; |
| d2 = &buffer[n2]; |
| d3 = &buffer[n-4]; |
| while (e >= v) { |
| float p0,p1,p2,p3; |
| |
| p3 = e[6]*B[7] - e[7]*B[6]; |
| p2 = -e[6]*B[6] - e[7]*B[7]; |
| |
| d0[0] = p3; |
| d1[3] = - p3; |
| d2[0] = p2; |
| d3[3] = p2; |
| |
| p1 = e[4]*B[5] - e[5]*B[4]; |
| p0 = -e[4]*B[4] - e[5]*B[5]; |
| |
| d0[1] = p1; |
| d1[2] = - p1; |
| d2[1] = p0; |
| d3[2] = p0; |
| |
| p3 = e[2]*B[3] - e[3]*B[2]; |
| p2 = -e[2]*B[2] - e[3]*B[3]; |
| |
| d0[2] = p3; |
| d1[1] = - p3; |
| d2[2] = p2; |
| d3[1] = p2; |
| |
| p1 = e[0]*B[1] - e[1]*B[0]; |
| p0 = -e[0]*B[0] - e[1]*B[1]; |
| |
| d0[3] = p1; |
| d1[0] = - p1; |
| d2[3] = p0; |
| d3[0] = p0; |
| |
| B -= 8; |
| e -= 8; |
| d0 += 4; |
| d2 += 4; |
| d1 -= 4; |
| d3 -= 4; |
| } |
| } |
| |
| temp_free(f,buf2); |
| temp_alloc_restore(f,save_point); |
| } |
| |
| #if 0 |
| // this is the original version of the above code, if you want to optimize it from scratch |
| void inverse_mdct_naive(float *buffer, int n) |
| { |
| float s; |
| float A[1 << 12], B[1 << 12], C[1 << 11]; |
| int i,k,k2,k4, n2 = n >> 1, n4 = n >> 2, n8 = n >> 3, l; |
| int n3_4 = n - n4, ld; |
| // how can they claim this only uses N words?! |
| // oh, because they're only used sparsely, whoops |
| float u[1 << 13], X[1 << 13], v[1 << 13], w[1 << 13]; |
| // set up twiddle factors |
| |
| for (k=k2=0; k < n4; ++k,k2+=2) { |
| A[k2 ] = (float) cos(4*k*M_PI/n); |
| A[k2+1] = (float) -sin(4*k*M_PI/n); |
| B[k2 ] = (float) cos((k2+1)*M_PI/n/2); |
| B[k2+1] = (float) sin((k2+1)*M_PI/n/2); |
| } |
| for (k=k2=0; k < n8; ++k,k2+=2) { |
| C[k2 ] = (float) cos(2*(k2+1)*M_PI/n); |
| C[k2+1] = (float) -sin(2*(k2+1)*M_PI/n); |
| } |
| |
| // IMDCT algorithm from "The use of multirate filter banks for coding of high quality digital audio" |
| // Note there are bugs in that pseudocode, presumably due to them attempting |
| // to rename the arrays nicely rather than representing the way their actual |
| // implementation bounces buffers back and forth. As a result, even in the |
| // "some formulars corrected" version, a direct implementation fails. These |
| // are noted below as "paper bug". |
| |
| // copy and reflect spectral data |
| for (k=0; k < n2; ++k) u[k] = buffer[k]; |
| for ( ; k < n ; ++k) u[k] = -buffer[n - k - 1]; |
| // kernel from paper |
| // step 1 |
| for (k=k2=k4=0; k < n4; k+=1, k2+=2, k4+=4) { |
| v[n-k4-1] = (u[k4] - u[n-k4-1]) * A[k2] - (u[k4+2] - u[n-k4-3])*A[k2+1]; |
| v[n-k4-3] = (u[k4] - u[n-k4-1]) * A[k2+1] + (u[k4+2] - u[n-k4-3])*A[k2]; |
| } |
| // step 2 |
| for (k=k4=0; k < n8; k+=1, k4+=4) { |
| w[n2+3+k4] = v[n2+3+k4] + v[k4+3]; |
| w[n2+1+k4] = v[n2+1+k4] + v[k4+1]; |
| w[k4+3] = (v[n2+3+k4] - v[k4+3])*A[n2-4-k4] - (v[n2+1+k4]-v[k4+1])*A[n2-3-k4]; |
| w[k4+1] = (v[n2+1+k4] - v[k4+1])*A[n2-4-k4] + (v[n2+3+k4]-v[k4+3])*A[n2-3-k4]; |
| } |
| // step 3 |
| ld = ilog(n) - 1; // ilog is off-by-one from normal definitions |
| for (l=0; l < ld-3; ++l) { |
| int k0 = n >> (l+2), k1 = 1 << (l+3); |
| int rlim = n >> (l+4), r4, r; |
| int s2lim = 1 << (l+2), s2; |
| for (r=r4=0; r < rlim; r4+=4,++r) { |
| for (s2=0; s2 < s2lim; s2+=2) { |
| u[n-1-k0*s2-r4] = w[n-1-k0*s2-r4] + w[n-1-k0*(s2+1)-r4]; |
| u[n-3-k0*s2-r4] = w[n-3-k0*s2-r4] + w[n-3-k0*(s2+1)-r4]; |
| u[n-1-k0*(s2+1)-r4] = (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1] |
| - (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1+1]; |
| u[n-3-k0*(s2+1)-r4] = (w[n-3-k0*s2-r4] - w[n-3-k0*(s2+1)-r4]) * A[r*k1] |
| + (w[n-1-k0*s2-r4] - w[n-1-k0*(s2+1)-r4]) * A[r*k1+1]; |
| } |
| } |
| if (l+1 < ld-3) { |
| // paper bug: ping-ponging of u&w here is omitted |
| memcpy(w, u, sizeof(u)); |
| } |
| } |
| |
| // step 4 |
| for (i=0; i < n8; ++i) { |
| int j = bit_reverse(i) >> (32-ld+3); |
| assert(j < n8); |
| if (i == j) { |
| // paper bug: original code probably swapped in place; if copying, |
| // need to directly copy in this case |
| int i8 = i << 3; |
| v[i8+1] = u[i8+1]; |
| v[i8+3] = u[i8+3]; |
| v[i8+5] = u[i8+5]; |
| v[i8+7] = u[i8+7]; |
| } else if (i < j) { |
| int i8 = i << 3, j8 = j << 3; |
| v[j8+1] = u[i8+1], v[i8+1] = u[j8 + 1]; |
| v[j8+3] = u[i8+3], v[i8+3] = u[j8 + 3]; |
| v[j8+5] = u[i8+5], v[i8+5] = u[j8 + 5]; |
| v[j8+7] = u[i8+7], v[i8+7] = u[j8 + 7]; |
| } |
| } |
| // step 5 |
| for (k=0; k < n2; ++k) { |
| w[k] = v[k*2+1]; |
| } |
| // step 6 |
| for (k=k2=k4=0; k < n8; ++k, k2 += 2, k4 += 4) { |
| u[n-1-k2] = w[k4]; |
| u[n-2-k2] = w[k4+1]; |
| u[n3_4 - 1 - k2] = w[k4+2]; |
| u[n3_4 - 2 - k2] = w[k4+3]; |
| } |
| // step 7 |
| for (k=k2=0; k < n8; ++k, k2 += 2) { |
| v[n2 + k2 ] = ( u[n2 + k2] + u[n-2-k2] + C[k2+1]*(u[n2+k2]-u[n-2-k2]) + C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2; |
| v[n-2 - k2] = ( u[n2 + k2] + u[n-2-k2] - C[k2+1]*(u[n2+k2]-u[n-2-k2]) - C[k2]*(u[n2+k2+1]+u[n-2-k2+1]))/2; |
| v[n2+1+ k2] = ( u[n2+1+k2] - u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2; |
| v[n-1 - k2] = (-u[n2+1+k2] + u[n-1-k2] + C[k2+1]*(u[n2+1+k2]+u[n-1-k2]) - C[k2]*(u[n2+k2]-u[n-2-k2]))/2; |
| } |
| // step 8 |
| for (k=k2=0; k < n4; ++k,k2 += 2) { |
| X[k] = v[k2+n2]*B[k2 ] + v[k2+1+n2]*B[k2+1]; |
| X[n2-1-k] = v[k2+n2]*B[k2+1] - v[k2+1+n2]*B[k2 ]; |
| } |
| |
| // decode kernel to output |
| // determined the following value experimentally |
| // (by first figuring out what made inverse_mdct_slow work); then matching that here |
| // (probably vorbis encoder premultiplies by n or n/2, to save it on the decoder?) |
| s = 0.5; // theoretically would be n4 |
| |
| // [[[ note! the s value of 0.5 is compensated for by the B[] in the current code, |
| // so it needs to use the "old" B values to behave correctly, or else |
| // set s to 1.0 ]]] |
| for (i=0; i < n4 ; ++i) buffer[i] = s * X[i+n4]; |
| for ( ; i < n3_4; ++i) buffer[i] = -s * X[n3_4 - i - 1]; |
| for ( ; i < n ; ++i) buffer[i] = -s * X[i - n3_4]; |
| } |
| #endif |
| |
| static float *get_window(vorb *f, int len) |
| { |
| len <<= 1; |
| if (len == f->blocksize_0) return f->window[0]; |
| if (len == f->blocksize_1) return f->window[1]; |
| return NULL; |
| } |
| |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR |
| typedef int16 YTYPE; |
| #else |
| typedef int YTYPE; |
| #endif |
| static int do_floor(vorb *f, Mapping *map, int i, int n, float *target, YTYPE *finalY, uint8 *step2_flag) |
| { |
| int n2 = n >> 1; |
| int s = map->chan[i].mux, floor; |
| floor = map->submap_floor[s]; |
| if (f->floor_types[floor] == 0) { |
| return error(f, VORBIS_invalid_stream); |
| } else { |
| Floor1 *g = &f->floor_config[floor].floor1; |
| int j,q; |
| int lx = 0, ly = finalY[0] * g->floor1_multiplier; |
| for (q=1; q < g->values; ++q) { |
| j = g->sorted_order[q]; |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR |
| STBV_NOTUSED(step2_flag); |
| if (finalY[j] >= 0) |
| #else |
| if (step2_flag[j]) |
| #endif |
| { |
| int hy = finalY[j] * g->floor1_multiplier; |
| int hx = g->Xlist[j]; |
| if (lx != hx) |
| draw_line(target, lx,ly, hx,hy, n2); |
| CHECK(f); |
| lx = hx, ly = hy; |
| } |
| } |
| if (lx < n2) { |
| // optimization of: draw_line(target, lx,ly, n,ly, n2); |
| for (j=lx; j < n2; ++j) |
| LINE_OP(target[j], inverse_db_table[ly]); |
| CHECK(f); |
| } |
| } |
| return TRUE; |
| } |
| |
| // The meaning of "left" and "right" |
| // |
| // For a given frame: |
| // we compute samples from 0..n |
| // window_center is n/2 |
| // we'll window and mix the samples from left_start to left_end with data from the previous frame |
| // all of the samples from left_end to right_start can be output without mixing; however, |
| // this interval is 0-length except when transitioning between short and long frames |
| // all of the samples from right_start to right_end need to be mixed with the next frame, |
| // which we don't have, so those get saved in a buffer |
| // frame N's right_end-right_start, the number of samples to mix with the next frame, |
| // has to be the same as frame N+1's left_end-left_start (which they are by |
| // construction) |
| |
| static int vorbis_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode) |
| { |
| Mode *m; |
| int i, n, prev, next, window_center; |
| f->channel_buffer_start = f->channel_buffer_end = 0; |
| |
| retry: |
| if (f->eof) return FALSE; |
| if (!maybe_start_packet(f)) |
| return FALSE; |
| // check packet type |
| if (get_bits(f,1) != 0) { |
| if (IS_PUSH_MODE(f)) |
| return error(f,VORBIS_bad_packet_type); |
| while (EOP != get8_packet(f)); |
| goto retry; |
| } |
| |
| if (f->alloc.alloc_buffer) |
| assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); |
| |
| i = get_bits(f, ilog(f->mode_count-1)); |
| if (i == EOP) return FALSE; |
| if (i >= f->mode_count) return FALSE; |
| *mode = i; |
| m = f->mode_config + i; |
| if (m->blockflag) { |
| n = f->blocksize_1; |
| prev = get_bits(f,1); |
| next = get_bits(f,1); |
| } else { |
| prev = next = 0; |
| n = f->blocksize_0; |
| } |
| |
| // WINDOWING |
| |
| window_center = n >> 1; |
| if (m->blockflag && !prev) { |
| *p_left_start = (n - f->blocksize_0) >> 2; |
| *p_left_end = (n + f->blocksize_0) >> 2; |
| } else { |
| *p_left_start = 0; |
| *p_left_end = window_center; |
| } |
| if (m->blockflag && !next) { |
| *p_right_start = (n*3 - f->blocksize_0) >> 2; |
| *p_right_end = (n*3 + f->blocksize_0) >> 2; |
| } else { |
| *p_right_start = window_center; |
| *p_right_end = n; |
| } |
| |
| return TRUE; |
| } |
| |
| static int vorbis_decode_packet_rest(vorb *f, int *len, Mode *m, int left_start, int left_end, int right_start, int right_end, int *p_left) |
| { |
| Mapping *map; |
| int i,j,k,n,n2; |
| int zero_channel[256]; |
| int really_zero_channel[256]; |
| |
| // WINDOWING |
| |
| STBV_NOTUSED(left_end); |
| n = f->blocksize[m->blockflag]; |
| map = &f->mapping[m->mapping]; |
| |
| // FLOORS |
| n2 = n >> 1; |
| |
| CHECK(f); |
| |
| for (i=0; i < f->channels; ++i) { |
| int s = map->chan[i].mux, floor; |
| zero_channel[i] = FALSE; |
| floor = map->submap_floor[s]; |
| if (f->floor_types[floor] == 0) { |
| return error(f, VORBIS_invalid_stream); |
| } else { |
| Floor1 *g = &f->floor_config[floor].floor1; |
| if (get_bits(f, 1)) { |
| short *finalY; |
| uint8 step2_flag[256]; |
| static int range_list[4] = { 256, 128, 86, 64 }; |
| int range = range_list[g->floor1_multiplier-1]; |
| int offset = 2; |
| finalY = f->finalY[i]; |
| finalY[0] = get_bits(f, ilog(range)-1); |
| finalY[1] = get_bits(f, ilog(range)-1); |
| for (j=0; j < g->partitions; ++j) { |
| int pclass = g->partition_class_list[j]; |
| int cdim = g->class_dimensions[pclass]; |
| int cbits = g->class_subclasses[pclass]; |
| int csub = (1 << cbits)-1; |
| int cval = 0; |
| if (cbits) { |
| Codebook *c = f->codebooks + g->class_masterbooks[pclass]; |
| DECODE(cval,f,c); |
| } |
| for (k=0; k < cdim; ++k) { |
| int book = g->subclass_books[pclass][cval & csub]; |
| cval = cval >> cbits; |
| if (book >= 0) { |
| int temp; |
| Codebook *c = f->codebooks + book; |
| DECODE(temp,f,c); |
| finalY[offset++] = temp; |
| } else |
| finalY[offset++] = 0; |
| } |
| } |
| if (f->valid_bits == INVALID_BITS) goto error; // behavior according to spec |
| step2_flag[0] = step2_flag[1] = 1; |
| for (j=2; j < g->values; ++j) { |
| int low, high, pred, highroom, lowroom, room, val; |
| low = g->neighbors[j][0]; |
| high = g->neighbors[j][1]; |
| //neighbors(g->Xlist, j, &low, &high); |
| pred = predict_point(g->Xlist[j], g->Xlist[low], g->Xlist[high], finalY[low], finalY[high]); |
| val = finalY[j]; |
| highroom = range - pred; |
| lowroom = pred; |
| if (highroom < lowroom) |
| room = highroom * 2; |
| else |
| room = lowroom * 2; |
| if (val) { |
| step2_flag[low] = step2_flag[high] = 1; |
| step2_flag[j] = 1; |
| if (val >= room) |
| if (highroom > lowroom) |
| finalY[j] = val - lowroom + pred; |
| else |
| finalY[j] = pred - val + highroom - 1; |
| else |
| if (val & 1) |
| finalY[j] = pred - ((val+1)>>1); |
| else |
| finalY[j] = pred + (val>>1); |
| } else { |
| step2_flag[j] = 0; |
| finalY[j] = pred; |
| } |
| } |
| |
| #ifdef STB_VORBIS_NO_DEFER_FLOOR |
| do_floor(f, map, i, n, f->floor_buffers[i], finalY, step2_flag); |
| #else |
| // defer final floor computation until _after_ residue |
| for (j=0; j < g->values; ++j) { |
| if (!step2_flag[j]) |
| finalY[j] = -1; |
| } |
| #endif |
| } else { |
| error: |
| zero_channel[i] = TRUE; |
| } |
| // So we just defer everything else to later |
| |
| // at this point we've decoded the floor into buffer |
| } |
| } |
| CHECK(f); |
| // at this point we've decoded all floors |
| |
| if (f->alloc.alloc_buffer) |
| assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); |
| |
| // re-enable coupled channels if necessary |
| memcpy(really_zero_channel, zero_channel, sizeof(really_zero_channel[0]) * f->channels); |
| for (i=0; i < map->coupling_steps; ++i) |
| if (!zero_channel[map->chan[i].magnitude] || !zero_channel[map->chan[i].angle]) { |
| zero_channel[map->chan[i].magnitude] = zero_channel[map->chan[i].angle] = FALSE; |
| } |
| |
| CHECK(f); |
| // RESIDUE DECODE |
| for (i=0; i < map->submaps; ++i) { |
| float *residue_buffers[STB_VORBIS_MAX_CHANNELS]; |
| int r; |
| uint8 do_not_decode[256]; |
| int ch = 0; |
| for (j=0; j < f->channels; ++j) { |
| if (map->chan[j].mux == i) { |
| if (zero_channel[j]) { |
| do_not_decode[ch] = TRUE; |
| residue_buffers[ch] = NULL; |
| } else { |
| do_not_decode[ch] = FALSE; |
| residue_buffers[ch] = f->channel_buffers[j]; |
| } |
| ++ch; |
| } |
| } |
| r = map->submap_residue[i]; |
| decode_residue(f, residue_buffers, ch, n2, r, do_not_decode); |
| } |
| |
| if (f->alloc.alloc_buffer) |
| assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); |
| CHECK(f); |
| |
| // INVERSE COUPLING |
| for (i = map->coupling_steps-1; i >= 0; --i) { |
| int n2 = n >> 1; |
| float *m = f->channel_buffers[map->chan[i].magnitude]; |
| float *a = f->channel_buffers[map->chan[i].angle ]; |
| for (j=0; j < n2; ++j) { |
| float a2,m2; |
| if (m[j] > 0) |
| if (a[j] > 0) |
| m2 = m[j], a2 = m[j] - a[j]; |
| else |
| a2 = m[j], m2 = m[j] + a[j]; |
| else |
| if (a[j] > 0) |
| m2 = m[j], a2 = m[j] + a[j]; |
| else |
| a2 = m[j], m2 = m[j] - a[j]; |
| m[j] = m2; |
| a[j] = a2; |
| } |
| } |
| CHECK(f); |
| |
| // finish decoding the floors |
| #ifndef STB_VORBIS_NO_DEFER_FLOOR |
| for (i=0; i < f->channels; ++i) { |
| if (really_zero_channel[i]) { |
| memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2); |
| } else { |
| do_floor(f, map, i, n, f->channel_buffers[i], f->finalY[i], NULL); |
| } |
| } |
| #else |
| for (i=0; i < f->channels; ++i) { |
| if (really_zero_channel[i]) { |
| memset(f->channel_buffers[i], 0, sizeof(*f->channel_buffers[i]) * n2); |
| } else { |
| for (j=0; j < n2; ++j) |
| f->channel_buffers[i][j] *= f->floor_buffers[i][j]; |
| } |
| } |
| #endif |
| |
| // INVERSE MDCT |
| CHECK(f); |
| for (i=0; i < f->channels; ++i) |
| inverse_mdct(f->channel_buffers[i], n, f, m->blockflag); |
| CHECK(f); |
| |
| // this shouldn't be necessary, unless we exited on an error |
| // and want to flush to get to the next packet |
| flush_packet(f); |
| |
| if (f->first_decode) { |
| // assume we start so first non-discarded sample is sample 0 |
| // this isn't to spec, but spec would require us to read ahead |
| // and decode the size of all current frames--could be done, |
| // but presumably it's not a commonly used feature |
| f->current_loc = 0u - n2; // start of first frame is positioned for discard (NB this is an intentional unsigned overflow/wrap-around) |
| // we might have to discard samples "from" the next frame too, |
| // if we're lapping a large block then a small at the start? |
| f->discard_samples_deferred = n - right_end; |
| f->current_loc_valid = TRUE; |
| f->first_decode = FALSE; |
| } else if (f->discard_samples_deferred) { |
| if (f->discard_samples_deferred >= right_start - left_start) { |
| f->discard_samples_deferred -= (right_start - left_start); |
| left_start = right_start; |
| *p_left = left_start; |
| } else { |
| left_start += f->discard_samples_deferred; |
| *p_left = left_start; |
| f->discard_samples_deferred = 0; |
| } |
| } else if (f->previous_length == 0 && f->current_loc_valid) { |
| // we're recovering from a seek... that means we're going to discard |
| // the samples from this packet even though we know our position from |
| // the last page header, so we need to update the position based on |
| // the discarded samples here |
| // but wait, the code below is going to add this in itself even |
| // on a discard, so we don't need to do it here... |
| } |
| |
| // check if we have ogg information about the sample # for this packet |
| if (f->last_seg_which == f->end_seg_with_known_loc) { |
| // if we have a valid current loc, and this is final: |
| if (f->current_loc_valid && (f->page_flag & PAGEFLAG_last_page)) { |
| uint32 current_end = f->known_loc_for_packet; |
| // then let's infer the size of the (probably) short final frame |
| if (current_end < f->current_loc + (right_end-left_start)) { |
| if (current_end < f->current_loc) { |
| // negative truncation, that's impossible! |
| *len = 0; |
| } else { |
| *len = current_end - f->current_loc; |
| } |
| *len += left_start; // this doesn't seem right, but has no ill effect on my test files |
| if (*len > right_end) *len = right_end; // this should never happen |
| f->current_loc += *len; |
| return TRUE; |
| } |
| } |
| // otherwise, just set our sample loc |
| // guess that the ogg granule pos refers to the _middle_ of the |
| // last frame? |
| // set f->current_loc to the position of left_start |
| f->current_loc = f->known_loc_for_packet - (n2-left_start); |
| f->current_loc_valid = TRUE; |
| } |
| if (f->current_loc_valid) |
| f->current_loc += (right_start - left_start); |
| |
| if (f->alloc.alloc_buffer) |
| assert(f->alloc.alloc_buffer_length_in_bytes == f->temp_offset); |
| *len = right_end; // ignore samples after the window goes to 0 |
| CHECK(f); |
| |
| return TRUE; |
| } |
| |
| static int vorbis_decode_packet(vorb *f, int *len, int *p_left, int *p_right) |
| { |
| int mode, left_end, right_end; |
| if (!vorbis_decode_initial(f, p_left, &left_end, p_right, &right_end, &mode)) return 0; |
| return vorbis_decode_packet_rest(f, len, f->mode_config + mode, *p_left, left_end, *p_right, right_end, p_left); |
| } |
| |
| static int vorbis_finish_frame(stb_vorbis *f, int len, int left, int right) |
| { |
| int prev,i,j; |
| // we use right&left (the start of the right- and left-window sin()-regions) |
| // to determine how much to return, rather than inferring from the rules |
| // (same result, clearer code); 'left' indicates where our sin() window |
| // starts, therefore where the previous window's right edge starts, and |
| // therefore where to start mixing from the previous buffer. 'right' |
| // indicates where our sin() ending-window starts, therefore that's where |
| // we start saving, and where our returned-data ends. |
| |
| // mixin from previous window |
| if (f->previous_length) { |
| int i,j, n = f->previous_length; |
| float *w = get_window(f, n); |
| if (w == NULL) return 0; |
| for (i=0; i < f->channels; ++i) { |
| for (j=0; j < n; ++j) |
| f->channel_buffers[i][left+j] = |
| f->channel_buffers[i][left+j]*w[ j] + |
| f->previous_window[i][ j]*w[n-1-j]; |
| } |
| } |
| |
| prev = f->previous_length; |
| |
| // last half of this data becomes previous window |
| f->previous_length = len - right; |
| |
| // @OPTIMIZE: could avoid this copy by double-buffering the |
| // output (flipping previous_window with channel_buffers), but |
| // then previous_window would have to be 2x as large, and |
| // channel_buffers couldn't be temp mem (although they're NOT |
| // currently temp mem, they could be (unless we want to level |
| // performance by spreading out the computation)) |
| for (i=0; i < f->channels; ++i) |
| for (j=0; right+j < len; ++j) |
| f->previous_window[i][j] = f->channel_buffers[i][right+j]; |
| |
| if (!prev) |
| // there was no previous packet, so this data isn't valid... |
| // this isn't entirely true, only the would-have-overlapped data |
| // isn't valid, but this seems to be what the spec requires |
| return 0; |
| |
| // truncate a short frame |
| if (len < right) right = len; |
| |
| f->samples_output += right-left; |
| |
| return right - left; |
| } |
| |
| static int vorbis_pump_first_frame(stb_vorbis *f) |
| { |
| int len, right, left, res; |
| res = vorbis_decode_packet(f, &len, &left, &right); |
| if (res) |
| vorbis_finish_frame(f, len, left, right); |
| return res; |
| } |
| |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| static int is_whole_packet_present(stb_vorbis *f) |
| { |
| // make sure that we have the packet available before continuing... |
| // this requires a full ogg parse, but we know we can fetch from f->stream |
| |
| // instead of coding this out explicitly, we could save the current read state, |
| // read the next packet with get8() until end-of-packet, check f->eof, then |
| // reset the state? but that would be slower, esp. since we'd have over 256 bytes |
| // of state to restore (primarily the page segment table) |
| |
| int s = f->next_seg, first = TRUE; |
| uint8 *p = f->stream; |
| |
| if (s != -1) { // if we're not starting the packet with a 'continue on next page' flag |
| for (; s < f->segment_count; ++s) { |
| p += f->segments[s]; |
| if (f->segments[s] < 255) // stop at first short segment |
| break; |
| } |
| // either this continues, or it ends it... |
| if (s == f->segment_count) |
| s = -1; // set 'crosses page' flag |
| if (p > f->stream_end) return error(f, VORBIS_need_more_data); |
| first = FALSE; |
| } |
| for (; s == -1;) { |
| uint8 *q; |
| int n; |
| |
| // check that we have the page header ready |
| if (p + 26 >= f->stream_end) return error(f, VORBIS_need_more_data); |
| // validate the page |
| if (memcmp(p, ogg_page_header, 4)) return error(f, VORBIS_invalid_stream); |
| if (p[4] != 0) return error(f, VORBIS_invalid_stream); |
| if (first) { // the first segment must NOT have 'continued_packet', later ones MUST |
| if (f->previous_length) |
| if ((p[5] & PAGEFLAG_continued_packet)) return error(f, VORBIS_invalid_stream); |
| // if no previous length, we're resynching, so we can come in on a continued-packet, |
| // which we'll just drop |
| } else { |
| if (!(p[5] & PAGEFLAG_continued_packet)) return error(f, VORBIS_invalid_stream); |
| } |
| n = p[26]; // segment counts |
| q = p+27; // q points to segment table |
| p = q + n; // advance past header |
| // make sure we've read the segment table |
| if (p > f->stream_end) return error(f, VORBIS_need_more_data); |
| for (s=0; s < n; ++s) { |
| p += q[s]; |
| if (q[s] < 255) |
| break; |
| } |
| if (s == n) |
| s = -1; // set 'crosses page' flag |
| if (p > f->stream_end) return error(f, VORBIS_need_more_data); |
| first = FALSE; |
| } |
| return TRUE; |
| } |
| #endif // !STB_VORBIS_NO_PUSHDATA_API |
| |
| static int start_decoder(vorb *f) |
| { |
| uint8 header[6], x,y; |
| int len,i,j,k, max_submaps = 0; |
| int longest_floorlist=0; |
| |
| // first page, first packet |
| f->first_decode = TRUE; |
| |
| if (!start_page(f)) return FALSE; |
| // validate page flag |
| if (!(f->page_flag & PAGEFLAG_first_page)) return error(f, VORBIS_invalid_first_page); |
| if (f->page_flag & PAGEFLAG_last_page) return error(f, VORBIS_invalid_first_page); |
| if (f->page_flag & PAGEFLAG_continued_packet) return error(f, VORBIS_invalid_first_page); |
| // check for expected packet length |
| if (f->segment_count != 1) return error(f, VORBIS_invalid_first_page); |
| if (f->segments[0] != 30) { |
| // check for the Ogg skeleton fishead identifying header to refine our error |
| if (f->segments[0] == 64 && |
| getn(f, header, 6) && |
| header[0] == 'f' && |
| header[1] == 'i' && |
| header[2] == 's' && |
| header[3] == 'h' && |
| header[4] == 'e' && |
| header[5] == 'a' && |
| get8(f) == 'd' && |
| get8(f) == '\0') return error(f, VORBIS_ogg_skeleton_not_supported); |
| else |
| return error(f, VORBIS_invalid_first_page); |
| } |
| |
| // read packet |
| // check packet header |
| if (get8(f) != VORBIS_packet_id) return error(f, VORBIS_invalid_first_page); |
| if (!getn(f, header, 6)) return error(f, VORBIS_unexpected_eof); |
| if (!vorbis_validate(header)) return error(f, VORBIS_invalid_first_page); |
| // vorbis_version |
| if (get32(f) != 0) return error(f, VORBIS_invalid_first_page); |
| f->channels = get8(f); if (!f->channels) return error(f, VORBIS_invalid_first_page); |
| if (f->channels > STB_VORBIS_MAX_CHANNELS) return error(f, VORBIS_too_many_channels); |
| f->sample_rate = get32(f); if (!f->sample_rate) return error(f, VORBIS_invalid_first_page); |
| get32(f); // bitrate_maximum |
| get32(f); // bitrate_nominal |
| get32(f); // bitrate_minimum |
| x = get8(f); |
| { |
| int log0,log1; |
| log0 = x & 15; |
| log1 = x >> 4; |
| f->blocksize_0 = 1 << log0; |
| f->blocksize_1 = 1 << log1; |
| if (log0 < 6 || log0 > 13) return error(f, VORBIS_invalid_setup); |
| if (log1 < 6 || log1 > 13) return error(f, VORBIS_invalid_setup); |
| if (log0 > log1) return error(f, VORBIS_invalid_setup); |
| } |
| |
| // framing_flag |
| x = get8(f); |
| if (!(x & 1)) return error(f, VORBIS_invalid_first_page); |
| |
| // second packet! |
| if (!start_page(f)) return FALSE; |
| |
| if (!start_packet(f)) return FALSE; |
| |
| if (!next_segment(f)) return FALSE; |
| |
| if (get8_packet(f) != VORBIS_packet_comment) return error(f, VORBIS_invalid_setup); |
| for (i=0; i < 6; ++i) header[i] = get8_packet(f); |
| if (!vorbis_validate(header)) return error(f, VORBIS_invalid_setup); |
| //file vendor |
| len = get32_packet(f); |
| f->vendor = (char*)setup_malloc(f, sizeof(char) * (len+1)); |
| if (f->vendor == NULL) return error(f, VORBIS_outofmem); |
| for(i=0; i < len; ++i) { |
| f->vendor[i] = get8_packet(f); |
| } |
| f->vendor[len] = (char)'\0'; |
| //user comments |
| f->comment_list_length = get32_packet(f); |
| f->comment_list = NULL; |
| if (f->comment_list_length > 0) |
| { |
| f->comment_list = (char**) setup_malloc(f, sizeof(char*) * (f->comment_list_length)); |
| if (f->comment_list == NULL) return error(f, VORBIS_outofmem); |
| } |
| |
| for(i=0; i < f->comment_list_length; ++i) { |
| len = get32_packet(f); |
| f->comment_list[i] = (char*)setup_malloc(f, sizeof(char) * (len+1)); |
| if (f->comment_list[i] == NULL) return error(f, VORBIS_outofmem); |
| |
| for(j=0; j < len; ++j) { |
| f->comment_list[i][j] = get8_packet(f); |
| } |
| f->comment_list[i][len] = (char)'\0'; |
| } |
| |
| // framing_flag |
| x = get8_packet(f); |
| if (!(x & 1)) return error(f, VORBIS_invalid_setup); |
| |
| |
| skip(f, f->bytes_in_seg); |
| f->bytes_in_seg = 0; |
| |
| do { |
| len = next_segment(f); |
| skip(f, len); |
| f->bytes_in_seg = 0; |
| } while (len); |
| |
| // third packet! |
| if (!start_packet(f)) return FALSE; |
| |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| if (IS_PUSH_MODE(f)) { |
| if (!is_whole_packet_present(f)) { |
| // convert error in ogg header to write type |
| if (f->error == VORBIS_invalid_stream) |
| f->error = VORBIS_invalid_setup; |
| return FALSE; |
| } |
| } |
| #endif |
| |
| crc32_init(); // always init it, to avoid multithread race conditions |
| |
| if (get8_packet(f) != VORBIS_packet_setup) return error(f, VORBIS_invalid_setup); |
| for (i=0; i < 6; ++i) header[i] = get8_packet(f); |
| if (!vorbis_validate(header)) return error(f, VORBIS_invalid_setup); |
| |
| // codebooks |
| |
| f->codebook_count = get_bits(f,8) + 1; |
| f->codebooks = (Codebook *) setup_malloc(f, sizeof(*f->codebooks) * f->codebook_count); |
| if (f->codebooks == NULL) return error(f, VORBIS_outofmem); |
| memset(f->codebooks, 0, sizeof(*f->codebooks) * f->codebook_count); |
| for (i=0; i < f->codebook_count; ++i) { |
| uint32 *values; |
| int ordered, sorted_count; |
| int total=0; |
| uint8 *lengths; |
| Codebook *c = f->codebooks+i; |
| CHECK(f); |
| x = get_bits(f, 8); if (x != 0x42) return error(f, VORBIS_invalid_setup); |
| x = get_bits(f, 8); if (x != 0x43) return error(f, VORBIS_invalid_setup); |
| x = get_bits(f, 8); if (x != 0x56) return error(f, VORBIS_invalid_setup); |
| x = get_bits(f, 8); |
| c->dimensions = (get_bits(f, 8)<<8) + x; |
| x = get_bits(f, 8); |
| y = get_bits(f, 8); |
| c->entries = (get_bits(f, 8)<<16) + (y<<8) + x; |
| ordered = get_bits(f,1); |
| c->sparse = ordered ? 0 : get_bits(f,1); |
| |
| if (c->dimensions == 0 && c->entries != 0) return error(f, VORBIS_invalid_setup); |
| |
| if (c->sparse) |
| lengths = (uint8 *) setup_temp_malloc(f, c->entries); |
| else |
| lengths = c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries); |
| |
| if (!lengths) return error(f, VORBIS_outofmem); |
| |
| if (ordered) { |
| int current_entry = 0; |
| int current_length = get_bits(f,5) + 1; |
| while (current_entry < c->entries) { |
| int limit = c->entries - current_entry; |
| int n = get_bits(f, ilog(limit)); |
| if (current_length >= 32) return error(f, VORBIS_invalid_setup); |
| if (current_entry + n > (int) c->entries) { return error(f, VORBIS_invalid_setup); } |
| memset(lengths + current_entry, current_length, n); |
| current_entry += n; |
| ++current_length; |
| } |
| } else { |
| for (j=0; j < c->entries; ++j) { |
| int present = c->sparse ? get_bits(f,1) : 1; |
| if (present) { |
| lengths[j] = get_bits(f, 5) + 1; |
| ++total; |
| if (lengths[j] == 32) |
| return error(f, VORBIS_invalid_setup); |
| } else { |
| lengths[j] = NO_CODE; |
| } |
| } |
| } |
| |
| if (c->sparse && total >= c->entries >> 2) { |
| // convert sparse items to non-sparse! |
| if (c->entries > (int) f->setup_temp_memory_required) |
| f->setup_temp_memory_required = c->entries; |
| |
| c->codeword_lengths = (uint8 *) setup_malloc(f, c->entries); |
| if (c->codeword_lengths == NULL) return error(f, VORBIS_outofmem); |
| memcpy(c->codeword_lengths, lengths, c->entries); |
| setup_temp_free(f, lengths, c->entries); // note this is only safe if there have been no intervening temp mallocs! |
| lengths = c->codeword_lengths; |
| c->sparse = 0; |
| } |
| |
| // compute the size of the sorted tables |
| if (c->sparse) { |
| sorted_count = total; |
| } else { |
| sorted_count = 0; |
| #ifndef STB_VORBIS_NO_HUFFMAN_BINARY_SEARCH |
| for (j=0; j < c->entries; ++j) |
| if (lengths[j] > STB_VORBIS_FAST_HUFFMAN_LENGTH && lengths[j] != NO_CODE) |
| ++sorted_count; |
| #endif |
| } |
| |
| c->sorted_entries = sorted_count; |
| values = NULL; |
| |
| CHECK(f); |
| if (!c->sparse) { |
| c->codewords = (uint32 *) setup_malloc(f, sizeof(c->codewords[0]) * c->entries); |
| if (!c->codewords) return error(f, VORBIS_outofmem); |
| } else { |
| unsigned int size; |
| if (c->sorted_entries) { |
| c->codeword_lengths = (uint8 *) setup_malloc(f, c->sorted_entries); |
| if (!c->codeword_lengths) return error(f, VORBIS_outofmem); |
| c->codewords = (uint32 *) setup_temp_malloc(f, sizeof(*c->codewords) * c->sorted_entries); |
| if (!c->codewords) return error(f, VORBIS_outofmem); |
| values = (uint32 *) setup_temp_malloc(f, sizeof(*values) * c->sorted_entries); |
| if (!values) return error(f, VORBIS_outofmem); |
| } |
| size = c->entries + (sizeof(*c->codewords) + sizeof(*values)) * c->sorted_entries; |
| if (size > f->setup_temp_memory_required) |
| f->setup_temp_memory_required = size; |
| } |
| |
| if (!compute_codewords(c, lengths, c->entries, values)) { |
| if (c->sparse) setup_temp_free(f, values, 0); |
| return error(f, VORBIS_invalid_setup); |
| } |
| |
| if (c->sorted_entries) { |
| // allocate an extra slot for sentinels |
| c->sorted_codewords = (uint32 *) setup_malloc(f, sizeof(*c->sorted_codewords) * (c->sorted_entries+1)); |
| if (c->sorted_codewords == NULL) return error(f, VORBIS_outofmem); |
| // allocate an extra slot at the front so that c->sorted_values[-1] is defined |
| // so that we can catch that case without an extra if |
| c->sorted_values = ( int *) setup_malloc(f, sizeof(*c->sorted_values ) * (c->sorted_entries+1)); |
| if (c->sorted_values == NULL) return error(f, VORBIS_outofmem); |
| ++c->sorted_values; |
| c->sorted_values[-1] = -1; |
| compute_sorted_huffman(c, lengths, values); |
| } |
| |
| if (c->sparse) { |
| setup_temp_free(f, values, sizeof(*values)*c->sorted_entries); |
| setup_temp_free(f, c->codewords, sizeof(*c->codewords)*c->sorted_entries); |
| setup_temp_free(f, lengths, c->entries); |
| c->codewords = NULL; |
| } |
| |
| compute_accelerated_huffman(c); |
| |
| CHECK(f); |
| c->lookup_type = get_bits(f, 4); |
| if (c->lookup_type > 2) return error(f, VORBIS_invalid_setup); |
| if (c->lookup_type > 0) { |
| uint16 *mults; |
| c->minimum_value = float32_unpack(get_bits(f, 32)); |
| c->delta_value = float32_unpack(get_bits(f, 32)); |
| c->value_bits = get_bits(f, 4)+1; |
| c->sequence_p = get_bits(f,1); |
| if (c->lookup_type == 1) { |
| int values = lookup1_values(c->entries, c->dimensions); |
| if (values < 0) return error(f, VORBIS_invalid_setup); |
| c->lookup_values = (uint32) values; |
| } else { |
| c->lookup_values = c->entries * c->dimensions; |
| } |
| if (c->lookup_values == 0) return error(f, VORBIS_invalid_setup); |
| mults = (uint16 *) setup_temp_malloc(f, sizeof(mults[0]) * c->lookup_values); |
| if (mults == NULL) return error(f, VORBIS_outofmem); |
| for (j=0; j < (int) c->lookup_values; ++j) { |
| int q = get_bits(f, c->value_bits); |
| if (q == EOP) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_invalid_setup); } |
| mults[j] = q; |
| } |
| |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| if (c->lookup_type == 1) { |
| int len, sparse = c->sparse; |
| float last=0; |
| // pre-expand the lookup1-style multiplicands, to avoid a divide in the inner loop |
| if (sparse) { |
| if (c->sorted_entries == 0) goto skip; |
| c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->sorted_entries * c->dimensions); |
| } else |
| c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->entries * c->dimensions); |
| if (c->multiplicands == NULL) { setup_temp_free(f,mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); } |
| len = sparse ? c->sorted_entries : c->entries; |
| for (j=0; j < len; ++j) { |
| unsigned int z = sparse ? c->sorted_values[j] : j; |
| unsigned int div=1; |
| for (k=0; k < c->dimensions; ++k) { |
| int off = (z / div) % c->lookup_values; |
| float val = mults[off]*c->delta_value + c->minimum_value + last; |
| c->multiplicands[j*c->dimensions + k] = val; |
| if (c->sequence_p) |
| last = val; |
| if (k+1 < c->dimensions) { |
| if (div > UINT_MAX / (unsigned int) c->lookup_values) { |
| setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); |
| return error(f, VORBIS_invalid_setup); |
| } |
| div *= c->lookup_values; |
| } |
| } |
| } |
| c->lookup_type = 2; |
| } |
| else |
| #endif |
| { |
| float last=0; |
| CHECK(f); |
| c->multiplicands = (codetype *) setup_malloc(f, sizeof(c->multiplicands[0]) * c->lookup_values); |
| if (c->multiplicands == NULL) { setup_temp_free(f, mults,sizeof(mults[0])*c->lookup_values); return error(f, VORBIS_outofmem); } |
| for (j=0; j < (int) c->lookup_values; ++j) { |
| float val = mults[j] * c->delta_value + c->minimum_value + last; |
| c->multiplicands[j] = val; |
| if (c->sequence_p) |
| last = val; |
| } |
| } |
| #ifndef STB_VORBIS_DIVIDES_IN_CODEBOOK |
| skip:; |
| #endif |
| setup_temp_free(f, mults, sizeof(mults[0])*c->lookup_values); |
| |
| CHECK(f); |
| } |
| CHECK(f); |
| } |
| |
| // time domain transfers (notused) |
| |
| x = get_bits(f, 6) + 1; |
| for (i=0; i < x; ++i) { |
| uint32 z = get_bits(f, 16); |
| if (z != 0) return error(f, VORBIS_invalid_setup); |
| } |
| |
| // Floors |
| f->floor_count = get_bits(f, 6)+1; |
| f->floor_config = (Floor *) setup_malloc(f, f->floor_count * sizeof(*f->floor_config)); |
| if (f->floor_config == NULL) return error(f, VORBIS_outofmem); |
| for (i=0; i < f->floor_count; ++i) { |
| f->floor_types[i] = get_bits(f, 16); |
| if (f->floor_types[i] > 1) return error(f, VORBIS_invalid_setup); |
| if (f->floor_types[i] == 0) { |
| Floor0 *g = &f->floor_config[i].floor0; |
| g->order = get_bits(f,8); |
| g->rate = get_bits(f,16); |
| g->bark_map_size = get_bits(f,16); |
| g->amplitude_bits = get_bits(f,6); |
| g->amplitude_offset = get_bits(f,8); |
| g->number_of_books = get_bits(f,4) + 1; |
| for (j=0; j < g->number_of_books; ++j) |
| g->book_list[j] = get_bits(f,8); |
| return error(f, VORBIS_feature_not_supported); |
| } else { |
| stbv__floor_ordering p[31*8+2]; |
| Floor1 *g = &f->floor_config[i].floor1; |
| int max_class = -1; |
| g->partitions = get_bits(f, 5); |
| for (j=0; j < g->partitions; ++j) { |
| g->partition_class_list[j] = get_bits(f, 4); |
| if (g->partition_class_list[j] > max_class) |
| max_class = g->partition_class_list[j]; |
| } |
| for (j=0; j <= max_class; ++j) { |
| g->class_dimensions[j] = get_bits(f, 3)+1; |
| g->class_subclasses[j] = get_bits(f, 2); |
| if (g->class_subclasses[j]) { |
| g->class_masterbooks[j] = get_bits(f, 8); |
| if (g->class_masterbooks[j] >= f->codebook_count) return error(f, VORBIS_invalid_setup); |
| } |
| for (k=0; k < 1 << g->class_subclasses[j]; ++k) { |
| g->subclass_books[j][k] = (int16)get_bits(f,8)-1; |
| if (g->subclass_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup); |
| } |
| } |
| g->floor1_multiplier = get_bits(f,2)+1; |
| g->rangebits = get_bits(f,4); |
| g->Xlist[0] = 0; |
| g->Xlist[1] = 1 << g->rangebits; |
| g->values = 2; |
| for (j=0; j < g->partitions; ++j) { |
| int c = g->partition_class_list[j]; |
| for (k=0; k < g->class_dimensions[c]; ++k) { |
| g->Xlist[g->values] = get_bits(f, g->rangebits); |
| ++g->values; |
| } |
| } |
| // precompute the sorting |
| for (j=0; j < g->values; ++j) { |
| p[j].x = g->Xlist[j]; |
| p[j].id = j; |
| } |
| qsort(p, g->values, sizeof(p[0]), point_compare); |
| for (j=0; j < g->values-1; ++j) |
| if (p[j].x == p[j+1].x) |
| return error(f, VORBIS_invalid_setup); |
| for (j=0; j < g->values; ++j) |
| g->sorted_order[j] = (uint8) p[j].id; |
| // precompute the neighbors |
| for (j=2; j < g->values; ++j) { |
| int low = 0,hi = 0; |
| neighbors(g->Xlist, j, &low,&hi); |
| g->neighbors[j][0] = low; |
| g->neighbors[j][1] = hi; |
| } |
| |
| if (g->values > longest_floorlist) |
| longest_floorlist = g->values; |
| } |
| } |
| |
| // Residue |
| f->residue_count = get_bits(f, 6)+1; |
| f->residue_config = (Residue *) setup_malloc(f, f->residue_count * sizeof(f->residue_config[0])); |
| if (f->residue_config == NULL) return error(f, VORBIS_outofmem); |
| memset(f->residue_config, 0, f->residue_count * sizeof(f->residue_config[0])); |
| for (i=0; i < f->residue_count; ++i) { |
| uint8 residue_cascade[64]; |
| Residue *r = f->residue_config+i; |
| f->residue_types[i] = get_bits(f, 16); |
| if (f->residue_types[i] > 2) return error(f, VORBIS_invalid_setup); |
| r->begin = get_bits(f, 24); |
| r->end = get_bits(f, 24); |
| if (r->end < r->begin) return error(f, VORBIS_invalid_setup); |
| r->part_size = get_bits(f,24)+1; |
| r->classifications = get_bits(f,6)+1; |
| r->classbook = get_bits(f,8); |
| if (r->classbook >= f->codebook_count) return error(f, VORBIS_invalid_setup); |
| for (j=0; j < r->classifications; ++j) { |
| uint8 high_bits=0; |
| uint8 low_bits=get_bits(f,3); |
| if (get_bits(f,1)) |
| high_bits = get_bits(f,5); |
| residue_cascade[j] = high_bits*8 + low_bits; |
| } |
| r->residue_books = (short (*)[8]) setup_malloc(f, sizeof(r->residue_books[0]) * r->classifications); |
| if (r->residue_books == NULL) return error(f, VORBIS_outofmem); |
| for (j=0; j < r->classifications; ++j) { |
| for (k=0; k < 8; ++k) { |
| if (residue_cascade[j] & (1 << k)) { |
| r->residue_books[j][k] = get_bits(f, 8); |
| if (r->residue_books[j][k] >= f->codebook_count) return error(f, VORBIS_invalid_setup); |
| } else { |
| r->residue_books[j][k] = -1; |
| } |
| } |
| } |
| // precompute the classifications[] array to avoid inner-loop mod/divide |
| // call it 'classdata' since we already have r->classifications |
| r->classdata = (uint8 **) setup_malloc(f, sizeof(*r->classdata) * f->codebooks[r->classbook].entries); |
| if (!r->classdata) return error(f, VORBIS_outofmem); |
| memset(r->classdata, 0, sizeof(*r->classdata) * f->codebooks[r->classbook].entries); |
| for (j=0; j < f->codebooks[r->classbook].entries; ++j) { |
| int classwords = f->codebooks[r->classbook].dimensions; |
| int temp = j; |
| r->classdata[j] = (uint8 *) setup_malloc(f, sizeof(r->classdata[j][0]) * classwords); |
| if (r->classdata[j] == NULL) return error(f, VORBIS_outofmem); |
| for (k=classwords-1; k >= 0; --k) { |
| r->classdata[j][k] = temp % r->classifications; |
| temp /= r->classifications; |
| } |
| } |
| } |
| |
| f->mapping_count = get_bits(f,6)+1; |
| f->mapping = (Mapping *) setup_malloc(f, f->mapping_count * sizeof(*f->mapping)); |
| if (f->mapping == NULL) return error(f, VORBIS_outofmem); |
| memset(f->mapping, 0, f->mapping_count * sizeof(*f->mapping)); |
| for (i=0; i < f->mapping_count; ++i) { |
| Mapping *m = f->mapping + i; |
| int mapping_type = get_bits(f,16); |
| if (mapping_type != 0) return error(f, VORBIS_invalid_setup); |
| m->chan = (MappingChannel *) setup_malloc(f, f->channels * sizeof(*m->chan)); |
| if (m->chan == NULL) return error(f, VORBIS_outofmem); |
| if (get_bits(f,1)) |
| m->submaps = get_bits(f,4)+1; |
| else |
| m->submaps = 1; |
| if (m->submaps > max_submaps) |
| max_submaps = m->submaps; |
| if (get_bits(f,1)) { |
| m->coupling_steps = get_bits(f,8)+1; |
| if (m->coupling_steps > f->channels) return error(f, VORBIS_invalid_setup); |
| for (k=0; k < m->coupling_steps; ++k) { |
| m->chan[k].magnitude = get_bits(f, ilog(f->channels-1)); |
| m->chan[k].angle = get_bits(f, ilog(f->channels-1)); |
| if (m->chan[k].magnitude >= f->channels) return error(f, VORBIS_invalid_setup); |
| if (m->chan[k].angle >= f->channels) return error(f, VORBIS_invalid_setup); |
| if (m->chan[k].magnitude == m->chan[k].angle) return error(f, VORBIS_invalid_setup); |
| } |
| } else |
| m->coupling_steps = 0; |
| |
| // reserved field |
| if (get_bits(f,2)) return error(f, VORBIS_invalid_setup); |
| if (m->submaps > 1) { |
| for (j=0; j < f->channels; ++j) { |
| m->chan[j].mux = get_bits(f, 4); |
| if (m->chan[j].mux >= m->submaps) return error(f, VORBIS_invalid_setup); |
| } |
| } else |
| // @SPECIFICATION: this case is missing from the spec |
| for (j=0; j < f->channels; ++j) |
| m->chan[j].mux = 0; |
| |
| for (j=0; j < m->submaps; ++j) { |
| get_bits(f,8); // discard |
| m->submap_floor[j] = get_bits(f,8); |
| m->submap_residue[j] = get_bits(f,8); |
| if (m->submap_floor[j] >= f->floor_count) return error(f, VORBIS_invalid_setup); |
| if (m->submap_residue[j] >= f->residue_count) return error(f, VORBIS_invalid_setup); |
| } |
| } |
| |
| // Modes |
| f->mode_count = get_bits(f, 6)+1; |
| for (i=0; i < f->mode_count; ++i) { |
| Mode *m = f->mode_config+i; |
| m->blockflag = get_bits(f,1); |
| m->windowtype = get_bits(f,16); |
| m->transformtype = get_bits(f,16); |
| m->mapping = get_bits(f,8); |
| if (m->windowtype != 0) return error(f, VORBIS_invalid_setup); |
| if (m->transformtype != 0) return error(f, VORBIS_invalid_setup); |
| if (m->mapping >= f->mapping_count) return error(f, VORBIS_invalid_setup); |
| } |
| |
| flush_packet(f); |
| |
| f->previous_length = 0; |
| |
| for (i=0; i < f->channels; ++i) { |
| f->channel_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1); |
| f->previous_window[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2); |
| f->finalY[i] = (int16 *) setup_malloc(f, sizeof(int16) * longest_floorlist); |
| if (f->channel_buffers[i] == NULL || f->previous_window[i] == NULL || f->finalY[i] == NULL) return error(f, VORBIS_outofmem); |
| memset(f->channel_buffers[i], 0, sizeof(float) * f->blocksize_1); |
| #ifdef STB_VORBIS_NO_DEFER_FLOOR |
| f->floor_buffers[i] = (float *) setup_malloc(f, sizeof(float) * f->blocksize_1/2); |
| if (f->floor_buffers[i] == NULL) return error(f, VORBIS_outofmem); |
| #endif |
| } |
| |
| if (!init_blocksize(f, 0, f->blocksize_0)) return FALSE; |
| if (!init_blocksize(f, 1, f->blocksize_1)) return FALSE; |
| f->blocksize[0] = f->blocksize_0; |
| f->blocksize[1] = f->blocksize_1; |
| |
| #ifdef STB_VORBIS_DIVIDE_TABLE |
| if (integer_divide_table[1][1]==0) |
| for (i=0; i < DIVTAB_NUMER; ++i) |
| for (j=1; j < DIVTAB_DENOM; ++j) |
| integer_divide_table[i][j] = i / j; |
| #endif |
| |
| // compute how much temporary memory is needed |
| |
| // 1. |
| { |
| uint32 imdct_mem = (f->blocksize_1 * sizeof(float) >> 1); |
| uint32 classify_mem; |
| int i,max_part_read=0; |
| for (i=0; i < f->residue_count; ++i) { |
| Residue *r = f->residue_config + i; |
| unsigned int actual_size = f->blocksize_1 / 2; |
| unsigned int limit_r_begin = r->begin < actual_size ? r->begin : actual_size; |
| unsigned int limit_r_end = r->end < actual_size ? r->end : actual_size; |
| int n_read = limit_r_end - limit_r_begin; |
| int part_read = n_read / r->part_size; |
| if (part_read > max_part_read) |
| max_part_read = part_read; |
| } |
| #ifndef STB_VORBIS_DIVIDES_IN_RESIDUE |
| classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(uint8 *)); |
| #else |
| classify_mem = f->channels * (sizeof(void*) + max_part_read * sizeof(int *)); |
| #endif |
| |
| // maximum reasonable partition size is f->blocksize_1 |
| |
| f->temp_memory_required = classify_mem; |
| if (imdct_mem > f->temp_memory_required) |
| f->temp_memory_required = imdct_mem; |
| } |
| |
| |
| if (f->alloc.alloc_buffer) { |
| assert(f->temp_offset == f->alloc.alloc_buffer_length_in_bytes); |
| // check if there's enough temp memory so we don't error later |
| if (f->setup_offset + sizeof(*f) + f->temp_memory_required > (unsigned) f->temp_offset) |
| return error(f, VORBIS_outofmem); |
| } |
| |
| // @TODO: stb_vorbis_seek_start expects first_audio_page_offset to point to a page |
| // without PAGEFLAG_continued_packet, so this either points to the first page, or |
| // the page after the end of the headers. It might be cleaner to point to a page |
| // in the middle of the headers, when that's the page where the first audio packet |
| // starts, but we'd have to also correctly skip the end of any continued packet in |
| // stb_vorbis_seek_start. |
| if (f->next_seg == -1) { |
| f->first_audio_page_offset = stb_vorbis_get_file_offset(f); |
| } else { |
| f->first_audio_page_offset = 0; |
| } |
| |
| return TRUE; |
| } |
| |
| static void vorbis_deinit(stb_vorbis *p) |
| { |
| int i,j; |
| |
| setup_free(p, p->vendor); |
| for (i=0; i < p->comment_list_length; ++i) { |
| setup_free(p, p->comment_list[i]); |
| } |
| setup_free(p, p->comment_list); |
| |
| if (p->residue_config) { |
| for (i=0; i < p->residue_count; ++i) { |
| Residue *r = p->residue_config+i; |
| if (r->classdata) { |
| for (j=0; j < p->codebooks[r->classbook].entries; ++j) |
| setup_free(p, r->classdata[j]); |
| setup_free(p, r->classdata); |
| } |
| setup_free(p, r->residue_books); |
| } |
| } |
| |
| if (p->codebooks) { |
| CHECK(p); |
| for (i=0; i < p->codebook_count; ++i) { |
| Codebook *c = p->codebooks + i; |
| setup_free(p, c->codeword_lengths); |
| setup_free(p, c->multiplicands); |
| setup_free(p, c->codewords); |
| setup_free(p, c->sorted_codewords); |
| // c->sorted_values[-1] is the first entry in the array |
| setup_free(p, c->sorted_values ? c->sorted_values-1 : NULL); |
| } |
| setup_free(p, p->codebooks); |
| } |
| setup_free(p, p->floor_config); |
| setup_free(p, p->residue_config); |
| if (p->mapping) { |
| for (i=0; i < p->mapping_count; ++i) |
| setup_free(p, p->mapping[i].chan); |
| setup_free(p, p->mapping); |
| } |
| CHECK(p); |
| for (i=0; i < p->channels && i < STB_VORBIS_MAX_CHANNELS; ++i) { |
| setup_free(p, p->channel_buffers[i]); |
| setup_free(p, p->previous_window[i]); |
| #ifdef STB_VORBIS_NO_DEFER_FLOOR |
| setup_free(p, p->floor_buffers[i]); |
| #endif |
| setup_free(p, p->finalY[i]); |
| } |
| for (i=0; i < 2; ++i) { |
| setup_free(p, p->A[i]); |
| setup_free(p, p->B[i]); |
| setup_free(p, p->C[i]); |
| setup_free(p, p->window[i]); |
| setup_free(p, p->bit_reverse[i]); |
| } |
| #ifndef STB_VORBIS_NO_STDIO |
| if (p->close_on_free) fclose(p->f); |
| #endif |
| } |
| |
| void stb_vorbis_close(stb_vorbis *p) |
| { |
| if (p == NULL) return; |
| vorbis_deinit(p); |
| setup_free(p,p); |
| } |
| |
| static void vorbis_init(stb_vorbis *p, const stb_vorbis_alloc *z) |
| { |
| memset(p, 0, sizeof(*p)); // NULL out all malloc'd pointers to start |
| if (z) { |
| p->alloc = *z; |
| p->alloc.alloc_buffer_length_in_bytes &= ~7; |
| p->temp_offset = p->alloc.alloc_buffer_length_in_bytes; |
| } |
| p->eof = 0; |
| p->error = VORBIS__no_error; |
| p->stream = NULL; |
| p->codebooks = NULL; |
| p->page_crc_tests = -1; |
| #ifndef STB_VORBIS_NO_STDIO |
| p->close_on_free = FALSE; |
| p->f = NULL; |
| #endif |
| } |
| |
| int stb_vorbis_get_sample_offset(stb_vorbis *f) |
| { |
| if (f->current_loc_valid) |
| return f->current_loc; |
| else |
| return -1; |
| } |
| |
| stb_vorbis_info stb_vorbis_get_info(stb_vorbis *f) |
| { |
| stb_vorbis_info d; |
| d.channels = f->channels; |
| d.sample_rate = f->sample_rate; |
| d.setup_memory_required = f->setup_memory_required; |
| d.setup_temp_memory_required = f->setup_temp_memory_required; |
| d.temp_memory_required = f->temp_memory_required; |
| d.max_frame_size = f->blocksize_1 >> 1; |
| return d; |
| } |
| |
| stb_vorbis_comment stb_vorbis_get_comment(stb_vorbis *f) |
| { |
| stb_vorbis_comment d; |
| d.vendor = f->vendor; |
| d.comment_list_length = f->comment_list_length; |
| d.comment_list = f->comment_list; |
| return d; |
| } |
| |
| int stb_vorbis_get_error(stb_vorbis *f) |
| { |
| int e = f->error; |
| f->error = VORBIS__no_error; |
| return e; |
| } |
| |
| static stb_vorbis * vorbis_alloc(stb_vorbis *f) |
| { |
| stb_vorbis *p = (stb_vorbis *) setup_malloc(f, sizeof(*p)); |
| return p; |
| } |
| |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| |
| void stb_vorbis_flush_pushdata(stb_vorbis *f) |
| { |
| f->previous_length = 0; |
| f->page_crc_tests = 0; |
| f->discard_samples_deferred = 0; |
| f->current_loc_valid = FALSE; |
| f->first_decode = FALSE; |
| f->samples_output = 0; |
| f->channel_buffer_start = 0; |
| f->channel_buffer_end = 0; |
| } |
| |
| static int vorbis_search_for_page_pushdata(vorb *f, uint8 *data, int data_len) |
| { |
| int i,n; |
| for (i=0; i < f->page_crc_tests; ++i) |
| f->scan[i].bytes_done = 0; |
| |
| // if we have room for more scans, search for them first, because |
| // they may cause us to stop early if their header is incomplete |
| if (f->page_crc_tests < STB_VORBIS_PUSHDATA_CRC_COUNT) { |
| if (data_len < 4) return 0; |
| data_len -= 3; // need to look for 4-byte sequence, so don't miss |
| // one that straddles a boundary |
| for (i=0; i < data_len; ++i) { |
| if (data[i] == 0x4f) { |
| if (0==memcmp(data+i, ogg_page_header, 4)) { |
| int j,len; |
| uint32 crc; |
| // make sure we have the whole page header |
| if (i+26 >= data_len || i+27+data[i+26] >= data_len) { |
| // only read up to this page start, so hopefully we'll |
| // have the whole page header start next time |
| data_len = i; |
| break; |
| } |
| // ok, we have it all; compute the length of the page |
| len = 27 + data[i+26]; |
| for (j=0; j < data[i+26]; ++j) |
| len += data[i+27+j]; |
| // scan everything up to the embedded crc (which we must 0) |
| crc = 0; |
| for (j=0; j < 22; ++j) |
| crc = crc32_update(crc, data[i+j]); |
| // now process 4 0-bytes |
| for ( ; j < 26; ++j) |
| crc = crc32_update(crc, 0); |
| // len is the total number of bytes we need to scan |
| n = f->page_crc_tests++; |
| f->scan[n].bytes_left = len-j; |
| f->scan[n].crc_so_far = crc; |
| f->scan[n].goal_crc = data[i+22] + (data[i+23] << 8) + (data[i+24]<<16) + (data[i+25]<<24); |
| // if the last frame on a page is continued to the next, then |
| // we can't recover the sample_loc immediately |
| if (data[i+27+data[i+26]-1] == 255) |
| f->scan[n].sample_loc = ~0; |
| else |
| f->scan[n].sample_loc = data[i+6] + (data[i+7] << 8) + (data[i+ 8]<<16) + (data[i+ 9]<<24); |
| f->scan[n].bytes_done = i+j; |
| if (f->page_crc_tests == STB_VORBIS_PUSHDATA_CRC_COUNT) |
| break; |
| // keep going if we still have room for more |
| } |
| } |
| } |
| } |
| |
| for (i=0; i < f->page_crc_tests;) { |
| uint32 crc; |
| int j; |
| int n = f->scan[i].bytes_done; |
| int m = f->scan[i].bytes_left; |
| if (m > data_len - n) m = data_len - n; |
| // m is the bytes to scan in the current chunk |
| crc = f->scan[i].crc_so_far; |
| for (j=0; j < m; ++j) |
| crc = crc32_update(crc, data[n+j]); |
| f->scan[i].bytes_left -= m; |
| f->scan[i].crc_so_far = crc; |
| if (f->scan[i].bytes_left == 0) { |
| // does it match? |
| if (f->scan[i].crc_so_far == f->scan[i].goal_crc) { |
| // Houston, we have page |
| data_len = n+m; // consumption amount is wherever that scan ended |
| f->page_crc_tests = -1; // drop out of page scan mode |
| f->previous_length = 0; // decode-but-don't-output one frame |
| f->next_seg = -1; // start a new page |
| f->current_loc = f->scan[i].sample_loc; // set the current sample location |
| // to the amount we'd have decoded had we decoded this page |
| f->current_loc_valid = f->current_loc != ~0U; |
| return data_len; |
| } |
| // delete entry |
| f->scan[i] = f->scan[--f->page_crc_tests]; |
| } else { |
| ++i; |
| } |
| } |
| |
| return data_len; |
| } |
| |
| // return value: number of bytes we used |
| int stb_vorbis_decode_frame_pushdata( |
| stb_vorbis *f, // the file we're decoding |
| const uint8 *data, int data_len, // the memory available for decoding |
| int *channels, // place to write number of float * buffers |
| float ***output, // place to write float ** array of float * buffers |
| int *samples // place to write number of output samples |
| ) |
| { |
| int i; |
| int len,right,left; |
| |
| if (!IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); |
| |
| if (f->page_crc_tests >= 0) { |
| *samples = 0; |
| return vorbis_search_for_page_pushdata(f, (uint8 *) data, data_len); |
| } |
| |
| f->stream = (uint8 *) data; |
| f->stream_end = (uint8 *) data + data_len; |
| f->error = VORBIS__no_error; |
| |
| // check that we have the entire packet in memory |
| if (!is_whole_packet_present(f)) { |
| *samples = 0; |
| return 0; |
| } |
| |
| if (!vorbis_decode_packet(f, &len, &left, &right)) { |
| // save the actual error we encountered |
| enum STBVorbisError error = f->error; |
| if (error == VORBIS_bad_packet_type) { |
| // flush and resynch |
| f->error = VORBIS__no_error; |
| while (get8_packet(f) != EOP) |
| if (f->eof) break; |
| *samples = 0; |
| return (int) (f->stream - data); |
| } |
| if (error == VORBIS_continued_packet_flag_invalid) { |
| if (f->previous_length == 0) { |
| // we may be resynching, in which case it's ok to hit one |
| // of these; just discard the packet |
| f->error = VORBIS__no_error; |
| while (get8_packet(f) != EOP) |
| if (f->eof) break; |
| *samples = 0; |
| return (int) (f->stream - data); |
| } |
| } |
| // if we get an error while parsing, what to do? |
| // well, it DEFINITELY won't work to continue from where we are! |
| stb_vorbis_flush_pushdata(f); |
| // restore the error that actually made us bail |
| f->error = error; |
| *samples = 0; |
| return 1; |
| } |
| |
| // success! |
| len = vorbis_finish_frame(f, len, left, right); |
| for (i=0; i < f->channels; ++i) |
| f->outputs[i] = f->channel_buffers[i] + left; |
| |
| if (channels) *channels = f->channels; |
| *samples = len; |
| *output = f->outputs; |
| return (int) (f->stream - data); |
| } |
| |
| stb_vorbis *stb_vorbis_open_pushdata( |
| const unsigned char *data, int data_len, // the memory available for decoding |
| int *data_used, // only defined if result is not NULL |
| int *error, const stb_vorbis_alloc *alloc) |
| { |
| stb_vorbis *f, p; |
| vorbis_init(&p, alloc); |
| p.stream = (uint8 *) data; |
| p.stream_end = (uint8 *) data + data_len; |
| p.push_mode = TRUE; |
| if (!start_decoder(&p)) { |
| if (p.eof) |
| *error = VORBIS_need_more_data; |
| else |
| *error = p.error; |
| vorbis_deinit(&p); |
| return NULL; |
| } |
| f = vorbis_alloc(&p); |
| if (f) { |
| *f = p; |
| *data_used = (int) (f->stream - data); |
| *error = 0; |
| return f; |
| } else { |
| vorbis_deinit(&p); |
| return NULL; |
| } |
| } |
| #endif // STB_VORBIS_NO_PUSHDATA_API |
| |
| unsigned int stb_vorbis_get_file_offset(stb_vorbis *f) |
| { |
| #ifndef STB_VORBIS_NO_PUSHDATA_API |
| if (f->push_mode) return 0; |
| #endif |
| if (USE_MEMORY(f)) return (unsigned int) (f->stream - f->stream_start); |
| #ifndef STB_VORBIS_NO_STDIO |
| return (unsigned int) (ftell(f->f) - f->f_start); |
| #endif |
| } |
| |
| #ifndef STB_VORBIS_NO_PULLDATA_API |
| // |
| // DATA-PULLING API |
| // |
| |
| static uint32 vorbis_find_page(stb_vorbis *f, uint32 *end, uint32 *last) |
| { |
| for(;;) { |
| int n; |
| if (f->eof) return 0; |
| n = get8(f); |
| if (n == 0x4f) { // page header candidate |
| unsigned int retry_loc = stb_vorbis_get_file_offset(f); |
| int i; |
| // check if we're off the end of a file_section stream |
| if (retry_loc - 25 > f->stream_len) |
| return 0; |
| // check the rest of the header |
| for (i=1; i < 4; ++i) |
| if (get8(f) != ogg_page_header[i]) |
| break; |
| if (f->eof) return 0; |
| if (i == 4) { |
| uint8 header[27]; |
| uint32 i, crc, goal, len; |
| for (i=0; i < 4; ++i) |
| header[i] = ogg_page_header[i]; |
| for (; i < 27; ++i) |
| header[i] = get8(f); |
| if (f->eof) return 0; |
| if (header[4] != 0) goto invalid; |
| goal = header[22] + (header[23] << 8) + (header[24]<<16) + ((uint32)header[25]<<24); |
| for (i=22; i < 26; ++i) |
| header[i] = 0; |
| crc = 0; |
| for (i=0; i < 27; ++i) |
| crc = crc32_update(crc, header[i]); |
| len = 0; |
| for (i=0; i < header[26]; ++i) { |
| int s = get8(f); |
| crc = crc32_update(crc, s); |
| len += s; |
| } |
| if (len && f->eof) return 0; |
| for (i=0; i < len; ++i) |
| crc = crc32_update(crc, get8(f)); |
| // finished parsing probable page |
| if (crc == goal) { |
| // we could now check that it's either got the last |
| // page flag set, OR it's followed by the capture |
| // pattern, but I guess TECHNICALLY you could have |
| // a file with garbage between each ogg page and recover |
| // from it automatically? So even though that paranoia |
| // might decrease the chance of an invalid decode by |
| // another 2^32, not worth it since it would hose those |
| // invalid-but-useful files? |
| if (end) |
| *end = stb_vorbis_get_file_offset(f); |
| if (last) { |
| if (header[5] & 0x04) |
| *last = 1; |
| else |
| *last = 0; |
| } |
| set_file_offset(f, retry_loc-1); |
| return 1; |
| } |
| } |
| invalid: |
| // not a valid page, so rewind and look for next one |
| set_file_offset(f, retry_loc); |
| } |
| } |
| } |
| |
| |
| #define SAMPLE_unknown 0xffffffff |
| |
| // seeking is implemented with a binary search, which narrows down the range to |
| // 64K, before using a linear search (because finding the synchronization |
| // pattern can be expensive, and the chance we'd find the end page again is |
| // relatively high for small ranges) |
| // |
| // two initial interpolation-style probes are used at the start of the search |
| // to try to bound either side of the binary search sensibly, while still |
| // working in O(log n) time if they fail. |
| |
| static int get_seek_page_info(stb_vorbis *f, ProbedPage *z) |
| { |
| uint8 header[27], lacing[255]; |
| int i,len; |
| |
| // record where the page starts |
| z->page_start = stb_vorbis_get_file_offset(f); |
| |
| // parse the header |
| getn(f, header, 27); |
| if (header[0] != 'O' || header[1] != 'g' || header[2] != 'g' || header[3] != 'S') |
| return 0; |
| getn(f, lacing, header[26]); |
| |
| // determine the length of the payload |
| len = 0; |
| for (i=0; i < header[26]; ++i) |
| len += lacing[i]; |
| |
| // this implies where the page ends |
| z->page_end = z->page_start + 27 + header[26] + len; |
| |
| // read the last-decoded sample out of the data |
| z->last_decoded_sample = header[6] + (header[7] << 8) + (header[8] << 16) + (header[9] << 24); |
| |
| // restore file state to where we were |
| set_file_offset(f, z->page_start); |
| return 1; |
| } |
| |
| // rarely used function to seek back to the preceding page while finding the |
| // start of a packet |
| static int go_to_page_before(stb_vorbis *f, unsigned int limit_offset) |
| { |
| unsigned int previous_safe, end; |
| |
| // now we want to seek back 64K from the limit |
| if (limit_offset >= 65536 && limit_offset-65536 >= f->first_audio_page_offset) |
| previous_safe = limit_offset - 65536; |
| else |
| previous_safe = f->first_audio_page_offset; |
| |
| set_file_offset(f, previous_safe); |
| |
| while (vorbis_find_page(f, &end, NULL)) { |
| if (end >= limit_offset && stb_vorbis_get_file_offset(f) < limit_offset) |
| return 1; |
| set_file_offset(f, end); |
| } |
| |
| return 0; |
| } |
| |
| // implements the search logic for finding a page and starting decoding. if |
| // the function succeeds, current_loc_valid will be true and current_loc will |
| // be less than or equal to the provided sample number (the closer the |
| // better). |
| static int seek_to_sample_coarse(stb_vorbis *f, uint32 sample_number) |
| { |
| ProbedPage left, right, mid; |
| int i, start_seg_with_known_loc, end_pos, page_start; |
| uint32 delta, stream_length, padding, last_sample_limit; |
| double offset = 0.0, bytes_per_sample = 0.0; |
| int probe = 0; |
| |
| // find the last page and validate the target sample |
| stream_length = stb_vorbis_stream_length_in_samples(f); |
| if (stream_length == 0) return error(f, VORBIS_seek_without_length); |
| if (sample_number > stream_length) return error(f, VORBIS_seek_invalid); |
| |
| // this is the maximum difference between the window-center (which is the |
| // actual granule position value), and the right-start (which the spec |
| // indicates should be the granule position (give or take one)). |
| padding = ((f->blocksize_1 - f->blocksize_0) >> 2); |
| if (sample_number < padding) |
| last_sample_limit = 0; |
| else |
| last_sample_limit = sample_number - padding; |
| |
| left = f->p_first; |
| while (left.last_decoded_sample == ~0U) { |
| // (untested) the first page does not have a 'last_decoded_sample' |
| set_file_offset(f, left.page_end); |
| if (!get_seek_page_info(f, &left)) goto error; |
| } |
| |
| right = f->p_last; |
| assert(right.last_decoded_sample != ~0U); |
| |
| // starting from the start is handled differently |
| if (last_sample_limit <= left.last_decoded_sample) { |
| if (stb_vorbis_seek_start(f)) { |
| if (f->current_loc > sample_number) |
| return error(f, VORBIS_seek_failed); |
| return 1; |
| } |
| return 0; |
| } |
| |
| while (left.page_end != right.page_start) { |
| assert(left.page_end < right.page_start); |
| // search range in bytes |
| delta = right.page_start - left.page_end; |
| if (delta <= 65536) { |
| // there's only 64K left to search - handle it linearly |
| set_file_offset(f, left.page_end); |
| } else { |
| if (probe < 2) { |
| if (probe == 0) { |
| // first probe (interpolate) |
| double data_bytes = right.page_end - left.page_start; |
| bytes_per_sample = data_bytes / right.last_decoded_sample; |
| offset = left.page_start + bytes_per_sample * (last_sample_limit - left.last_decoded_sample); |
| } else { |
| // second probe (try to bound the other side) |
| double error = ((double) last_sample_limit - mid.last_decoded_sample) * bytes_per_sample; |
| if (error >= 0 && error < 8000) error = 8000; |
| if (error < 0 && error > -8000) error = -8000; |
| offset += error * 2; |
| } |
| |
| // ensure the offset is valid |
| if (offset < left.page_end) |
| offset = left.page_end; |
| if (offset > right.page_start - 65536) |
| offset = right.page_start - 65536; |
| |
| set_file_offset(f, (unsigned int) offset); |
| } else { |
| // binary search for large ranges (offset by 32K to ensure |
| // we don't hit the right page) |
| set_file_offset(f, left.page_end + (delta / 2) - 32768); |
| } |
| |
| if (!vorbis_find_page(f, NULL, NULL)) goto error; |
| } |
| |
| for (;;) { |
| if (!get_seek_page_info(f, &mid)) goto error; |
| if (mid.last_decoded_sample != ~0U) break; |
| // (untested) no frames end on this page |
| set_file_offset(f, mid.page_end); |
| assert(mid.page_start < right.page_start); |
| } |
| |
| // if we've just found the last page again then we're in a tricky file, |
| // and we're close enough (if it wasn't an interpolation probe). |
| if (mid.page_start == right.page_start) { |
| if (probe >= 2 || delta <= 65536) |
| break; |
| } else { |
| if (last_sample_limit < mid.last_decoded_sample) |
| right = mid; |
| else |
| left = mid; |
| } |
| |
| ++probe; |
| } |
| |
| // seek back to start of the last packet |
| page_start = left.page_start; |
| set_file_offset(f, page_start); |
| if (!start_page(f)) return error(f, VORBIS_seek_failed); |
| end_pos = f->end_seg_with_known_loc; |
| assert(end_pos >= 0); |
| |
| for (;;) { |
| for (i = end_pos; i > 0; --i) |
| if (f->segments[i-1] != 255) |
| break; |
| |
| start_seg_with_known_loc = i; |
| |
| if (start_seg_with_known_loc > 0 || !(f->page_flag & PAGEFLAG_continued_packet)) |
| break; |
| |
| // (untested) the final packet begins on an earlier page |
| if (!go_to_page_before(f, page_start)) |
| goto error; |
| |
| page_start = stb_vorbis_get_file_offset(f); |
| if (!start_page(f)) goto error; |
| end_pos = f->segment_count - 1; |
| } |
| |
| // prepare to start decoding |
| f->current_loc_valid = FALSE; |
| f->last_seg = FALSE; |
| f->valid_bits = 0; |
| f->packet_bytes = 0; |
| f->bytes_in_seg = 0; |
| f->previous_length = 0; |
| f->next_seg = start_seg_with_known_loc; |
| |
| for (i = 0; i < start_seg_with_known_loc; i++) |
| skip(f, f->segments[i]); |
| |
| // start decoding (optimizable - this frame is generally discarded) |
| if (!vorbis_pump_first_frame(f)) |
| return 0; |
| if (f->current_loc > sample_number) |
| return error(f, VORBIS_seek_failed); |
| return 1; |
| |
| error: |
| // try to restore the file to a valid state |
| stb_vorbis_seek_start(f); |
| return error(f, VORBIS_seek_failed); |
| } |
| |
| // the same as vorbis_decode_initial, but without advancing |
| static int peek_decode_initial(vorb *f, int *p_left_start, int *p_left_end, int *p_right_start, int *p_right_end, int *mode) |
| { |
| int bits_read, bytes_read; |
| |
| if (!vorbis_decode_initial(f, p_left_start, p_left_end, p_right_start, p_right_end, mode)) |
| return 0; |
| |
| // either 1 or 2 bytes were read, figure out which so we can rewind |
| bits_read = 1 + ilog(f->mode_count-1); |
| if (f->mode_config[*mode].blockflag) |
| bits_read += 2; |
| bytes_read = (bits_read + 7) / 8; |
| |
| f->bytes_in_seg += bytes_read; |
| f->packet_bytes -= bytes_read; |
| skip(f, -bytes_read); |
| if (f->next_seg == -1) |
| f->next_seg = f->segment_count - 1; |
| else |
| f->next_seg--; |
| f->valid_bits = 0; |
| |
| return 1; |
| } |
| |
| int stb_vorbis_seek_frame(stb_vorbis *f, unsigned int sample_number) |
| { |
| uint32 max_frame_samples; |
| |
| if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); |
| |
| // fast page-level search |
| if (!seek_to_sample_coarse(f, sample_number)) |
| return 0; |
| |
| assert(f->current_loc_valid); |
| assert(f->current_loc <= sample_number); |
| |
| // linear search for the relevant packet |
| max_frame_samples = (f->blocksize_1*3 - f->blocksize_0) >> 2; |
| while (f->current_loc < sample_number) { |
| int left_start, left_end, right_start, right_end, mode, frame_samples; |
| if (!peek_decode_initial(f, &left_start, &left_end, &right_start, &right_end, &mode)) |
| return error(f, VORBIS_seek_failed); |
| // calculate the number of samples returned by the next frame |
| frame_samples = right_start - left_start; |
| if (f->current_loc + frame_samples > sample_number) { |
| return 1; // the next frame will contain the sample |
| } else if (f->current_loc + frame_samples + max_frame_samples > sample_number) { |
| // there's a chance the frame after this could contain the sample |
| vorbis_pump_first_frame(f); |
| } else { |
| // this frame is too early to be relevant |
| f->current_loc += frame_samples; |
| f->previous_length = 0; |
| maybe_start_packet(f); |
| flush_packet(f); |
| } |
| } |
| // the next frame should start with the sample |
| if (f->current_loc != sample_number) return error(f, VORBIS_seek_failed); |
| return 1; |
| } |
| |
| int stb_vorbis_seek(stb_vorbis *f, unsigned int sample_number) |
| { |
| if (!stb_vorbis_seek_frame(f, sample_number)) |
| return 0; |
| |
| if (sample_number != f->current_loc) { |
| int n; |
| uint32 frame_start = f->current_loc; |
| stb_vorbis_get_frame_float(f, &n, NULL); |
| assert(sample_number > frame_start); |
| assert(f->channel_buffer_start + (int) (sample_number-frame_start) <= f->channel_buffer_end); |
| f->channel_buffer_start += (sample_number - frame_start); |
| } |
| |
| return 1; |
| } |
| |
| int stb_vorbis_seek_start(stb_vorbis *f) |
| { |
| if (IS_PUSH_MODE(f)) { return error(f, VORBIS_invalid_api_mixing); } |
| set_file_offset(f, f->first_audio_page_offset); |
| f->previous_length = 0; |
| f->first_decode = TRUE; |
| f->next_seg = -1; |
| return vorbis_pump_first_frame(f); |
| } |
| |
| unsigned int stb_vorbis_stream_length_in_samples(stb_vorbis *f) |
| { |
| unsigned int restore_offset, previous_safe; |
| unsigned int end, last_page_loc; |
| |
| if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); |
| if (!f->total_samples) { |
| unsigned int last; |
| uint32 lo,hi; |
| char header[6]; |
| |
| // first, store the current decode position so we can restore it |
| restore_offset = stb_vorbis_get_file_offset(f); |
| |
| // now we want to seek back 64K from the end (the last page must |
| // be at most a little less than 64K, but let's allow a little slop) |
| if (f->stream_len >= 65536 && f->stream_len-65536 >= f->first_audio_page_offset) |
| previous_safe = f->stream_len - 65536; |
| else |
| previous_safe = f->first_audio_page_offset; |
| |
| set_file_offset(f, previous_safe); |
| // previous_safe is now our candidate 'earliest known place that seeking |
| // to will lead to the final page' |
| |
| if (!vorbis_find_page(f, &end, &last)) { |
| // if we can't find a page, we're hosed! |
| f->error = VORBIS_cant_find_last_page; |
| f->total_samples = 0xffffffff; |
| goto done; |
| } |
| |
| // check if there are more pages |
| last_page_loc = stb_vorbis_get_file_offset(f); |
| |
| // stop when the last_page flag is set, not when we reach eof; |
| // this allows us to stop short of a 'file_section' end without |
| // explicitly checking the length of the section |
| while (!last) { |
| set_file_offset(f, end); |
| if (!vorbis_find_page(f, &end, &last)) { |
| // the last page we found didn't have the 'last page' flag |
| // set. whoops! |
| break; |
| } |
| //previous_safe = last_page_loc+1; // NOTE: not used after this point, but note for debugging |
| last_page_loc = stb_vorbis_get_file_offset(f); |
| } |
| |
| set_file_offset(f, last_page_loc); |
| |
| // parse the header |
| getn(f, (unsigned char *)header, 6); |
| // extract the absolute granule position |
| lo = get32(f); |
| hi = get32(f); |
| if (lo == 0xffffffff && hi == 0xffffffff) { |
| f->error = VORBIS_cant_find_last_page; |
| f->total_samples = SAMPLE_unknown; |
| goto done; |
| } |
| if (hi) |
| lo = 0xfffffffe; // saturate |
| f->total_samples = lo; |
| |
| f->p_last.page_start = last_page_loc; |
| f->p_last.page_end = end; |
| f->p_last.last_decoded_sample = lo; |
| |
| done: |
| set_file_offset(f, restore_offset); |
| } |
| return f->total_samples == SAMPLE_unknown ? 0 : f->total_samples; |
| } |
| |
| float stb_vorbis_stream_length_in_seconds(stb_vorbis *f) |
| { |
| return stb_vorbis_stream_length_in_samples(f) / (float) f->sample_rate; |
| } |
| |
| |
| |
| int stb_vorbis_get_frame_float(stb_vorbis *f, int *channels, float ***output) |
| { |
| int len, right,left,i; |
| if (IS_PUSH_MODE(f)) return error(f, VORBIS_invalid_api_mixing); |
| |
| if (!vorbis_decode_packet(f, &len, &left, &right)) { |
| f->channel_buffer_start = f->channel_buffer_end = 0; |
| return 0; |
| } |
| |
| len = vorbis_finish_frame(f, len, left, right); |
| for (i=0; i < f->channels; ++i) |
| f->outputs[i] = f->channel_buffers[i] + left; |
| |
| f->channel_buffer_start = left; |
| f->channel_buffer_end = left+len; |
| |
| if (channels) *channels = f->channels; |
| if (output) *output = f->outputs; |
| return len; |
| } |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| |
| stb_vorbis * stb_vorbis_open_file_section(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc, unsigned int length) |
| { |
| stb_vorbis *f, p; |
| vorbis_init(&p, alloc); |
| p.f = file; |
| p.f_start = (uint32) ftell(file); |
| p.stream_len = length; |
| p.close_on_free = close_on_free; |
| if (start_decoder(&p)) { |
| f = vorbis_alloc(&p); |
| if (f) { |
| *f = p; |
| vorbis_pump_first_frame(f); |
| return f; |
| } |
| } |
| if (error) *error = p.error; |
| vorbis_deinit(&p); |
| return NULL; |
| } |
| |
| stb_vorbis * stb_vorbis_open_file(FILE *file, int close_on_free, int *error, const stb_vorbis_alloc *alloc) |
| { |
| unsigned int len, start; |
| start = (unsigned int) ftell(file); |
| fseek(file, 0, SEEK_END); |
| len = (unsigned int) (ftell(file) - start); |
| fseek(file, start, SEEK_SET); |
| return stb_vorbis_open_file_section(file, close_on_free, error, alloc, len); |
| } |
| |
| stb_vorbis * stb_vorbis_open_filename(const char *filename, int *error, const stb_vorbis_alloc *alloc) |
| { |
| FILE *f; |
| #if defined(_WIN32) && defined(__STDC_WANT_SECURE_LIB__) |
| if (0 != fopen_s(&f, filename, "rb")) |
| f = NULL; |
| #else |
| f = fopen(filename, "rb"); |
| #endif |
| if (f) |
| return stb_vorbis_open_file(f, TRUE, error, alloc); |
| if (error) *error = VORBIS_file_open_failure; |
| return NULL; |
| } |
| #endif // STB_VORBIS_NO_STDIO |
| |
| stb_vorbis * stb_vorbis_open_memory(const unsigned char *data, int len, int *error, const stb_vorbis_alloc *alloc) |
| { |
| stb_vorbis *f, p; |
| if (!data) { |
| if (error) *error = VORBIS_unexpected_eof; |
| return NULL; |
| } |
| vorbis_init(&p, alloc); |
| p.stream = (uint8 *) data; |
| p.stream_end = (uint8 *) data + len; |
| p.stream_start = (uint8 *) p.stream; |
| p.stream_len = len; |
| p.push_mode = FALSE; |
| if (start_decoder(&p)) { |
| f = vorbis_alloc(&p); |
| if (f) { |
| *f = p; |
| vorbis_pump_first_frame(f); |
| if (error) *error = VORBIS__no_error; |
| return f; |
| } |
| } |
| if (error) *error = p.error; |
| vorbis_deinit(&p); |
| return NULL; |
| } |
| |
| #ifndef STB_VORBIS_NO_INTEGER_CONVERSION |
| #define PLAYBACK_MONO 1 |
| #define PLAYBACK_LEFT 2 |
| #define PLAYBACK_RIGHT 4 |
| |
| #define L (PLAYBACK_LEFT | PLAYBACK_MONO) |
| #define C (PLAYBACK_LEFT | PLAYBACK_RIGHT | PLAYBACK_MONO) |
| #define R (PLAYBACK_RIGHT | PLAYBACK_MONO) |
| |
| static int8 channel_position[7][6] = |
| { |
| { 0 }, |
| { C }, |
| { L, R }, |
| { L, C, R }, |
| { L, R, L, R }, |
| { L, C, R, L, R }, |
| { L, C, R, L, R, C }, |
| }; |
| |
| |
| #ifndef STB_VORBIS_NO_FAST_SCALED_FLOAT |
| typedef union { |
| float f; |
| int i; |
| } float_conv; |
| typedef char stb_vorbis_float_size_test[sizeof(float)==4 && sizeof(int) == 4]; |
| #define FASTDEF(x) float_conv x |
| // add (1<<23) to convert to int, then divide by 2^SHIFT, then add 0.5/2^SHIFT to round |
| #define MAGIC(SHIFT) (1.5f * (1 << (23-SHIFT)) + 0.5f/(1 << SHIFT)) |
| #define ADDEND(SHIFT) (((150-SHIFT) << 23) + (1 << 22)) |
| #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) (temp.f = (x) + MAGIC(s), temp.i - ADDEND(s)) |
| #define check_endianness() |
| #else |
| #define FAST_SCALED_FLOAT_TO_INT(temp,x,s) ((int) ((x) * (1 << (s)))) |
| #define check_endianness() |
| #define FASTDEF(x) |
| #endif |
| |
| static void copy_samples(short *dest, float *src, int len) |
| { |
| int i; |
| check_endianness(); |
| for (i=0; i < len; ++i) { |
| FASTDEF(temp); |
| int v = FAST_SCALED_FLOAT_TO_INT(temp, src[i],15); |
| if ((unsigned int) (v + 32768) > 65535) |
| v = v < 0 ? -32768 : 32767; |
| dest[i] = v; |
| } |
| } |
| |
| static void compute_samples(int mask, short *output, int num_c, float **data, int d_offset, int len) |
| { |
| #define STB_BUFFER_SIZE 32 |
| float buffer[STB_BUFFER_SIZE]; |
| int i,j,o,n = STB_BUFFER_SIZE; |
| check_endianness(); |
| for (o = 0; o < len; o += STB_BUFFER_SIZE) { |
| memset(buffer, 0, sizeof(buffer)); |
| if (o + n > len) n = len - o; |
| for (j=0; j < num_c; ++j) { |
| if (channel_position[num_c][j] & mask) { |
| for (i=0; i < n; ++i) |
| buffer[i] += data[j][d_offset+o+i]; |
| } |
| } |
| for (i=0; i < n; ++i) { |
| FASTDEF(temp); |
| int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15); |
| if ((unsigned int) (v + 32768) > 65535) |
| v = v < 0 ? -32768 : 32767; |
| output[o+i] = v; |
| } |
| } |
| #undef STB_BUFFER_SIZE |
| } |
| |
| static void compute_stereo_samples(short *output, int num_c, float **data, int d_offset, int len) |
| { |
| #define STB_BUFFER_SIZE 32 |
| float buffer[STB_BUFFER_SIZE]; |
| int i,j,o,n = STB_BUFFER_SIZE >> 1; |
| // o is the offset in the source data |
| check_endianness(); |
| for (o = 0; o < len; o += STB_BUFFER_SIZE >> 1) { |
| // o2 is the offset in the output data |
| int o2 = o << 1; |
| memset(buffer, 0, sizeof(buffer)); |
| if (o + n > len) n = len - o; |
| for (j=0; j < num_c; ++j) { |
| int m = channel_position[num_c][j] & (PLAYBACK_LEFT | PLAYBACK_RIGHT); |
| if (m == (PLAYBACK_LEFT | PLAYBACK_RIGHT)) { |
| for (i=0; i < n; ++i) { |
| buffer[i*2+0] += data[j][d_offset+o+i]; |
| buffer[i*2+1] += data[j][d_offset+o+i]; |
| } |
| } else if (m == PLAYBACK_LEFT) { |
| for (i=0; i < n; ++i) { |
| buffer[i*2+0] += data[j][d_offset+o+i]; |
| } |
| } else if (m == PLAYBACK_RIGHT) { |
| for (i=0; i < n; ++i) { |
| buffer[i*2+1] += data[j][d_offset+o+i]; |
| } |
| } |
| } |
| for (i=0; i < (n<<1); ++i) { |
| FASTDEF(temp); |
| int v = FAST_SCALED_FLOAT_TO_INT(temp,buffer[i],15); |
| if ((unsigned int) (v + 32768) > 65535) |
| v = v < 0 ? -32768 : 32767; |
| output[o2+i] = v; |
| } |
| } |
| #undef STB_BUFFER_SIZE |
| } |
| |
| static void convert_samples_short(int buf_c, short **buffer, int b_offset, int data_c, float **data, int d_offset, int samples) |
| { |
| int i; |
| if (buf_c != data_c && buf_c <= 2 && data_c <= 6) { |
| static int channel_selector[3][2] = { {0}, {PLAYBACK_MONO}, {PLAYBACK_LEFT, PLAYBACK_RIGHT} }; |
| for (i=0; i < buf_c; ++i) |
| compute_samples(channel_selector[buf_c][i], buffer[i]+b_offset, data_c, data, d_offset, samples); |
| } else { |
| int limit = buf_c < data_c ? buf_c : data_c; |
| for (i=0; i < limit; ++i) |
| copy_samples(buffer[i]+b_offset, data[i]+d_offset, samples); |
| for ( ; i < buf_c; ++i) |
| memset(buffer[i]+b_offset, 0, sizeof(short) * samples); |
| } |
| } |
| |
| int stb_vorbis_get_frame_short(stb_vorbis *f, int num_c, short **buffer, int num_samples) |
| { |
| float **output = NULL; |
| int len = stb_vorbis_get_frame_float(f, NULL, &output); |
| if (len > num_samples) len = num_samples; |
| if (len) |
| convert_samples_short(num_c, buffer, 0, f->channels, output, 0, len); |
| return len; |
| } |
| |
| static void convert_channels_short_interleaved(int buf_c, short *buffer, int data_c, float **data, int d_offset, int len) |
| { |
| int i; |
| check_endianness(); |
| if (buf_c != data_c && buf_c <= 2 && data_c <= 6) { |
| assert(buf_c == 2); |
| for (i=0; i < buf_c; ++i) |
| compute_stereo_samples(buffer, data_c, data, d_offset, len); |
| } else { |
| int limit = buf_c < data_c ? buf_c : data_c; |
| int j; |
| for (j=0; j < len; ++j) { |
| for (i=0; i < limit; ++i) { |
| FASTDEF(temp); |
| float f = data[i][d_offset+j]; |
| int v = FAST_SCALED_FLOAT_TO_INT(temp, f,15);//data[i][d_offset+j],15); |
| if ((unsigned int) (v + 32768) > 65535) |
| v = v < 0 ? -32768 : 32767; |
| *buffer++ = v; |
| } |
| for ( ; i < buf_c; ++i) |
| *buffer++ = 0; |
| } |
| } |
| } |
| |
| int stb_vorbis_get_frame_short_interleaved(stb_vorbis *f, int num_c, short *buffer, int num_shorts) |
| { |
| float **output; |
| int len; |
| if (num_c == 1) return stb_vorbis_get_frame_short(f,num_c,&buffer, num_shorts); |
| len = stb_vorbis_get_frame_float(f, NULL, &output); |
| if (len) { |
| if (len*num_c > num_shorts) len = num_shorts / num_c; |
| convert_channels_short_interleaved(num_c, buffer, f->channels, output, 0, len); |
| } |
| return len; |
| } |
| |
| int stb_vorbis_get_samples_short_interleaved(stb_vorbis *f, int channels, short *buffer, int num_shorts) |
| { |
| float **outputs; |
| int len = num_shorts / channels; |
| int n=0; |
| while (n < len) { |
| int k = f->channel_buffer_end - f->channel_buffer_start; |
| if (n+k >= len) k = len - n; |
| if (k) |
| convert_channels_short_interleaved(channels, buffer, f->channels, f->channel_buffers, f->channel_buffer_start, k); |
| buffer += k*channels; |
| n += k; |
| f->channel_buffer_start += k; |
| if (n == len) break; |
| if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; |
| } |
| return n; |
| } |
| |
| int stb_vorbis_get_samples_short(stb_vorbis *f, int channels, short **buffer, int len) |
| { |
| float **outputs; |
| int n=0; |
| while (n < len) { |
| int k = f->channel_buffer_end - f->channel_buffer_start; |
| if (n+k >= len) k = len - n; |
| if (k) |
| convert_samples_short(channels, buffer, n, f->channels, f->channel_buffers, f->channel_buffer_start, k); |
| n += k; |
| f->channel_buffer_start += k; |
| if (n == len) break; |
| if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) break; |
| } |
| return n; |
| } |
| |
| #ifndef STB_VORBIS_NO_STDIO |
| int stb_vorbis_decode_filename(const char *filename, int *channels, int *sample_rate, short **output) |
| { |
| int data_len, offset, total, limit, error; |
| short *data; |
| stb_vorbis *v = stb_vorbis_open_filename(filename, &error, NULL); |
| if (v == NULL) return -1; |
| limit = v->channels * 4096; |
| *channels = v->channels; |
| if (sample_rate) |
| *sample_rate = v->sample_rate; |
| offset = data_len = 0; |
| total = limit; |
| data = (short *) malloc(total * sizeof(*data)); |
| if (data == NULL) { |
| stb_vorbis_close(v); |
| return -2; |
| } |
| for (;;) { |
| int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset); |
| if (n == 0) break; |
| data_len += n; |
| offset += n * v->channels; |
| if (offset + limit > total) { |
| short *data2; |
| total *= 2; |
| data2 = (short *) realloc(data, total * sizeof(*data)); |
| if (data2 == NULL) { |
| free(data); |
| stb_vorbis_close(v); |
| return -2; |
| } |
| data = data2; |
| } |
| } |
| *output = data; |
| stb_vorbis_close(v); |
| return data_len; |
| } |
| #endif // NO_STDIO |
| |
| int stb_vorbis_decode_memory(const uint8 *mem, int len, int *channels, int *sample_rate, short **output) |
| { |
| int data_len, offset, total, limit, error; |
| short *data; |
| stb_vorbis *v = stb_vorbis_open_memory(mem, len, &error, NULL); |
| if (v == NULL) return -1; |
| limit = v->channels * 4096; |
| *channels = v->channels; |
| if (sample_rate) |
| *sample_rate = v->sample_rate; |
| offset = data_len = 0; |
| total = limit; |
| data = (short *) malloc(total * sizeof(*data)); |
| if (data == NULL) { |
| stb_vorbis_close(v); |
| return -2; |
| } |
| for (;;) { |
| int n = stb_vorbis_get_frame_short_interleaved(v, v->channels, data+offset, total-offset); |
| if (n == 0) break; |
| data_len += n; |
| offset += n * v->channels; |
| if (offset + limit > total) { |
| short *data2; |
| total *= 2; |
| data2 = (short *) realloc(data, total * sizeof(*data)); |
| if (data2 == NULL) { |
| free(data); |
| stb_vorbis_close(v); |
| return -2; |
| } |
| data = data2; |
| } |
| } |
| *output = data; |
| stb_vorbis_close(v); |
| return data_len; |
| } |
| #endif // STB_VORBIS_NO_INTEGER_CONVERSION |
| |
| int stb_vorbis_get_samples_float_interleaved(stb_vorbis *f, int channels, float *buffer, int num_floats) |
| { |
| float **outputs; |
| int len = num_floats / channels; |
| int n=0; |
| int z = f->channels; |
| if (z > channels) z = channels; |
| while (n < len) { |
| int i,j; |
| int k = f->channel_buffer_end - f->channel_buffer_start; |
| if (n+k >= len) k = len - n; |
| for (j=0; j < k; ++j) { |
| for (i=0; i < z; ++i) |
| *buffer++ = f->channel_buffers[i][f->channel_buffer_start+j]; |
| for ( ; i < channels; ++i) |
| *buffer++ = 0; |
| } |
| n += k; |
| f->channel_buffer_start += k; |
| if (n == len) |
| break; |
| if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) |
| break; |
| } |
| return n; |
| } |
| |
| int stb_vorbis_get_samples_float(stb_vorbis *f, int channels, float **buffer, int num_samples) |
| { |
| float **outputs; |
| int n=0; |
| int z = f->channels; |
| if (z > channels) z = channels; |
| while (n < num_samples) { |
| int i; |
| int k = f->channel_buffer_end - f->channel_buffer_start; |
| if (n+k >= num_samples) k = num_samples - n; |
| if (k) { |
| for (i=0; i < z; ++i) |
| memcpy(buffer[i]+n, f->channel_buffers[i]+f->channel_buffer_start, sizeof(float)*k); |
| for ( ; i < channels; ++i) |
| memset(buffer[i]+n, 0, sizeof(float) * k); |
| } |
| n += k; |
| f->channel_buffer_start += k; |
| if (n == num_samples) |
| break; |
| if (!stb_vorbis_get_frame_float(f, NULL, &outputs)) |
| break; |
| } |
| return n; |
| } |
| #endif // STB_VORBIS_NO_PULLDATA_API |
| |
| /* Version history |
| 1.17 - 2019-07-08 - fix CVE-2019-13217, -13218, -13219, -13220, -13221, -13222, -13223 |
| found with Mayhem by ForAllSecure |
| 1.16 - 2019-03-04 - fix warnings |
| 1.15 - 2019-02-07 - explicit failure if Ogg Skeleton data is found |
| 1.14 - 2018-02-11 - delete bogus dealloca usage |
| 1.13 - 2018-01-29 - fix truncation of last frame (hopefully) |
| 1.12 - 2017-11-21 - limit residue begin/end to blocksize/2 to avoid large temp allocs in bad/corrupt files |
| 1.11 - 2017-07-23 - fix MinGW compilation |
| 1.10 - 2017-03-03 - more robust seeking; fix negative ilog(); clear error in open_memory |
| 1.09 - 2016-04-04 - back out 'avoid discarding last frame' fix from previous version |
| 1.08 - 2016-04-02 - fixed multiple warnings; fix setup memory leaks; |
| avoid discarding last frame of audio data |
| 1.07 - 2015-01-16 - fixed some warnings, fix mingw, const-correct API |
| some more crash fixes when out of memory or with corrupt files |
| 1.06 - 2015-08-31 - full, correct support for seeking API (Dougall Johnson) |
| some crash fixes when out of memory or with corrupt files |
| 1.05 - 2015-04-19 - don't define __forceinline if it's redundant |
| 1.04 - 2014-08-27 - fix missing const-correct case in API |
| 1.03 - 2014-08-07 - Warning fixes |
| 1.02 - 2014-07-09 - Declare qsort compare function _cdecl on windows |
| 1.01 - 2014-06-18 - fix stb_vorbis_get_samples_float |
| 1.0 - 2014-05-26 - fix memory leaks; fix warnings; fix bugs in multichannel |
| (API change) report sample rate for decode-full-file funcs |
| 0.99996 - bracket #include <malloc.h> for macintosh compilation by Laurent Gomila |
| 0.99995 - use union instead of pointer-cast for fast-float-to-int to avoid alias-optimization problem |
| 0.99994 - change fast-float-to-int to work in single-precision FPU mode, remove endian-dependence |
| 0.99993 - remove assert that fired on legal files with empty tables |
| 0.99992 - rewind-to-start |
| 0.99991 - bugfix to stb_vorbis_get_samples_short by Bernhard Wodo |
| 0.9999 - (should have been 0.99990) fix no-CRT support, compiling as C++ |
| 0.9998 - add a full-decode function with a memory source |
| 0.9997 - fix a bug in the read-from-FILE case in 0.9996 addition |
| 0.9996 - query length of vorbis stream in samples/seconds |
| 0.9995 - bugfix to another optimization that only happened in certain files |
| 0.9994 - bugfix to one of the optimizations that caused significant (but inaudible?) errors |
| 0.9993 - performance improvements; runs in 99% to 104% of time of reference implementation |
| 0.9992 - performance improvement of IMDCT; now performs close to reference implementation |
| 0.9991 - performance improvement of IMDCT |
| 0.999 - (should have been 0.9990) performance improvement of IMDCT |
| 0.998 - no-CRT support from Casey Muratori |
| 0.997 - bugfixes for bugs found by Terje Mathisen |
| 0.996 - bugfix: fast-huffman decode initialized incorrectly for sparse codebooks; fixing gives 10% speedup - found by Terje Mathisen |
| 0.995 - bugfix: fix to 'effective' overrun detection - found by Terje Mathisen |
| 0.994 - bugfix: garbage decode on final VQ symbol of a non-multiple - found by Terje Mathisen |
| 0.993 - bugfix: pushdata API required 1 extra byte for empty page (failed to consume final page if empty) - found by Terje Mathisen |
| 0.992 - fixes for MinGW warning |
| 0.991 - turn fast-float-conversion on by default |
| 0.990 - fix push-mode seek recovery if you seek into the headers |
| 0.98b - fix to bad release of 0.98 |
| 0.98 - fix push-mode seek recovery; robustify float-to-int and support non-fast mode |
| 0.97 - builds under c++ (typecasting, don't use 'class' keyword) |
| 0.96 - somehow MY 0.95 was right, but the web one was wrong, so here's my 0.95 rereleased as 0.96, fixes a typo in the clamping code |
| 0.95 - clamping code for 16-bit functions |
| 0.94 - not publically released |
| 0.93 - fixed all-zero-floor case (was decoding garbage) |
| 0.92 - fixed a memory leak |
| 0.91 - conditional compiles to omit parts of the API and the infrastructure to support them: STB_VORBIS_NO_PULLDATA_API, STB_VORBIS_NO_PUSHDATA_API, STB_VORBIS_NO_STDIO, STB_VORBIS_NO_INTEGER_CONVERSION |
| 0.90 - first public release |
| */ |
| |
| #endif // STB_VORBIS_HEADER_ONLY |
| |
| |
| /* |
| ------------------------------------------------------------------------------ |
| This software is available under 2 licenses -- choose whichever you prefer. |
| ------------------------------------------------------------------------------ |
| ALTERNATIVE A - MIT License |
| Copyright (c) 2017 Sean Barrett |
| Permission is hereby granted, free of charge, to any person obtaining a copy of |
| this software and associated documentation files (the "Software"), to deal in |
| the Software without restriction, including without limitation the rights to |
| use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies |
| of the Software, and to permit persons to whom the Software is furnished to do |
| so, subject to the following conditions: |
| The above copyright notice and this permission notice shall be included in all |
| copies or substantial portions of the Software. |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| SOFTWARE. |
| ------------------------------------------------------------------------------ |
| ALTERNATIVE B - Public Domain (www.unlicense.org) |
| This is free and unencumbered software released into the public domain. |
| Anyone is free to copy, modify, publish, use, compile, sell, or distribute this |
| software, either in source code form or as a compiled binary, for any purpose, |
| commercial or non-commercial, and by any means. |
| In jurisdictions that recognize copyright laws, the author or authors of this |
| software dedicate any and all copyright interest in the software to the public |
| domain. We make this dedication for the benefit of the public at large and to |
| the detriment of our heirs and successors. We intend this dedication to be an |
| overt act of relinquishment in perpetuity of all present and future rights to |
| this software under copyright law. |
| THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN |
| ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION |
| WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
| ------------------------------------------------------------------------------ |
| */ |