blob: c9af0bed36d6852de735b8d0b5d034614aef0e54 [file] [log] [blame]
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001/*
2 __ _____ _____ _____
3 __| | __| | | | JSON for Modern C++
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004| | |__ | | | | | | version 3.5.0
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005|_____|_____|_____|_|___| https://github.com/nlohmann/json
6
7Licensed under the MIT License <http://opensource.org/licenses/MIT>.
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008SPDX-License-Identifier: MIT
9Copyright (c) 2013-2018 Niels Lohmann <http://nlohmann.me>.
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010
11Permission is hereby granted, free of charge, to any person obtaining a copy
12of this software and associated documentation files (the "Software"), to deal
13in the Software without restriction, including without limitation the rights
14to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
15copies of the Software, and to permit persons to whom the Software is
16furnished to do so, subject to the following conditions:
17
18The above copyright notice and this permission notice shall be included in all
19copies or substantial portions of the Software.
20
21THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
22IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
23FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
24AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
25LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
26OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
27SOFTWARE.
28*/
29
30#ifndef NLOHMANN_JSON_HPP
31#define NLOHMANN_JSON_HPP
32
Syoyo Fujitac0d02512019-02-04 16:19:13 +090033#define NLOHMANN_JSON_VERSION_MAJOR 3
34#define NLOHMANN_JSON_VERSION_MINOR 5
35#define NLOHMANN_JSON_VERSION_PATCH 0
36
37#include <algorithm> // all_of, find, for_each
Syoyo Fujita2e21be72017-11-05 17:13:01 +090038#include <cassert> // assert
39#include <ciso646> // and, not, or
Syoyo Fujita2e21be72017-11-05 17:13:01 +090040#include <cstddef> // nullptr_t, ptrdiff_t, size_t
Syoyo Fujitac0d02512019-02-04 16:19:13 +090041#include <functional> // hash, less
Syoyo Fujita2e21be72017-11-05 17:13:01 +090042#include <initializer_list> // initializer_list
Syoyo Fujitac0d02512019-02-04 16:19:13 +090043#include <iosfwd> // istream, ostream
44#include <iterator> // random_access_iterator_tag
Syoyo Fujita2e21be72017-11-05 17:13:01 +090045#include <numeric> // accumulate
Syoyo Fujitac0d02512019-02-04 16:19:13 +090046#include <string> // string, stoi, to_string
47#include <utility> // declval, forward, move, pair, swap
48
49// #include <nlohmann/json_fwd.hpp>
50#ifndef NLOHMANN_JSON_FWD_HPP
51#define NLOHMANN_JSON_FWD_HPP
52
53#include <cstdint> // int64_t, uint64_t
54#include <map> // map
55#include <memory> // allocator
56#include <string> // string
Syoyo Fujita2e21be72017-11-05 17:13:01 +090057#include <vector> // vector
58
Syoyo Fujitac0d02512019-02-04 16:19:13 +090059/*!
60@brief namespace for Niels Lohmann
61@see https://github.com/nlohmann
62@since version 1.0.0
63*/
64namespace nlohmann
65{
66/*!
67@brief default JSONSerializer template argument
68
69This serializer ignores the template arguments and uses ADL
70([argument-dependent lookup](https://en.cppreference.com/w/cpp/language/adl))
71for serialization.
72*/
73template<typename T = void, typename SFINAE = void>
74struct adl_serializer;
75
76template<template<typename U, typename V, typename... Args> class ObjectType =
77 std::map,
78 template<typename U, typename... Args> class ArrayType = std::vector,
79 class StringType = std::string, class BooleanType = bool,
80 class NumberIntegerType = std::int64_t,
81 class NumberUnsignedType = std::uint64_t,
82 class NumberFloatType = double,
83 template<typename U> class AllocatorType = std::allocator,
84 template<typename T, typename SFINAE = void> class JSONSerializer =
85 adl_serializer>
86class basic_json;
87
88/*!
89@brief JSON Pointer
90
91A JSON pointer defines a string syntax for identifying a specific value
92within a JSON document. It can be used with functions `at` and
93`operator[]`. Furthermore, JSON pointers are the base for JSON patches.
94
95@sa [RFC 6901](https://tools.ietf.org/html/rfc6901)
96
97@since version 2.0.0
98*/
99template<typename BasicJsonType>
100class json_pointer;
101
102/*!
103@brief default JSON class
104
105This type is the default specialization of the @ref basic_json class which
106uses the standard template types.
107
108@since version 1.0.0
109*/
110using json = basic_json<>;
111} // namespace nlohmann
112
113#endif
114
115// #include <nlohmann/detail/macro_scope.hpp>
116
117
118// This file contains all internal macro definitions
119// You MUST include macro_unscope.hpp at the end of json.hpp to undef all of them
120
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900121// exclude unsupported compilers
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900122#if !defined(JSON_SKIP_UNSUPPORTED_COMPILER_CHECK)
123 #if defined(__clang__)
124 #if (__clang_major__ * 10000 + __clang_minor__ * 100 + __clang_patchlevel__) < 30400
125 #error "unsupported Clang version - see https://github.com/nlohmann/json#supported-compilers"
126 #endif
127 #elif defined(__GNUC__) && !(defined(__ICC) || defined(__INTEL_COMPILER))
128 #if (__GNUC__ * 10000 + __GNUC_MINOR__ * 100 + __GNUC_PATCHLEVEL__) < 40800
129 #error "unsupported GCC version - see https://github.com/nlohmann/json#supported-compilers"
130 #endif
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900131 #endif
132#endif
133
134// disable float-equal warnings on GCC/clang
135#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
136 #pragma GCC diagnostic push
137 #pragma GCC diagnostic ignored "-Wfloat-equal"
138#endif
139
140// disable documentation warnings on clang
141#if defined(__clang__)
142 #pragma GCC diagnostic push
143 #pragma GCC diagnostic ignored "-Wdocumentation"
144#endif
145
146// allow for portable deprecation warnings
147#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
148 #define JSON_DEPRECATED __attribute__((deprecated))
149#elif defined(_MSC_VER)
150 #define JSON_DEPRECATED __declspec(deprecated)
151#else
152 #define JSON_DEPRECATED
153#endif
154
155// allow to disable exceptions
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900156#if (defined(__cpp_exceptions) || defined(__EXCEPTIONS) || defined(_CPPUNWIND)) && !defined(JSON_NOEXCEPTION)
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900157 #define JSON_THROW(exception) throw exception
158 #define JSON_TRY try
159 #define JSON_CATCH(exception) catch(exception)
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900160 #define JSON_INTERNAL_CATCH(exception) catch(exception)
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900161#else
162 #define JSON_THROW(exception) std::abort()
163 #define JSON_TRY if(true)
164 #define JSON_CATCH(exception) if(false)
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900165 #define JSON_INTERNAL_CATCH(exception) if(false)
166#endif
167
168// override exception macros
169#if defined(JSON_THROW_USER)
170 #undef JSON_THROW
171 #define JSON_THROW JSON_THROW_USER
172#endif
173#if defined(JSON_TRY_USER)
174 #undef JSON_TRY
175 #define JSON_TRY JSON_TRY_USER
176#endif
177#if defined(JSON_CATCH_USER)
178 #undef JSON_CATCH
179 #define JSON_CATCH JSON_CATCH_USER
180 #undef JSON_INTERNAL_CATCH
181 #define JSON_INTERNAL_CATCH JSON_CATCH_USER
182#endif
183#if defined(JSON_INTERNAL_CATCH_USER)
184 #undef JSON_INTERNAL_CATCH
185 #define JSON_INTERNAL_CATCH JSON_INTERNAL_CATCH_USER
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900186#endif
187
188// manual branch prediction
189#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
190 #define JSON_LIKELY(x) __builtin_expect(!!(x), 1)
191 #define JSON_UNLIKELY(x) __builtin_expect(!!(x), 0)
192#else
193 #define JSON_LIKELY(x) x
194 #define JSON_UNLIKELY(x) x
195#endif
196
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900197// C++ language standard detection
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900198#if (defined(__cplusplus) && __cplusplus >= 201703L) || (defined(_HAS_CXX17) && _HAS_CXX17 == 1) // fix for issue #464
199 #define JSON_HAS_CPP_17
200 #define JSON_HAS_CPP_14
201#elif (defined(__cplusplus) && __cplusplus >= 201402L) || (defined(_HAS_CXX14) && _HAS_CXX14 == 1)
202 #define JSON_HAS_CPP_14
203#endif
204
205/*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900206@brief macro to briefly define a mapping between an enum and JSON
207@def NLOHMANN_JSON_SERIALIZE_ENUM
208@since version 3.4.0
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900209*/
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900210#define NLOHMANN_JSON_SERIALIZE_ENUM(ENUM_TYPE, ...) \
211 template<typename BasicJsonType> \
212 inline void to_json(BasicJsonType& j, const ENUM_TYPE& e) \
213 { \
214 static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
215 static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
216 auto it = std::find_if(std::begin(m), std::end(m), \
217 [e](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
218 { \
219 return ej_pair.first == e; \
220 }); \
221 j = ((it != std::end(m)) ? it : std::begin(m))->second; \
222 } \
223 template<typename BasicJsonType> \
224 inline void from_json(const BasicJsonType& j, ENUM_TYPE& e) \
225 { \
226 static_assert(std::is_enum<ENUM_TYPE>::value, #ENUM_TYPE " must be an enum!"); \
227 static const std::pair<ENUM_TYPE, BasicJsonType> m[] = __VA_ARGS__; \
228 auto it = std::find_if(std::begin(m), std::end(m), \
229 [j](const std::pair<ENUM_TYPE, BasicJsonType>& ej_pair) -> bool \
230 { \
231 return ej_pair.second == j; \
232 }); \
233 e = ((it != std::end(m)) ? it : std::begin(m))->first; \
234 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900235
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900236// Ugly macros to avoid uglier copy-paste when specializing basic_json. They
237// may be removed in the future once the class is split.
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900238
239#define NLOHMANN_BASIC_JSON_TPL_DECLARATION \
240 template<template<typename, typename, typename...> class ObjectType, \
241 template<typename, typename...> class ArrayType, \
242 class StringType, class BooleanType, class NumberIntegerType, \
243 class NumberUnsignedType, class NumberFloatType, \
244 template<typename> class AllocatorType, \
245 template<typename, typename = void> class JSONSerializer>
246
247#define NLOHMANN_BASIC_JSON_TPL \
248 basic_json<ObjectType, ArrayType, StringType, BooleanType, \
249 NumberIntegerType, NumberUnsignedType, NumberFloatType, \
250 AllocatorType, JSONSerializer>
251
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900252// #include <nlohmann/detail/meta/cpp_future.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900253
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900254
255#include <ciso646> // not
256#include <cstddef> // size_t
257#include <type_traits> // conditional, enable_if, false_type, integral_constant, is_constructible, is_integral, is_same, remove_cv, remove_reference, true_type
258
259namespace nlohmann
260{
261namespace detail
262{
263// alias templates to reduce boilerplate
264template<bool B, typename T = void>
265using enable_if_t = typename std::enable_if<B, T>::type;
266
267template<typename T>
268using uncvref_t = typename std::remove_cv<typename std::remove_reference<T>::type>::type;
269
270// implementation of C++14 index_sequence and affiliates
271// source: https://stackoverflow.com/a/32223343
272template<std::size_t... Ints>
273struct index_sequence
274{
275 using type = index_sequence;
276 using value_type = std::size_t;
277 static constexpr std::size_t size() noexcept
278 {
279 return sizeof...(Ints);
280 }
281};
282
283template<class Sequence1, class Sequence2>
284struct merge_and_renumber;
285
286template<std::size_t... I1, std::size_t... I2>
287struct merge_and_renumber<index_sequence<I1...>, index_sequence<I2...>>
288 : index_sequence < I1..., (sizeof...(I1) + I2)... > {};
289
290template<std::size_t N>
291struct make_index_sequence
292 : merge_and_renumber < typename make_index_sequence < N / 2 >::type,
293 typename make_index_sequence < N - N / 2 >::type > {};
294
295template<> struct make_index_sequence<0> : index_sequence<> {};
296template<> struct make_index_sequence<1> : index_sequence<0> {};
297
298template<typename... Ts>
299using index_sequence_for = make_index_sequence<sizeof...(Ts)>;
300
301// dispatch utility (taken from ranges-v3)
302template<unsigned N> struct priority_tag : priority_tag < N - 1 > {};
303template<> struct priority_tag<0> {};
304
305// taken from ranges-v3
306template<typename T>
307struct static_const
308{
309 static constexpr T value{};
310};
311
312template<typename T>
313constexpr T static_const<T>::value;
314} // namespace detail
315} // namespace nlohmann
316
317// #include <nlohmann/detail/meta/type_traits.hpp>
318
319
320#include <ciso646> // not
321#include <limits> // numeric_limits
322#include <type_traits> // false_type, is_constructible, is_integral, is_same, true_type
323#include <utility> // declval
324
325// #include <nlohmann/json_fwd.hpp>
326
327// #include <nlohmann/detail/iterators/iterator_traits.hpp>
328
329
330#include <iterator> // random_access_iterator_tag
331
332// #include <nlohmann/detail/meta/void_t.hpp>
333
334
335namespace nlohmann
336{
337namespace detail
338{
339template <typename ...Ts> struct make_void
340{
341 using type = void;
342};
343template <typename ...Ts> using void_t = typename make_void<Ts...>::type;
344} // namespace detail
345} // namespace nlohmann
346
347// #include <nlohmann/detail/meta/cpp_future.hpp>
348
349
350namespace nlohmann
351{
352namespace detail
353{
354template <typename It, typename = void>
355struct iterator_types {};
356
357template <typename It>
358struct iterator_types <
359 It,
360 void_t<typename It::difference_type, typename It::value_type, typename It::pointer,
361 typename It::reference, typename It::iterator_category >>
362{
363 using difference_type = typename It::difference_type;
364 using value_type = typename It::value_type;
365 using pointer = typename It::pointer;
366 using reference = typename It::reference;
367 using iterator_category = typename It::iterator_category;
368};
369
370// This is required as some compilers implement std::iterator_traits in a way that
371// doesn't work with SFINAE. See https://github.com/nlohmann/json/issues/1341.
372template <typename T, typename = void>
373struct iterator_traits
374{
375};
376
377template <typename T>
378struct iterator_traits < T, enable_if_t < !std::is_pointer<T>::value >>
379 : iterator_types<T>
380{
381};
382
383template <typename T>
384struct iterator_traits<T*, enable_if_t<std::is_object<T>::value>>
385{
386 using iterator_category = std::random_access_iterator_tag;
387 using value_type = T;
388 using difference_type = ptrdiff_t;
389 using pointer = T*;
390 using reference = T&;
391};
392}
393}
394
395// #include <nlohmann/detail/meta/cpp_future.hpp>
396
397// #include <nlohmann/detail/meta/detected.hpp>
398
399
400#include <type_traits>
401
402// #include <nlohmann/detail/meta/void_t.hpp>
403
404
405// http://en.cppreference.com/w/cpp/experimental/is_detected
406namespace nlohmann
407{
408namespace detail
409{
410struct nonesuch
411{
412 nonesuch() = delete;
413 ~nonesuch() = delete;
414 nonesuch(nonesuch const&) = delete;
415 void operator=(nonesuch const&) = delete;
416};
417
418template <class Default,
419 class AlwaysVoid,
420 template <class...> class Op,
421 class... Args>
422struct detector
423{
424 using value_t = std::false_type;
425 using type = Default;
426};
427
428template <class Default, template <class...> class Op, class... Args>
429struct detector<Default, void_t<Op<Args...>>, Op, Args...>
430{
431 using value_t = std::true_type;
432 using type = Op<Args...>;
433};
434
435template <template <class...> class Op, class... Args>
436using is_detected = typename detector<nonesuch, void, Op, Args...>::value_t;
437
438template <template <class...> class Op, class... Args>
439using detected_t = typename detector<nonesuch, void, Op, Args...>::type;
440
441template <class Default, template <class...> class Op, class... Args>
442using detected_or = detector<Default, void, Op, Args...>;
443
444template <class Default, template <class...> class Op, class... Args>
445using detected_or_t = typename detected_or<Default, Op, Args...>::type;
446
447template <class Expected, template <class...> class Op, class... Args>
448using is_detected_exact = std::is_same<Expected, detected_t<Op, Args...>>;
449
450template <class To, template <class...> class Op, class... Args>
451using is_detected_convertible =
452 std::is_convertible<detected_t<Op, Args...>, To>;
453} // namespace detail
454} // namespace nlohmann
455
456// #include <nlohmann/detail/macro_scope.hpp>
457
458
459namespace nlohmann
460{
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900461/*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900462@brief detail namespace with internal helper functions
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900463
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900464This namespace collects functions that should not be exposed,
465implementations of some @ref basic_json methods, and meta-programming helpers.
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900466
467@since version 2.1.0
468*/
469namespace detail
470{
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900471/////////////
472// helpers //
473/////////////
474
475// Note to maintainers:
476//
477// Every trait in this file expects a non CV-qualified type.
478// The only exceptions are in the 'aliases for detected' section
479// (i.e. those of the form: decltype(T::member_function(std::declval<T>())))
480//
481// In this case, T has to be properly CV-qualified to constraint the function arguments
482// (e.g. to_json(BasicJsonType&, const T&))
483
484template<typename> struct is_basic_json : std::false_type {};
485
486NLOHMANN_BASIC_JSON_TPL_DECLARATION
487struct is_basic_json<NLOHMANN_BASIC_JSON_TPL> : std::true_type {};
488
489//////////////////////////
490// aliases for detected //
491//////////////////////////
492
493template <typename T>
494using mapped_type_t = typename T::mapped_type;
495
496template <typename T>
497using key_type_t = typename T::key_type;
498
499template <typename T>
500using value_type_t = typename T::value_type;
501
502template <typename T>
503using difference_type_t = typename T::difference_type;
504
505template <typename T>
506using pointer_t = typename T::pointer;
507
508template <typename T>
509using reference_t = typename T::reference;
510
511template <typename T>
512using iterator_category_t = typename T::iterator_category;
513
514template <typename T>
515using iterator_t = typename T::iterator;
516
517template <typename T, typename... Args>
518using to_json_function = decltype(T::to_json(std::declval<Args>()...));
519
520template <typename T, typename... Args>
521using from_json_function = decltype(T::from_json(std::declval<Args>()...));
522
523template <typename T, typename U>
524using get_template_function = decltype(std::declval<T>().template get<U>());
525
526// trait checking if JSONSerializer<T>::from_json(json const&, udt&) exists
527template <typename BasicJsonType, typename T, typename = void>
528struct has_from_json : std::false_type {};
529
530template <typename BasicJsonType, typename T>
531struct has_from_json<BasicJsonType, T,
532 enable_if_t<not is_basic_json<T>::value>>
533{
534 using serializer = typename BasicJsonType::template json_serializer<T, void>;
535
536 static constexpr bool value =
537 is_detected_exact<void, from_json_function, serializer,
538 const BasicJsonType&, T&>::value;
539};
540
541// This trait checks if JSONSerializer<T>::from_json(json const&) exists
542// this overload is used for non-default-constructible user-defined-types
543template <typename BasicJsonType, typename T, typename = void>
544struct has_non_default_from_json : std::false_type {};
545
546template<typename BasicJsonType, typename T>
547struct has_non_default_from_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
548{
549 using serializer = typename BasicJsonType::template json_serializer<T, void>;
550
551 static constexpr bool value =
552 is_detected_exact<T, from_json_function, serializer,
553 const BasicJsonType&>::value;
554};
555
556// This trait checks if BasicJsonType::json_serializer<T>::to_json exists
557// Do not evaluate the trait when T is a basic_json type, to avoid template instantiation infinite recursion.
558template <typename BasicJsonType, typename T, typename = void>
559struct has_to_json : std::false_type {};
560
561template <typename BasicJsonType, typename T>
562struct has_to_json<BasicJsonType, T, enable_if_t<not is_basic_json<T>::value>>
563{
564 using serializer = typename BasicJsonType::template json_serializer<T, void>;
565
566 static constexpr bool value =
567 is_detected_exact<void, to_json_function, serializer, BasicJsonType&,
568 T>::value;
569};
570
571
572///////////////////
573// is_ functions //
574///////////////////
575
576template <typename T, typename = void>
577struct is_iterator_traits : std::false_type {};
578
579template <typename T>
580struct is_iterator_traits<iterator_traits<T>>
581{
582 private:
583 using traits = iterator_traits<T>;
584
585 public:
586 static constexpr auto value =
587 is_detected<value_type_t, traits>::value &&
588 is_detected<difference_type_t, traits>::value &&
589 is_detected<pointer_t, traits>::value &&
590 is_detected<iterator_category_t, traits>::value &&
591 is_detected<reference_t, traits>::value;
592};
593
594// source: https://stackoverflow.com/a/37193089/4116453
595
596template <typename T, typename = void>
597struct is_complete_type : std::false_type {};
598
599template <typename T>
600struct is_complete_type<T, decltype(void(sizeof(T)))> : std::true_type {};
601
602template <typename BasicJsonType, typename CompatibleObjectType,
603 typename = void>
604struct is_compatible_object_type_impl : std::false_type {};
605
606template <typename BasicJsonType, typename CompatibleObjectType>
607struct is_compatible_object_type_impl <
608 BasicJsonType, CompatibleObjectType,
609 enable_if_t<is_detected<mapped_type_t, CompatibleObjectType>::value and
610 is_detected<key_type_t, CompatibleObjectType>::value >>
611{
612
613 using object_t = typename BasicJsonType::object_t;
614
615 // macOS's is_constructible does not play well with nonesuch...
616 static constexpr bool value =
617 std::is_constructible<typename object_t::key_type,
618 typename CompatibleObjectType::key_type>::value and
619 std::is_constructible<typename object_t::mapped_type,
620 typename CompatibleObjectType::mapped_type>::value;
621};
622
623template <typename BasicJsonType, typename CompatibleObjectType>
624struct is_compatible_object_type
625 : is_compatible_object_type_impl<BasicJsonType, CompatibleObjectType> {};
626
627template <typename BasicJsonType, typename ConstructibleObjectType,
628 typename = void>
629struct is_constructible_object_type_impl : std::false_type {};
630
631template <typename BasicJsonType, typename ConstructibleObjectType>
632struct is_constructible_object_type_impl <
633 BasicJsonType, ConstructibleObjectType,
634 enable_if_t<is_detected<mapped_type_t, ConstructibleObjectType>::value and
635 is_detected<key_type_t, ConstructibleObjectType>::value >>
636{
637 using object_t = typename BasicJsonType::object_t;
638
639 static constexpr bool value =
640 (std::is_constructible<typename ConstructibleObjectType::key_type, typename object_t::key_type>::value and
641 std::is_same<typename object_t::mapped_type, typename ConstructibleObjectType::mapped_type>::value) or
642 (has_from_json<BasicJsonType, typename ConstructibleObjectType::mapped_type>::value or
643 has_non_default_from_json<BasicJsonType, typename ConstructibleObjectType::mapped_type >::value);
644};
645
646template <typename BasicJsonType, typename ConstructibleObjectType>
647struct is_constructible_object_type
648 : is_constructible_object_type_impl<BasicJsonType,
649 ConstructibleObjectType> {};
650
651template <typename BasicJsonType, typename CompatibleStringType,
652 typename = void>
653struct is_compatible_string_type_impl : std::false_type {};
654
655template <typename BasicJsonType, typename CompatibleStringType>
656struct is_compatible_string_type_impl <
657 BasicJsonType, CompatibleStringType,
658 enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
659 value_type_t, CompatibleStringType>::value >>
660{
661 static constexpr auto value =
662 std::is_constructible<typename BasicJsonType::string_t, CompatibleStringType>::value;
663};
664
665template <typename BasicJsonType, typename ConstructibleStringType>
666struct is_compatible_string_type
667 : is_compatible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
668
669template <typename BasicJsonType, typename ConstructibleStringType,
670 typename = void>
671struct is_constructible_string_type_impl : std::false_type {};
672
673template <typename BasicJsonType, typename ConstructibleStringType>
674struct is_constructible_string_type_impl <
675 BasicJsonType, ConstructibleStringType,
676 enable_if_t<is_detected_exact<typename BasicJsonType::string_t::value_type,
677 value_type_t, ConstructibleStringType>::value >>
678{
679 static constexpr auto value =
680 std::is_constructible<ConstructibleStringType,
681 typename BasicJsonType::string_t>::value;
682};
683
684template <typename BasicJsonType, typename ConstructibleStringType>
685struct is_constructible_string_type
686 : is_constructible_string_type_impl<BasicJsonType, ConstructibleStringType> {};
687
688template <typename BasicJsonType, typename CompatibleArrayType, typename = void>
689struct is_compatible_array_type_impl : std::false_type {};
690
691template <typename BasicJsonType, typename CompatibleArrayType>
692struct is_compatible_array_type_impl <
693 BasicJsonType, CompatibleArrayType,
694 enable_if_t<is_detected<value_type_t, CompatibleArrayType>::value and
695 is_detected<iterator_t, CompatibleArrayType>::value and
696// This is needed because json_reverse_iterator has a ::iterator type...
697// Therefore it is detected as a CompatibleArrayType.
698// The real fix would be to have an Iterable concept.
699 not is_iterator_traits<
700 iterator_traits<CompatibleArrayType>>::value >>
701{
702 static constexpr bool value =
703 std::is_constructible<BasicJsonType,
704 typename CompatibleArrayType::value_type>::value;
705};
706
707template <typename BasicJsonType, typename CompatibleArrayType>
708struct is_compatible_array_type
709 : is_compatible_array_type_impl<BasicJsonType, CompatibleArrayType> {};
710
711template <typename BasicJsonType, typename ConstructibleArrayType, typename = void>
712struct is_constructible_array_type_impl : std::false_type {};
713
714template <typename BasicJsonType, typename ConstructibleArrayType>
715struct is_constructible_array_type_impl <
716 BasicJsonType, ConstructibleArrayType,
717 enable_if_t<std::is_same<ConstructibleArrayType,
718 typename BasicJsonType::value_type>::value >>
719 : std::true_type {};
720
721template <typename BasicJsonType, typename ConstructibleArrayType>
722struct is_constructible_array_type_impl <
723 BasicJsonType, ConstructibleArrayType,
724 enable_if_t<not std::is_same<ConstructibleArrayType,
725 typename BasicJsonType::value_type>::value and
726 is_detected<value_type_t, ConstructibleArrayType>::value and
727 is_detected<iterator_t, ConstructibleArrayType>::value and
728 is_complete_type<
729 detected_t<value_type_t, ConstructibleArrayType>>::value >>
730{
731 static constexpr bool value =
732 // This is needed because json_reverse_iterator has a ::iterator type,
733 // furthermore, std::back_insert_iterator (and other iterators) have a base class `iterator`...
734 // Therefore it is detected as a ConstructibleArrayType.
735 // The real fix would be to have an Iterable concept.
736 not is_iterator_traits <
737 iterator_traits<ConstructibleArrayType >>::value and
738
739 (std::is_same<typename ConstructibleArrayType::value_type, typename BasicJsonType::array_t::value_type>::value or
740 has_from_json<BasicJsonType,
741 typename ConstructibleArrayType::value_type>::value or
742 has_non_default_from_json <
743 BasicJsonType, typename ConstructibleArrayType::value_type >::value);
744};
745
746template <typename BasicJsonType, typename ConstructibleArrayType>
747struct is_constructible_array_type
748 : is_constructible_array_type_impl<BasicJsonType, ConstructibleArrayType> {};
749
750template <typename RealIntegerType, typename CompatibleNumberIntegerType,
751 typename = void>
752struct is_compatible_integer_type_impl : std::false_type {};
753
754template <typename RealIntegerType, typename CompatibleNumberIntegerType>
755struct is_compatible_integer_type_impl <
756 RealIntegerType, CompatibleNumberIntegerType,
757 enable_if_t<std::is_integral<RealIntegerType>::value and
758 std::is_integral<CompatibleNumberIntegerType>::value and
759 not std::is_same<bool, CompatibleNumberIntegerType>::value >>
760{
761 // is there an assert somewhere on overflows?
762 using RealLimits = std::numeric_limits<RealIntegerType>;
763 using CompatibleLimits = std::numeric_limits<CompatibleNumberIntegerType>;
764
765 static constexpr auto value =
766 std::is_constructible<RealIntegerType,
767 CompatibleNumberIntegerType>::value and
768 CompatibleLimits::is_integer and
769 RealLimits::is_signed == CompatibleLimits::is_signed;
770};
771
772template <typename RealIntegerType, typename CompatibleNumberIntegerType>
773struct is_compatible_integer_type
774 : is_compatible_integer_type_impl<RealIntegerType,
775 CompatibleNumberIntegerType> {};
776
777template <typename BasicJsonType, typename CompatibleType, typename = void>
778struct is_compatible_type_impl: std::false_type {};
779
780template <typename BasicJsonType, typename CompatibleType>
781struct is_compatible_type_impl <
782 BasicJsonType, CompatibleType,
783 enable_if_t<is_complete_type<CompatibleType>::value >>
784{
785 static constexpr bool value =
786 has_to_json<BasicJsonType, CompatibleType>::value;
787};
788
789template <typename BasicJsonType, typename CompatibleType>
790struct is_compatible_type
791 : is_compatible_type_impl<BasicJsonType, CompatibleType> {};
792} // namespace detail
793} // namespace nlohmann
794
795// #include <nlohmann/detail/exceptions.hpp>
796
797
798#include <exception> // exception
799#include <stdexcept> // runtime_error
800#include <string> // to_string
801
802// #include <nlohmann/detail/input/position_t.hpp>
803
804
805#include <cstddef> // size_t
806
807namespace nlohmann
808{
809namespace detail
810{
811/// struct to capture the start position of the current token
812struct position_t
813{
814 /// the total number of characters read
815 std::size_t chars_read_total = 0;
816 /// the number of characters read in the current line
817 std::size_t chars_read_current_line = 0;
818 /// the number of lines read
819 std::size_t lines_read = 0;
820
821 /// conversion to size_t to preserve SAX interface
822 constexpr operator size_t() const
823 {
824 return chars_read_total;
825 }
826};
827
828}
829}
830
831
832namespace nlohmann
833{
834namespace detail
835{
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900836////////////////
837// exceptions //
838////////////////
839
840/*!
841@brief general exception of the @ref basic_json class
842
843This class is an extension of `std::exception` objects with a member @a id for
844exception ids. It is used as the base class for all exceptions thrown by the
845@ref basic_json class. This class can hence be used as "wildcard" to catch
846exceptions.
847
848Subclasses:
849- @ref parse_error for exceptions indicating a parse error
850- @ref invalid_iterator for exceptions indicating errors with iterators
851- @ref type_error for exceptions indicating executing a member function with
852 a wrong type
853- @ref out_of_range for exceptions indicating access out of the defined range
854- @ref other_error for exceptions indicating other library errors
855
856@internal
857@note To have nothrow-copy-constructible exceptions, we internally use
858 `std::runtime_error` which can cope with arbitrary-length error messages.
859 Intermediate strings are built with static functions and then passed to
860 the actual constructor.
861@endinternal
862
863@liveexample{The following code shows how arbitrary library exceptions can be
864caught.,exception}
865
866@since version 3.0.0
867*/
868class exception : public std::exception
869{
870 public:
871 /// returns the explanatory string
872 const char* what() const noexcept override
873 {
874 return m.what();
875 }
876
877 /// the id of the exception
878 const int id;
879
880 protected:
881 exception(int id_, const char* what_arg) : id(id_), m(what_arg) {}
882
883 static std::string name(const std::string& ename, int id_)
884 {
885 return "[json.exception." + ename + "." + std::to_string(id_) + "] ";
886 }
887
888 private:
889 /// an exception object as storage for error messages
890 std::runtime_error m;
891};
892
893/*!
894@brief exception indicating a parse error
895
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900896This exception is thrown by the library when a parse error occurs. Parse errors
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900897can occur during the deserialization of JSON text, CBOR, MessagePack, as well
898as when using JSON Patch.
899
900Member @a byte holds the byte index of the last read character in the input
901file.
902
903Exceptions have ids 1xx.
904
905name / id | example message | description
906------------------------------ | --------------- | -------------------------
907json.exception.parse_error.101 | parse error at 2: unexpected end of input; expected string literal | This error indicates a syntax error while deserializing a JSON text. The error message describes that an unexpected token (character) was encountered, and the member @a byte indicates the error position.
908json.exception.parse_error.102 | parse error at 14: missing or wrong low surrogate | JSON uses the `\uxxxx` format to describe Unicode characters. Code points above above 0xFFFF are split into two `\uxxxx` entries ("surrogate pairs"). This error indicates that the surrogate pair is incomplete or contains an invalid code point.
909json.exception.parse_error.103 | parse error: code points above 0x10FFFF are invalid | Unicode supports code points up to 0x10FFFF. Code points above 0x10FFFF are invalid.
910json.exception.parse_error.104 | parse error: JSON patch must be an array of objects | [RFC 6902](https://tools.ietf.org/html/rfc6902) requires a JSON Patch document to be a JSON document that represents an array of objects.
911json.exception.parse_error.105 | parse error: operation must have string member 'op' | An operation of a JSON Patch document must contain exactly one "op" member, whose value indicates the operation to perform. Its value must be one of "add", "remove", "replace", "move", "copy", or "test"; other values are errors.
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900912json.exception.parse_error.106 | parse error: array index '01' must not begin with '0' | An array index in a JSON Pointer ([RFC 6901](https://tools.ietf.org/html/rfc6901)) may be `0` or any number without a leading `0`.
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900913json.exception.parse_error.107 | parse error: JSON pointer must be empty or begin with '/' - was: 'foo' | A JSON Pointer must be a Unicode string containing a sequence of zero or more reference tokens, each prefixed by a `/` character.
914json.exception.parse_error.108 | parse error: escape character '~' must be followed with '0' or '1' | In a JSON Pointer, only `~0` and `~1` are valid escape sequences.
915json.exception.parse_error.109 | parse error: array index 'one' is not a number | A JSON Pointer array index must be a number.
916json.exception.parse_error.110 | parse error at 1: cannot read 2 bytes from vector | When parsing CBOR or MessagePack, the byte vector ends before the complete value has been read.
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900917json.exception.parse_error.112 | parse error at 1: error reading CBOR; last byte: 0xF8 | Not all types of CBOR or MessagePack are supported. This exception occurs if an unsupported byte was read.
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900918json.exception.parse_error.113 | parse error at 2: expected a CBOR string; last byte: 0x98 | While parsing a map key, a value that is not a string has been read.
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900919json.exception.parse_error.114 | parse error: Unsupported BSON record type 0x0F | The parsing of the corresponding BSON record type is not implemented (yet).
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900920
921@note For an input with n bytes, 1 is the index of the first character and n+1
922 is the index of the terminating null byte or the end of file. This also
923 holds true when reading a byte vector (CBOR or MessagePack).
924
925@liveexample{The following code shows how a `parse_error` exception can be
926caught.,parse_error}
927
928@sa @ref exception for the base class of the library exceptions
929@sa @ref invalid_iterator for exceptions indicating errors with iterators
930@sa @ref type_error for exceptions indicating executing a member function with
931 a wrong type
932@sa @ref out_of_range for exceptions indicating access out of the defined range
933@sa @ref other_error for exceptions indicating other library errors
934
935@since version 3.0.0
936*/
937class parse_error : public exception
938{
939 public:
940 /*!
941 @brief create a parse error exception
942 @param[in] id_ the id of the exception
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900943 @param[in] position the position where the error occurred (or with
944 chars_read_total=0 if the position cannot be
945 determined)
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900946 @param[in] what_arg the explanatory string
947 @return parse_error object
948 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900949 static parse_error create(int id_, const position_t& pos, const std::string& what_arg)
950 {
951 std::string w = exception::name("parse_error", id_) + "parse error" +
952 position_string(pos) + ": " + what_arg;
953 return parse_error(id_, pos.chars_read_total, w.c_str());
954 }
955
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900956 static parse_error create(int id_, std::size_t byte_, const std::string& what_arg)
957 {
958 std::string w = exception::name("parse_error", id_) + "parse error" +
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900959 (byte_ != 0 ? (" at byte " + std::to_string(byte_)) : "") +
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900960 ": " + what_arg;
961 return parse_error(id_, byte_, w.c_str());
962 }
963
964 /*!
965 @brief byte index of the parse error
966
967 The byte index of the last read character in the input file.
968
969 @note For an input with n bytes, 1 is the index of the first character and
970 n+1 is the index of the terminating null byte or the end of file.
971 This also holds true when reading a byte vector (CBOR or MessagePack).
972 */
973 const std::size_t byte;
974
975 private:
976 parse_error(int id_, std::size_t byte_, const char* what_arg)
977 : exception(id_, what_arg), byte(byte_) {}
Syoyo Fujitac0d02512019-02-04 16:19:13 +0900978
979 static std::string position_string(const position_t& pos)
980 {
981 return " at line " + std::to_string(pos.lines_read + 1) +
982 ", column " + std::to_string(pos.chars_read_current_line);
983 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +0900984};
985
986/*!
987@brief exception indicating errors with iterators
988
989This exception is thrown if iterators passed to a library function do not match
990the expected semantics.
991
992Exceptions have ids 2xx.
993
994name / id | example message | description
995----------------------------------- | --------------- | -------------------------
996json.exception.invalid_iterator.201 | iterators are not compatible | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
997json.exception.invalid_iterator.202 | iterator does not fit current value | In an erase or insert function, the passed iterator @a pos does not belong to the JSON value for which the function was called. It hence does not define a valid position for the deletion/insertion.
998json.exception.invalid_iterator.203 | iterators do not fit current value | Either iterator passed to function @ref erase(IteratorType first, IteratorType last) does not belong to the JSON value from which values shall be erased. It hence does not define a valid range to delete values from.
999json.exception.invalid_iterator.204 | iterators out of range | When an iterator range for a primitive type (number, boolean, or string) is passed to a constructor or an erase function, this range has to be exactly (@ref begin(), @ref end()), because this is the only way the single stored value is expressed. All other ranges are invalid.
1000json.exception.invalid_iterator.205 | iterator out of range | When an iterator for a primitive type (number, boolean, or string) is passed to an erase function, the iterator has to be the @ref begin() iterator, because it is the only way to address the stored value. All other iterators are invalid.
1001json.exception.invalid_iterator.206 | cannot construct with iterators from null | The iterators passed to constructor @ref basic_json(InputIT first, InputIT last) belong to a JSON null value and hence to not define a valid range.
1002json.exception.invalid_iterator.207 | cannot use key() for non-object iterators | The key() member function can only be used on iterators belonging to a JSON object, because other types do not have a concept of a key.
1003json.exception.invalid_iterator.208 | cannot use operator[] for object iterators | The operator[] to specify a concrete offset cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
1004json.exception.invalid_iterator.209 | cannot use offsets with object iterators | The offset operators (+, -, +=, -=) cannot be used on iterators belonging to a JSON object, because JSON objects are unordered.
1005json.exception.invalid_iterator.210 | iterators do not fit | The iterator range passed to the insert function are not compatible, meaning they do not belong to the same container. Therefore, the range (@a first, @a last) is invalid.
1006json.exception.invalid_iterator.211 | passed iterators may not belong to container | The iterator range passed to the insert function must not be a subrange of the container to insert to.
1007json.exception.invalid_iterator.212 | cannot compare iterators of different containers | When two iterators are compared, they must belong to the same container.
1008json.exception.invalid_iterator.213 | cannot compare order of object iterators | The order of object iterators cannot be compared, because JSON objects are unordered.
1009json.exception.invalid_iterator.214 | cannot get value | Cannot get value for iterator: Either the iterator belongs to a null value or it is an iterator to a primitive type (number, boolean, or string), but the iterator is different to @ref begin().
1010
1011@liveexample{The following code shows how an `invalid_iterator` exception can be
1012caught.,invalid_iterator}
1013
1014@sa @ref exception for the base class of the library exceptions
1015@sa @ref parse_error for exceptions indicating a parse error
1016@sa @ref type_error for exceptions indicating executing a member function with
1017 a wrong type
1018@sa @ref out_of_range for exceptions indicating access out of the defined range
1019@sa @ref other_error for exceptions indicating other library errors
1020
1021@since version 3.0.0
1022*/
1023class invalid_iterator : public exception
1024{
1025 public:
1026 static invalid_iterator create(int id_, const std::string& what_arg)
1027 {
1028 std::string w = exception::name("invalid_iterator", id_) + what_arg;
1029 return invalid_iterator(id_, w.c_str());
1030 }
1031
1032 private:
1033 invalid_iterator(int id_, const char* what_arg)
1034 : exception(id_, what_arg) {}
1035};
1036
1037/*!
1038@brief exception indicating executing a member function with a wrong type
1039
1040This exception is thrown in case of a type error; that is, a library function is
1041executed on a JSON value whose type does not match the expected semantics.
1042
1043Exceptions have ids 3xx.
1044
1045name / id | example message | description
1046----------------------------- | --------------- | -------------------------
1047json.exception.type_error.301 | cannot create object from initializer list | To create an object from an initializer list, the initializer list must consist only of a list of pairs whose first element is a string. When this constraint is violated, an array is created instead.
1048json.exception.type_error.302 | type must be object, but is array | During implicit or explicit value conversion, the JSON type must be compatible to the target type. For instance, a JSON string can only be converted into string types, but not into numbers or boolean types.
1049json.exception.type_error.303 | incompatible ReferenceType for get_ref, actual type is object | To retrieve a reference to a value stored in a @ref basic_json object with @ref get_ref, the type of the reference must match the value type. For instance, for a JSON array, the @a ReferenceType must be @ref array_t&.
1050json.exception.type_error.304 | cannot use at() with string | The @ref at() member functions can only be executed for certain JSON types.
1051json.exception.type_error.305 | cannot use operator[] with string | The @ref operator[] member functions can only be executed for certain JSON types.
1052json.exception.type_error.306 | cannot use value() with string | The @ref value() member functions can only be executed for certain JSON types.
1053json.exception.type_error.307 | cannot use erase() with string | The @ref erase() member functions can only be executed for certain JSON types.
1054json.exception.type_error.308 | cannot use push_back() with string | The @ref push_back() and @ref operator+= member functions can only be executed for certain JSON types.
1055json.exception.type_error.309 | cannot use insert() with | The @ref insert() member functions can only be executed for certain JSON types.
1056json.exception.type_error.310 | cannot use swap() with number | The @ref swap() member functions can only be executed for certain JSON types.
1057json.exception.type_error.311 | cannot use emplace_back() with string | The @ref emplace_back() member function can only be executed for certain JSON types.
1058json.exception.type_error.312 | cannot use update() with string | The @ref update() member functions can only be executed for certain JSON types.
1059json.exception.type_error.313 | invalid value to unflatten | The @ref unflatten function converts an object whose keys are JSON Pointers back into an arbitrary nested JSON value. The JSON Pointers must not overlap, because then the resulting value would not be well defined.
1060json.exception.type_error.314 | only objects can be unflattened | The @ref unflatten function only works for an object whose keys are JSON Pointers.
1061json.exception.type_error.315 | values in object must be primitive | The @ref unflatten function only works for an object whose keys are JSON Pointers and whose values are primitive.
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001062json.exception.type_error.316 | invalid UTF-8 byte at index 10: 0x7E | The @ref dump function only works with UTF-8 encoded strings; that is, if you assign a `std::string` to a JSON value, make sure it is UTF-8 encoded. |
1063json.exception.type_error.317 | JSON value cannot be serialized to requested format | The dynamic type of the object cannot be represented in the requested serialization format (e.g. a raw `true` or `null` JSON object cannot be serialized to BSON) |
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001064
1065@liveexample{The following code shows how a `type_error` exception can be
1066caught.,type_error}
1067
1068@sa @ref exception for the base class of the library exceptions
1069@sa @ref parse_error for exceptions indicating a parse error
1070@sa @ref invalid_iterator for exceptions indicating errors with iterators
1071@sa @ref out_of_range for exceptions indicating access out of the defined range
1072@sa @ref other_error for exceptions indicating other library errors
1073
1074@since version 3.0.0
1075*/
1076class type_error : public exception
1077{
1078 public:
1079 static type_error create(int id_, const std::string& what_arg)
1080 {
1081 std::string w = exception::name("type_error", id_) + what_arg;
1082 return type_error(id_, w.c_str());
1083 }
1084
1085 private:
1086 type_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
1087};
1088
1089/*!
1090@brief exception indicating access out of the defined range
1091
1092This exception is thrown in case a library function is called on an input
1093parameter that exceeds the expected range, for instance in case of array
1094indices or nonexisting object keys.
1095
1096Exceptions have ids 4xx.
1097
1098name / id | example message | description
1099------------------------------- | --------------- | -------------------------
1100json.exception.out_of_range.401 | array index 3 is out of range | The provided array index @a i is larger than @a size-1.
1101json.exception.out_of_range.402 | array index '-' (3) is out of range | The special array index `-` in a JSON Pointer never describes a valid element of the array, but the index past the end. That is, it can only be used to add elements at this position, but not to read it.
1102json.exception.out_of_range.403 | key 'foo' not found | The provided key was not found in the JSON object.
1103json.exception.out_of_range.404 | unresolved reference token 'foo' | A reference token in a JSON Pointer could not be resolved.
1104json.exception.out_of_range.405 | JSON pointer has no parent | The JSON Patch operations 'remove' and 'add' can not be applied to the root element of the JSON value.
1105json.exception.out_of_range.406 | number overflow parsing '10E1000' | A parsed number could not be stored as without changing it to NaN or INF.
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001106json.exception.out_of_range.407 | number overflow serializing '9223372036854775808' | UBJSON and BSON only support integer numbers up to 9223372036854775807. |
1107json.exception.out_of_range.408 | excessive array size: 8658170730974374167 | The size (following `#`) of an UBJSON array or object exceeds the maximal capacity. |
1108json.exception.out_of_range.409 | BSON key cannot contain code point U+0000 (at byte 2) | Key identifiers to be serialized to BSON cannot contain code point U+0000, since the key is stored as zero-terminated c-string |
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001109
1110@liveexample{The following code shows how an `out_of_range` exception can be
1111caught.,out_of_range}
1112
1113@sa @ref exception for the base class of the library exceptions
1114@sa @ref parse_error for exceptions indicating a parse error
1115@sa @ref invalid_iterator for exceptions indicating errors with iterators
1116@sa @ref type_error for exceptions indicating executing a member function with
1117 a wrong type
1118@sa @ref other_error for exceptions indicating other library errors
1119
1120@since version 3.0.0
1121*/
1122class out_of_range : public exception
1123{
1124 public:
1125 static out_of_range create(int id_, const std::string& what_arg)
1126 {
1127 std::string w = exception::name("out_of_range", id_) + what_arg;
1128 return out_of_range(id_, w.c_str());
1129 }
1130
1131 private:
1132 out_of_range(int id_, const char* what_arg) : exception(id_, what_arg) {}
1133};
1134
1135/*!
1136@brief exception indicating other library errors
1137
1138This exception is thrown in case of errors that cannot be classified with the
1139other exception types.
1140
1141Exceptions have ids 5xx.
1142
1143name / id | example message | description
1144------------------------------ | --------------- | -------------------------
1145json.exception.other_error.501 | unsuccessful: {"op":"test","path":"/baz", "value":"bar"} | A JSON Patch operation 'test' failed. The unsuccessful operation is also printed.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001146
1147@sa @ref exception for the base class of the library exceptions
1148@sa @ref parse_error for exceptions indicating a parse error
1149@sa @ref invalid_iterator for exceptions indicating errors with iterators
1150@sa @ref type_error for exceptions indicating executing a member function with
1151 a wrong type
1152@sa @ref out_of_range for exceptions indicating access out of the defined range
1153
1154@liveexample{The following code shows how an `other_error` exception can be
1155caught.,other_error}
1156
1157@since version 3.0.0
1158*/
1159class other_error : public exception
1160{
1161 public:
1162 static other_error create(int id_, const std::string& what_arg)
1163 {
1164 std::string w = exception::name("other_error", id_) + what_arg;
1165 return other_error(id_, w.c_str());
1166 }
1167
1168 private:
1169 other_error(int id_, const char* what_arg) : exception(id_, what_arg) {}
1170};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001171} // namespace detail
1172} // namespace nlohmann
1173
1174// #include <nlohmann/detail/value_t.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001175
1176
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001177#include <array> // array
1178#include <ciso646> // and
1179#include <cstddef> // size_t
1180#include <cstdint> // uint8_t
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001181
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001182namespace nlohmann
1183{
1184namespace detail
1185{
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001186///////////////////////////
1187// JSON type enumeration //
1188///////////////////////////
1189
1190/*!
1191@brief the JSON type enumeration
1192
1193This enumeration collects the different JSON types. It is internally used to
1194distinguish the stored values, and the functions @ref basic_json::is_null(),
1195@ref basic_json::is_object(), @ref basic_json::is_array(),
1196@ref basic_json::is_string(), @ref basic_json::is_boolean(),
1197@ref basic_json::is_number() (with @ref basic_json::is_number_integer(),
1198@ref basic_json::is_number_unsigned(), and @ref basic_json::is_number_float()),
1199@ref basic_json::is_discarded(), @ref basic_json::is_primitive(), and
1200@ref basic_json::is_structured() rely on it.
1201
1202@note There are three enumeration entries (number_integer, number_unsigned, and
1203number_float), because the library distinguishes these three types for numbers:
1204@ref basic_json::number_unsigned_t is used for unsigned integers,
1205@ref basic_json::number_integer_t is used for signed integers, and
1206@ref basic_json::number_float_t is used for floating-point numbers or to
1207approximate integers which do not fit in the limits of their respective type.
1208
1209@sa @ref basic_json::basic_json(const value_t value_type) -- create a JSON
1210value with the default value for a given type
1211
1212@since version 1.0.0
1213*/
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001214enum class value_t : std::uint8_t
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001215{
1216 null, ///< null value
1217 object, ///< object (unordered set of name/value pairs)
1218 array, ///< array (ordered collection of values)
1219 string, ///< string value
1220 boolean, ///< boolean value
1221 number_integer, ///< number value (signed integer)
1222 number_unsigned, ///< number value (unsigned integer)
1223 number_float, ///< number value (floating-point)
1224 discarded ///< discarded by the the parser callback function
1225};
1226
1227/*!
1228@brief comparison operator for JSON types
1229
1230Returns an ordering that is similar to Python:
1231- order: null < boolean < number < object < array < string
1232- furthermore, each type is not smaller than itself
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001233- discarded values are not comparable
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001234
1235@since version 1.0.0
1236*/
1237inline bool operator<(const value_t lhs, const value_t rhs) noexcept
1238{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001239 static constexpr std::array<std::uint8_t, 8> order = {{
1240 0 /* null */, 3 /* object */, 4 /* array */, 5 /* string */,
1241 1 /* boolean */, 2 /* integer */, 2 /* unsigned */, 2 /* float */
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001242 }
1243 };
1244
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001245 const auto l_index = static_cast<std::size_t>(lhs);
1246 const auto r_index = static_cast<std::size_t>(rhs);
1247 return l_index < order.size() and r_index < order.size() and order[l_index] < order[r_index];
1248}
1249} // namespace detail
1250} // namespace nlohmann
1251
1252// #include <nlohmann/detail/conversions/from_json.hpp>
1253
1254
1255#include <algorithm> // transform
1256#include <array> // array
1257#include <ciso646> // and, not
1258#include <forward_list> // forward_list
1259#include <iterator> // inserter, front_inserter, end
1260#include <map> // map
1261#include <string> // string
1262#include <tuple> // tuple, make_tuple
1263#include <type_traits> // is_arithmetic, is_same, is_enum, underlying_type, is_convertible
1264#include <unordered_map> // unordered_map
1265#include <utility> // pair, declval
1266#include <valarray> // valarray
1267
1268// #include <nlohmann/detail/exceptions.hpp>
1269
1270// #include <nlohmann/detail/macro_scope.hpp>
1271
1272// #include <nlohmann/detail/meta/cpp_future.hpp>
1273
1274// #include <nlohmann/detail/meta/type_traits.hpp>
1275
1276// #include <nlohmann/detail/value_t.hpp>
1277
1278
1279namespace nlohmann
1280{
1281namespace detail
1282{
1283template<typename BasicJsonType>
1284void from_json(const BasicJsonType& j, typename std::nullptr_t& n)
1285{
1286 if (JSON_UNLIKELY(not j.is_null()))
1287 {
1288 JSON_THROW(type_error::create(302, "type must be null, but is " + std::string(j.type_name())));
1289 }
1290 n = nullptr;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001291}
1292
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001293// overloads for basic_json template parameters
1294template<typename BasicJsonType, typename ArithmeticType,
1295 enable_if_t<std::is_arithmetic<ArithmeticType>::value and
1296 not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
1297 int> = 0>
1298void get_arithmetic_value(const BasicJsonType& j, ArithmeticType& val)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001299{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001300 switch (static_cast<value_t>(j))
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001301 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001302 case value_t::number_unsigned:
1303 {
1304 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
1305 break;
1306 }
1307 case value_t::number_integer:
1308 {
1309 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
1310 break;
1311 }
1312 case value_t::number_float:
1313 {
1314 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
1315 break;
1316 }
1317
1318 default:
1319 JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
1320 }
1321}
1322
1323template<typename BasicJsonType>
1324void from_json(const BasicJsonType& j, typename BasicJsonType::boolean_t& b)
1325{
1326 if (JSON_UNLIKELY(not j.is_boolean()))
1327 {
1328 JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(j.type_name())));
1329 }
1330 b = *j.template get_ptr<const typename BasicJsonType::boolean_t*>();
1331}
1332
1333template<typename BasicJsonType>
1334void from_json(const BasicJsonType& j, typename BasicJsonType::string_t& s)
1335{
1336 if (JSON_UNLIKELY(not j.is_string()))
1337 {
1338 JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
1339 }
1340 s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
1341}
1342
1343template <
1344 typename BasicJsonType, typename ConstructibleStringType,
1345 enable_if_t <
1346 is_constructible_string_type<BasicJsonType, ConstructibleStringType>::value and
1347 not std::is_same<typename BasicJsonType::string_t,
1348 ConstructibleStringType>::value,
1349 int > = 0 >
1350void from_json(const BasicJsonType& j, ConstructibleStringType& s)
1351{
1352 if (JSON_UNLIKELY(not j.is_string()))
1353 {
1354 JSON_THROW(type_error::create(302, "type must be string, but is " + std::string(j.type_name())));
1355 }
1356
1357 s = *j.template get_ptr<const typename BasicJsonType::string_t*>();
1358}
1359
1360template<typename BasicJsonType>
1361void from_json(const BasicJsonType& j, typename BasicJsonType::number_float_t& val)
1362{
1363 get_arithmetic_value(j, val);
1364}
1365
1366template<typename BasicJsonType>
1367void from_json(const BasicJsonType& j, typename BasicJsonType::number_unsigned_t& val)
1368{
1369 get_arithmetic_value(j, val);
1370}
1371
1372template<typename BasicJsonType>
1373void from_json(const BasicJsonType& j, typename BasicJsonType::number_integer_t& val)
1374{
1375 get_arithmetic_value(j, val);
1376}
1377
1378template<typename BasicJsonType, typename EnumType,
1379 enable_if_t<std::is_enum<EnumType>::value, int> = 0>
1380void from_json(const BasicJsonType& j, EnumType& e)
1381{
1382 typename std::underlying_type<EnumType>::type val;
1383 get_arithmetic_value(j, val);
1384 e = static_cast<EnumType>(val);
1385}
1386
1387// forward_list doesn't have an insert method
1388template<typename BasicJsonType, typename T, typename Allocator,
1389 enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
1390void from_json(const BasicJsonType& j, std::forward_list<T, Allocator>& l)
1391{
1392 if (JSON_UNLIKELY(not j.is_array()))
1393 {
1394 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
1395 }
1396 std::transform(j.rbegin(), j.rend(),
1397 std::front_inserter(l), [](const BasicJsonType & i)
1398 {
1399 return i.template get<T>();
1400 });
1401}
1402
1403// valarray doesn't have an insert method
1404template<typename BasicJsonType, typename T,
1405 enable_if_t<std::is_convertible<BasicJsonType, T>::value, int> = 0>
1406void from_json(const BasicJsonType& j, std::valarray<T>& l)
1407{
1408 if (JSON_UNLIKELY(not j.is_array()))
1409 {
1410 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
1411 }
1412 l.resize(j.size());
1413 std::copy(j.m_value.array->begin(), j.m_value.array->end(), std::begin(l));
1414}
1415
1416template<typename BasicJsonType>
1417void from_json_array_impl(const BasicJsonType& j, typename BasicJsonType::array_t& arr, priority_tag<3> /*unused*/)
1418{
1419 arr = *j.template get_ptr<const typename BasicJsonType::array_t*>();
1420}
1421
1422template <typename BasicJsonType, typename T, std::size_t N>
1423auto from_json_array_impl(const BasicJsonType& j, std::array<T, N>& arr,
1424 priority_tag<2> /*unused*/)
1425-> decltype(j.template get<T>(), void())
1426{
1427 for (std::size_t i = 0; i < N; ++i)
1428 {
1429 arr[i] = j.at(i).template get<T>();
1430 }
1431}
1432
1433template<typename BasicJsonType, typename ConstructibleArrayType>
1434auto from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr, priority_tag<1> /*unused*/)
1435-> decltype(
1436 arr.reserve(std::declval<typename ConstructibleArrayType::size_type>()),
1437 j.template get<typename ConstructibleArrayType::value_type>(),
1438 void())
1439{
1440 using std::end;
1441
1442 arr.reserve(j.size());
1443 std::transform(j.begin(), j.end(),
1444 std::inserter(arr, end(arr)), [](const BasicJsonType & i)
1445 {
1446 // get<BasicJsonType>() returns *this, this won't call a from_json
1447 // method when value_type is BasicJsonType
1448 return i.template get<typename ConstructibleArrayType::value_type>();
1449 });
1450}
1451
1452template <typename BasicJsonType, typename ConstructibleArrayType>
1453void from_json_array_impl(const BasicJsonType& j, ConstructibleArrayType& arr,
1454 priority_tag<0> /*unused*/)
1455{
1456 using std::end;
1457
1458 std::transform(
1459 j.begin(), j.end(), std::inserter(arr, end(arr)),
1460 [](const BasicJsonType & i)
1461 {
1462 // get<BasicJsonType>() returns *this, this won't call a from_json
1463 // method when value_type is BasicJsonType
1464 return i.template get<typename ConstructibleArrayType::value_type>();
1465 });
1466}
1467
1468template <typename BasicJsonType, typename ConstructibleArrayType,
1469 enable_if_t <
1470 is_constructible_array_type<BasicJsonType, ConstructibleArrayType>::value and
1471 not is_constructible_object_type<BasicJsonType, ConstructibleArrayType>::value and
1472 not is_constructible_string_type<BasicJsonType, ConstructibleArrayType>::value and
1473 not is_basic_json<ConstructibleArrayType>::value,
1474 int > = 0 >
1475
1476auto from_json(const BasicJsonType& j, ConstructibleArrayType& arr)
1477-> decltype(from_json_array_impl(j, arr, priority_tag<3> {}),
1478j.template get<typename ConstructibleArrayType::value_type>(),
1479void())
1480{
1481 if (JSON_UNLIKELY(not j.is_array()))
1482 {
1483 JSON_THROW(type_error::create(302, "type must be array, but is " +
1484 std::string(j.type_name())));
1485 }
1486
1487 from_json_array_impl(j, arr, priority_tag<3> {});
1488}
1489
1490template<typename BasicJsonType, typename ConstructibleObjectType,
1491 enable_if_t<is_constructible_object_type<BasicJsonType, ConstructibleObjectType>::value, int> = 0>
1492void from_json(const BasicJsonType& j, ConstructibleObjectType& obj)
1493{
1494 if (JSON_UNLIKELY(not j.is_object()))
1495 {
1496 JSON_THROW(type_error::create(302, "type must be object, but is " + std::string(j.type_name())));
1497 }
1498
1499 auto inner_object = j.template get_ptr<const typename BasicJsonType::object_t*>();
1500 using value_type = typename ConstructibleObjectType::value_type;
1501 std::transform(
1502 inner_object->begin(), inner_object->end(),
1503 std::inserter(obj, obj.begin()),
1504 [](typename BasicJsonType::object_t::value_type const & p)
1505 {
1506 return value_type(p.first, p.second.template get<typename ConstructibleObjectType::mapped_type>());
1507 });
1508}
1509
1510// overload for arithmetic types, not chosen for basic_json template arguments
1511// (BooleanType, etc..); note: Is it really necessary to provide explicit
1512// overloads for boolean_t etc. in case of a custom BooleanType which is not
1513// an arithmetic type?
1514template<typename BasicJsonType, typename ArithmeticType,
1515 enable_if_t <
1516 std::is_arithmetic<ArithmeticType>::value and
1517 not std::is_same<ArithmeticType, typename BasicJsonType::number_unsigned_t>::value and
1518 not std::is_same<ArithmeticType, typename BasicJsonType::number_integer_t>::value and
1519 not std::is_same<ArithmeticType, typename BasicJsonType::number_float_t>::value and
1520 not std::is_same<ArithmeticType, typename BasicJsonType::boolean_t>::value,
1521 int> = 0>
1522void from_json(const BasicJsonType& j, ArithmeticType& val)
1523{
1524 switch (static_cast<value_t>(j))
1525 {
1526 case value_t::number_unsigned:
1527 {
1528 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_unsigned_t*>());
1529 break;
1530 }
1531 case value_t::number_integer:
1532 {
1533 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_integer_t*>());
1534 break;
1535 }
1536 case value_t::number_float:
1537 {
1538 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::number_float_t*>());
1539 break;
1540 }
1541 case value_t::boolean:
1542 {
1543 val = static_cast<ArithmeticType>(*j.template get_ptr<const typename BasicJsonType::boolean_t*>());
1544 break;
1545 }
1546
1547 default:
1548 JSON_THROW(type_error::create(302, "type must be number, but is " + std::string(j.type_name())));
1549 }
1550}
1551
1552template<typename BasicJsonType, typename A1, typename A2>
1553void from_json(const BasicJsonType& j, std::pair<A1, A2>& p)
1554{
1555 p = {j.at(0).template get<A1>(), j.at(1).template get<A2>()};
1556}
1557
1558template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
1559void from_json_tuple_impl(const BasicJsonType& j, Tuple& t, index_sequence<Idx...> /*unused*/)
1560{
1561 t = std::make_tuple(j.at(Idx).template get<typename std::tuple_element<Idx, Tuple>::type>()...);
1562}
1563
1564template<typename BasicJsonType, typename... Args>
1565void from_json(const BasicJsonType& j, std::tuple<Args...>& t)
1566{
1567 from_json_tuple_impl(j, t, index_sequence_for<Args...> {});
1568}
1569
1570template <typename BasicJsonType, typename Key, typename Value, typename Compare, typename Allocator,
1571 typename = enable_if_t<not std::is_constructible<
1572 typename BasicJsonType::string_t, Key>::value>>
1573void from_json(const BasicJsonType& j, std::map<Key, Value, Compare, Allocator>& m)
1574{
1575 if (JSON_UNLIKELY(not j.is_array()))
1576 {
1577 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
1578 }
1579 for (const auto& p : j)
1580 {
1581 if (JSON_UNLIKELY(not p.is_array()))
1582 {
1583 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
1584 }
1585 m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
1586 }
1587}
1588
1589template <typename BasicJsonType, typename Key, typename Value, typename Hash, typename KeyEqual, typename Allocator,
1590 typename = enable_if_t<not std::is_constructible<
1591 typename BasicJsonType::string_t, Key>::value>>
1592void from_json(const BasicJsonType& j, std::unordered_map<Key, Value, Hash, KeyEqual, Allocator>& m)
1593{
1594 if (JSON_UNLIKELY(not j.is_array()))
1595 {
1596 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(j.type_name())));
1597 }
1598 for (const auto& p : j)
1599 {
1600 if (JSON_UNLIKELY(not p.is_array()))
1601 {
1602 JSON_THROW(type_error::create(302, "type must be array, but is " + std::string(p.type_name())));
1603 }
1604 m.emplace(p.at(0).template get<Key>(), p.at(1).template get<Value>());
1605 }
1606}
1607
1608struct from_json_fn
1609{
1610 template<typename BasicJsonType, typename T>
1611 auto operator()(const BasicJsonType& j, T& val) const
1612 noexcept(noexcept(from_json(j, val)))
1613 -> decltype(from_json(j, val), void())
1614 {
1615 return from_json(j, val);
1616 }
1617};
1618} // namespace detail
1619
1620/// namespace to hold default `from_json` function
1621/// to see why this is required:
1622/// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4381.html
1623namespace
1624{
1625constexpr const auto& from_json = detail::static_const<detail::from_json_fn>::value;
1626} // namespace
1627} // namespace nlohmann
1628
1629// #include <nlohmann/detail/conversions/to_json.hpp>
1630
1631
1632#include <ciso646> // or, and, not
1633#include <iterator> // begin, end
1634#include <tuple> // tuple, get
1635#include <type_traits> // is_same, is_constructible, is_floating_point, is_enum, underlying_type
1636#include <utility> // move, forward, declval, pair
1637#include <valarray> // valarray
1638#include <vector> // vector
1639
1640// #include <nlohmann/detail/meta/cpp_future.hpp>
1641
1642// #include <nlohmann/detail/meta/type_traits.hpp>
1643
1644// #include <nlohmann/detail/value_t.hpp>
1645
1646// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
1647
1648
1649#include <cstddef> // size_t
1650#include <string> // string, to_string
1651#include <iterator> // input_iterator_tag
1652#include <tuple> // tuple_size, get, tuple_element
1653
1654// #include <nlohmann/detail/value_t.hpp>
1655
1656// #include <nlohmann/detail/meta/type_traits.hpp>
1657
1658
1659namespace nlohmann
1660{
1661namespace detail
1662{
1663template <typename IteratorType> class iteration_proxy_value
1664{
1665 public:
1666 using difference_type = std::ptrdiff_t;
1667 using value_type = iteration_proxy_value;
1668 using pointer = value_type * ;
1669 using reference = value_type & ;
1670 using iterator_category = std::input_iterator_tag;
1671
1672 private:
1673 /// the iterator
1674 IteratorType anchor;
1675 /// an index for arrays (used to create key names)
1676 std::size_t array_index = 0;
1677 /// last stringified array index
1678 mutable std::size_t array_index_last = 0;
1679 /// a string representation of the array index
1680 mutable std::string array_index_str = "0";
1681 /// an empty string (to return a reference for primitive values)
1682 const std::string empty_str = "";
1683
1684 public:
1685 explicit iteration_proxy_value(IteratorType it) noexcept : anchor(it) {}
1686
1687 /// dereference operator (needed for range-based for)
1688 iteration_proxy_value& operator*()
1689 {
1690 return *this;
1691 }
1692
1693 /// increment operator (needed for range-based for)
1694 iteration_proxy_value& operator++()
1695 {
1696 ++anchor;
1697 ++array_index;
1698
1699 return *this;
1700 }
1701
1702 /// equality operator (needed for InputIterator)
1703 bool operator==(const iteration_proxy_value& o) const noexcept
1704 {
1705 return anchor == o.anchor;
1706 }
1707
1708 /// inequality operator (needed for range-based for)
1709 bool operator!=(const iteration_proxy_value& o) const noexcept
1710 {
1711 return anchor != o.anchor;
1712 }
1713
1714 /// return key of the iterator
1715 const std::string& key() const
1716 {
1717 assert(anchor.m_object != nullptr);
1718
1719 switch (anchor.m_object->type())
1720 {
1721 // use integer array index as key
1722 case value_t::array:
1723 {
1724 if (array_index != array_index_last)
1725 {
1726 array_index_str = std::to_string(array_index);
1727 array_index_last = array_index;
1728 }
1729 return array_index_str;
1730 }
1731
1732 // use key from the object
1733 case value_t::object:
1734 return anchor.key();
1735
1736 // use an empty key for all primitive types
1737 default:
1738 return empty_str;
1739 }
1740 }
1741
1742 /// return value of the iterator
1743 typename IteratorType::reference value() const
1744 {
1745 return anchor.value();
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001746 }
1747};
1748
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001749/// proxy class for the items() function
1750template<typename IteratorType> class iteration_proxy
1751{
1752 private:
1753 /// the container to iterate
1754 typename IteratorType::reference container;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001755
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001756 public:
1757 /// construct iteration proxy from a container
1758 explicit iteration_proxy(typename IteratorType::reference cont) noexcept
1759 : container(cont) {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001760
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001761 /// return iterator begin (needed for range-based for)
1762 iteration_proxy_value<IteratorType> begin() noexcept
1763 {
1764 return iteration_proxy_value<IteratorType>(container.begin());
1765 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001766
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001767 /// return iterator end (needed for range-based for)
1768 iteration_proxy_value<IteratorType> end() noexcept
1769 {
1770 return iteration_proxy_value<IteratorType>(container.end());
1771 }
1772};
1773// Structured Bindings Support
1774// For further reference see https://blog.tartanllama.xyz/structured-bindings/
1775// And see https://github.com/nlohmann/json/pull/1391
1776template <std::size_t N, typename IteratorType, enable_if_t<N == 0, int> = 0>
1777auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.key())
1778{
1779 return i.key();
1780}
1781// Structured Bindings Support
1782// For further reference see https://blog.tartanllama.xyz/structured-bindings/
1783// And see https://github.com/nlohmann/json/pull/1391
1784template <std::size_t N, typename IteratorType, enable_if_t<N == 1, int> = 0>
1785auto get(const nlohmann::detail::iteration_proxy_value<IteratorType>& i) -> decltype(i.value())
1786{
1787 return i.value();
1788}
1789} // namespace detail
1790} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001791
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001792// The Addition to the STD Namespace is required to add
1793// Structured Bindings Support to the iteration_proxy_value class
1794// For further reference see https://blog.tartanllama.xyz/structured-bindings/
1795// And see https://github.com/nlohmann/json/pull/1391
1796namespace std
1797{
1798template <typename IteratorType>
1799class tuple_size<::nlohmann::detail::iteration_proxy_value<IteratorType>>
1800 : public std::integral_constant<std::size_t, 2> {};
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001801
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001802template <std::size_t N, typename IteratorType>
1803class tuple_element<N, ::nlohmann::detail::iteration_proxy_value<IteratorType >>
1804{
1805 public:
1806 using type = decltype(
1807 get<N>(std::declval <
1808 ::nlohmann::detail::iteration_proxy_value<IteratorType >> ()));
1809};
1810}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001811
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001812namespace nlohmann
1813{
1814namespace detail
1815{
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001816//////////////////
1817// constructors //
1818//////////////////
1819
1820template<value_t> struct external_constructor;
1821
1822template<>
1823struct external_constructor<value_t::boolean>
1824{
1825 template<typename BasicJsonType>
1826 static void construct(BasicJsonType& j, typename BasicJsonType::boolean_t b) noexcept
1827 {
1828 j.m_type = value_t::boolean;
1829 j.m_value = b;
1830 j.assert_invariant();
1831 }
1832};
1833
1834template<>
1835struct external_constructor<value_t::string>
1836{
1837 template<typename BasicJsonType>
1838 static void construct(BasicJsonType& j, const typename BasicJsonType::string_t& s)
1839 {
1840 j.m_type = value_t::string;
1841 j.m_value = s;
1842 j.assert_invariant();
1843 }
1844
1845 template<typename BasicJsonType>
1846 static void construct(BasicJsonType& j, typename BasicJsonType::string_t&& s)
1847 {
1848 j.m_type = value_t::string;
1849 j.m_value = std::move(s);
1850 j.assert_invariant();
1851 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001852
1853 template<typename BasicJsonType, typename CompatibleStringType,
1854 enable_if_t<not std::is_same<CompatibleStringType, typename BasicJsonType::string_t>::value,
1855 int> = 0>
1856 static void construct(BasicJsonType& j, const CompatibleStringType& str)
1857 {
1858 j.m_type = value_t::string;
1859 j.m_value.string = j.template create<typename BasicJsonType::string_t>(str);
1860 j.assert_invariant();
1861 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001862};
1863
1864template<>
1865struct external_constructor<value_t::number_float>
1866{
1867 template<typename BasicJsonType>
1868 static void construct(BasicJsonType& j, typename BasicJsonType::number_float_t val) noexcept
1869 {
1870 j.m_type = value_t::number_float;
1871 j.m_value = val;
1872 j.assert_invariant();
1873 }
1874};
1875
1876template<>
1877struct external_constructor<value_t::number_unsigned>
1878{
1879 template<typename BasicJsonType>
1880 static void construct(BasicJsonType& j, typename BasicJsonType::number_unsigned_t val) noexcept
1881 {
1882 j.m_type = value_t::number_unsigned;
1883 j.m_value = val;
1884 j.assert_invariant();
1885 }
1886};
1887
1888template<>
1889struct external_constructor<value_t::number_integer>
1890{
1891 template<typename BasicJsonType>
1892 static void construct(BasicJsonType& j, typename BasicJsonType::number_integer_t val) noexcept
1893 {
1894 j.m_type = value_t::number_integer;
1895 j.m_value = val;
1896 j.assert_invariant();
1897 }
1898};
1899
1900template<>
1901struct external_constructor<value_t::array>
1902{
1903 template<typename BasicJsonType>
1904 static void construct(BasicJsonType& j, const typename BasicJsonType::array_t& arr)
1905 {
1906 j.m_type = value_t::array;
1907 j.m_value = arr;
1908 j.assert_invariant();
1909 }
1910
1911 template<typename BasicJsonType>
1912 static void construct(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
1913 {
1914 j.m_type = value_t::array;
1915 j.m_value = std::move(arr);
1916 j.assert_invariant();
1917 }
1918
1919 template<typename BasicJsonType, typename CompatibleArrayType,
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001920 enable_if_t<not std::is_same<CompatibleArrayType, typename BasicJsonType::array_t>::value,
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001921 int> = 0>
1922 static void construct(BasicJsonType& j, const CompatibleArrayType& arr)
1923 {
1924 using std::begin;
1925 using std::end;
1926 j.m_type = value_t::array;
1927 j.m_value.array = j.template create<typename BasicJsonType::array_t>(begin(arr), end(arr));
1928 j.assert_invariant();
1929 }
1930
1931 template<typename BasicJsonType>
1932 static void construct(BasicJsonType& j, const std::vector<bool>& arr)
1933 {
1934 j.m_type = value_t::array;
1935 j.m_value = value_t::array;
1936 j.m_value.array->reserve(arr.size());
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001937 for (const bool x : arr)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001938 {
1939 j.m_value.array->push_back(x);
1940 }
1941 j.assert_invariant();
1942 }
1943
1944 template<typename BasicJsonType, typename T,
1945 enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
1946 static void construct(BasicJsonType& j, const std::valarray<T>& arr)
1947 {
1948 j.m_type = value_t::array;
1949 j.m_value = value_t::array;
1950 j.m_value.array->resize(arr.size());
1951 std::copy(std::begin(arr), std::end(arr), j.m_value.array->begin());
1952 j.assert_invariant();
1953 }
1954};
1955
1956template<>
1957struct external_constructor<value_t::object>
1958{
1959 template<typename BasicJsonType>
1960 static void construct(BasicJsonType& j, const typename BasicJsonType::object_t& obj)
1961 {
1962 j.m_type = value_t::object;
1963 j.m_value = obj;
1964 j.assert_invariant();
1965 }
1966
1967 template<typename BasicJsonType>
1968 static void construct(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
1969 {
1970 j.m_type = value_t::object;
1971 j.m_value = std::move(obj);
1972 j.assert_invariant();
1973 }
1974
1975 template<typename BasicJsonType, typename CompatibleObjectType,
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001976 enable_if_t<not std::is_same<CompatibleObjectType, typename BasicJsonType::object_t>::value, int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001977 static void construct(BasicJsonType& j, const CompatibleObjectType& obj)
1978 {
1979 using std::begin;
1980 using std::end;
1981
1982 j.m_type = value_t::object;
1983 j.m_value.object = j.template create<typename BasicJsonType::object_t>(begin(obj), end(obj));
1984 j.assert_invariant();
1985 }
1986};
1987
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001988/////////////
1989// to_json //
1990/////////////
1991
Syoyo Fujitac0d02512019-02-04 16:19:13 +09001992template<typename BasicJsonType, typename T,
1993 enable_if_t<std::is_same<T, typename BasicJsonType::boolean_t>::value, int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09001994void to_json(BasicJsonType& j, T b) noexcept
1995{
1996 external_constructor<value_t::boolean>::construct(j, b);
1997}
1998
1999template<typename BasicJsonType, typename CompatibleString,
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002000 enable_if_t<std::is_constructible<typename BasicJsonType::string_t, CompatibleString>::value, int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002001void to_json(BasicJsonType& j, const CompatibleString& s)
2002{
2003 external_constructor<value_t::string>::construct(j, s);
2004}
2005
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002006template<typename BasicJsonType>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002007void to_json(BasicJsonType& j, typename BasicJsonType::string_t&& s)
2008{
2009 external_constructor<value_t::string>::construct(j, std::move(s));
2010}
2011
2012template<typename BasicJsonType, typename FloatType,
2013 enable_if_t<std::is_floating_point<FloatType>::value, int> = 0>
2014void to_json(BasicJsonType& j, FloatType val) noexcept
2015{
2016 external_constructor<value_t::number_float>::construct(j, static_cast<typename BasicJsonType::number_float_t>(val));
2017}
2018
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002019template<typename BasicJsonType, typename CompatibleNumberUnsignedType,
2020 enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_unsigned_t, CompatibleNumberUnsignedType>::value, int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002021void to_json(BasicJsonType& j, CompatibleNumberUnsignedType val) noexcept
2022{
2023 external_constructor<value_t::number_unsigned>::construct(j, static_cast<typename BasicJsonType::number_unsigned_t>(val));
2024}
2025
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002026template<typename BasicJsonType, typename CompatibleNumberIntegerType,
2027 enable_if_t<is_compatible_integer_type<typename BasicJsonType::number_integer_t, CompatibleNumberIntegerType>::value, int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002028void to_json(BasicJsonType& j, CompatibleNumberIntegerType val) noexcept
2029{
2030 external_constructor<value_t::number_integer>::construct(j, static_cast<typename BasicJsonType::number_integer_t>(val));
2031}
2032
2033template<typename BasicJsonType, typename EnumType,
2034 enable_if_t<std::is_enum<EnumType>::value, int> = 0>
2035void to_json(BasicJsonType& j, EnumType e) noexcept
2036{
2037 using underlying_type = typename std::underlying_type<EnumType>::type;
2038 external_constructor<value_t::number_integer>::construct(j, static_cast<underlying_type>(e));
2039}
2040
2041template<typename BasicJsonType>
2042void to_json(BasicJsonType& j, const std::vector<bool>& e)
2043{
2044 external_constructor<value_t::array>::construct(j, e);
2045}
2046
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002047template <typename BasicJsonType, typename CompatibleArrayType,
2048 enable_if_t<is_compatible_array_type<BasicJsonType,
2049 CompatibleArrayType>::value and
2050 not is_compatible_object_type<
2051 BasicJsonType, CompatibleArrayType>::value and
2052 not is_compatible_string_type<BasicJsonType, CompatibleArrayType>::value and
2053 not is_basic_json<CompatibleArrayType>::value,
2054 int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002055void to_json(BasicJsonType& j, const CompatibleArrayType& arr)
2056{
2057 external_constructor<value_t::array>::construct(j, arr);
2058}
2059
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002060template<typename BasicJsonType, typename T,
2061 enable_if_t<std::is_convertible<T, BasicJsonType>::value, int> = 0>
2062void to_json(BasicJsonType& j, const std::valarray<T>& arr)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002063{
2064 external_constructor<value_t::array>::construct(j, std::move(arr));
2065}
2066
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002067template<typename BasicJsonType>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002068void to_json(BasicJsonType& j, typename BasicJsonType::array_t&& arr)
2069{
2070 external_constructor<value_t::array>::construct(j, std::move(arr));
2071}
2072
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002073template<typename BasicJsonType, typename CompatibleObjectType,
2074 enable_if_t<is_compatible_object_type<BasicJsonType, CompatibleObjectType>::value and not is_basic_json<CompatibleObjectType>::value, int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002075void to_json(BasicJsonType& j, const CompatibleObjectType& obj)
2076{
2077 external_constructor<value_t::object>::construct(j, obj);
2078}
2079
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002080template<typename BasicJsonType>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002081void to_json(BasicJsonType& j, typename BasicJsonType::object_t&& obj)
2082{
2083 external_constructor<value_t::object>::construct(j, std::move(obj));
2084}
2085
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002086template <
2087 typename BasicJsonType, typename T, std::size_t N,
2088 enable_if_t<not std::is_constructible<typename BasicJsonType::string_t,
2089 const T(&)[N]>::value,
2090 int> = 0 >
2091void to_json(BasicJsonType& j, const T(&arr)[N])
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002092{
2093 external_constructor<value_t::array>::construct(j, arr);
2094}
2095
2096template<typename BasicJsonType, typename... Args>
2097void to_json(BasicJsonType& j, const std::pair<Args...>& p)
2098{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002099 j = { p.first, p.second };
2100}
2101
2102// for https://github.com/nlohmann/json/pull/1134
2103template < typename BasicJsonType, typename T,
2104 enable_if_t<std::is_same<T, iteration_proxy_value<typename BasicJsonType::iterator>>::value, int> = 0>
2105void to_json(BasicJsonType& j, const T& b)
2106{
2107 j = { {b.key(), b.value()} };
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002108}
2109
2110template<typename BasicJsonType, typename Tuple, std::size_t... Idx>
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002111void to_json_tuple_impl(BasicJsonType& j, const Tuple& t, index_sequence<Idx...> /*unused*/)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002112{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002113 j = { std::get<Idx>(t)... };
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002114}
2115
2116template<typename BasicJsonType, typename... Args>
2117void to_json(BasicJsonType& j, const std::tuple<Args...>& t)
2118{
2119 to_json_tuple_impl(j, t, index_sequence_for<Args...> {});
2120}
2121
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002122struct to_json_fn
2123{
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002124 template<typename BasicJsonType, typename T>
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002125 auto operator()(BasicJsonType& j, T&& val) const noexcept(noexcept(to_json(j, std::forward<T>(val))))
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002126 -> decltype(to_json(j, std::forward<T>(val)), void())
2127 {
2128 return to_json(j, std::forward<T>(val));
2129 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002130};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002131} // namespace detail
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002132
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002133/// namespace to hold default `to_json` function
2134namespace
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002135{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002136constexpr const auto& to_json = detail::static_const<detail::to_json_fn>::value;
2137} // namespace
2138} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002139
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002140// #include <nlohmann/detail/input/input_adapters.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002141
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002142
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002143#include <cassert> // assert
2144#include <cstddef> // size_t
2145#include <cstring> // strlen
2146#include <istream> // istream
2147#include <iterator> // begin, end, iterator_traits, random_access_iterator_tag, distance, next
2148#include <memory> // shared_ptr, make_shared, addressof
2149#include <numeric> // accumulate
2150#include <string> // string, char_traits
2151#include <type_traits> // enable_if, is_base_of, is_pointer, is_integral, remove_pointer
2152#include <utility> // pair, declval
2153#include <cstdio> //FILE *
2154
2155// #include <nlohmann/detail/macro_scope.hpp>
2156
2157
2158namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002159{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002160namespace detail
2161{
2162/// the supported input formats
2163enum class input_format_t { json, cbor, msgpack, ubjson, bson };
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002164
2165////////////////////
2166// input adapters //
2167////////////////////
2168
2169/*!
2170@brief abstract input adapter interface
2171
2172Produces a stream of std::char_traits<char>::int_type characters from a
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002173std::istream, a buffer, or some other input type. Accepts the return of
2174exactly one non-EOF character for future input. The int_type characters
2175returned consist of all valid char values as positive values (typically
2176unsigned char), plus an EOF value outside that range, specified by the value
2177of the function std::char_traits<char>::eof(). This value is typically -1, but
2178could be any arbitrary value which is not a valid char value.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002179*/
2180struct input_adapter_protocol
2181{
2182 /// get a character [0,255] or std::char_traits<char>::eof().
2183 virtual std::char_traits<char>::int_type get_character() = 0;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002184 virtual ~input_adapter_protocol() = default;
2185};
2186
2187/// a type to simplify interfaces
2188using input_adapter_t = std::shared_ptr<input_adapter_protocol>;
2189
2190/*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002191Input adapter for stdio file access. This adapter read only 1 byte and do not use any
2192 buffer. This adapter is a very low level adapter.
2193*/
2194class file_input_adapter : public input_adapter_protocol
2195{
2196 public:
2197 explicit file_input_adapter(std::FILE* f) noexcept
2198 : m_file(f)
2199 {}
2200
2201 std::char_traits<char>::int_type get_character() noexcept override
2202 {
2203 return std::fgetc(m_file);
2204 }
2205 private:
2206 /// the file pointer to read from
2207 std::FILE* m_file;
2208};
2209
2210
2211/*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002212Input adapter for a (caching) istream. Ignores a UFT Byte Order Mark at
2213beginning of input. Does not support changing the underlying std::streambuf
2214in mid-input. Maintains underlying std::istream and std::streambuf to support
2215subsequent use of standard std::istream operations to process any input
2216characters following those used in parsing the JSON input. Clears the
2217std::istream flags; any input errors (e.g., EOF) will be detected by the first
2218subsequent call for input from the std::istream.
2219*/
2220class input_stream_adapter : public input_adapter_protocol
2221{
2222 public:
2223 ~input_stream_adapter() override
2224 {
2225 // clear stream flags; we use underlying streambuf I/O, do not
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002226 // maintain ifstream flags, except eof
2227 is.clear(is.rdstate() & std::ios::eofbit);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002228 }
2229
2230 explicit input_stream_adapter(std::istream& i)
2231 : is(i), sb(*i.rdbuf())
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002232 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002233
2234 // delete because of pointer members
2235 input_stream_adapter(const input_stream_adapter&) = delete;
2236 input_stream_adapter& operator=(input_stream_adapter&) = delete;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002237 input_stream_adapter(input_stream_adapter&&) = delete;
2238 input_stream_adapter& operator=(input_stream_adapter&&) = delete;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002239
2240 // std::istream/std::streambuf use std::char_traits<char>::to_int_type, to
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002241 // ensure that std::char_traits<char>::eof() and the character 0xFF do not
2242 // end up as the same value, eg. 0xFFFFFFFF.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002243 std::char_traits<char>::int_type get_character() override
2244 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002245 auto res = sb.sbumpc();
2246 // set eof manually, as we don't use the istream interface.
2247 if (res == EOF)
2248 {
2249 is.clear(is.rdstate() | std::ios::eofbit);
2250 }
2251 return res;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002252 }
2253
2254 private:
2255 /// the associated input stream
2256 std::istream& is;
2257 std::streambuf& sb;
2258};
2259
2260/// input adapter for buffer input
2261class input_buffer_adapter : public input_adapter_protocol
2262{
2263 public:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002264 input_buffer_adapter(const char* b, const std::size_t l) noexcept
2265 : cursor(b), limit(b + l)
2266 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002267
2268 // delete because of pointer members
2269 input_buffer_adapter(const input_buffer_adapter&) = delete;
2270 input_buffer_adapter& operator=(input_buffer_adapter&) = delete;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002271 input_buffer_adapter(input_buffer_adapter&&) = delete;
2272 input_buffer_adapter& operator=(input_buffer_adapter&&) = delete;
2273 ~input_buffer_adapter() override = default;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002274
2275 std::char_traits<char>::int_type get_character() noexcept override
2276 {
2277 if (JSON_LIKELY(cursor < limit))
2278 {
2279 return std::char_traits<char>::to_int_type(*(cursor++));
2280 }
2281
2282 return std::char_traits<char>::eof();
2283 }
2284
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002285 private:
2286 /// pointer to the current character
2287 const char* cursor;
2288 /// pointer past the last character
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002289 const char* const limit;
2290};
2291
2292template<typename WideStringType, size_t T>
2293struct wide_string_input_helper
2294{
2295 // UTF-32
2296 static void fill_buffer(const WideStringType& str, size_t& current_wchar, std::array<std::char_traits<char>::int_type, 4>& utf8_bytes, size_t& utf8_bytes_index, size_t& utf8_bytes_filled)
2297 {
2298 utf8_bytes_index = 0;
2299
2300 if (current_wchar == str.size())
2301 {
2302 utf8_bytes[0] = std::char_traits<char>::eof();
2303 utf8_bytes_filled = 1;
2304 }
2305 else
2306 {
2307 // get the current character
2308 const auto wc = static_cast<int>(str[current_wchar++]);
2309
2310 // UTF-32 to UTF-8 encoding
2311 if (wc < 0x80)
2312 {
2313 utf8_bytes[0] = wc;
2314 utf8_bytes_filled = 1;
2315 }
2316 else if (wc <= 0x7FF)
2317 {
2318 utf8_bytes[0] = 0xC0 | ((wc >> 6) & 0x1F);
2319 utf8_bytes[1] = 0x80 | (wc & 0x3F);
2320 utf8_bytes_filled = 2;
2321 }
2322 else if (wc <= 0xFFFF)
2323 {
2324 utf8_bytes[0] = 0xE0 | ((wc >> 12) & 0x0F);
2325 utf8_bytes[1] = 0x80 | ((wc >> 6) & 0x3F);
2326 utf8_bytes[2] = 0x80 | (wc & 0x3F);
2327 utf8_bytes_filled = 3;
2328 }
2329 else if (wc <= 0x10FFFF)
2330 {
2331 utf8_bytes[0] = 0xF0 | ((wc >> 18) & 0x07);
2332 utf8_bytes[1] = 0x80 | ((wc >> 12) & 0x3F);
2333 utf8_bytes[2] = 0x80 | ((wc >> 6) & 0x3F);
2334 utf8_bytes[3] = 0x80 | (wc & 0x3F);
2335 utf8_bytes_filled = 4;
2336 }
2337 else
2338 {
2339 // unknown character
2340 utf8_bytes[0] = wc;
2341 utf8_bytes_filled = 1;
2342 }
2343 }
2344 }
2345};
2346
2347template<typename WideStringType>
2348struct wide_string_input_helper<WideStringType, 2>
2349{
2350 // UTF-16
2351 static void fill_buffer(const WideStringType& str, size_t& current_wchar, std::array<std::char_traits<char>::int_type, 4>& utf8_bytes, size_t& utf8_bytes_index, size_t& utf8_bytes_filled)
2352 {
2353 utf8_bytes_index = 0;
2354
2355 if (current_wchar == str.size())
2356 {
2357 utf8_bytes[0] = std::char_traits<char>::eof();
2358 utf8_bytes_filled = 1;
2359 }
2360 else
2361 {
2362 // get the current character
2363 const auto wc = static_cast<int>(str[current_wchar++]);
2364
2365 // UTF-16 to UTF-8 encoding
2366 if (wc < 0x80)
2367 {
2368 utf8_bytes[0] = wc;
2369 utf8_bytes_filled = 1;
2370 }
2371 else if (wc <= 0x7FF)
2372 {
2373 utf8_bytes[0] = 0xC0 | ((wc >> 6));
2374 utf8_bytes[1] = 0x80 | (wc & 0x3F);
2375 utf8_bytes_filled = 2;
2376 }
2377 else if (0xD800 > wc or wc >= 0xE000)
2378 {
2379 utf8_bytes[0] = 0xE0 | ((wc >> 12));
2380 utf8_bytes[1] = 0x80 | ((wc >> 6) & 0x3F);
2381 utf8_bytes[2] = 0x80 | (wc & 0x3F);
2382 utf8_bytes_filled = 3;
2383 }
2384 else
2385 {
2386 if (current_wchar < str.size())
2387 {
2388 const auto wc2 = static_cast<int>(str[current_wchar++]);
2389 const int charcode = 0x10000 + (((wc & 0x3FF) << 10) | (wc2 & 0x3FF));
2390 utf8_bytes[0] = 0xf0 | (charcode >> 18);
2391 utf8_bytes[1] = 0x80 | ((charcode >> 12) & 0x3F);
2392 utf8_bytes[2] = 0x80 | ((charcode >> 6) & 0x3F);
2393 utf8_bytes[3] = 0x80 | (charcode & 0x3F);
2394 utf8_bytes_filled = 4;
2395 }
2396 else
2397 {
2398 // unknown character
2399 ++current_wchar;
2400 utf8_bytes[0] = wc;
2401 utf8_bytes_filled = 1;
2402 }
2403 }
2404 }
2405 }
2406};
2407
2408template<typename WideStringType>
2409class wide_string_input_adapter : public input_adapter_protocol
2410{
2411 public:
2412 explicit wide_string_input_adapter(const WideStringType& w) noexcept
2413 : str(w)
2414 {}
2415
2416 std::char_traits<char>::int_type get_character() noexcept override
2417 {
2418 // check if buffer needs to be filled
2419 if (utf8_bytes_index == utf8_bytes_filled)
2420 {
2421 fill_buffer<sizeof(typename WideStringType::value_type)>();
2422
2423 assert(utf8_bytes_filled > 0);
2424 assert(utf8_bytes_index == 0);
2425 }
2426
2427 // use buffer
2428 assert(utf8_bytes_filled > 0);
2429 assert(utf8_bytes_index < utf8_bytes_filled);
2430 return utf8_bytes[utf8_bytes_index++];
2431 }
2432
2433 private:
2434 template<size_t T>
2435 void fill_buffer()
2436 {
2437 wide_string_input_helper<WideStringType, T>::fill_buffer(str, current_wchar, utf8_bytes, utf8_bytes_index, utf8_bytes_filled);
2438 }
2439
2440 /// the wstring to process
2441 const WideStringType& str;
2442
2443 /// index of the current wchar in str
2444 std::size_t current_wchar = 0;
2445
2446 /// a buffer for UTF-8 bytes
2447 std::array<std::char_traits<char>::int_type, 4> utf8_bytes = {{0, 0, 0, 0}};
2448
2449 /// index to the utf8_codes array for the next valid byte
2450 std::size_t utf8_bytes_index = 0;
2451 /// number of valid bytes in the utf8_codes array
2452 std::size_t utf8_bytes_filled = 0;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002453};
2454
2455class input_adapter
2456{
2457 public:
2458 // native support
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002459 input_adapter(std::FILE* file)
2460 : ia(std::make_shared<file_input_adapter>(file)) {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002461 /// input adapter for input stream
2462 input_adapter(std::istream& i)
2463 : ia(std::make_shared<input_stream_adapter>(i)) {}
2464
2465 /// input adapter for input stream
2466 input_adapter(std::istream&& i)
2467 : ia(std::make_shared<input_stream_adapter>(i)) {}
2468
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002469 input_adapter(const std::wstring& ws)
2470 : ia(std::make_shared<wide_string_input_adapter<std::wstring>>(ws)) {}
2471
2472 input_adapter(const std::u16string& ws)
2473 : ia(std::make_shared<wide_string_input_adapter<std::u16string>>(ws)) {}
2474
2475 input_adapter(const std::u32string& ws)
2476 : ia(std::make_shared<wide_string_input_adapter<std::u32string>>(ws)) {}
2477
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002478 /// input adapter for buffer
2479 template<typename CharT,
2480 typename std::enable_if<
2481 std::is_pointer<CharT>::value and
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002482 std::is_integral<typename std::remove_pointer<CharT>::type>::value and
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002483 sizeof(typename std::remove_pointer<CharT>::type) == 1,
2484 int>::type = 0>
2485 input_adapter(CharT b, std::size_t l)
2486 : ia(std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(b), l)) {}
2487
2488 // derived support
2489
2490 /// input adapter for string literal
2491 template<typename CharT,
2492 typename std::enable_if<
2493 std::is_pointer<CharT>::value and
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002494 std::is_integral<typename std::remove_pointer<CharT>::type>::value and
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002495 sizeof(typename std::remove_pointer<CharT>::type) == 1,
2496 int>::type = 0>
2497 input_adapter(CharT b)
2498 : input_adapter(reinterpret_cast<const char*>(b),
2499 std::strlen(reinterpret_cast<const char*>(b))) {}
2500
2501 /// input adapter for iterator range with contiguous storage
2502 template<class IteratorType,
2503 typename std::enable_if<
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002504 std::is_same<typename iterator_traits<IteratorType>::iterator_category, std::random_access_iterator_tag>::value,
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002505 int>::type = 0>
2506 input_adapter(IteratorType first, IteratorType last)
2507 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002508#ifndef NDEBUG
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002509 // assertion to check that the iterator range is indeed contiguous,
2510 // see http://stackoverflow.com/a/35008842/266378 for more discussion
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002511 const auto is_contiguous = std::accumulate(
2512 first, last, std::pair<bool, int>(true, 0),
2513 [&first](std::pair<bool, int> res, decltype(*first) val)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002514 {
2515 res.first &= (val == *(std::next(std::addressof(*first), res.second++)));
2516 return res;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002517 }).first;
2518 assert(is_contiguous);
2519#endif
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002520
2521 // assertion to check that each element is 1 byte long
2522 static_assert(
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002523 sizeof(typename iterator_traits<IteratorType>::value_type) == 1,
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002524 "each element in the iterator range must have the size of 1 byte");
2525
2526 const auto len = static_cast<size_t>(std::distance(first, last));
2527 if (JSON_LIKELY(len > 0))
2528 {
2529 // there is at least one element: use the address of first
2530 ia = std::make_shared<input_buffer_adapter>(reinterpret_cast<const char*>(&(*first)), len);
2531 }
2532 else
2533 {
2534 // the address of first cannot be used: use nullptr
2535 ia = std::make_shared<input_buffer_adapter>(nullptr, len);
2536 }
2537 }
2538
2539 /// input adapter for array
2540 template<class T, std::size_t N>
2541 input_adapter(T (&array)[N])
2542 : input_adapter(std::begin(array), std::end(array)) {}
2543
2544 /// input adapter for contiguous container
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002545 template<class ContiguousContainer, typename
2546 std::enable_if<not std::is_pointer<ContiguousContainer>::value and
2547 std::is_base_of<std::random_access_iterator_tag, typename iterator_traits<decltype(std::begin(std::declval<ContiguousContainer const>()))>::iterator_category>::value,
2548 int>::type = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002549 input_adapter(const ContiguousContainer& c)
2550 : input_adapter(std::begin(c), std::end(c)) {}
2551
2552 operator input_adapter_t()
2553 {
2554 return ia;
2555 }
2556
2557 private:
2558 /// the actual adapter
2559 input_adapter_t ia = nullptr;
2560};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002561} // namespace detail
2562} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002563
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002564// #include <nlohmann/detail/input/lexer.hpp>
2565
2566
2567#include <clocale> // localeconv
2568#include <cstddef> // size_t
2569#include <cstdlib> // strtof, strtod, strtold, strtoll, strtoull
2570#include <cstdio> // snprintf
2571#include <initializer_list> // initializer_list
2572#include <string> // char_traits, string
2573#include <vector> // vector
2574
2575// #include <nlohmann/detail/macro_scope.hpp>
2576
2577// #include <nlohmann/detail/input/input_adapters.hpp>
2578
2579// #include <nlohmann/detail/input/position_t.hpp>
2580
2581
2582namespace nlohmann
2583{
2584namespace detail
2585{
2586///////////
2587// lexer //
2588///////////
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002589
2590/*!
2591@brief lexical analysis
2592
2593This class organizes the lexical analysis during JSON deserialization.
2594*/
2595template<typename BasicJsonType>
2596class lexer
2597{
2598 using number_integer_t = typename BasicJsonType::number_integer_t;
2599 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
2600 using number_float_t = typename BasicJsonType::number_float_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002601 using string_t = typename BasicJsonType::string_t;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002602
2603 public:
2604 /// token types for the parser
2605 enum class token_type
2606 {
2607 uninitialized, ///< indicating the scanner is uninitialized
2608 literal_true, ///< the `true` literal
2609 literal_false, ///< the `false` literal
2610 literal_null, ///< the `null` literal
2611 value_string, ///< a string -- use get_string() for actual value
2612 value_unsigned, ///< an unsigned integer -- use get_number_unsigned() for actual value
2613 value_integer, ///< a signed integer -- use get_number_integer() for actual value
2614 value_float, ///< an floating point number -- use get_number_float() for actual value
2615 begin_array, ///< the character for array begin `[`
2616 begin_object, ///< the character for object begin `{`
2617 end_array, ///< the character for array end `]`
2618 end_object, ///< the character for object end `}`
2619 name_separator, ///< the name separator `:`
2620 value_separator, ///< the value separator `,`
2621 parse_error, ///< indicating a parse error
2622 end_of_input, ///< indicating the end of the input buffer
2623 literal_or_value ///< a literal or the begin of a value (only for diagnostics)
2624 };
2625
2626 /// return name of values of type token_type (only used for errors)
2627 static const char* token_type_name(const token_type t) noexcept
2628 {
2629 switch (t)
2630 {
2631 case token_type::uninitialized:
2632 return "<uninitialized>";
2633 case token_type::literal_true:
2634 return "true literal";
2635 case token_type::literal_false:
2636 return "false literal";
2637 case token_type::literal_null:
2638 return "null literal";
2639 case token_type::value_string:
2640 return "string literal";
2641 case lexer::token_type::value_unsigned:
2642 case lexer::token_type::value_integer:
2643 case lexer::token_type::value_float:
2644 return "number literal";
2645 case token_type::begin_array:
2646 return "'['";
2647 case token_type::begin_object:
2648 return "'{'";
2649 case token_type::end_array:
2650 return "']'";
2651 case token_type::end_object:
2652 return "'}'";
2653 case token_type::name_separator:
2654 return "':'";
2655 case token_type::value_separator:
2656 return "','";
2657 case token_type::parse_error:
2658 return "<parse error>";
2659 case token_type::end_of_input:
2660 return "end of input";
2661 case token_type::literal_or_value:
2662 return "'[', '{', or a literal";
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002663 // LCOV_EXCL_START
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002664 default: // catch non-enum values
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002665 return "unknown token";
2666 // LCOV_EXCL_STOP
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002667 }
2668 }
2669
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002670 explicit lexer(detail::input_adapter_t&& adapter)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002671 : ia(std::move(adapter)), decimal_point_char(get_decimal_point()) {}
2672
2673 // delete because of pointer members
2674 lexer(const lexer&) = delete;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002675 lexer(lexer&&) = delete;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002676 lexer& operator=(lexer&) = delete;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002677 lexer& operator=(lexer&&) = delete;
2678 ~lexer() = default;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002679
2680 private:
2681 /////////////////////
2682 // locales
2683 /////////////////////
2684
2685 /// return the locale-dependent decimal point
2686 static char get_decimal_point() noexcept
2687 {
2688 const auto loc = localeconv();
2689 assert(loc != nullptr);
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002690 return (loc->decimal_point == nullptr) ? '.' : *(loc->decimal_point);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002691 }
2692
2693 /////////////////////
2694 // scan functions
2695 /////////////////////
2696
2697 /*!
2698 @brief get codepoint from 4 hex characters following `\u`
2699
2700 For input "\u c1 c2 c3 c4" the codepoint is:
2701 (c1 * 0x1000) + (c2 * 0x0100) + (c3 * 0x0010) + c4
2702 = (c1 << 12) + (c2 << 8) + (c3 << 4) + (c4 << 0)
2703
2704 Furthermore, the possible characters '0'..'9', 'A'..'F', and 'a'..'f'
2705 must be converted to the integers 0x0..0x9, 0xA..0xF, 0xA..0xF, resp. The
2706 conversion is done by subtracting the offset (0x30, 0x37, and 0x57)
2707 between the ASCII value of the character and the desired integer value.
2708
2709 @return codepoint (0x0000..0xFFFF) or -1 in case of an error (e.g. EOF or
2710 non-hex character)
2711 */
2712 int get_codepoint()
2713 {
2714 // this function only makes sense after reading `\u`
2715 assert(current == 'u');
2716 int codepoint = 0;
2717
2718 const auto factors = { 12, 8, 4, 0 };
2719 for (const auto factor : factors)
2720 {
2721 get();
2722
2723 if (current >= '0' and current <= '9')
2724 {
2725 codepoint += ((current - 0x30) << factor);
2726 }
2727 else if (current >= 'A' and current <= 'F')
2728 {
2729 codepoint += ((current - 0x37) << factor);
2730 }
2731 else if (current >= 'a' and current <= 'f')
2732 {
2733 codepoint += ((current - 0x57) << factor);
2734 }
2735 else
2736 {
2737 return -1;
2738 }
2739 }
2740
2741 assert(0x0000 <= codepoint and codepoint <= 0xFFFF);
2742 return codepoint;
2743 }
2744
2745 /*!
2746 @brief check if the next byte(s) are inside a given range
2747
2748 Adds the current byte and, for each passed range, reads a new byte and
2749 checks if it is inside the range. If a violation was detected, set up an
2750 error message and return false. Otherwise, return true.
2751
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002752 @param[in] ranges list of integers; interpreted as list of pairs of
2753 inclusive lower and upper bound, respectively
2754
2755 @pre The passed list @a ranges must have 2, 4, or 6 elements; that is,
2756 1, 2, or 3 pairs. This precondition is enforced by an assertion.
2757
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002758 @return true if and only if no range violation was detected
2759 */
2760 bool next_byte_in_range(std::initializer_list<int> ranges)
2761 {
2762 assert(ranges.size() == 2 or ranges.size() == 4 or ranges.size() == 6);
2763 add(current);
2764
2765 for (auto range = ranges.begin(); range != ranges.end(); ++range)
2766 {
2767 get();
2768 if (JSON_LIKELY(*range <= current and current <= *(++range)))
2769 {
2770 add(current);
2771 }
2772 else
2773 {
2774 error_message = "invalid string: ill-formed UTF-8 byte";
2775 return false;
2776 }
2777 }
2778
2779 return true;
2780 }
2781
2782 /*!
2783 @brief scan a string literal
2784
2785 This function scans a string according to Sect. 7 of RFC 7159. While
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002786 scanning, bytes are escaped and copied into buffer token_buffer. Then the
2787 function returns successfully, token_buffer is *not* null-terminated (as it
2788 may contain \0 bytes), and token_buffer.size() is the number of bytes in the
2789 string.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002790
2791 @return token_type::value_string if string could be successfully scanned,
2792 token_type::parse_error otherwise
2793
2794 @note In case of errors, variable error_message contains a textual
2795 description.
2796 */
2797 token_type scan_string()
2798 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002799 // reset token_buffer (ignore opening quote)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002800 reset();
2801
2802 // we entered the function by reading an open quote
2803 assert(current == '\"');
2804
2805 while (true)
2806 {
2807 // get next character
2808 switch (get())
2809 {
2810 // end of file while parsing string
2811 case std::char_traits<char>::eof():
2812 {
2813 error_message = "invalid string: missing closing quote";
2814 return token_type::parse_error;
2815 }
2816
2817 // closing quote
2818 case '\"':
2819 {
2820 return token_type::value_string;
2821 }
2822
2823 // escapes
2824 case '\\':
2825 {
2826 switch (get())
2827 {
2828 // quotation mark
2829 case '\"':
2830 add('\"');
2831 break;
2832 // reverse solidus
2833 case '\\':
2834 add('\\');
2835 break;
2836 // solidus
2837 case '/':
2838 add('/');
2839 break;
2840 // backspace
2841 case 'b':
2842 add('\b');
2843 break;
2844 // form feed
2845 case 'f':
2846 add('\f');
2847 break;
2848 // line feed
2849 case 'n':
2850 add('\n');
2851 break;
2852 // carriage return
2853 case 'r':
2854 add('\r');
2855 break;
2856 // tab
2857 case 't':
2858 add('\t');
2859 break;
2860
2861 // unicode escapes
2862 case 'u':
2863 {
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002864 const int codepoint1 = get_codepoint();
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002865 int codepoint = codepoint1; // start with codepoint1
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002866
2867 if (JSON_UNLIKELY(codepoint1 == -1))
2868 {
2869 error_message = "invalid string: '\\u' must be followed by 4 hex digits";
2870 return token_type::parse_error;
2871 }
2872
2873 // check if code point is a high surrogate
2874 if (0xD800 <= codepoint1 and codepoint1 <= 0xDBFF)
2875 {
2876 // expect next \uxxxx entry
2877 if (JSON_LIKELY(get() == '\\' and get() == 'u'))
2878 {
2879 const int codepoint2 = get_codepoint();
2880
2881 if (JSON_UNLIKELY(codepoint2 == -1))
2882 {
2883 error_message = "invalid string: '\\u' must be followed by 4 hex digits";
2884 return token_type::parse_error;
2885 }
2886
2887 // check if codepoint2 is a low surrogate
2888 if (JSON_LIKELY(0xDC00 <= codepoint2 and codepoint2 <= 0xDFFF))
2889 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002890 // overwrite codepoint
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002891 codepoint =
2892 // high surrogate occupies the most significant 22 bits
2893 (codepoint1 << 10)
2894 // low surrogate occupies the least significant 15 bits
2895 + codepoint2
2896 // there is still the 0xD800, 0xDC00 and 0x10000 noise
2897 // in the result so we have to subtract with:
2898 // (0xD800 << 10) + DC00 - 0x10000 = 0x35FDC00
2899 - 0x35FDC00;
2900 }
2901 else
2902 {
2903 error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
2904 return token_type::parse_error;
2905 }
2906 }
2907 else
2908 {
2909 error_message = "invalid string: surrogate U+DC00..U+DFFF must be followed by U+DC00..U+DFFF";
2910 return token_type::parse_error;
2911 }
2912 }
2913 else
2914 {
2915 if (JSON_UNLIKELY(0xDC00 <= codepoint1 and codepoint1 <= 0xDFFF))
2916 {
2917 error_message = "invalid string: surrogate U+DC00..U+DFFF must follow U+D800..U+DBFF";
2918 return token_type::parse_error;
2919 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002920 }
2921
2922 // result of the above calculation yields a proper codepoint
2923 assert(0x00 <= codepoint and codepoint <= 0x10FFFF);
2924
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002925 // translate codepoint into bytes
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002926 if (codepoint < 0x80)
2927 {
2928 // 1-byte characters: 0xxxxxxx (ASCII)
2929 add(codepoint);
2930 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002931 else if (codepoint <= 0x7FF)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002932 {
2933 // 2-byte characters: 110xxxxx 10xxxxxx
2934 add(0xC0 | (codepoint >> 6));
2935 add(0x80 | (codepoint & 0x3F));
2936 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002937 else if (codepoint <= 0xFFFF)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002938 {
2939 // 3-byte characters: 1110xxxx 10xxxxxx 10xxxxxx
2940 add(0xE0 | (codepoint >> 12));
2941 add(0x80 | ((codepoint >> 6) & 0x3F));
2942 add(0x80 | (codepoint & 0x3F));
2943 }
2944 else
2945 {
2946 // 4-byte characters: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx
2947 add(0xF0 | (codepoint >> 18));
2948 add(0x80 | ((codepoint >> 12) & 0x3F));
2949 add(0x80 | ((codepoint >> 6) & 0x3F));
2950 add(0x80 | (codepoint & 0x3F));
2951 }
2952
2953 break;
2954 }
2955
2956 // other characters after escape
2957 default:
2958 error_message = "invalid string: forbidden character after backslash";
2959 return token_type::parse_error;
2960 }
2961
2962 break;
2963 }
2964
2965 // invalid control characters
2966 case 0x00:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09002967 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09002968 error_message = "invalid string: control character U+0000 (NUL) must be escaped to \\u0000";
2969 return token_type::parse_error;
2970 }
2971
2972 case 0x01:
2973 {
2974 error_message = "invalid string: control character U+0001 (SOH) must be escaped to \\u0001";
2975 return token_type::parse_error;
2976 }
2977
2978 case 0x02:
2979 {
2980 error_message = "invalid string: control character U+0002 (STX) must be escaped to \\u0002";
2981 return token_type::parse_error;
2982 }
2983
2984 case 0x03:
2985 {
2986 error_message = "invalid string: control character U+0003 (ETX) must be escaped to \\u0003";
2987 return token_type::parse_error;
2988 }
2989
2990 case 0x04:
2991 {
2992 error_message = "invalid string: control character U+0004 (EOT) must be escaped to \\u0004";
2993 return token_type::parse_error;
2994 }
2995
2996 case 0x05:
2997 {
2998 error_message = "invalid string: control character U+0005 (ENQ) must be escaped to \\u0005";
2999 return token_type::parse_error;
3000 }
3001
3002 case 0x06:
3003 {
3004 error_message = "invalid string: control character U+0006 (ACK) must be escaped to \\u0006";
3005 return token_type::parse_error;
3006 }
3007
3008 case 0x07:
3009 {
3010 error_message = "invalid string: control character U+0007 (BEL) must be escaped to \\u0007";
3011 return token_type::parse_error;
3012 }
3013
3014 case 0x08:
3015 {
3016 error_message = "invalid string: control character U+0008 (BS) must be escaped to \\u0008 or \\b";
3017 return token_type::parse_error;
3018 }
3019
3020 case 0x09:
3021 {
3022 error_message = "invalid string: control character U+0009 (HT) must be escaped to \\u0009 or \\t";
3023 return token_type::parse_error;
3024 }
3025
3026 case 0x0A:
3027 {
3028 error_message = "invalid string: control character U+000A (LF) must be escaped to \\u000A or \\n";
3029 return token_type::parse_error;
3030 }
3031
3032 case 0x0B:
3033 {
3034 error_message = "invalid string: control character U+000B (VT) must be escaped to \\u000B";
3035 return token_type::parse_error;
3036 }
3037
3038 case 0x0C:
3039 {
3040 error_message = "invalid string: control character U+000C (FF) must be escaped to \\u000C or \\f";
3041 return token_type::parse_error;
3042 }
3043
3044 case 0x0D:
3045 {
3046 error_message = "invalid string: control character U+000D (CR) must be escaped to \\u000D or \\r";
3047 return token_type::parse_error;
3048 }
3049
3050 case 0x0E:
3051 {
3052 error_message = "invalid string: control character U+000E (SO) must be escaped to \\u000E";
3053 return token_type::parse_error;
3054 }
3055
3056 case 0x0F:
3057 {
3058 error_message = "invalid string: control character U+000F (SI) must be escaped to \\u000F";
3059 return token_type::parse_error;
3060 }
3061
3062 case 0x10:
3063 {
3064 error_message = "invalid string: control character U+0010 (DLE) must be escaped to \\u0010";
3065 return token_type::parse_error;
3066 }
3067
3068 case 0x11:
3069 {
3070 error_message = "invalid string: control character U+0011 (DC1) must be escaped to \\u0011";
3071 return token_type::parse_error;
3072 }
3073
3074 case 0x12:
3075 {
3076 error_message = "invalid string: control character U+0012 (DC2) must be escaped to \\u0012";
3077 return token_type::parse_error;
3078 }
3079
3080 case 0x13:
3081 {
3082 error_message = "invalid string: control character U+0013 (DC3) must be escaped to \\u0013";
3083 return token_type::parse_error;
3084 }
3085
3086 case 0x14:
3087 {
3088 error_message = "invalid string: control character U+0014 (DC4) must be escaped to \\u0014";
3089 return token_type::parse_error;
3090 }
3091
3092 case 0x15:
3093 {
3094 error_message = "invalid string: control character U+0015 (NAK) must be escaped to \\u0015";
3095 return token_type::parse_error;
3096 }
3097
3098 case 0x16:
3099 {
3100 error_message = "invalid string: control character U+0016 (SYN) must be escaped to \\u0016";
3101 return token_type::parse_error;
3102 }
3103
3104 case 0x17:
3105 {
3106 error_message = "invalid string: control character U+0017 (ETB) must be escaped to \\u0017";
3107 return token_type::parse_error;
3108 }
3109
3110 case 0x18:
3111 {
3112 error_message = "invalid string: control character U+0018 (CAN) must be escaped to \\u0018";
3113 return token_type::parse_error;
3114 }
3115
3116 case 0x19:
3117 {
3118 error_message = "invalid string: control character U+0019 (EM) must be escaped to \\u0019";
3119 return token_type::parse_error;
3120 }
3121
3122 case 0x1A:
3123 {
3124 error_message = "invalid string: control character U+001A (SUB) must be escaped to \\u001A";
3125 return token_type::parse_error;
3126 }
3127
3128 case 0x1B:
3129 {
3130 error_message = "invalid string: control character U+001B (ESC) must be escaped to \\u001B";
3131 return token_type::parse_error;
3132 }
3133
3134 case 0x1C:
3135 {
3136 error_message = "invalid string: control character U+001C (FS) must be escaped to \\u001C";
3137 return token_type::parse_error;
3138 }
3139
3140 case 0x1D:
3141 {
3142 error_message = "invalid string: control character U+001D (GS) must be escaped to \\u001D";
3143 return token_type::parse_error;
3144 }
3145
3146 case 0x1E:
3147 {
3148 error_message = "invalid string: control character U+001E (RS) must be escaped to \\u001E";
3149 return token_type::parse_error;
3150 }
3151
3152 case 0x1F:
3153 {
3154 error_message = "invalid string: control character U+001F (US) must be escaped to \\u001F";
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003155 return token_type::parse_error;
3156 }
3157
3158 // U+0020..U+007F (except U+0022 (quote) and U+005C (backspace))
3159 case 0x20:
3160 case 0x21:
3161 case 0x23:
3162 case 0x24:
3163 case 0x25:
3164 case 0x26:
3165 case 0x27:
3166 case 0x28:
3167 case 0x29:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003168 case 0x2A:
3169 case 0x2B:
3170 case 0x2C:
3171 case 0x2D:
3172 case 0x2E:
3173 case 0x2F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003174 case 0x30:
3175 case 0x31:
3176 case 0x32:
3177 case 0x33:
3178 case 0x34:
3179 case 0x35:
3180 case 0x36:
3181 case 0x37:
3182 case 0x38:
3183 case 0x39:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003184 case 0x3A:
3185 case 0x3B:
3186 case 0x3C:
3187 case 0x3D:
3188 case 0x3E:
3189 case 0x3F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003190 case 0x40:
3191 case 0x41:
3192 case 0x42:
3193 case 0x43:
3194 case 0x44:
3195 case 0x45:
3196 case 0x46:
3197 case 0x47:
3198 case 0x48:
3199 case 0x49:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003200 case 0x4A:
3201 case 0x4B:
3202 case 0x4C:
3203 case 0x4D:
3204 case 0x4E:
3205 case 0x4F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003206 case 0x50:
3207 case 0x51:
3208 case 0x52:
3209 case 0x53:
3210 case 0x54:
3211 case 0x55:
3212 case 0x56:
3213 case 0x57:
3214 case 0x58:
3215 case 0x59:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003216 case 0x5A:
3217 case 0x5B:
3218 case 0x5D:
3219 case 0x5E:
3220 case 0x5F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003221 case 0x60:
3222 case 0x61:
3223 case 0x62:
3224 case 0x63:
3225 case 0x64:
3226 case 0x65:
3227 case 0x66:
3228 case 0x67:
3229 case 0x68:
3230 case 0x69:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003231 case 0x6A:
3232 case 0x6B:
3233 case 0x6C:
3234 case 0x6D:
3235 case 0x6E:
3236 case 0x6F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003237 case 0x70:
3238 case 0x71:
3239 case 0x72:
3240 case 0x73:
3241 case 0x74:
3242 case 0x75:
3243 case 0x76:
3244 case 0x77:
3245 case 0x78:
3246 case 0x79:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003247 case 0x7A:
3248 case 0x7B:
3249 case 0x7C:
3250 case 0x7D:
3251 case 0x7E:
3252 case 0x7F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003253 {
3254 add(current);
3255 break;
3256 }
3257
3258 // U+0080..U+07FF: bytes C2..DF 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003259 case 0xC2:
3260 case 0xC3:
3261 case 0xC4:
3262 case 0xC5:
3263 case 0xC6:
3264 case 0xC7:
3265 case 0xC8:
3266 case 0xC9:
3267 case 0xCA:
3268 case 0xCB:
3269 case 0xCC:
3270 case 0xCD:
3271 case 0xCE:
3272 case 0xCF:
3273 case 0xD0:
3274 case 0xD1:
3275 case 0xD2:
3276 case 0xD3:
3277 case 0xD4:
3278 case 0xD5:
3279 case 0xD6:
3280 case 0xD7:
3281 case 0xD8:
3282 case 0xD9:
3283 case 0xDA:
3284 case 0xDB:
3285 case 0xDC:
3286 case 0xDD:
3287 case 0xDE:
3288 case 0xDF:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003289 {
3290 if (JSON_UNLIKELY(not next_byte_in_range({0x80, 0xBF})))
3291 {
3292 return token_type::parse_error;
3293 }
3294 break;
3295 }
3296
3297 // U+0800..U+0FFF: bytes E0 A0..BF 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003298 case 0xE0:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003299 {
3300 if (JSON_UNLIKELY(not (next_byte_in_range({0xA0, 0xBF, 0x80, 0xBF}))))
3301 {
3302 return token_type::parse_error;
3303 }
3304 break;
3305 }
3306
3307 // U+1000..U+CFFF: bytes E1..EC 80..BF 80..BF
3308 // U+E000..U+FFFF: bytes EE..EF 80..BF 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003309 case 0xE1:
3310 case 0xE2:
3311 case 0xE3:
3312 case 0xE4:
3313 case 0xE5:
3314 case 0xE6:
3315 case 0xE7:
3316 case 0xE8:
3317 case 0xE9:
3318 case 0xEA:
3319 case 0xEB:
3320 case 0xEC:
3321 case 0xEE:
3322 case 0xEF:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003323 {
3324 if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF}))))
3325 {
3326 return token_type::parse_error;
3327 }
3328 break;
3329 }
3330
3331 // U+D000..U+D7FF: bytes ED 80..9F 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003332 case 0xED:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003333 {
3334 if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x9F, 0x80, 0xBF}))))
3335 {
3336 return token_type::parse_error;
3337 }
3338 break;
3339 }
3340
3341 // U+10000..U+3FFFF F0 90..BF 80..BF 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003342 case 0xF0:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003343 {
3344 if (JSON_UNLIKELY(not (next_byte_in_range({0x90, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
3345 {
3346 return token_type::parse_error;
3347 }
3348 break;
3349 }
3350
3351 // U+40000..U+FFFFF F1..F3 80..BF 80..BF 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003352 case 0xF1:
3353 case 0xF2:
3354 case 0xF3:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003355 {
3356 if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0xBF, 0x80, 0xBF, 0x80, 0xBF}))))
3357 {
3358 return token_type::parse_error;
3359 }
3360 break;
3361 }
3362
3363 // U+100000..U+10FFFF F4 80..8F 80..BF 80..BF
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003364 case 0xF4:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003365 {
3366 if (JSON_UNLIKELY(not (next_byte_in_range({0x80, 0x8F, 0x80, 0xBF, 0x80, 0xBF}))))
3367 {
3368 return token_type::parse_error;
3369 }
3370 break;
3371 }
3372
3373 // remaining bytes (80..C1 and F5..FF) are ill-formed
3374 default:
3375 {
3376 error_message = "invalid string: ill-formed UTF-8 byte";
3377 return token_type::parse_error;
3378 }
3379 }
3380 }
3381 }
3382
3383 static void strtof(float& f, const char* str, char** endptr) noexcept
3384 {
3385 f = std::strtof(str, endptr);
3386 }
3387
3388 static void strtof(double& f, const char* str, char** endptr) noexcept
3389 {
3390 f = std::strtod(str, endptr);
3391 }
3392
3393 static void strtof(long double& f, const char* str, char** endptr) noexcept
3394 {
3395 f = std::strtold(str, endptr);
3396 }
3397
3398 /*!
3399 @brief scan a number literal
3400
3401 This function scans a string according to Sect. 6 of RFC 7159.
3402
3403 The function is realized with a deterministic finite state machine derived
3404 from the grammar described in RFC 7159. Starting in state "init", the
3405 input is read and used to determined the next state. Only state "done"
3406 accepts the number. State "error" is a trap state to model errors. In the
3407 table below, "anything" means any character but the ones listed before.
3408
3409 state | 0 | 1-9 | e E | + | - | . | anything
3410 ---------|----------|----------|----------|---------|---------|----------|-----------
3411 init | zero | any1 | [error] | [error] | minus | [error] | [error]
3412 minus | zero | any1 | [error] | [error] | [error] | [error] | [error]
3413 zero | done | done | exponent | done | done | decimal1 | done
3414 any1 | any1 | any1 | exponent | done | done | decimal1 | done
3415 decimal1 | decimal2 | [error] | [error] | [error] | [error] | [error] | [error]
3416 decimal2 | decimal2 | decimal2 | exponent | done | done | done | done
3417 exponent | any2 | any2 | [error] | sign | sign | [error] | [error]
3418 sign | any2 | any2 | [error] | [error] | [error] | [error] | [error]
3419 any2 | any2 | any2 | done | done | done | done | done
3420
3421 The state machine is realized with one label per state (prefixed with
3422 "scan_number_") and `goto` statements between them. The state machine
3423 contains cycles, but any cycle can be left when EOF is read. Therefore,
3424 the function is guaranteed to terminate.
3425
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003426 During scanning, the read bytes are stored in token_buffer. This string is
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003427 then converted to a signed integer, an unsigned integer, or a
3428 floating-point number.
3429
3430 @return token_type::value_unsigned, token_type::value_integer, or
3431 token_type::value_float if number could be successfully scanned,
3432 token_type::parse_error otherwise
3433
3434 @note The scanner is independent of the current locale. Internally, the
3435 locale's decimal point is used instead of `.` to work with the
3436 locale-dependent converters.
3437 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003438 token_type scan_number() // lgtm [cpp/use-of-goto]
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003439 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003440 // reset token_buffer to store the number's bytes
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003441 reset();
3442
3443 // the type of the parsed number; initially set to unsigned; will be
3444 // changed if minus sign, decimal point or exponent is read
3445 token_type number_type = token_type::value_unsigned;
3446
3447 // state (init): we just found out we need to scan a number
3448 switch (current)
3449 {
3450 case '-':
3451 {
3452 add(current);
3453 goto scan_number_minus;
3454 }
3455
3456 case '0':
3457 {
3458 add(current);
3459 goto scan_number_zero;
3460 }
3461
3462 case '1':
3463 case '2':
3464 case '3':
3465 case '4':
3466 case '5':
3467 case '6':
3468 case '7':
3469 case '8':
3470 case '9':
3471 {
3472 add(current);
3473 goto scan_number_any1;
3474 }
3475
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003476 // LCOV_EXCL_START
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003477 default:
3478 {
3479 // all other characters are rejected outside scan_number()
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003480 assert(false);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003481 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003482 // LCOV_EXCL_STOP
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003483 }
3484
3485scan_number_minus:
3486 // state: we just parsed a leading minus sign
3487 number_type = token_type::value_integer;
3488 switch (get())
3489 {
3490 case '0':
3491 {
3492 add(current);
3493 goto scan_number_zero;
3494 }
3495
3496 case '1':
3497 case '2':
3498 case '3':
3499 case '4':
3500 case '5':
3501 case '6':
3502 case '7':
3503 case '8':
3504 case '9':
3505 {
3506 add(current);
3507 goto scan_number_any1;
3508 }
3509
3510 default:
3511 {
3512 error_message = "invalid number; expected digit after '-'";
3513 return token_type::parse_error;
3514 }
3515 }
3516
3517scan_number_zero:
3518 // state: we just parse a zero (maybe with a leading minus sign)
3519 switch (get())
3520 {
3521 case '.':
3522 {
3523 add(decimal_point_char);
3524 goto scan_number_decimal1;
3525 }
3526
3527 case 'e':
3528 case 'E':
3529 {
3530 add(current);
3531 goto scan_number_exponent;
3532 }
3533
3534 default:
3535 goto scan_number_done;
3536 }
3537
3538scan_number_any1:
3539 // state: we just parsed a number 0-9 (maybe with a leading minus sign)
3540 switch (get())
3541 {
3542 case '0':
3543 case '1':
3544 case '2':
3545 case '3':
3546 case '4':
3547 case '5':
3548 case '6':
3549 case '7':
3550 case '8':
3551 case '9':
3552 {
3553 add(current);
3554 goto scan_number_any1;
3555 }
3556
3557 case '.':
3558 {
3559 add(decimal_point_char);
3560 goto scan_number_decimal1;
3561 }
3562
3563 case 'e':
3564 case 'E':
3565 {
3566 add(current);
3567 goto scan_number_exponent;
3568 }
3569
3570 default:
3571 goto scan_number_done;
3572 }
3573
3574scan_number_decimal1:
3575 // state: we just parsed a decimal point
3576 number_type = token_type::value_float;
3577 switch (get())
3578 {
3579 case '0':
3580 case '1':
3581 case '2':
3582 case '3':
3583 case '4':
3584 case '5':
3585 case '6':
3586 case '7':
3587 case '8':
3588 case '9':
3589 {
3590 add(current);
3591 goto scan_number_decimal2;
3592 }
3593
3594 default:
3595 {
3596 error_message = "invalid number; expected digit after '.'";
3597 return token_type::parse_error;
3598 }
3599 }
3600
3601scan_number_decimal2:
3602 // we just parsed at least one number after a decimal point
3603 switch (get())
3604 {
3605 case '0':
3606 case '1':
3607 case '2':
3608 case '3':
3609 case '4':
3610 case '5':
3611 case '6':
3612 case '7':
3613 case '8':
3614 case '9':
3615 {
3616 add(current);
3617 goto scan_number_decimal2;
3618 }
3619
3620 case 'e':
3621 case 'E':
3622 {
3623 add(current);
3624 goto scan_number_exponent;
3625 }
3626
3627 default:
3628 goto scan_number_done;
3629 }
3630
3631scan_number_exponent:
3632 // we just parsed an exponent
3633 number_type = token_type::value_float;
3634 switch (get())
3635 {
3636 case '+':
3637 case '-':
3638 {
3639 add(current);
3640 goto scan_number_sign;
3641 }
3642
3643 case '0':
3644 case '1':
3645 case '2':
3646 case '3':
3647 case '4':
3648 case '5':
3649 case '6':
3650 case '7':
3651 case '8':
3652 case '9':
3653 {
3654 add(current);
3655 goto scan_number_any2;
3656 }
3657
3658 default:
3659 {
3660 error_message =
3661 "invalid number; expected '+', '-', or digit after exponent";
3662 return token_type::parse_error;
3663 }
3664 }
3665
3666scan_number_sign:
3667 // we just parsed an exponent sign
3668 switch (get())
3669 {
3670 case '0':
3671 case '1':
3672 case '2':
3673 case '3':
3674 case '4':
3675 case '5':
3676 case '6':
3677 case '7':
3678 case '8':
3679 case '9':
3680 {
3681 add(current);
3682 goto scan_number_any2;
3683 }
3684
3685 default:
3686 {
3687 error_message = "invalid number; expected digit after exponent sign";
3688 return token_type::parse_error;
3689 }
3690 }
3691
3692scan_number_any2:
3693 // we just parsed a number after the exponent or exponent sign
3694 switch (get())
3695 {
3696 case '0':
3697 case '1':
3698 case '2':
3699 case '3':
3700 case '4':
3701 case '5':
3702 case '6':
3703 case '7':
3704 case '8':
3705 case '9':
3706 {
3707 add(current);
3708 goto scan_number_any2;
3709 }
3710
3711 default:
3712 goto scan_number_done;
3713 }
3714
3715scan_number_done:
3716 // unget the character after the number (we only read it to know that
3717 // we are done scanning a number)
3718 unget();
3719
3720 char* endptr = nullptr;
3721 errno = 0;
3722
3723 // try to parse integers first and fall back to floats
3724 if (number_type == token_type::value_unsigned)
3725 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003726 const auto x = std::strtoull(token_buffer.data(), &endptr, 10);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003727
3728 // we checked the number format before
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003729 assert(endptr == token_buffer.data() + token_buffer.size());
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003730
3731 if (errno == 0)
3732 {
3733 value_unsigned = static_cast<number_unsigned_t>(x);
3734 if (value_unsigned == x)
3735 {
3736 return token_type::value_unsigned;
3737 }
3738 }
3739 }
3740 else if (number_type == token_type::value_integer)
3741 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003742 const auto x = std::strtoll(token_buffer.data(), &endptr, 10);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003743
3744 // we checked the number format before
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003745 assert(endptr == token_buffer.data() + token_buffer.size());
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003746
3747 if (errno == 0)
3748 {
3749 value_integer = static_cast<number_integer_t>(x);
3750 if (value_integer == x)
3751 {
3752 return token_type::value_integer;
3753 }
3754 }
3755 }
3756
3757 // this code is reached if we parse a floating-point number or if an
3758 // integer conversion above failed
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003759 strtof(value_float, token_buffer.data(), &endptr);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003760
3761 // we checked the number format before
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003762 assert(endptr == token_buffer.data() + token_buffer.size());
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003763
3764 return token_type::value_float;
3765 }
3766
3767 /*!
3768 @param[in] literal_text the literal text to expect
3769 @param[in] length the length of the passed literal text
3770 @param[in] return_type the token type to return on success
3771 */
3772 token_type scan_literal(const char* literal_text, const std::size_t length,
3773 token_type return_type)
3774 {
3775 assert(current == literal_text[0]);
3776 for (std::size_t i = 1; i < length; ++i)
3777 {
3778 if (JSON_UNLIKELY(get() != literal_text[i]))
3779 {
3780 error_message = "invalid literal";
3781 return token_type::parse_error;
3782 }
3783 }
3784 return return_type;
3785 }
3786
3787 /////////////////////
3788 // input management
3789 /////////////////////
3790
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003791 /// reset token_buffer; current character is beginning of token
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003792 void reset() noexcept
3793 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003794 token_buffer.clear();
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003795 token_string.clear();
3796 token_string.push_back(std::char_traits<char>::to_char_type(current));
3797 }
3798
3799 /*
3800 @brief get next character from the input
3801
3802 This function provides the interface to the used input adapter. It does
3803 not throw in case the input reached EOF, but returns a
3804 `std::char_traits<char>::eof()` in that case. Stores the scanned characters
3805 for use in error messages.
3806
3807 @return character read from the input
3808 */
3809 std::char_traits<char>::int_type get()
3810 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003811 ++position.chars_read_total;
3812 ++position.chars_read_current_line;
3813
3814 if (next_unget)
3815 {
3816 // just reset the next_unget variable and work with current
3817 next_unget = false;
3818 }
3819 else
3820 {
3821 current = ia->get_character();
3822 }
3823
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003824 if (JSON_LIKELY(current != std::char_traits<char>::eof()))
3825 {
3826 token_string.push_back(std::char_traits<char>::to_char_type(current));
3827 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003828
3829 if (current == '\n')
3830 {
3831 ++position.lines_read;
3832 ++position.chars_read_current_line = 0;
3833 }
3834
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003835 return current;
3836 }
3837
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003838 /*!
3839 @brief unget current character (read it again on next get)
3840
3841 We implement unget by setting variable next_unget to true. The input is not
3842 changed - we just simulate ungetting by modifying chars_read_total,
3843 chars_read_current_line, and token_string. The next call to get() will
3844 behave as if the unget character is read again.
3845 */
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003846 void unget()
3847 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003848 next_unget = true;
3849
3850 --position.chars_read_total;
3851
3852 // in case we "unget" a newline, we have to also decrement the lines_read
3853 if (position.chars_read_current_line == 0)
3854 {
3855 if (position.lines_read > 0)
3856 {
3857 --position.lines_read;
3858 }
3859 }
3860 else
3861 {
3862 --position.chars_read_current_line;
3863 }
3864
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003865 if (JSON_LIKELY(current != std::char_traits<char>::eof()))
3866 {
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003867 assert(token_string.size() != 0);
3868 token_string.pop_back();
3869 }
3870 }
3871
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003872 /// add a character to token_buffer
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003873 void add(int c)
3874 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003875 token_buffer.push_back(std::char_traits<char>::to_char_type(c));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003876 }
3877
3878 public:
3879 /////////////////////
3880 // value getters
3881 /////////////////////
3882
3883 /// return integer value
3884 constexpr number_integer_t get_number_integer() const noexcept
3885 {
3886 return value_integer;
3887 }
3888
3889 /// return unsigned integer value
3890 constexpr number_unsigned_t get_number_unsigned() const noexcept
3891 {
3892 return value_unsigned;
3893 }
3894
3895 /// return floating-point value
3896 constexpr number_float_t get_number_float() const noexcept
3897 {
3898 return value_float;
3899 }
3900
3901 /// return current string value (implicitly resets the token; useful only once)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003902 string_t& get_string()
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003903 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003904 return token_buffer;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003905 }
3906
3907 /////////////////////
3908 // diagnostics
3909 /////////////////////
3910
3911 /// return position of last read token
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003912 constexpr position_t get_position() const noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003913 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003914 return position;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003915 }
3916
3917 /// return the last read token (for errors only). Will never contain EOF
3918 /// (an arbitrary value that is not a valid char value, often -1), because
3919 /// 255 may legitimately occur. May contain NUL, which should be escaped.
3920 std::string get_token_string() const
3921 {
3922 // escape control characters
3923 std::string result;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003924 for (const auto c : token_string)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003925 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003926 if ('\x00' <= c and c <= '\x1F')
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003927 {
3928 // escape control characters
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003929 char cs[9];
3930 (std::snprintf)(cs, 9, "<U+%.4X>", static_cast<unsigned char>(c));
3931 result += cs;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003932 }
3933 else
3934 {
3935 // add character as is
3936 result.push_back(c);
3937 }
3938 }
3939
3940 return result;
3941 }
3942
3943 /// return syntax error message
3944 constexpr const char* get_error_message() const noexcept
3945 {
3946 return error_message;
3947 }
3948
3949 /////////////////////
3950 // actual scanner
3951 /////////////////////
3952
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003953 /*!
3954 @brief skip the UTF-8 byte order mark
3955 @return true iff there is no BOM or the correct BOM has been skipped
3956 */
3957 bool skip_bom()
3958 {
3959 if (get() == 0xEF)
3960 {
3961 // check if we completely parse the BOM
3962 return get() == 0xBB and get() == 0xBF;
3963 }
3964
3965 // the first character is not the beginning of the BOM; unget it to
3966 // process is later
3967 unget();
3968 return true;
3969 }
3970
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003971 token_type scan()
3972 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09003973 // initially, skip the BOM
3974 if (position.chars_read_total == 0 and not skip_bom())
3975 {
3976 error_message = "invalid BOM; must be 0xEF 0xBB 0xBF if given";
3977 return token_type::parse_error;
3978 }
3979
Syoyo Fujita2e21be72017-11-05 17:13:01 +09003980 // read next character and ignore whitespace
3981 do
3982 {
3983 get();
3984 }
3985 while (current == ' ' or current == '\t' or current == '\n' or current == '\r');
3986
3987 switch (current)
3988 {
3989 // structural characters
3990 case '[':
3991 return token_type::begin_array;
3992 case ']':
3993 return token_type::end_array;
3994 case '{':
3995 return token_type::begin_object;
3996 case '}':
3997 return token_type::end_object;
3998 case ':':
3999 return token_type::name_separator;
4000 case ',':
4001 return token_type::value_separator;
4002
4003 // literals
4004 case 't':
4005 return scan_literal("true", 4, token_type::literal_true);
4006 case 'f':
4007 return scan_literal("false", 5, token_type::literal_false);
4008 case 'n':
4009 return scan_literal("null", 4, token_type::literal_null);
4010
4011 // string
4012 case '\"':
4013 return scan_string();
4014
4015 // number
4016 case '-':
4017 case '0':
4018 case '1':
4019 case '2':
4020 case '3':
4021 case '4':
4022 case '5':
4023 case '6':
4024 case '7':
4025 case '8':
4026 case '9':
4027 return scan_number();
4028
4029 // end of input (the null byte is needed when parsing from
4030 // string literals)
4031 case '\0':
4032 case std::char_traits<char>::eof():
4033 return token_type::end_of_input;
4034
4035 // error
4036 default:
4037 error_message = "invalid literal";
4038 return token_type::parse_error;
4039 }
4040 }
4041
4042 private:
4043 /// input adapter
4044 detail::input_adapter_t ia = nullptr;
4045
4046 /// the current character
4047 std::char_traits<char>::int_type current = std::char_traits<char>::eof();
4048
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004049 /// whether the next get() call should just return current
4050 bool next_unget = false;
4051
4052 /// the start position of the current token
4053 position_t position;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004054
4055 /// raw input token string (for error messages)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004056 std::vector<char> token_string {};
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004057
4058 /// buffer for variable-length tokens (numbers, strings)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004059 string_t token_buffer {};
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004060
4061 /// a description of occurred lexer errors
4062 const char* error_message = "";
4063
4064 // number values
4065 number_integer_t value_integer = 0;
4066 number_unsigned_t value_unsigned = 0;
4067 number_float_t value_float = 0;
4068
4069 /// the decimal point
4070 const char decimal_point_char = '.';
4071};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004072} // namespace detail
4073} // namespace nlohmann
4074
4075// #include <nlohmann/detail/input/parser.hpp>
4076
4077
4078#include <cassert> // assert
4079#include <cmath> // isfinite
4080#include <cstdint> // uint8_t
4081#include <functional> // function
4082#include <string> // string
4083#include <utility> // move
4084
4085// #include <nlohmann/detail/exceptions.hpp>
4086
4087// #include <nlohmann/detail/macro_scope.hpp>
4088
4089// #include <nlohmann/detail/meta/is_sax.hpp>
4090
4091
4092#include <cstdint> // size_t
4093#include <utility> // declval
4094
4095// #include <nlohmann/detail/meta/detected.hpp>
4096
4097// #include <nlohmann/detail/meta/type_traits.hpp>
4098
4099
4100namespace nlohmann
4101{
4102namespace detail
4103{
4104template <typename T>
4105using null_function_t = decltype(std::declval<T&>().null());
4106
4107template <typename T>
4108using boolean_function_t =
4109 decltype(std::declval<T&>().boolean(std::declval<bool>()));
4110
4111template <typename T, typename Integer>
4112using number_integer_function_t =
4113 decltype(std::declval<T&>().number_integer(std::declval<Integer>()));
4114
4115template <typename T, typename Unsigned>
4116using number_unsigned_function_t =
4117 decltype(std::declval<T&>().number_unsigned(std::declval<Unsigned>()));
4118
4119template <typename T, typename Float, typename String>
4120using number_float_function_t = decltype(std::declval<T&>().number_float(
4121 std::declval<Float>(), std::declval<const String&>()));
4122
4123template <typename T, typename String>
4124using string_function_t =
4125 decltype(std::declval<T&>().string(std::declval<String&>()));
4126
4127template <typename T>
4128using start_object_function_t =
4129 decltype(std::declval<T&>().start_object(std::declval<std::size_t>()));
4130
4131template <typename T, typename String>
4132using key_function_t =
4133 decltype(std::declval<T&>().key(std::declval<String&>()));
4134
4135template <typename T>
4136using end_object_function_t = decltype(std::declval<T&>().end_object());
4137
4138template <typename T>
4139using start_array_function_t =
4140 decltype(std::declval<T&>().start_array(std::declval<std::size_t>()));
4141
4142template <typename T>
4143using end_array_function_t = decltype(std::declval<T&>().end_array());
4144
4145template <typename T, typename Exception>
4146using parse_error_function_t = decltype(std::declval<T&>().parse_error(
4147 std::declval<std::size_t>(), std::declval<const std::string&>(),
4148 std::declval<const Exception&>()));
4149
4150template <typename SAX, typename BasicJsonType>
4151struct is_sax
4152{
4153 private:
4154 static_assert(is_basic_json<BasicJsonType>::value,
4155 "BasicJsonType must be of type basic_json<...>");
4156
4157 using number_integer_t = typename BasicJsonType::number_integer_t;
4158 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4159 using number_float_t = typename BasicJsonType::number_float_t;
4160 using string_t = typename BasicJsonType::string_t;
4161 using exception_t = typename BasicJsonType::exception;
4162
4163 public:
4164 static constexpr bool value =
4165 is_detected_exact<bool, null_function_t, SAX>::value &&
4166 is_detected_exact<bool, boolean_function_t, SAX>::value &&
4167 is_detected_exact<bool, number_integer_function_t, SAX,
4168 number_integer_t>::value &&
4169 is_detected_exact<bool, number_unsigned_function_t, SAX,
4170 number_unsigned_t>::value &&
4171 is_detected_exact<bool, number_float_function_t, SAX, number_float_t,
4172 string_t>::value &&
4173 is_detected_exact<bool, string_function_t, SAX, string_t>::value &&
4174 is_detected_exact<bool, start_object_function_t, SAX>::value &&
4175 is_detected_exact<bool, key_function_t, SAX, string_t>::value &&
4176 is_detected_exact<bool, end_object_function_t, SAX>::value &&
4177 is_detected_exact<bool, start_array_function_t, SAX>::value &&
4178 is_detected_exact<bool, end_array_function_t, SAX>::value &&
4179 is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value;
4180};
4181
4182template <typename SAX, typename BasicJsonType>
4183struct is_sax_static_asserts
4184{
4185 private:
4186 static_assert(is_basic_json<BasicJsonType>::value,
4187 "BasicJsonType must be of type basic_json<...>");
4188
4189 using number_integer_t = typename BasicJsonType::number_integer_t;
4190 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4191 using number_float_t = typename BasicJsonType::number_float_t;
4192 using string_t = typename BasicJsonType::string_t;
4193 using exception_t = typename BasicJsonType::exception;
4194
4195 public:
4196 static_assert(is_detected_exact<bool, null_function_t, SAX>::value,
4197 "Missing/invalid function: bool null()");
4198 static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
4199 "Missing/invalid function: bool boolean(bool)");
4200 static_assert(is_detected_exact<bool, boolean_function_t, SAX>::value,
4201 "Missing/invalid function: bool boolean(bool)");
4202 static_assert(
4203 is_detected_exact<bool, number_integer_function_t, SAX,
4204 number_integer_t>::value,
4205 "Missing/invalid function: bool number_integer(number_integer_t)");
4206 static_assert(
4207 is_detected_exact<bool, number_unsigned_function_t, SAX,
4208 number_unsigned_t>::value,
4209 "Missing/invalid function: bool number_unsigned(number_unsigned_t)");
4210 static_assert(is_detected_exact<bool, number_float_function_t, SAX,
4211 number_float_t, string_t>::value,
4212 "Missing/invalid function: bool number_float(number_float_t, const string_t&)");
4213 static_assert(
4214 is_detected_exact<bool, string_function_t, SAX, string_t>::value,
4215 "Missing/invalid function: bool string(string_t&)");
4216 static_assert(is_detected_exact<bool, start_object_function_t, SAX>::value,
4217 "Missing/invalid function: bool start_object(std::size_t)");
4218 static_assert(is_detected_exact<bool, key_function_t, SAX, string_t>::value,
4219 "Missing/invalid function: bool key(string_t&)");
4220 static_assert(is_detected_exact<bool, end_object_function_t, SAX>::value,
4221 "Missing/invalid function: bool end_object()");
4222 static_assert(is_detected_exact<bool, start_array_function_t, SAX>::value,
4223 "Missing/invalid function: bool start_array(std::size_t)");
4224 static_assert(is_detected_exact<bool, end_array_function_t, SAX>::value,
4225 "Missing/invalid function: bool end_array()");
4226 static_assert(
4227 is_detected_exact<bool, parse_error_function_t, SAX, exception_t>::value,
4228 "Missing/invalid function: bool parse_error(std::size_t, const "
4229 "std::string&, const exception&)");
4230};
4231} // namespace detail
4232} // namespace nlohmann
4233
4234// #include <nlohmann/detail/input/input_adapters.hpp>
4235
4236// #include <nlohmann/detail/input/json_sax.hpp>
4237
4238
4239#include <cstddef>
4240#include <string>
4241#include <vector>
4242
4243// #include <nlohmann/detail/input/parser.hpp>
4244
4245// #include <nlohmann/detail/exceptions.hpp>
4246
4247
4248namespace nlohmann
4249{
4250
4251/*!
4252@brief SAX interface
4253
4254This class describes the SAX interface used by @ref nlohmann::json::sax_parse.
4255Each function is called in different situations while the input is parsed. The
4256boolean return value informs the parser whether to continue processing the
4257input.
4258*/
4259template<typename BasicJsonType>
4260struct json_sax
4261{
4262 /// type for (signed) integers
4263 using number_integer_t = typename BasicJsonType::number_integer_t;
4264 /// type for unsigned integers
4265 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4266 /// type for floating-point numbers
4267 using number_float_t = typename BasicJsonType::number_float_t;
4268 /// type for strings
4269 using string_t = typename BasicJsonType::string_t;
4270
4271 /*!
4272 @brief a null value was read
4273 @return whether parsing should proceed
4274 */
4275 virtual bool null() = 0;
4276
4277 /*!
4278 @brief a boolean value was read
4279 @param[in] val boolean value
4280 @return whether parsing should proceed
4281 */
4282 virtual bool boolean(bool val) = 0;
4283
4284 /*!
4285 @brief an integer number was read
4286 @param[in] val integer value
4287 @return whether parsing should proceed
4288 */
4289 virtual bool number_integer(number_integer_t val) = 0;
4290
4291 /*!
4292 @brief an unsigned integer number was read
4293 @param[in] val unsigned integer value
4294 @return whether parsing should proceed
4295 */
4296 virtual bool number_unsigned(number_unsigned_t val) = 0;
4297
4298 /*!
4299 @brief an floating-point number was read
4300 @param[in] val floating-point value
4301 @param[in] s raw token value
4302 @return whether parsing should proceed
4303 */
4304 virtual bool number_float(number_float_t val, const string_t& s) = 0;
4305
4306 /*!
4307 @brief a string was read
4308 @param[in] val string value
4309 @return whether parsing should proceed
4310 @note It is safe to move the passed string.
4311 */
4312 virtual bool string(string_t& val) = 0;
4313
4314 /*!
4315 @brief the beginning of an object was read
4316 @param[in] elements number of object elements or -1 if unknown
4317 @return whether parsing should proceed
4318 @note binary formats may report the number of elements
4319 */
4320 virtual bool start_object(std::size_t elements) = 0;
4321
4322 /*!
4323 @brief an object key was read
4324 @param[in] val object key
4325 @return whether parsing should proceed
4326 @note It is safe to move the passed string.
4327 */
4328 virtual bool key(string_t& val) = 0;
4329
4330 /*!
4331 @brief the end of an object was read
4332 @return whether parsing should proceed
4333 */
4334 virtual bool end_object() = 0;
4335
4336 /*!
4337 @brief the beginning of an array was read
4338 @param[in] elements number of array elements or -1 if unknown
4339 @return whether parsing should proceed
4340 @note binary formats may report the number of elements
4341 */
4342 virtual bool start_array(std::size_t elements) = 0;
4343
4344 /*!
4345 @brief the end of an array was read
4346 @return whether parsing should proceed
4347 */
4348 virtual bool end_array() = 0;
4349
4350 /*!
4351 @brief a parse error occurred
4352 @param[in] position the position in the input where the error occurs
4353 @param[in] last_token the last read token
4354 @param[in] ex an exception object describing the error
4355 @return whether parsing should proceed (must return false)
4356 */
4357 virtual bool parse_error(std::size_t position,
4358 const std::string& last_token,
4359 const detail::exception& ex) = 0;
4360
4361 virtual ~json_sax() = default;
4362};
4363
4364
4365namespace detail
4366{
4367/*!
4368@brief SAX implementation to create a JSON value from SAX events
4369
4370This class implements the @ref json_sax interface and processes the SAX events
4371to create a JSON value which makes it basically a DOM parser. The structure or
4372hierarchy of the JSON value is managed by the stack `ref_stack` which contains
4373a pointer to the respective array or object for each recursion depth.
4374
4375After successful parsing, the value that is passed by reference to the
4376constructor contains the parsed value.
4377
4378@tparam BasicJsonType the JSON type
4379*/
4380template<typename BasicJsonType>
4381class json_sax_dom_parser
4382{
4383 public:
4384 using number_integer_t = typename BasicJsonType::number_integer_t;
4385 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4386 using number_float_t = typename BasicJsonType::number_float_t;
4387 using string_t = typename BasicJsonType::string_t;
4388
4389 /*!
4390 @param[in, out] r reference to a JSON value that is manipulated while
4391 parsing
4392 @param[in] allow_exceptions_ whether parse errors yield exceptions
4393 */
4394 explicit json_sax_dom_parser(BasicJsonType& r, const bool allow_exceptions_ = true)
4395 : root(r), allow_exceptions(allow_exceptions_)
4396 {}
4397
4398 bool null()
4399 {
4400 handle_value(nullptr);
4401 return true;
4402 }
4403
4404 bool boolean(bool val)
4405 {
4406 handle_value(val);
4407 return true;
4408 }
4409
4410 bool number_integer(number_integer_t val)
4411 {
4412 handle_value(val);
4413 return true;
4414 }
4415
4416 bool number_unsigned(number_unsigned_t val)
4417 {
4418 handle_value(val);
4419 return true;
4420 }
4421
4422 bool number_float(number_float_t val, const string_t& /*unused*/)
4423 {
4424 handle_value(val);
4425 return true;
4426 }
4427
4428 bool string(string_t& val)
4429 {
4430 handle_value(val);
4431 return true;
4432 }
4433
4434 bool start_object(std::size_t len)
4435 {
4436 ref_stack.push_back(handle_value(BasicJsonType::value_t::object));
4437
4438 if (JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4439 {
4440 JSON_THROW(out_of_range::create(408,
4441 "excessive object size: " + std::to_string(len)));
4442 }
4443
4444 return true;
4445 }
4446
4447 bool key(string_t& val)
4448 {
4449 // add null at given key and store the reference for later
4450 object_element = &(ref_stack.back()->m_value.object->operator[](val));
4451 return true;
4452 }
4453
4454 bool end_object()
4455 {
4456 ref_stack.pop_back();
4457 return true;
4458 }
4459
4460 bool start_array(std::size_t len)
4461 {
4462 ref_stack.push_back(handle_value(BasicJsonType::value_t::array));
4463
4464 if (JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4465 {
4466 JSON_THROW(out_of_range::create(408,
4467 "excessive array size: " + std::to_string(len)));
4468 }
4469
4470 return true;
4471 }
4472
4473 bool end_array()
4474 {
4475 ref_stack.pop_back();
4476 return true;
4477 }
4478
4479 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
4480 const detail::exception& ex)
4481 {
4482 errored = true;
4483 if (allow_exceptions)
4484 {
4485 // determine the proper exception type from the id
4486 switch ((ex.id / 100) % 100)
4487 {
4488 case 1:
4489 JSON_THROW(*reinterpret_cast<const detail::parse_error*>(&ex));
4490 case 4:
4491 JSON_THROW(*reinterpret_cast<const detail::out_of_range*>(&ex));
4492 // LCOV_EXCL_START
4493 case 2:
4494 JSON_THROW(*reinterpret_cast<const detail::invalid_iterator*>(&ex));
4495 case 3:
4496 JSON_THROW(*reinterpret_cast<const detail::type_error*>(&ex));
4497 case 5:
4498 JSON_THROW(*reinterpret_cast<const detail::other_error*>(&ex));
4499 default:
4500 assert(false);
4501 // LCOV_EXCL_STOP
4502 }
4503 }
4504 return false;
4505 }
4506
4507 constexpr bool is_errored() const
4508 {
4509 return errored;
4510 }
4511
4512 private:
4513 /*!
4514 @invariant If the ref stack is empty, then the passed value will be the new
4515 root.
4516 @invariant If the ref stack contains a value, then it is an array or an
4517 object to which we can add elements
4518 */
4519 template<typename Value>
4520 BasicJsonType* handle_value(Value&& v)
4521 {
4522 if (ref_stack.empty())
4523 {
4524 root = BasicJsonType(std::forward<Value>(v));
4525 return &root;
4526 }
4527
4528 assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
4529
4530 if (ref_stack.back()->is_array())
4531 {
4532 ref_stack.back()->m_value.array->emplace_back(std::forward<Value>(v));
4533 return &(ref_stack.back()->m_value.array->back());
4534 }
4535 else
4536 {
4537 assert(object_element);
4538 *object_element = BasicJsonType(std::forward<Value>(v));
4539 return object_element;
4540 }
4541 }
4542
4543 /// the parsed JSON value
4544 BasicJsonType& root;
4545 /// stack to model hierarchy of values
4546 std::vector<BasicJsonType*> ref_stack;
4547 /// helper to hold the reference for the next object element
4548 BasicJsonType* object_element = nullptr;
4549 /// whether a syntax error occurred
4550 bool errored = false;
4551 /// whether to throw exceptions in case of errors
4552 const bool allow_exceptions = true;
4553};
4554
4555template<typename BasicJsonType>
4556class json_sax_dom_callback_parser
4557{
4558 public:
4559 using number_integer_t = typename BasicJsonType::number_integer_t;
4560 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4561 using number_float_t = typename BasicJsonType::number_float_t;
4562 using string_t = typename BasicJsonType::string_t;
4563 using parser_callback_t = typename BasicJsonType::parser_callback_t;
4564 using parse_event_t = typename BasicJsonType::parse_event_t;
4565
4566 json_sax_dom_callback_parser(BasicJsonType& r,
4567 const parser_callback_t cb,
4568 const bool allow_exceptions_ = true)
4569 : root(r), callback(cb), allow_exceptions(allow_exceptions_)
4570 {
4571 keep_stack.push_back(true);
4572 }
4573
4574 bool null()
4575 {
4576 handle_value(nullptr);
4577 return true;
4578 }
4579
4580 bool boolean(bool val)
4581 {
4582 handle_value(val);
4583 return true;
4584 }
4585
4586 bool number_integer(number_integer_t val)
4587 {
4588 handle_value(val);
4589 return true;
4590 }
4591
4592 bool number_unsigned(number_unsigned_t val)
4593 {
4594 handle_value(val);
4595 return true;
4596 }
4597
4598 bool number_float(number_float_t val, const string_t& /*unused*/)
4599 {
4600 handle_value(val);
4601 return true;
4602 }
4603
4604 bool string(string_t& val)
4605 {
4606 handle_value(val);
4607 return true;
4608 }
4609
4610 bool start_object(std::size_t len)
4611 {
4612 // check callback for object start
4613 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::object_start, discarded);
4614 keep_stack.push_back(keep);
4615
4616 auto val = handle_value(BasicJsonType::value_t::object, true);
4617 ref_stack.push_back(val.second);
4618
4619 // check object limit
4620 if (ref_stack.back())
4621 {
4622 if (JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4623 {
4624 JSON_THROW(out_of_range::create(408,
4625 "excessive object size: " + std::to_string(len)));
4626 }
4627 }
4628
4629 return true;
4630 }
4631
4632 bool key(string_t& val)
4633 {
4634 BasicJsonType k = BasicJsonType(val);
4635
4636 // check callback for key
4637 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::key, k);
4638 key_keep_stack.push_back(keep);
4639
4640 // add discarded value at given key and store the reference for later
4641 if (keep and ref_stack.back())
4642 {
4643 object_element = &(ref_stack.back()->m_value.object->operator[](val) = discarded);
4644 }
4645
4646 return true;
4647 }
4648
4649 bool end_object()
4650 {
4651 if (ref_stack.back())
4652 {
4653 if (not callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::object_end, *ref_stack.back()))
4654 {
4655 // discard object
4656 *ref_stack.back() = discarded;
4657 }
4658 }
4659
4660 assert(not ref_stack.empty());
4661 assert(not keep_stack.empty());
4662 ref_stack.pop_back();
4663 keep_stack.pop_back();
4664
4665 if (not ref_stack.empty() and ref_stack.back())
4666 {
4667 // remove discarded value
4668 if (ref_stack.back()->is_object())
4669 {
4670 for (auto it = ref_stack.back()->begin(); it != ref_stack.back()->end(); ++it)
4671 {
4672 if (it->is_discarded())
4673 {
4674 ref_stack.back()->erase(it);
4675 break;
4676 }
4677 }
4678 }
4679 }
4680
4681 return true;
4682 }
4683
4684 bool start_array(std::size_t len)
4685 {
4686 const bool keep = callback(static_cast<int>(ref_stack.size()), parse_event_t::array_start, discarded);
4687 keep_stack.push_back(keep);
4688
4689 auto val = handle_value(BasicJsonType::value_t::array, true);
4690 ref_stack.push_back(val.second);
4691
4692 // check array limit
4693 if (ref_stack.back())
4694 {
4695 if (JSON_UNLIKELY(len != std::size_t(-1) and len > ref_stack.back()->max_size()))
4696 {
4697 JSON_THROW(out_of_range::create(408,
4698 "excessive array size: " + std::to_string(len)));
4699 }
4700 }
4701
4702 return true;
4703 }
4704
4705 bool end_array()
4706 {
4707 bool keep = true;
4708
4709 if (ref_stack.back())
4710 {
4711 keep = callback(static_cast<int>(ref_stack.size()) - 1, parse_event_t::array_end, *ref_stack.back());
4712 if (not keep)
4713 {
4714 // discard array
4715 *ref_stack.back() = discarded;
4716 }
4717 }
4718
4719 assert(not ref_stack.empty());
4720 assert(not keep_stack.empty());
4721 ref_stack.pop_back();
4722 keep_stack.pop_back();
4723
4724 // remove discarded value
4725 if (not keep and not ref_stack.empty())
4726 {
4727 if (ref_stack.back()->is_array())
4728 {
4729 ref_stack.back()->m_value.array->pop_back();
4730 }
4731 }
4732
4733 return true;
4734 }
4735
4736 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/,
4737 const detail::exception& ex)
4738 {
4739 errored = true;
4740 if (allow_exceptions)
4741 {
4742 // determine the proper exception type from the id
4743 switch ((ex.id / 100) % 100)
4744 {
4745 case 1:
4746 JSON_THROW(*reinterpret_cast<const detail::parse_error*>(&ex));
4747 case 4:
4748 JSON_THROW(*reinterpret_cast<const detail::out_of_range*>(&ex));
4749 // LCOV_EXCL_START
4750 case 2:
4751 JSON_THROW(*reinterpret_cast<const detail::invalid_iterator*>(&ex));
4752 case 3:
4753 JSON_THROW(*reinterpret_cast<const detail::type_error*>(&ex));
4754 case 5:
4755 JSON_THROW(*reinterpret_cast<const detail::other_error*>(&ex));
4756 default:
4757 assert(false);
4758 // LCOV_EXCL_STOP
4759 }
4760 }
4761 return false;
4762 }
4763
4764 constexpr bool is_errored() const
4765 {
4766 return errored;
4767 }
4768
4769 private:
4770 /*!
4771 @param[in] v value to add to the JSON value we build during parsing
4772 @param[in] skip_callback whether we should skip calling the callback
4773 function; this is required after start_array() and
4774 start_object() SAX events, because otherwise we would call the
4775 callback function with an empty array or object, respectively.
4776
4777 @invariant If the ref stack is empty, then the passed value will be the new
4778 root.
4779 @invariant If the ref stack contains a value, then it is an array or an
4780 object to which we can add elements
4781
4782 @return pair of boolean (whether value should be kept) and pointer (to the
4783 passed value in the ref_stack hierarchy; nullptr if not kept)
4784 */
4785 template<typename Value>
4786 std::pair<bool, BasicJsonType*> handle_value(Value&& v, const bool skip_callback = false)
4787 {
4788 assert(not keep_stack.empty());
4789
4790 // do not handle this value if we know it would be added to a discarded
4791 // container
4792 if (not keep_stack.back())
4793 {
4794 return {false, nullptr};
4795 }
4796
4797 // create value
4798 auto value = BasicJsonType(std::forward<Value>(v));
4799
4800 // check callback
4801 const bool keep = skip_callback or callback(static_cast<int>(ref_stack.size()), parse_event_t::value, value);
4802
4803 // do not handle this value if we just learnt it shall be discarded
4804 if (not keep)
4805 {
4806 return {false, nullptr};
4807 }
4808
4809 if (ref_stack.empty())
4810 {
4811 root = std::move(value);
4812 return {true, &root};
4813 }
4814
4815 // skip this value if we already decided to skip the parent
4816 // (https://github.com/nlohmann/json/issues/971#issuecomment-413678360)
4817 if (not ref_stack.back())
4818 {
4819 return {false, nullptr};
4820 }
4821
4822 // we now only expect arrays and objects
4823 assert(ref_stack.back()->is_array() or ref_stack.back()->is_object());
4824
4825 if (ref_stack.back()->is_array())
4826 {
4827 ref_stack.back()->m_value.array->push_back(std::move(value));
4828 return {true, &(ref_stack.back()->m_value.array->back())};
4829 }
4830 else
4831 {
4832 // check if we should store an element for the current key
4833 assert(not key_keep_stack.empty());
4834 const bool store_element = key_keep_stack.back();
4835 key_keep_stack.pop_back();
4836
4837 if (not store_element)
4838 {
4839 return {false, nullptr};
4840 }
4841
4842 assert(object_element);
4843 *object_element = std::move(value);
4844 return {true, object_element};
4845 }
4846 }
4847
4848 /// the parsed JSON value
4849 BasicJsonType& root;
4850 /// stack to model hierarchy of values
4851 std::vector<BasicJsonType*> ref_stack;
4852 /// stack to manage which values to keep
4853 std::vector<bool> keep_stack;
4854 /// stack to manage which object keys to keep
4855 std::vector<bool> key_keep_stack;
4856 /// helper to hold the reference for the next object element
4857 BasicJsonType* object_element = nullptr;
4858 /// whether a syntax error occurred
4859 bool errored = false;
4860 /// callback function
4861 const parser_callback_t callback = nullptr;
4862 /// whether to throw exceptions in case of errors
4863 const bool allow_exceptions = true;
4864 /// a discarded value for the callback
4865 BasicJsonType discarded = BasicJsonType::value_t::discarded;
4866};
4867
4868template<typename BasicJsonType>
4869class json_sax_acceptor
4870{
4871 public:
4872 using number_integer_t = typename BasicJsonType::number_integer_t;
4873 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4874 using number_float_t = typename BasicJsonType::number_float_t;
4875 using string_t = typename BasicJsonType::string_t;
4876
4877 bool null()
4878 {
4879 return true;
4880 }
4881
4882 bool boolean(bool /*unused*/)
4883 {
4884 return true;
4885 }
4886
4887 bool number_integer(number_integer_t /*unused*/)
4888 {
4889 return true;
4890 }
4891
4892 bool number_unsigned(number_unsigned_t /*unused*/)
4893 {
4894 return true;
4895 }
4896
4897 bool number_float(number_float_t /*unused*/, const string_t& /*unused*/)
4898 {
4899 return true;
4900 }
4901
4902 bool string(string_t& /*unused*/)
4903 {
4904 return true;
4905 }
4906
4907 bool start_object(std::size_t /*unused*/ = std::size_t(-1))
4908 {
4909 return true;
4910 }
4911
4912 bool key(string_t& /*unused*/)
4913 {
4914 return true;
4915 }
4916
4917 bool end_object()
4918 {
4919 return true;
4920 }
4921
4922 bool start_array(std::size_t /*unused*/ = std::size_t(-1))
4923 {
4924 return true;
4925 }
4926
4927 bool end_array()
4928 {
4929 return true;
4930 }
4931
4932 bool parse_error(std::size_t /*unused*/, const std::string& /*unused*/, const detail::exception& /*unused*/)
4933 {
4934 return false;
4935 }
4936};
4937} // namespace detail
4938
4939} // namespace nlohmann
4940
4941// #include <nlohmann/detail/input/lexer.hpp>
4942
4943// #include <nlohmann/detail/value_t.hpp>
4944
4945
4946namespace nlohmann
4947{
4948namespace detail
4949{
4950////////////
4951// parser //
4952////////////
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004953
4954/*!
4955@brief syntax analysis
4956
4957This class implements a recursive decent parser.
4958*/
4959template<typename BasicJsonType>
4960class parser
4961{
4962 using number_integer_t = typename BasicJsonType::number_integer_t;
4963 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
4964 using number_float_t = typename BasicJsonType::number_float_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004965 using string_t = typename BasicJsonType::string_t;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004966 using lexer_t = lexer<BasicJsonType>;
4967 using token_type = typename lexer_t::token_type;
4968
4969 public:
4970 enum class parse_event_t : uint8_t
4971 {
4972 /// the parser read `{` and started to process a JSON object
4973 object_start,
4974 /// the parser read `}` and finished processing a JSON object
4975 object_end,
4976 /// the parser read `[` and started to process a JSON array
4977 array_start,
4978 /// the parser read `]` and finished processing a JSON array
4979 array_end,
4980 /// the parser read a key of a value in an object
4981 key,
4982 /// the parser finished reading a JSON value
4983 value
4984 };
4985
4986 using parser_callback_t =
4987 std::function<bool(int depth, parse_event_t event, BasicJsonType& parsed)>;
4988
4989 /// a parser reading from an input adapter
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004990 explicit parser(detail::input_adapter_t&& adapter,
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004991 const parser_callback_t cb = nullptr,
4992 const bool allow_exceptions_ = true)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09004993 : callback(cb), m_lexer(std::move(adapter)), allow_exceptions(allow_exceptions_)
4994 {
4995 // read first token
4996 get_token();
4997 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09004998
4999 /*!
5000 @brief public parser interface
5001
5002 @param[in] strict whether to expect the last token to be EOF
5003 @param[in,out] result parsed JSON value
5004
5005 @throw parse_error.101 in case of an unexpected token
5006 @throw parse_error.102 if to_unicode fails or surrogate error
5007 @throw parse_error.103 if to_unicode fails
5008 */
5009 void parse(const bool strict, BasicJsonType& result)
5010 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005011 if (callback)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005012 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005013 json_sax_dom_callback_parser<BasicJsonType> sdp(result, callback, allow_exceptions);
5014 sax_parse_internal(&sdp);
5015 result.assert_invariant();
5016
5017 // in strict mode, input must be completely read
5018 if (strict and (get_token() != token_type::end_of_input))
5019 {
5020 sdp.parse_error(m_lexer.get_position(),
5021 m_lexer.get_token_string(),
5022 parse_error::create(101, m_lexer.get_position(),
5023 exception_message(token_type::end_of_input, "value")));
5024 }
5025
5026 // in case of an error, return discarded value
5027 if (sdp.is_errored())
5028 {
5029 result = value_t::discarded;
5030 return;
5031 }
5032
5033 // set top-level value to null if it was discarded by the callback
5034 // function
5035 if (result.is_discarded())
5036 {
5037 result = nullptr;
5038 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005039 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005040 else
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005041 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005042 json_sax_dom_parser<BasicJsonType> sdp(result, allow_exceptions);
5043 sax_parse_internal(&sdp);
5044 result.assert_invariant();
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005045
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005046 // in strict mode, input must be completely read
5047 if (strict and (get_token() != token_type::end_of_input))
5048 {
5049 sdp.parse_error(m_lexer.get_position(),
5050 m_lexer.get_token_string(),
5051 parse_error::create(101, m_lexer.get_position(),
5052 exception_message(token_type::end_of_input, "value")));
5053 }
5054
5055 // in case of an error, return discarded value
5056 if (sdp.is_errored())
5057 {
5058 result = value_t::discarded;
5059 return;
5060 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005061 }
5062 }
5063
5064 /*!
5065 @brief public accept interface
5066
5067 @param[in] strict whether to expect the last token to be EOF
5068 @return whether the input is a proper JSON text
5069 */
5070 bool accept(const bool strict = true)
5071 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005072 json_sax_acceptor<BasicJsonType> sax_acceptor;
5073 return sax_parse(&sax_acceptor, strict);
5074 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005075
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005076 template <typename SAX>
5077 bool sax_parse(SAX* sax, const bool strict = true)
5078 {
5079 (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
5080 const bool result = sax_parse_internal(sax);
5081
5082 // strict mode: next byte must be EOF
5083 if (result and strict and (get_token() != token_type::end_of_input))
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005084 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005085 return sax->parse_error(m_lexer.get_position(),
5086 m_lexer.get_token_string(),
5087 parse_error::create(101, m_lexer.get_position(),
5088 exception_message(token_type::end_of_input, "value")));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005089 }
5090
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005091 return result;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005092 }
5093
5094 private:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005095 template <typename SAX>
5096 bool sax_parse_internal(SAX* sax)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005097 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005098 // stack to remember the hierarchy of structured values we are parsing
5099 // true = array; false = object
5100 std::vector<bool> states;
5101 // value to avoid a goto (see comment where set to true)
5102 bool skip_to_state_evaluation = false;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005103
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005104 while (true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005105 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005106 if (not skip_to_state_evaluation)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005107 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005108 // invariant: get_token() was called before each iteration
5109 switch (last_token)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005110 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005111 case token_type::begin_object:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005112 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005113 if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1))))
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005114 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005115 return false;
5116 }
5117
5118 // closing } -> we are done
5119 if (get_token() == token_type::end_object)
5120 {
5121 if (JSON_UNLIKELY(not sax->end_object()))
5122 {
5123 return false;
5124 }
5125 break;
5126 }
5127
5128 // parse key
5129 if (JSON_UNLIKELY(last_token != token_type::value_string))
5130 {
5131 return sax->parse_error(m_lexer.get_position(),
5132 m_lexer.get_token_string(),
5133 parse_error::create(101, m_lexer.get_position(),
5134 exception_message(token_type::value_string, "object key")));
5135 }
5136 if (JSON_UNLIKELY(not sax->key(m_lexer.get_string())))
5137 {
5138 return false;
5139 }
5140
5141 // parse separator (:)
5142 if (JSON_UNLIKELY(get_token() != token_type::name_separator))
5143 {
5144 return sax->parse_error(m_lexer.get_position(),
5145 m_lexer.get_token_string(),
5146 parse_error::create(101, m_lexer.get_position(),
5147 exception_message(token_type::name_separator, "object separator")));
5148 }
5149
5150 // remember we are now inside an object
5151 states.push_back(false);
5152
5153 // parse values
5154 get_token();
5155 continue;
5156 }
5157
5158 case token_type::begin_array:
5159 {
5160 if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1))))
5161 {
5162 return false;
5163 }
5164
5165 // closing ] -> we are done
5166 if (get_token() == token_type::end_array)
5167 {
5168 if (JSON_UNLIKELY(not sax->end_array()))
5169 {
5170 return false;
5171 }
5172 break;
5173 }
5174
5175 // remember we are now inside an array
5176 states.push_back(true);
5177
5178 // parse values (no need to call get_token)
5179 continue;
5180 }
5181
5182 case token_type::value_float:
5183 {
5184 const auto res = m_lexer.get_number_float();
5185
5186 if (JSON_UNLIKELY(not std::isfinite(res)))
5187 {
5188 return sax->parse_error(m_lexer.get_position(),
5189 m_lexer.get_token_string(),
5190 out_of_range::create(406, "number overflow parsing '" + m_lexer.get_token_string() + "'"));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005191 }
5192 else
5193 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005194 if (JSON_UNLIKELY(not sax->number_float(res, m_lexer.get_string())))
5195 {
5196 return false;
5197 }
5198 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005199 }
5200 }
5201
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005202 case token_type::literal_false:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005203 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005204 if (JSON_UNLIKELY(not sax->boolean(false)))
5205 {
5206 return false;
5207 }
5208 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005209 }
5210
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005211 case token_type::literal_null:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005212 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005213 if (JSON_UNLIKELY(not sax->null()))
5214 {
5215 return false;
5216 }
5217 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005218 }
5219
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005220 case token_type::literal_true:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005221 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005222 if (JSON_UNLIKELY(not sax->boolean(true)))
5223 {
5224 return false;
5225 }
5226 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005227 }
5228
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005229 case token_type::value_integer:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005230 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005231 if (JSON_UNLIKELY(not sax->number_integer(m_lexer.get_number_integer())))
5232 {
5233 return false;
5234 }
5235 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005236 }
5237
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005238 case token_type::value_string:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005239 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005240 if (JSON_UNLIKELY(not sax->string(m_lexer.get_string())))
5241 {
5242 return false;
5243 }
5244 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005245 }
5246
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005247 case token_type::value_unsigned:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005248 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005249 if (JSON_UNLIKELY(not sax->number_unsigned(m_lexer.get_number_unsigned())))
5250 {
5251 return false;
5252 }
5253 break;
5254 }
5255
5256 case token_type::parse_error:
5257 {
5258 // using "uninitialized" to avoid "expected" message
5259 return sax->parse_error(m_lexer.get_position(),
5260 m_lexer.get_token_string(),
5261 parse_error::create(101, m_lexer.get_position(),
5262 exception_message(token_type::uninitialized, "value")));
5263 }
5264
5265 default: // the last token was unexpected
5266 {
5267 return sax->parse_error(m_lexer.get_position(),
5268 m_lexer.get_token_string(),
5269 parse_error::create(101, m_lexer.get_position(),
5270 exception_message(token_type::literal_or_value, "value")));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005271 }
5272 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005273 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005274 else
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005275 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005276 skip_to_state_evaluation = false;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005277 }
5278
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005279 // we reached this line after we successfully parsed a value
5280 if (states.empty())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005281 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005282 // empty stack: we reached the end of the hierarchy: done
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005283 return true;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005284 }
5285 else
5286 {
5287 if (states.back()) // array
5288 {
5289 // comma -> next value
5290 if (get_token() == token_type::value_separator)
5291 {
5292 // parse a new value
5293 get_token();
5294 continue;
5295 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005296
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005297 // closing ]
5298 if (JSON_LIKELY(last_token == token_type::end_array))
5299 {
5300 if (JSON_UNLIKELY(not sax->end_array()))
5301 {
5302 return false;
5303 }
5304
5305 // We are done with this array. Before we can parse a
5306 // new value, we need to evaluate the new state first.
5307 // By setting skip_to_state_evaluation to false, we
5308 // are effectively jumping to the beginning of this if.
5309 assert(not states.empty());
5310 states.pop_back();
5311 skip_to_state_evaluation = true;
5312 continue;
5313 }
5314 else
5315 {
5316 return sax->parse_error(m_lexer.get_position(),
5317 m_lexer.get_token_string(),
5318 parse_error::create(101, m_lexer.get_position(),
5319 exception_message(token_type::end_array, "array")));
5320 }
5321 }
5322 else // object
5323 {
5324 // comma -> next value
5325 if (get_token() == token_type::value_separator)
5326 {
5327 // parse key
5328 if (JSON_UNLIKELY(get_token() != token_type::value_string))
5329 {
5330 return sax->parse_error(m_lexer.get_position(),
5331 m_lexer.get_token_string(),
5332 parse_error::create(101, m_lexer.get_position(),
5333 exception_message(token_type::value_string, "object key")));
5334 }
5335 else
5336 {
5337 if (JSON_UNLIKELY(not sax->key(m_lexer.get_string())))
5338 {
5339 return false;
5340 }
5341 }
5342
5343 // parse separator (:)
5344 if (JSON_UNLIKELY(get_token() != token_type::name_separator))
5345 {
5346 return sax->parse_error(m_lexer.get_position(),
5347 m_lexer.get_token_string(),
5348 parse_error::create(101, m_lexer.get_position(),
5349 exception_message(token_type::name_separator, "object separator")));
5350 }
5351
5352 // parse values
5353 get_token();
5354 continue;
5355 }
5356
5357 // closing }
5358 if (JSON_LIKELY(last_token == token_type::end_object))
5359 {
5360 if (JSON_UNLIKELY(not sax->end_object()))
5361 {
5362 return false;
5363 }
5364
5365 // We are done with this object. Before we can parse a
5366 // new value, we need to evaluate the new state first.
5367 // By setting skip_to_state_evaluation to false, we
5368 // are effectively jumping to the beginning of this if.
5369 assert(not states.empty());
5370 states.pop_back();
5371 skip_to_state_evaluation = true;
5372 continue;
5373 }
5374 else
5375 {
5376 return sax->parse_error(m_lexer.get_position(),
5377 m_lexer.get_token_string(),
5378 parse_error::create(101, m_lexer.get_position(),
5379 exception_message(token_type::end_object, "object")));
5380 }
5381 }
5382 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005383 }
5384 }
5385
5386 /// get next token from lexer
5387 token_type get_token()
5388 {
5389 return (last_token = m_lexer.scan());
5390 }
5391
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005392 std::string exception_message(const token_type expected, const std::string& context)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005393 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005394 std::string error_msg = "syntax error ";
5395
5396 if (not context.empty())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005397 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005398 error_msg += "while parsing " + context + " ";
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005399 }
5400
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005401 error_msg += "- ";
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005402
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005403 if (last_token == token_type::parse_error)
5404 {
5405 error_msg += std::string(m_lexer.get_error_message()) + "; last read: '" +
5406 m_lexer.get_token_string() + "'";
5407 }
5408 else
5409 {
5410 error_msg += "unexpected " + std::string(lexer_t::token_type_name(last_token));
5411 }
5412
5413 if (expected != token_type::uninitialized)
5414 {
5415 error_msg += "; expected " + std::string(lexer_t::token_type_name(expected));
5416 }
5417
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005418 return error_msg;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005419 }
5420
5421 private:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005422 /// callback function
5423 const parser_callback_t callback = nullptr;
5424 /// the type of the last read token
5425 token_type last_token = token_type::uninitialized;
5426 /// the lexer
5427 lexer_t m_lexer;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005428 /// whether to throw exceptions in case of errors
5429 const bool allow_exceptions = true;
5430};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005431} // namespace detail
5432} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005433
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005434// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005435
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005436
5437#include <cstddef> // ptrdiff_t
5438#include <limits> // numeric_limits
5439
5440namespace nlohmann
5441{
5442namespace detail
5443{
5444/*
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005445@brief an iterator for primitive JSON types
5446
5447This class models an iterator for primitive JSON types (boolean, number,
5448string). It's only purpose is to allow the iterator/const_iterator classes
5449to "iterate" over primitive values. Internally, the iterator is modeled by
5450a `difference_type` variable. Value begin_value (`0`) models the begin,
5451end_value (`1`) models past the end.
5452*/
5453class primitive_iterator_t
5454{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005455 private:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005456 using difference_type = std::ptrdiff_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005457 static constexpr difference_type begin_value = 0;
5458 static constexpr difference_type end_value = begin_value + 1;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005459
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005460 /// iterator as signed integer type
5461 difference_type m_it = (std::numeric_limits<std::ptrdiff_t>::min)();
5462
5463 public:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005464 constexpr difference_type get_value() const noexcept
5465 {
5466 return m_it;
5467 }
5468
5469 /// set iterator to a defined beginning
5470 void set_begin() noexcept
5471 {
5472 m_it = begin_value;
5473 }
5474
5475 /// set iterator to a defined past the end
5476 void set_end() noexcept
5477 {
5478 m_it = end_value;
5479 }
5480
5481 /// return whether the iterator can be dereferenced
5482 constexpr bool is_begin() const noexcept
5483 {
5484 return m_it == begin_value;
5485 }
5486
5487 /// return whether the iterator is at end
5488 constexpr bool is_end() const noexcept
5489 {
5490 return m_it == end_value;
5491 }
5492
5493 friend constexpr bool operator==(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
5494 {
5495 return lhs.m_it == rhs.m_it;
5496 }
5497
5498 friend constexpr bool operator<(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
5499 {
5500 return lhs.m_it < rhs.m_it;
5501 }
5502
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005503 primitive_iterator_t operator+(difference_type n) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005504 {
5505 auto result = *this;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005506 result += n;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005507 return result;
5508 }
5509
5510 friend constexpr difference_type operator-(primitive_iterator_t lhs, primitive_iterator_t rhs) noexcept
5511 {
5512 return lhs.m_it - rhs.m_it;
5513 }
5514
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005515 primitive_iterator_t& operator++() noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005516 {
5517 ++m_it;
5518 return *this;
5519 }
5520
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005521 primitive_iterator_t const operator++(int) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005522 {
5523 auto result = *this;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005524 ++m_it;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005525 return result;
5526 }
5527
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005528 primitive_iterator_t& operator--() noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005529 {
5530 --m_it;
5531 return *this;
5532 }
5533
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005534 primitive_iterator_t const operator--(int) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005535 {
5536 auto result = *this;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005537 --m_it;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005538 return result;
5539 }
5540
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005541 primitive_iterator_t& operator+=(difference_type n) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005542 {
5543 m_it += n;
5544 return *this;
5545 }
5546
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005547 primitive_iterator_t& operator-=(difference_type n) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005548 {
5549 m_it -= n;
5550 return *this;
5551 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005552};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005553} // namespace detail
5554} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005555
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005556// #include <nlohmann/detail/iterators/internal_iterator.hpp>
5557
5558
5559// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
5560
5561
5562namespace nlohmann
5563{
5564namespace detail
5565{
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005566/*!
5567@brief an iterator value
5568
5569@note This structure could easily be a union, but MSVC currently does not allow
5570unions members with complex constructors, see https://github.com/nlohmann/json/pull/105.
5571*/
5572template<typename BasicJsonType> struct internal_iterator
5573{
5574 /// iterator for JSON objects
5575 typename BasicJsonType::object_t::iterator object_iterator {};
5576 /// iterator for JSON arrays
5577 typename BasicJsonType::array_t::iterator array_iterator {};
5578 /// generic iterator for all other types
5579 primitive_iterator_t primitive_iterator {};
5580};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005581} // namespace detail
5582} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005583
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005584// #include <nlohmann/detail/iterators/iter_impl.hpp>
5585
5586
5587#include <ciso646> // not
5588#include <iterator> // iterator, random_access_iterator_tag, bidirectional_iterator_tag, advance, next
5589#include <type_traits> // conditional, is_const, remove_const
5590
5591// #include <nlohmann/detail/exceptions.hpp>
5592
5593// #include <nlohmann/detail/iterators/internal_iterator.hpp>
5594
5595// #include <nlohmann/detail/iterators/primitive_iterator.hpp>
5596
5597// #include <nlohmann/detail/macro_scope.hpp>
5598
5599// #include <nlohmann/detail/meta/cpp_future.hpp>
5600
5601// #include <nlohmann/detail/value_t.hpp>
5602
5603
5604namespace nlohmann
5605{
5606namespace detail
5607{
5608// forward declare, to be able to friend it later on
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005609template<typename IteratorType> class iteration_proxy;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005610template<typename IteratorType> class iteration_proxy_value;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005611
5612/*!
5613@brief a template for a bidirectional iterator for the @ref basic_json class
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005614This class implements a both iterators (iterator and const_iterator) for the
5615@ref basic_json class.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005616@note An iterator is called *initialized* when a pointer to a JSON value has
5617 been set (e.g., by a constructor or a copy assignment). If the iterator is
5618 default-constructed, it is *uninitialized* and most methods are undefined.
5619 **The library uses assertions to detect calls on uninitialized iterators.**
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005620@requirement The class satisfies the following concept requirements:
5621-
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005622[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005623 The iterator that can be moved can be moved in both directions (i.e.
5624 incremented and decremented).
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005625@since version 1.0.0, simplified in version 2.0.9, change to bidirectional
5626 iterators in version 3.0.0 (see https://github.com/nlohmann/json/issues/593)
5627*/
5628template<typename BasicJsonType>
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005629class iter_impl
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005630{
5631 /// allow basic_json to access private members
5632 friend iter_impl<typename std::conditional<std::is_const<BasicJsonType>::value, typename std::remove_const<BasicJsonType>::type, const BasicJsonType>::type>;
5633 friend BasicJsonType;
5634 friend iteration_proxy<iter_impl>;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005635 friend iteration_proxy_value<iter_impl>;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005636
5637 using object_t = typename BasicJsonType::object_t;
5638 using array_t = typename BasicJsonType::array_t;
5639 // make sure BasicJsonType is basic_json or const basic_json
5640 static_assert(is_basic_json<typename std::remove_const<BasicJsonType>::type>::value,
5641 "iter_impl only accepts (const) basic_json");
5642
5643 public:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005644
5645 /// The std::iterator class template (used as a base class to provide typedefs) is deprecated in C++17.
5646 /// The C++ Standard has never required user-defined iterators to derive from std::iterator.
5647 /// A user-defined iterator should provide publicly accessible typedefs named
5648 /// iterator_category, value_type, difference_type, pointer, and reference.
5649 /// Note that value_type is required to be non-const, even for constant iterators.
5650 using iterator_category = std::bidirectional_iterator_tag;
5651
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005652 /// the type of the values when the iterator is dereferenced
5653 using value_type = typename BasicJsonType::value_type;
5654 /// a type to represent differences between iterators
5655 using difference_type = typename BasicJsonType::difference_type;
5656 /// defines a pointer to the type iterated over (value_type)
5657 using pointer = typename std::conditional<std::is_const<BasicJsonType>::value,
5658 typename BasicJsonType::const_pointer,
5659 typename BasicJsonType::pointer>::type;
5660 /// defines a reference to the type iterated over (value_type)
5661 using reference =
5662 typename std::conditional<std::is_const<BasicJsonType>::value,
5663 typename BasicJsonType::const_reference,
5664 typename BasicJsonType::reference>::type;
5665
5666 /// default constructor
5667 iter_impl() = default;
5668
5669 /*!
5670 @brief constructor for a given JSON instance
5671 @param[in] object pointer to a JSON object for this iterator
5672 @pre object != nullptr
5673 @post The iterator is initialized; i.e. `m_object != nullptr`.
5674 */
5675 explicit iter_impl(pointer object) noexcept : m_object(object)
5676 {
5677 assert(m_object != nullptr);
5678
5679 switch (m_object->m_type)
5680 {
5681 case value_t::object:
5682 {
5683 m_it.object_iterator = typename object_t::iterator();
5684 break;
5685 }
5686
5687 case value_t::array:
5688 {
5689 m_it.array_iterator = typename array_t::iterator();
5690 break;
5691 }
5692
5693 default:
5694 {
5695 m_it.primitive_iterator = primitive_iterator_t();
5696 break;
5697 }
5698 }
5699 }
5700
5701 /*!
5702 @note The conventional copy constructor and copy assignment are implicitly
5703 defined. Combined with the following converting constructor and
5704 assignment, they support: (1) copy from iterator to iterator, (2)
5705 copy from const iterator to const iterator, and (3) conversion from
5706 iterator to const iterator. However conversion from const iterator
5707 to iterator is not defined.
5708 */
5709
5710 /*!
5711 @brief converting constructor
5712 @param[in] other non-const iterator to copy from
5713 @note It is not checked whether @a other is initialized.
5714 */
5715 iter_impl(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
5716 : m_object(other.m_object), m_it(other.m_it) {}
5717
5718 /*!
5719 @brief converting assignment
5720 @param[in,out] other non-const iterator to copy from
5721 @return const/non-const iterator
5722 @note It is not checked whether @a other is initialized.
5723 */
5724 iter_impl& operator=(const iter_impl<typename std::remove_const<BasicJsonType>::type>& other) noexcept
5725 {
5726 m_object = other.m_object;
5727 m_it = other.m_it;
5728 return *this;
5729 }
5730
5731 private:
5732 /*!
5733 @brief set the iterator to the first value
5734 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5735 */
5736 void set_begin() noexcept
5737 {
5738 assert(m_object != nullptr);
5739
5740 switch (m_object->m_type)
5741 {
5742 case value_t::object:
5743 {
5744 m_it.object_iterator = m_object->m_value.object->begin();
5745 break;
5746 }
5747
5748 case value_t::array:
5749 {
5750 m_it.array_iterator = m_object->m_value.array->begin();
5751 break;
5752 }
5753
5754 case value_t::null:
5755 {
5756 // set to end so begin()==end() is true: null is empty
5757 m_it.primitive_iterator.set_end();
5758 break;
5759 }
5760
5761 default:
5762 {
5763 m_it.primitive_iterator.set_begin();
5764 break;
5765 }
5766 }
5767 }
5768
5769 /*!
5770 @brief set the iterator past the last value
5771 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5772 */
5773 void set_end() noexcept
5774 {
5775 assert(m_object != nullptr);
5776
5777 switch (m_object->m_type)
5778 {
5779 case value_t::object:
5780 {
5781 m_it.object_iterator = m_object->m_value.object->end();
5782 break;
5783 }
5784
5785 case value_t::array:
5786 {
5787 m_it.array_iterator = m_object->m_value.array->end();
5788 break;
5789 }
5790
5791 default:
5792 {
5793 m_it.primitive_iterator.set_end();
5794 break;
5795 }
5796 }
5797 }
5798
5799 public:
5800 /*!
5801 @brief return a reference to the value pointed to by the iterator
5802 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5803 */
5804 reference operator*() const
5805 {
5806 assert(m_object != nullptr);
5807
5808 switch (m_object->m_type)
5809 {
5810 case value_t::object:
5811 {
5812 assert(m_it.object_iterator != m_object->m_value.object->end());
5813 return m_it.object_iterator->second;
5814 }
5815
5816 case value_t::array:
5817 {
5818 assert(m_it.array_iterator != m_object->m_value.array->end());
5819 return *m_it.array_iterator;
5820 }
5821
5822 case value_t::null:
5823 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
5824
5825 default:
5826 {
5827 if (JSON_LIKELY(m_it.primitive_iterator.is_begin()))
5828 {
5829 return *m_object;
5830 }
5831
5832 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
5833 }
5834 }
5835 }
5836
5837 /*!
5838 @brief dereference the iterator
5839 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5840 */
5841 pointer operator->() const
5842 {
5843 assert(m_object != nullptr);
5844
5845 switch (m_object->m_type)
5846 {
5847 case value_t::object:
5848 {
5849 assert(m_it.object_iterator != m_object->m_value.object->end());
5850 return &(m_it.object_iterator->second);
5851 }
5852
5853 case value_t::array:
5854 {
5855 assert(m_it.array_iterator != m_object->m_value.array->end());
5856 return &*m_it.array_iterator;
5857 }
5858
5859 default:
5860 {
5861 if (JSON_LIKELY(m_it.primitive_iterator.is_begin()))
5862 {
5863 return m_object;
5864 }
5865
5866 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
5867 }
5868 }
5869 }
5870
5871 /*!
5872 @brief post-increment (it++)
5873 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5874 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005875 iter_impl const operator++(int)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005876 {
5877 auto result = *this;
5878 ++(*this);
5879 return result;
5880 }
5881
5882 /*!
5883 @brief pre-increment (++it)
5884 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5885 */
5886 iter_impl& operator++()
5887 {
5888 assert(m_object != nullptr);
5889
5890 switch (m_object->m_type)
5891 {
5892 case value_t::object:
5893 {
5894 std::advance(m_it.object_iterator, 1);
5895 break;
5896 }
5897
5898 case value_t::array:
5899 {
5900 std::advance(m_it.array_iterator, 1);
5901 break;
5902 }
5903
5904 default:
5905 {
5906 ++m_it.primitive_iterator;
5907 break;
5908 }
5909 }
5910
5911 return *this;
5912 }
5913
5914 /*!
5915 @brief post-decrement (it--)
5916 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5917 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09005918 iter_impl const operator--(int)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09005919 {
5920 auto result = *this;
5921 --(*this);
5922 return result;
5923 }
5924
5925 /*!
5926 @brief pre-decrement (--it)
5927 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5928 */
5929 iter_impl& operator--()
5930 {
5931 assert(m_object != nullptr);
5932
5933 switch (m_object->m_type)
5934 {
5935 case value_t::object:
5936 {
5937 std::advance(m_it.object_iterator, -1);
5938 break;
5939 }
5940
5941 case value_t::array:
5942 {
5943 std::advance(m_it.array_iterator, -1);
5944 break;
5945 }
5946
5947 default:
5948 {
5949 --m_it.primitive_iterator;
5950 break;
5951 }
5952 }
5953
5954 return *this;
5955 }
5956
5957 /*!
5958 @brief comparison: equal
5959 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5960 */
5961 bool operator==(const iter_impl& other) const
5962 {
5963 // if objects are not the same, the comparison is undefined
5964 if (JSON_UNLIKELY(m_object != other.m_object))
5965 {
5966 JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
5967 }
5968
5969 assert(m_object != nullptr);
5970
5971 switch (m_object->m_type)
5972 {
5973 case value_t::object:
5974 return (m_it.object_iterator == other.m_it.object_iterator);
5975
5976 case value_t::array:
5977 return (m_it.array_iterator == other.m_it.array_iterator);
5978
5979 default:
5980 return (m_it.primitive_iterator == other.m_it.primitive_iterator);
5981 }
5982 }
5983
5984 /*!
5985 @brief comparison: not equal
5986 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5987 */
5988 bool operator!=(const iter_impl& other) const
5989 {
5990 return not operator==(other);
5991 }
5992
5993 /*!
5994 @brief comparison: smaller
5995 @pre The iterator is initialized; i.e. `m_object != nullptr`.
5996 */
5997 bool operator<(const iter_impl& other) const
5998 {
5999 // if objects are not the same, the comparison is undefined
6000 if (JSON_UNLIKELY(m_object != other.m_object))
6001 {
6002 JSON_THROW(invalid_iterator::create(212, "cannot compare iterators of different containers"));
6003 }
6004
6005 assert(m_object != nullptr);
6006
6007 switch (m_object->m_type)
6008 {
6009 case value_t::object:
6010 JSON_THROW(invalid_iterator::create(213, "cannot compare order of object iterators"));
6011
6012 case value_t::array:
6013 return (m_it.array_iterator < other.m_it.array_iterator);
6014
6015 default:
6016 return (m_it.primitive_iterator < other.m_it.primitive_iterator);
6017 }
6018 }
6019
6020 /*!
6021 @brief comparison: less than or equal
6022 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6023 */
6024 bool operator<=(const iter_impl& other) const
6025 {
6026 return not other.operator < (*this);
6027 }
6028
6029 /*!
6030 @brief comparison: greater than
6031 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6032 */
6033 bool operator>(const iter_impl& other) const
6034 {
6035 return not operator<=(other);
6036 }
6037
6038 /*!
6039 @brief comparison: greater than or equal
6040 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6041 */
6042 bool operator>=(const iter_impl& other) const
6043 {
6044 return not operator<(other);
6045 }
6046
6047 /*!
6048 @brief add to iterator
6049 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6050 */
6051 iter_impl& operator+=(difference_type i)
6052 {
6053 assert(m_object != nullptr);
6054
6055 switch (m_object->m_type)
6056 {
6057 case value_t::object:
6058 JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
6059
6060 case value_t::array:
6061 {
6062 std::advance(m_it.array_iterator, i);
6063 break;
6064 }
6065
6066 default:
6067 {
6068 m_it.primitive_iterator += i;
6069 break;
6070 }
6071 }
6072
6073 return *this;
6074 }
6075
6076 /*!
6077 @brief subtract from iterator
6078 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6079 */
6080 iter_impl& operator-=(difference_type i)
6081 {
6082 return operator+=(-i);
6083 }
6084
6085 /*!
6086 @brief add to iterator
6087 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6088 */
6089 iter_impl operator+(difference_type i) const
6090 {
6091 auto result = *this;
6092 result += i;
6093 return result;
6094 }
6095
6096 /*!
6097 @brief addition of distance and iterator
6098 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6099 */
6100 friend iter_impl operator+(difference_type i, const iter_impl& it)
6101 {
6102 auto result = it;
6103 result += i;
6104 return result;
6105 }
6106
6107 /*!
6108 @brief subtract from iterator
6109 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6110 */
6111 iter_impl operator-(difference_type i) const
6112 {
6113 auto result = *this;
6114 result -= i;
6115 return result;
6116 }
6117
6118 /*!
6119 @brief return difference
6120 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6121 */
6122 difference_type operator-(const iter_impl& other) const
6123 {
6124 assert(m_object != nullptr);
6125
6126 switch (m_object->m_type)
6127 {
6128 case value_t::object:
6129 JSON_THROW(invalid_iterator::create(209, "cannot use offsets with object iterators"));
6130
6131 case value_t::array:
6132 return m_it.array_iterator - other.m_it.array_iterator;
6133
6134 default:
6135 return m_it.primitive_iterator - other.m_it.primitive_iterator;
6136 }
6137 }
6138
6139 /*!
6140 @brief access to successor
6141 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6142 */
6143 reference operator[](difference_type n) const
6144 {
6145 assert(m_object != nullptr);
6146
6147 switch (m_object->m_type)
6148 {
6149 case value_t::object:
6150 JSON_THROW(invalid_iterator::create(208, "cannot use operator[] for object iterators"));
6151
6152 case value_t::array:
6153 return *std::next(m_it.array_iterator, n);
6154
6155 case value_t::null:
6156 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
6157
6158 default:
6159 {
6160 if (JSON_LIKELY(m_it.primitive_iterator.get_value() == -n))
6161 {
6162 return *m_object;
6163 }
6164
6165 JSON_THROW(invalid_iterator::create(214, "cannot get value"));
6166 }
6167 }
6168 }
6169
6170 /*!
6171 @brief return the key of an object iterator
6172 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6173 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006174 const typename object_t::key_type& key() const
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006175 {
6176 assert(m_object != nullptr);
6177
6178 if (JSON_LIKELY(m_object->is_object()))
6179 {
6180 return m_it.object_iterator->first;
6181 }
6182
6183 JSON_THROW(invalid_iterator::create(207, "cannot use key() for non-object iterators"));
6184 }
6185
6186 /*!
6187 @brief return the value of an iterator
6188 @pre The iterator is initialized; i.e. `m_object != nullptr`.
6189 */
6190 reference value() const
6191 {
6192 return operator*();
6193 }
6194
6195 private:
6196 /// associated JSON instance
6197 pointer m_object = nullptr;
6198 /// the actual iterator of the associated instance
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006199 internal_iterator<typename std::remove_const<BasicJsonType>::type> m_it;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006200};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006201} // namespace detail
6202} // namespace nlohmann
6203// #include <nlohmann/detail/iterators/iteration_proxy.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006204
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006205// #include <nlohmann/detail/iterators/json_reverse_iterator.hpp>
6206
6207
6208#include <cstddef> // ptrdiff_t
6209#include <iterator> // reverse_iterator
6210#include <utility> // declval
6211
6212namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006213{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006214namespace detail
6215{
6216//////////////////////
6217// reverse_iterator //
6218//////////////////////
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006219
6220/*!
6221@brief a template for a reverse iterator class
6222
6223@tparam Base the base iterator type to reverse. Valid types are @ref
6224iterator (to create @ref reverse_iterator) and @ref const_iterator (to
6225create @ref const_reverse_iterator).
6226
6227@requirement The class satisfies the following concept requirements:
6228-
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006229[BidirectionalIterator](https://en.cppreference.com/w/cpp/named_req/BidirectionalIterator):
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006230 The iterator that can be moved can be moved in both directions (i.e.
6231 incremented and decremented).
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006232- [OutputIterator](https://en.cppreference.com/w/cpp/named_req/OutputIterator):
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006233 It is possible to write to the pointed-to element (only if @a Base is
6234 @ref iterator).
6235
6236@since version 1.0.0
6237*/
6238template<typename Base>
6239class json_reverse_iterator : public std::reverse_iterator<Base>
6240{
6241 public:
6242 using difference_type = std::ptrdiff_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006243 /// shortcut to the reverse iterator adapter
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006244 using base_iterator = std::reverse_iterator<Base>;
6245 /// the reference type for the pointed-to element
6246 using reference = typename Base::reference;
6247
6248 /// create reverse iterator from iterator
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006249 explicit json_reverse_iterator(const typename base_iterator::iterator_type& it) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006250 : base_iterator(it) {}
6251
6252 /// create reverse iterator from base class
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006253 explicit json_reverse_iterator(const base_iterator& it) noexcept : base_iterator(it) {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006254
6255 /// post-increment (it++)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006256 json_reverse_iterator const operator++(int)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006257 {
6258 return static_cast<json_reverse_iterator>(base_iterator::operator++(1));
6259 }
6260
6261 /// pre-increment (++it)
6262 json_reverse_iterator& operator++()
6263 {
6264 return static_cast<json_reverse_iterator&>(base_iterator::operator++());
6265 }
6266
6267 /// post-decrement (it--)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006268 json_reverse_iterator const operator--(int)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006269 {
6270 return static_cast<json_reverse_iterator>(base_iterator::operator--(1));
6271 }
6272
6273 /// pre-decrement (--it)
6274 json_reverse_iterator& operator--()
6275 {
6276 return static_cast<json_reverse_iterator&>(base_iterator::operator--());
6277 }
6278
6279 /// add to iterator
6280 json_reverse_iterator& operator+=(difference_type i)
6281 {
6282 return static_cast<json_reverse_iterator&>(base_iterator::operator+=(i));
6283 }
6284
6285 /// add to iterator
6286 json_reverse_iterator operator+(difference_type i) const
6287 {
6288 return static_cast<json_reverse_iterator>(base_iterator::operator+(i));
6289 }
6290
6291 /// subtract from iterator
6292 json_reverse_iterator operator-(difference_type i) const
6293 {
6294 return static_cast<json_reverse_iterator>(base_iterator::operator-(i));
6295 }
6296
6297 /// return difference
6298 difference_type operator-(const json_reverse_iterator& other) const
6299 {
6300 return base_iterator(*this) - base_iterator(other);
6301 }
6302
6303 /// access to successor
6304 reference operator[](difference_type n) const
6305 {
6306 return *(this->operator+(n));
6307 }
6308
6309 /// return the key of an object iterator
6310 auto key() const -> decltype(std::declval<Base>().key())
6311 {
6312 auto it = --this->base();
6313 return it.key();
6314 }
6315
6316 /// return the value of an iterator
6317 reference value() const
6318 {
6319 auto it = --this->base();
6320 return it.operator * ();
6321 }
6322};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006323} // namespace detail
6324} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006325
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006326// #include <nlohmann/detail/output/output_adapters.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006327
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006328
6329#include <algorithm> // copy
6330#include <cstddef> // size_t
6331#include <ios> // streamsize
6332#include <iterator> // back_inserter
6333#include <memory> // shared_ptr, make_shared
6334#include <ostream> // basic_ostream
6335#include <string> // basic_string
6336#include <vector> // vector
6337
6338namespace nlohmann
6339{
6340namespace detail
6341{
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006342/// abstract output adapter interface
6343template<typename CharType> struct output_adapter_protocol
6344{
6345 virtual void write_character(CharType c) = 0;
6346 virtual void write_characters(const CharType* s, std::size_t length) = 0;
6347 virtual ~output_adapter_protocol() = default;
6348};
6349
6350/// a type to simplify interfaces
6351template<typename CharType>
6352using output_adapter_t = std::shared_ptr<output_adapter_protocol<CharType>>;
6353
6354/// output adapter for byte vectors
6355template<typename CharType>
6356class output_vector_adapter : public output_adapter_protocol<CharType>
6357{
6358 public:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006359 explicit output_vector_adapter(std::vector<CharType>& vec) noexcept
6360 : v(vec)
6361 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006362
6363 void write_character(CharType c) override
6364 {
6365 v.push_back(c);
6366 }
6367
6368 void write_characters(const CharType* s, std::size_t length) override
6369 {
6370 std::copy(s, s + length, std::back_inserter(v));
6371 }
6372
6373 private:
6374 std::vector<CharType>& v;
6375};
6376
6377/// output adapter for output streams
6378template<typename CharType>
6379class output_stream_adapter : public output_adapter_protocol<CharType>
6380{
6381 public:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006382 explicit output_stream_adapter(std::basic_ostream<CharType>& s) noexcept
6383 : stream(s)
6384 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006385
6386 void write_character(CharType c) override
6387 {
6388 stream.put(c);
6389 }
6390
6391 void write_characters(const CharType* s, std::size_t length) override
6392 {
6393 stream.write(s, static_cast<std::streamsize>(length));
6394 }
6395
6396 private:
6397 std::basic_ostream<CharType>& stream;
6398};
6399
6400/// output adapter for basic_string
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006401template<typename CharType, typename StringType = std::basic_string<CharType>>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006402class output_string_adapter : public output_adapter_protocol<CharType>
6403{
6404 public:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006405 explicit output_string_adapter(StringType& s) noexcept
6406 : str(s)
6407 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006408
6409 void write_character(CharType c) override
6410 {
6411 str.push_back(c);
6412 }
6413
6414 void write_characters(const CharType* s, std::size_t length) override
6415 {
6416 str.append(s, length);
6417 }
6418
6419 private:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006420 StringType& str;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006421};
6422
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006423template<typename CharType, typename StringType = std::basic_string<CharType>>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006424class output_adapter
6425{
6426 public:
6427 output_adapter(std::vector<CharType>& vec)
6428 : oa(std::make_shared<output_vector_adapter<CharType>>(vec)) {}
6429
6430 output_adapter(std::basic_ostream<CharType>& s)
6431 : oa(std::make_shared<output_stream_adapter<CharType>>(s)) {}
6432
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006433 output_adapter(StringType& s)
6434 : oa(std::make_shared<output_string_adapter<CharType, StringType>>(s)) {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006435
6436 operator output_adapter_t<CharType>()
6437 {
6438 return oa;
6439 }
6440
6441 private:
6442 output_adapter_t<CharType> oa = nullptr;
6443};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006444} // namespace detail
6445} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006446
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006447// #include <nlohmann/detail/input/binary_reader.hpp>
6448
6449
6450#include <algorithm> // generate_n
6451#include <array> // array
6452#include <cassert> // assert
6453#include <cmath> // ldexp
6454#include <cstddef> // size_t
6455#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
6456#include <cstdio> // snprintf
6457#include <cstring> // memcpy
6458#include <iterator> // back_inserter
6459#include <limits> // numeric_limits
6460#include <string> // char_traits, string
6461#include <utility> // make_pair, move
6462
6463// #include <nlohmann/detail/input/input_adapters.hpp>
6464
6465// #include <nlohmann/detail/input/json_sax.hpp>
6466
6467// #include <nlohmann/detail/exceptions.hpp>
6468
6469// #include <nlohmann/detail/macro_scope.hpp>
6470
6471// #include <nlohmann/detail/meta/is_sax.hpp>
6472
6473// #include <nlohmann/detail/value_t.hpp>
6474
6475
6476namespace nlohmann
6477{
6478namespace detail
6479{
6480///////////////////
6481// binary reader //
6482///////////////////
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006483
6484/*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006485@brief deserialization of CBOR, MessagePack, and UBJSON values
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006486*/
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006487template<typename BasicJsonType, typename SAX = json_sax_dom_parser<BasicJsonType>>
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006488class binary_reader
6489{
6490 using number_integer_t = typename BasicJsonType::number_integer_t;
6491 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006492 using number_float_t = typename BasicJsonType::number_float_t;
6493 using string_t = typename BasicJsonType::string_t;
6494 using json_sax_t = SAX;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006495
6496 public:
6497 /*!
6498 @brief create a binary reader
6499
6500 @param[in] adapter input adapter to read from
6501 */
6502 explicit binary_reader(input_adapter_t adapter) : ia(std::move(adapter))
6503 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006504 (void)detail::is_sax_static_asserts<SAX, BasicJsonType> {};
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006505 assert(ia);
6506 }
6507
6508 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006509 @param[in] format the binary format to parse
6510 @param[in] sax_ a SAX event processor
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006511 @param[in] strict whether to expect the input to be consumed completed
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006512
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006513 @return
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006514 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006515 bool sax_parse(const input_format_t format,
6516 json_sax_t* sax_,
6517 const bool strict = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006518 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006519 sax = sax_;
6520 bool result = false;
6521
6522 switch (format)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006523 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006524 case input_format_t::bson:
6525 result = parse_bson_internal();
6526 break;
6527
6528 case input_format_t::cbor:
6529 result = parse_cbor_internal();
6530 break;
6531
6532 case input_format_t::msgpack:
6533 result = parse_msgpack_internal();
6534 break;
6535
6536 case input_format_t::ubjson:
6537 result = parse_ubjson_internal();
6538 break;
6539
6540 // LCOV_EXCL_START
6541 default:
6542 assert(false);
6543 // LCOV_EXCL_STOP
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006544 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006545
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006546 // strict mode: next byte must be EOF
6547 if (result and strict)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006548 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006549 if (format == input_format_t::ubjson)
6550 {
6551 get_ignore_noop();
6552 }
6553 else
6554 {
6555 get();
6556 }
6557
6558 if (JSON_UNLIKELY(current != std::char_traits<char>::eof()))
6559 {
6560 return sax->parse_error(chars_read, get_token_string(),
6561 parse_error::create(110, chars_read, exception_message(format, "expected end of input; last byte: 0x" + get_token_string(), "value")));
6562 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006563 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006564
6565 return result;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006566 }
6567
6568 /*!
6569 @brief determine system byte order
6570
6571 @return true if and only if system's byte order is little endian
6572
6573 @note from http://stackoverflow.com/a/1001328/266378
6574 */
6575 static constexpr bool little_endianess(int num = 1) noexcept
6576 {
6577 return (*reinterpret_cast<char*>(&num) == 1);
6578 }
6579
6580 private:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006581 //////////
6582 // BSON //
6583 //////////
6584
6585 /*!
6586 @brief Reads in a BSON-object and passes it to the SAX-parser.
6587 @return whether a valid BSON-value was passed to the SAX parser
6588 */
6589 bool parse_bson_internal()
6590 {
6591 std::int32_t document_size;
6592 get_number<std::int32_t, true>(input_format_t::bson, document_size);
6593
6594 if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1))))
6595 {
6596 return false;
6597 }
6598
6599 if (JSON_UNLIKELY(not parse_bson_element_list(/*is_array*/false)))
6600 {
6601 return false;
6602 }
6603
6604 return sax->end_object();
6605 }
6606
6607 /*!
6608 @brief Parses a C-style string from the BSON input.
6609 @param[in, out] result A reference to the string variable where the read
6610 string is to be stored.
6611 @return `true` if the \x00-byte indicating the end of the string was
6612 encountered before the EOF; false` indicates an unexpected EOF.
6613 */
6614 bool get_bson_cstr(string_t& result)
6615 {
6616 auto out = std::back_inserter(result);
6617 while (true)
6618 {
6619 get();
6620 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::bson, "cstring")))
6621 {
6622 return false;
6623 }
6624 if (current == 0x00)
6625 {
6626 return true;
6627 }
6628 *out++ = static_cast<char>(current);
6629 }
6630
6631 return true;
6632 }
6633
6634 /*!
6635 @brief Parses a zero-terminated string of length @a len from the BSON
6636 input.
6637 @param[in] len The length (including the zero-byte at the end) of the
6638 string to be read.
6639 @param[in, out] result A reference to the string variable where the read
6640 string is to be stored.
6641 @tparam NumberType The type of the length @a len
6642 @pre len >= 1
6643 @return `true` if the string was successfully parsed
6644 */
6645 template<typename NumberType>
6646 bool get_bson_string(const NumberType len, string_t& result)
6647 {
6648 if (JSON_UNLIKELY(len < 1))
6649 {
6650 auto last_token = get_token_string();
6651 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::bson, "string length must be at least 1, is " + std::to_string(len), "string")));
6652 }
6653
6654 return get_string(input_format_t::bson, len - static_cast<NumberType>(1), result) and get() != std::char_traits<char>::eof();
6655 }
6656
6657 /*!
6658 @brief Read a BSON document element of the given @a element_type.
6659 @param[in] element_type The BSON element type, c.f. http://bsonspec.org/spec.html
6660 @param[in] element_type_parse_position The position in the input stream,
6661 where the `element_type` was read.
6662 @warning Not all BSON element types are supported yet. An unsupported
6663 @a element_type will give rise to a parse_error.114:
6664 Unsupported BSON record type 0x...
6665 @return whether a valid BSON-object/array was passed to the SAX parser
6666 */
6667 bool parse_bson_element_internal(const int element_type,
6668 const std::size_t element_type_parse_position)
6669 {
6670 switch (element_type)
6671 {
6672 case 0x01: // double
6673 {
6674 double number;
6675 return get_number<double, true>(input_format_t::bson, number) and sax->number_float(static_cast<number_float_t>(number), "");
6676 }
6677
6678 case 0x02: // string
6679 {
6680 std::int32_t len;
6681 string_t value;
6682 return get_number<std::int32_t, true>(input_format_t::bson, len) and get_bson_string(len, value) and sax->string(value);
6683 }
6684
6685 case 0x03: // object
6686 {
6687 return parse_bson_internal();
6688 }
6689
6690 case 0x04: // array
6691 {
6692 return parse_bson_array();
6693 }
6694
6695 case 0x08: // boolean
6696 {
6697 return sax->boolean(get() != 0);
6698 }
6699
6700 case 0x0A: // null
6701 {
6702 return sax->null();
6703 }
6704
6705 case 0x10: // int32
6706 {
6707 std::int32_t value;
6708 return get_number<std::int32_t, true>(input_format_t::bson, value) and sax->number_integer(value);
6709 }
6710
6711 case 0x12: // int64
6712 {
6713 std::int64_t value;
6714 return get_number<std::int64_t, true>(input_format_t::bson, value) and sax->number_integer(value);
6715 }
6716
6717 default: // anything else not supported (yet)
6718 {
6719 char cr[3];
6720 (std::snprintf)(cr, sizeof(cr), "%.2hhX", static_cast<unsigned char>(element_type));
6721 return sax->parse_error(element_type_parse_position, std::string(cr), parse_error::create(114, element_type_parse_position, "Unsupported BSON record type 0x" + std::string(cr)));
6722 }
6723 }
6724 }
6725
6726 /*!
6727 @brief Read a BSON element list (as specified in the BSON-spec)
6728
6729 The same binary layout is used for objects and arrays, hence it must be
6730 indicated with the argument @a is_array which one is expected
6731 (true --> array, false --> object).
6732
6733 @param[in] is_array Determines if the element list being read is to be
6734 treated as an object (@a is_array == false), or as an
6735 array (@a is_array == true).
6736 @return whether a valid BSON-object/array was passed to the SAX parser
6737 */
6738 bool parse_bson_element_list(const bool is_array)
6739 {
6740 string_t key;
6741 while (int element_type = get())
6742 {
6743 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::bson, "element list")))
6744 {
6745 return false;
6746 }
6747
6748 const std::size_t element_type_parse_position = chars_read;
6749 if (JSON_UNLIKELY(not get_bson_cstr(key)))
6750 {
6751 return false;
6752 }
6753
6754 if (not is_array)
6755 {
6756 if (not sax->key(key))
6757 {
6758 return false;
6759 }
6760 }
6761
6762 if (JSON_UNLIKELY(not parse_bson_element_internal(element_type, element_type_parse_position)))
6763 {
6764 return false;
6765 }
6766
6767 // get_bson_cstr only appends
6768 key.clear();
6769 }
6770
6771 return true;
6772 }
6773
6774 /*!
6775 @brief Reads an array from the BSON input and passes it to the SAX-parser.
6776 @return whether a valid BSON-array was passed to the SAX parser
6777 */
6778 bool parse_bson_array()
6779 {
6780 std::int32_t document_size;
6781 get_number<std::int32_t, true>(input_format_t::bson, document_size);
6782
6783 if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1))))
6784 {
6785 return false;
6786 }
6787
6788 if (JSON_UNLIKELY(not parse_bson_element_list(/*is_array*/true)))
6789 {
6790 return false;
6791 }
6792
6793 return sax->end_array();
6794 }
6795
6796 //////////
6797 // CBOR //
6798 //////////
6799
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006800 /*!
6801 @param[in] get_char whether a new character should be retrieved from the
6802 input (true, default) or whether the last read
6803 character should be considered instead
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006804
6805 @return whether a valid CBOR value was passed to the SAX parser
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006806 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006807 bool parse_cbor_internal(const bool get_char = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006808 {
6809 switch (get_char ? get() : current)
6810 {
6811 // EOF
6812 case std::char_traits<char>::eof():
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006813 return unexpect_eof(input_format_t::cbor, "value");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006814
6815 // Integer 0x00..0x17 (0..23)
6816 case 0x00:
6817 case 0x01:
6818 case 0x02:
6819 case 0x03:
6820 case 0x04:
6821 case 0x05:
6822 case 0x06:
6823 case 0x07:
6824 case 0x08:
6825 case 0x09:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006826 case 0x0A:
6827 case 0x0B:
6828 case 0x0C:
6829 case 0x0D:
6830 case 0x0E:
6831 case 0x0F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006832 case 0x10:
6833 case 0x11:
6834 case 0x12:
6835 case 0x13:
6836 case 0x14:
6837 case 0x15:
6838 case 0x16:
6839 case 0x17:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006840 return sax->number_unsigned(static_cast<number_unsigned_t>(current));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006841
6842 case 0x18: // Unsigned integer (one-byte uint8_t follows)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006843 {
6844 uint8_t number;
6845 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
6846 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006847
6848 case 0x19: // Unsigned integer (two-byte uint16_t follows)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006849 {
6850 uint16_t number;
6851 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
6852 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006853
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006854 case 0x1A: // Unsigned integer (four-byte uint32_t follows)
6855 {
6856 uint32_t number;
6857 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
6858 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006859
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006860 case 0x1B: // Unsigned integer (eight-byte uint64_t follows)
6861 {
6862 uint64_t number;
6863 return get_number(input_format_t::cbor, number) and sax->number_unsigned(number);
6864 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006865
6866 // Negative integer -1-0x00..-1-0x17 (-1..-24)
6867 case 0x20:
6868 case 0x21:
6869 case 0x22:
6870 case 0x23:
6871 case 0x24:
6872 case 0x25:
6873 case 0x26:
6874 case 0x27:
6875 case 0x28:
6876 case 0x29:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006877 case 0x2A:
6878 case 0x2B:
6879 case 0x2C:
6880 case 0x2D:
6881 case 0x2E:
6882 case 0x2F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006883 case 0x30:
6884 case 0x31:
6885 case 0x32:
6886 case 0x33:
6887 case 0x34:
6888 case 0x35:
6889 case 0x36:
6890 case 0x37:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006891 return sax->number_integer(static_cast<int8_t>(0x20 - 1 - current));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006892
6893 case 0x38: // Negative integer (one-byte uint8_t follows)
6894 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006895 uint8_t number;
6896 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006897 }
6898
6899 case 0x39: // Negative integer -1-n (two-byte uint16_t follows)
6900 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006901 uint16_t number;
6902 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006903 }
6904
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006905 case 0x3A: // Negative integer -1-n (four-byte uint32_t follows)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006906 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006907 uint32_t number;
6908 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1) - number);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006909 }
6910
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006911 case 0x3B: // Negative integer -1-n (eight-byte uint64_t follows)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006912 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006913 uint64_t number;
6914 return get_number(input_format_t::cbor, number) and sax->number_integer(static_cast<number_integer_t>(-1)
6915 - static_cast<number_integer_t>(number));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006916 }
6917
6918 // UTF-8 string (0x00..0x17 bytes follow)
6919 case 0x60:
6920 case 0x61:
6921 case 0x62:
6922 case 0x63:
6923 case 0x64:
6924 case 0x65:
6925 case 0x66:
6926 case 0x67:
6927 case 0x68:
6928 case 0x69:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006929 case 0x6A:
6930 case 0x6B:
6931 case 0x6C:
6932 case 0x6D:
6933 case 0x6E:
6934 case 0x6F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006935 case 0x70:
6936 case 0x71:
6937 case 0x72:
6938 case 0x73:
6939 case 0x74:
6940 case 0x75:
6941 case 0x76:
6942 case 0x77:
6943 case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
6944 case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006945 case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
6946 case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
6947 case 0x7F: // UTF-8 string (indefinite length)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006948 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006949 string_t s;
6950 return get_cbor_string(s) and sax->string(s);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006951 }
6952
6953 // array (0x00..0x17 data items follow)
6954 case 0x80:
6955 case 0x81:
6956 case 0x82:
6957 case 0x83:
6958 case 0x84:
6959 case 0x85:
6960 case 0x86:
6961 case 0x87:
6962 case 0x88:
6963 case 0x89:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006964 case 0x8A:
6965 case 0x8B:
6966 case 0x8C:
6967 case 0x8D:
6968 case 0x8E:
6969 case 0x8F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006970 case 0x90:
6971 case 0x91:
6972 case 0x92:
6973 case 0x93:
6974 case 0x94:
6975 case 0x95:
6976 case 0x96:
6977 case 0x97:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006978 return get_cbor_array(static_cast<std::size_t>(current & 0x1F));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006979
6980 case 0x98: // array (one-byte uint8_t for n follows)
6981 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006982 uint8_t len;
6983 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006984 }
6985
6986 case 0x99: // array (two-byte uint16_t for n follow)
6987 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006988 uint16_t len;
6989 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006990 }
6991
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006992 case 0x9A: // array (four-byte uint32_t for n follow)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006993 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006994 uint32_t len;
6995 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006996 }
6997
Syoyo Fujitac0d02512019-02-04 16:19:13 +09006998 case 0x9B: // array (eight-byte uint64_t for n follow)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09006999 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007000 uint64_t len;
7001 return get_number(input_format_t::cbor, len) and get_cbor_array(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007002 }
7003
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007004 case 0x9F: // array (indefinite length)
7005 return get_cbor_array(std::size_t(-1));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007006
7007 // map (0x00..0x17 pairs of data items follow)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007008 case 0xA0:
7009 case 0xA1:
7010 case 0xA2:
7011 case 0xA3:
7012 case 0xA4:
7013 case 0xA5:
7014 case 0xA6:
7015 case 0xA7:
7016 case 0xA8:
7017 case 0xA9:
7018 case 0xAA:
7019 case 0xAB:
7020 case 0xAC:
7021 case 0xAD:
7022 case 0xAE:
7023 case 0xAF:
7024 case 0xB0:
7025 case 0xB1:
7026 case 0xB2:
7027 case 0xB3:
7028 case 0xB4:
7029 case 0xB5:
7030 case 0xB6:
7031 case 0xB7:
7032 return get_cbor_object(static_cast<std::size_t>(current & 0x1F));
7033
7034 case 0xB8: // map (one-byte uint8_t for n follows)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007035 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007036 uint8_t len;
7037 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007038 }
7039
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007040 case 0xB9: // map (two-byte uint16_t for n follow)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007041 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007042 uint16_t len;
7043 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007044 }
7045
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007046 case 0xBA: // map (four-byte uint32_t for n follow)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007047 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007048 uint32_t len;
7049 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007050 }
7051
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007052 case 0xBB: // map (eight-byte uint64_t for n follow)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007053 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007054 uint64_t len;
7055 return get_number(input_format_t::cbor, len) and get_cbor_object(static_cast<std::size_t>(len));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007056 }
7057
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007058 case 0xBF: // map (indefinite length)
7059 return get_cbor_object(std::size_t(-1));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007060
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007061 case 0xF4: // false
7062 return sax->boolean(false);
7063
7064 case 0xF5: // true
7065 return sax->boolean(true);
7066
7067 case 0xF6: // null
7068 return sax->null();
7069
7070 case 0xF9: // Half-Precision Float (two-byte IEEE 754)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007071 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007072 const int byte1_raw = get();
7073 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007074 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007075 return false;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007076 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007077 const int byte2_raw = get();
7078 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::cbor, "number")))
7079 {
7080 return false;
7081 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007082
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007083 const auto byte1 = static_cast<unsigned char>(byte1_raw);
7084 const auto byte2 = static_cast<unsigned char>(byte2_raw);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007085
7086 // code from RFC 7049, Appendix D, Figure 3:
7087 // As half-precision floating-point numbers were only added
7088 // to IEEE 754 in 2008, today's programming platforms often
7089 // still only have limited support for them. It is very
7090 // easy to include at least decoding support for them even
7091 // without such support. An example of a small decoder for
7092 // half-precision floating-point numbers in the C language
7093 // is shown in Fig. 3.
7094 const int half = (byte1 << 8) + byte2;
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007095 const double val = [&half]
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007096 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007097 const int exp = (half >> 10) & 0x1F;
7098 const int mant = half & 0x3FF;
7099 assert(0 <= exp and exp <= 32);
7100 assert(0 <= mant and mant <= 1024);
7101 switch (exp)
7102 {
7103 case 0:
7104 return std::ldexp(mant, -24);
7105 case 31:
7106 return (mant == 0)
7107 ? std::numeric_limits<double>::infinity()
7108 : std::numeric_limits<double>::quiet_NaN();
7109 default:
7110 return std::ldexp(mant + 1024, exp - 25);
7111 }
7112 }();
7113 return sax->number_float((half & 0x8000) != 0
7114 ? static_cast<number_float_t>(-val)
7115 : static_cast<number_float_t>(val), "");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007116 }
7117
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007118 case 0xFA: // Single-Precision Float (four-byte IEEE 754)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007119 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007120 float number;
7121 return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007122 }
7123
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007124 case 0xFB: // Double-Precision Float (eight-byte IEEE 754)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007125 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007126 double number;
7127 return get_number(input_format_t::cbor, number) and sax->number_float(static_cast<number_float_t>(number), "");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007128 }
7129
7130 default: // anything else (0xFF is handled inside the other types)
7131 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007132 auto last_token = get_token_string();
7133 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::cbor, "invalid byte: 0x" + last_token, "value")));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007134 }
7135 }
7136 }
7137
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007138 /*!
7139 @brief reads a CBOR string
7140
7141 This function first reads starting bytes to determine the expected
7142 string length and then copies this number of bytes into a string.
7143 Additionally, CBOR's strings with indefinite lengths are supported.
7144
7145 @param[out] result created string
7146
7147 @return whether string creation completed
7148 */
7149 bool get_cbor_string(string_t& result)
7150 {
7151 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::cbor, "string")))
7152 {
7153 return false;
7154 }
7155
7156 switch (current)
7157 {
7158 // UTF-8 string (0x00..0x17 bytes follow)
7159 case 0x60:
7160 case 0x61:
7161 case 0x62:
7162 case 0x63:
7163 case 0x64:
7164 case 0x65:
7165 case 0x66:
7166 case 0x67:
7167 case 0x68:
7168 case 0x69:
7169 case 0x6A:
7170 case 0x6B:
7171 case 0x6C:
7172 case 0x6D:
7173 case 0x6E:
7174 case 0x6F:
7175 case 0x70:
7176 case 0x71:
7177 case 0x72:
7178 case 0x73:
7179 case 0x74:
7180 case 0x75:
7181 case 0x76:
7182 case 0x77:
7183 {
7184 return get_string(input_format_t::cbor, current & 0x1F, result);
7185 }
7186
7187 case 0x78: // UTF-8 string (one-byte uint8_t for n follows)
7188 {
7189 uint8_t len;
7190 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
7191 }
7192
7193 case 0x79: // UTF-8 string (two-byte uint16_t for n follow)
7194 {
7195 uint16_t len;
7196 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
7197 }
7198
7199 case 0x7A: // UTF-8 string (four-byte uint32_t for n follow)
7200 {
7201 uint32_t len;
7202 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
7203 }
7204
7205 case 0x7B: // UTF-8 string (eight-byte uint64_t for n follow)
7206 {
7207 uint64_t len;
7208 return get_number(input_format_t::cbor, len) and get_string(input_format_t::cbor, len, result);
7209 }
7210
7211 case 0x7F: // UTF-8 string (indefinite length)
7212 {
7213 while (get() != 0xFF)
7214 {
7215 string_t chunk;
7216 if (not get_cbor_string(chunk))
7217 {
7218 return false;
7219 }
7220 result.append(chunk);
7221 }
7222 return true;
7223 }
7224
7225 default:
7226 {
7227 auto last_token = get_token_string();
7228 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::cbor, "expected length specification (0x60-0x7B) or indefinite string type (0x7F); last byte: 0x" + last_token, "string")));
7229 }
7230 }
7231 }
7232
7233 /*!
7234 @param[in] len the length of the array or std::size_t(-1) for an
7235 array of indefinite size
7236 @return whether array creation completed
7237 */
7238 bool get_cbor_array(const std::size_t len)
7239 {
7240 if (JSON_UNLIKELY(not sax->start_array(len)))
7241 {
7242 return false;
7243 }
7244
7245 if (len != std::size_t(-1))
7246 {
7247 for (std::size_t i = 0; i < len; ++i)
7248 {
7249 if (JSON_UNLIKELY(not parse_cbor_internal()))
7250 {
7251 return false;
7252 }
7253 }
7254 }
7255 else
7256 {
7257 while (get() != 0xFF)
7258 {
7259 if (JSON_UNLIKELY(not parse_cbor_internal(false)))
7260 {
7261 return false;
7262 }
7263 }
7264 }
7265
7266 return sax->end_array();
7267 }
7268
7269 /*!
7270 @param[in] len the length of the object or std::size_t(-1) for an
7271 object of indefinite size
7272 @return whether object creation completed
7273 */
7274 bool get_cbor_object(const std::size_t len)
7275 {
7276 if (not JSON_UNLIKELY(sax->start_object(len)))
7277 {
7278 return false;
7279 }
7280
7281 string_t key;
7282 if (len != std::size_t(-1))
7283 {
7284 for (std::size_t i = 0; i < len; ++i)
7285 {
7286 get();
7287 if (JSON_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
7288 {
7289 return false;
7290 }
7291
7292 if (JSON_UNLIKELY(not parse_cbor_internal()))
7293 {
7294 return false;
7295 }
7296 key.clear();
7297 }
7298 }
7299 else
7300 {
7301 while (get() != 0xFF)
7302 {
7303 if (JSON_UNLIKELY(not get_cbor_string(key) or not sax->key(key)))
7304 {
7305 return false;
7306 }
7307
7308 if (JSON_UNLIKELY(not parse_cbor_internal()))
7309 {
7310 return false;
7311 }
7312 key.clear();
7313 }
7314 }
7315
7316 return sax->end_object();
7317 }
7318
7319 /////////////
7320 // MsgPack //
7321 /////////////
7322
7323 /*!
7324 @return whether a valid MessagePack value was passed to the SAX parser
7325 */
7326 bool parse_msgpack_internal()
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007327 {
7328 switch (get())
7329 {
7330 // EOF
7331 case std::char_traits<char>::eof():
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007332 return unexpect_eof(input_format_t::msgpack, "value");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007333
7334 // positive fixint
7335 case 0x00:
7336 case 0x01:
7337 case 0x02:
7338 case 0x03:
7339 case 0x04:
7340 case 0x05:
7341 case 0x06:
7342 case 0x07:
7343 case 0x08:
7344 case 0x09:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007345 case 0x0A:
7346 case 0x0B:
7347 case 0x0C:
7348 case 0x0D:
7349 case 0x0E:
7350 case 0x0F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007351 case 0x10:
7352 case 0x11:
7353 case 0x12:
7354 case 0x13:
7355 case 0x14:
7356 case 0x15:
7357 case 0x16:
7358 case 0x17:
7359 case 0x18:
7360 case 0x19:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007361 case 0x1A:
7362 case 0x1B:
7363 case 0x1C:
7364 case 0x1D:
7365 case 0x1E:
7366 case 0x1F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007367 case 0x20:
7368 case 0x21:
7369 case 0x22:
7370 case 0x23:
7371 case 0x24:
7372 case 0x25:
7373 case 0x26:
7374 case 0x27:
7375 case 0x28:
7376 case 0x29:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007377 case 0x2A:
7378 case 0x2B:
7379 case 0x2C:
7380 case 0x2D:
7381 case 0x2E:
7382 case 0x2F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007383 case 0x30:
7384 case 0x31:
7385 case 0x32:
7386 case 0x33:
7387 case 0x34:
7388 case 0x35:
7389 case 0x36:
7390 case 0x37:
7391 case 0x38:
7392 case 0x39:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007393 case 0x3A:
7394 case 0x3B:
7395 case 0x3C:
7396 case 0x3D:
7397 case 0x3E:
7398 case 0x3F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007399 case 0x40:
7400 case 0x41:
7401 case 0x42:
7402 case 0x43:
7403 case 0x44:
7404 case 0x45:
7405 case 0x46:
7406 case 0x47:
7407 case 0x48:
7408 case 0x49:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007409 case 0x4A:
7410 case 0x4B:
7411 case 0x4C:
7412 case 0x4D:
7413 case 0x4E:
7414 case 0x4F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007415 case 0x50:
7416 case 0x51:
7417 case 0x52:
7418 case 0x53:
7419 case 0x54:
7420 case 0x55:
7421 case 0x56:
7422 case 0x57:
7423 case 0x58:
7424 case 0x59:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007425 case 0x5A:
7426 case 0x5B:
7427 case 0x5C:
7428 case 0x5D:
7429 case 0x5E:
7430 case 0x5F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007431 case 0x60:
7432 case 0x61:
7433 case 0x62:
7434 case 0x63:
7435 case 0x64:
7436 case 0x65:
7437 case 0x66:
7438 case 0x67:
7439 case 0x68:
7440 case 0x69:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007441 case 0x6A:
7442 case 0x6B:
7443 case 0x6C:
7444 case 0x6D:
7445 case 0x6E:
7446 case 0x6F:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007447 case 0x70:
7448 case 0x71:
7449 case 0x72:
7450 case 0x73:
7451 case 0x74:
7452 case 0x75:
7453 case 0x76:
7454 case 0x77:
7455 case 0x78:
7456 case 0x79:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007457 case 0x7A:
7458 case 0x7B:
7459 case 0x7C:
7460 case 0x7D:
7461 case 0x7E:
7462 case 0x7F:
7463 return sax->number_unsigned(static_cast<number_unsigned_t>(current));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007464
7465 // fixmap
7466 case 0x80:
7467 case 0x81:
7468 case 0x82:
7469 case 0x83:
7470 case 0x84:
7471 case 0x85:
7472 case 0x86:
7473 case 0x87:
7474 case 0x88:
7475 case 0x89:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007476 case 0x8A:
7477 case 0x8B:
7478 case 0x8C:
7479 case 0x8D:
7480 case 0x8E:
7481 case 0x8F:
7482 return get_msgpack_object(static_cast<std::size_t>(current & 0x0F));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007483
7484 // fixarray
7485 case 0x90:
7486 case 0x91:
7487 case 0x92:
7488 case 0x93:
7489 case 0x94:
7490 case 0x95:
7491 case 0x96:
7492 case 0x97:
7493 case 0x98:
7494 case 0x99:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007495 case 0x9A:
7496 case 0x9B:
7497 case 0x9C:
7498 case 0x9D:
7499 case 0x9E:
7500 case 0x9F:
7501 return get_msgpack_array(static_cast<std::size_t>(current & 0x0F));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007502
7503 // fixstr
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007504 case 0xA0:
7505 case 0xA1:
7506 case 0xA2:
7507 case 0xA3:
7508 case 0xA4:
7509 case 0xA5:
7510 case 0xA6:
7511 case 0xA7:
7512 case 0xA8:
7513 case 0xA9:
7514 case 0xAA:
7515 case 0xAB:
7516 case 0xAC:
7517 case 0xAD:
7518 case 0xAE:
7519 case 0xAF:
7520 case 0xB0:
7521 case 0xB1:
7522 case 0xB2:
7523 case 0xB3:
7524 case 0xB4:
7525 case 0xB5:
7526 case 0xB6:
7527 case 0xB7:
7528 case 0xB8:
7529 case 0xB9:
7530 case 0xBA:
7531 case 0xBB:
7532 case 0xBC:
7533 case 0xBD:
7534 case 0xBE:
7535 case 0xBF:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007536 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007537 string_t s;
7538 return get_msgpack_string(s) and sax->string(s);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007539 }
7540
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007541 case 0xC0: // nil
7542 return sax->null();
7543
7544 case 0xC2: // false
7545 return sax->boolean(false);
7546
7547 case 0xC3: // true
7548 return sax->boolean(true);
7549
7550 case 0xCA: // float 32
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007551 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007552 float number;
7553 return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007554 }
7555
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007556 case 0xCB: // float 64
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007557 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007558 double number;
7559 return get_number(input_format_t::msgpack, number) and sax->number_float(static_cast<number_float_t>(number), "");
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007560 }
7561
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007562 case 0xCC: // uint 8
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007563 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007564 uint8_t number;
7565 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007566 }
7567
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007568 case 0xCD: // uint 16
7569 {
7570 uint16_t number;
7571 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
7572 }
7573
7574 case 0xCE: // uint 32
7575 {
7576 uint32_t number;
7577 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
7578 }
7579
7580 case 0xCF: // uint 64
7581 {
7582 uint64_t number;
7583 return get_number(input_format_t::msgpack, number) and sax->number_unsigned(number);
7584 }
7585
7586 case 0xD0: // int 8
7587 {
7588 int8_t number;
7589 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
7590 }
7591
7592 case 0xD1: // int 16
7593 {
7594 int16_t number;
7595 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
7596 }
7597
7598 case 0xD2: // int 32
7599 {
7600 int32_t number;
7601 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
7602 }
7603
7604 case 0xD3: // int 64
7605 {
7606 int64_t number;
7607 return get_number(input_format_t::msgpack, number) and sax->number_integer(number);
7608 }
7609
7610 case 0xD9: // str 8
7611 case 0xDA: // str 16
7612 case 0xDB: // str 32
7613 {
7614 string_t s;
7615 return get_msgpack_string(s) and sax->string(s);
7616 }
7617
7618 case 0xDC: // array 16
7619 {
7620 uint16_t len;
7621 return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
7622 }
7623
7624 case 0xDD: // array 32
7625 {
7626 uint32_t len;
7627 return get_number(input_format_t::msgpack, len) and get_msgpack_array(static_cast<std::size_t>(len));
7628 }
7629
7630 case 0xDE: // map 16
7631 {
7632 uint16_t len;
7633 return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
7634 }
7635
7636 case 0xDF: // map 32
7637 {
7638 uint32_t len;
7639 return get_number(input_format_t::msgpack, len) and get_msgpack_object(static_cast<std::size_t>(len));
7640 }
7641
7642 // negative fixint
7643 case 0xE0:
7644 case 0xE1:
7645 case 0xE2:
7646 case 0xE3:
7647 case 0xE4:
7648 case 0xE5:
7649 case 0xE6:
7650 case 0xE7:
7651 case 0xE8:
7652 case 0xE9:
7653 case 0xEA:
7654 case 0xEB:
7655 case 0xEC:
7656 case 0xED:
7657 case 0xEE:
7658 case 0xEF:
7659 case 0xF0:
7660 case 0xF1:
7661 case 0xF2:
7662 case 0xF3:
7663 case 0xF4:
7664 case 0xF5:
7665 case 0xF6:
7666 case 0xF7:
7667 case 0xF8:
7668 case 0xF9:
7669 case 0xFA:
7670 case 0xFB:
7671 case 0xFC:
7672 case 0xFD:
7673 case 0xFE:
7674 case 0xFF:
7675 return sax->number_integer(static_cast<int8_t>(current));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007676
7677 default: // anything else
7678 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007679 auto last_token = get_token_string();
7680 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::msgpack, "invalid byte: 0x" + last_token, "value")));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09007681 }
7682 }
7683 }
7684
7685 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09007686 @brief reads a MessagePack string
7687
7688 This function first reads starting bytes to determine the expected
7689 string length and then copies this number of bytes into a string.
7690
7691 @param[out] result created string
7692
7693 @return whether string creation completed
7694 */
7695 bool get_msgpack_string(string_t& result)
7696 {
7697 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::msgpack, "string")))
7698 {
7699 return false;
7700 }
7701
7702 switch (current)
7703 {
7704 // fixstr
7705 case 0xA0:
7706 case 0xA1:
7707 case 0xA2:
7708 case 0xA3:
7709 case 0xA4:
7710 case 0xA5:
7711 case 0xA6:
7712 case 0xA7:
7713 case 0xA8:
7714 case 0xA9:
7715 case 0xAA:
7716 case 0xAB:
7717 case 0xAC:
7718 case 0xAD:
7719 case 0xAE:
7720 case 0xAF:
7721 case 0xB0:
7722 case 0xB1:
7723 case 0xB2:
7724 case 0xB3:
7725 case 0xB4:
7726 case 0xB5:
7727 case 0xB6:
7728 case 0xB7:
7729 case 0xB8:
7730 case 0xB9:
7731 case 0xBA:
7732 case 0xBB:
7733 case 0xBC:
7734 case 0xBD:
7735 case 0xBE:
7736 case 0xBF:
7737 {
7738 return get_string(input_format_t::msgpack, current & 0x1F, result);
7739 }
7740
7741 case 0xD9: // str 8
7742 {
7743 uint8_t len;
7744 return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
7745 }
7746
7747 case 0xDA: // str 16
7748 {
7749 uint16_t len;
7750 return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
7751 }
7752
7753 case 0xDB: // str 32
7754 {
7755 uint32_t len;
7756 return get_number(input_format_t::msgpack, len) and get_string(input_format_t::msgpack, len, result);
7757 }
7758
7759 default:
7760 {
7761 auto last_token = get_token_string();
7762 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::msgpack, "expected length specification (0xA0-0xBF, 0xD9-0xDB); last byte: 0x" + last_token, "string")));
7763 }
7764 }
7765 }
7766
7767 /*!
7768 @param[in] len the length of the array
7769 @return whether array creation completed
7770 */
7771 bool get_msgpack_array(const std::size_t len)
7772 {
7773 if (JSON_UNLIKELY(not sax->start_array(len)))
7774 {
7775 return false;
7776 }
7777
7778 for (std::size_t i = 0; i < len; ++i)
7779 {
7780 if (JSON_UNLIKELY(not parse_msgpack_internal()))
7781 {
7782 return false;
7783 }
7784 }
7785
7786 return sax->end_array();
7787 }
7788
7789 /*!
7790 @param[in] len the length of the object
7791 @return whether object creation completed
7792 */
7793 bool get_msgpack_object(const std::size_t len)
7794 {
7795 if (JSON_UNLIKELY(not sax->start_object(len)))
7796 {
7797 return false;
7798 }
7799
7800 string_t key;
7801 for (std::size_t i = 0; i < len; ++i)
7802 {
7803 get();
7804 if (JSON_UNLIKELY(not get_msgpack_string(key) or not sax->key(key)))
7805 {
7806 return false;
7807 }
7808
7809 if (JSON_UNLIKELY(not parse_msgpack_internal()))
7810 {
7811 return false;
7812 }
7813 key.clear();
7814 }
7815
7816 return sax->end_object();
7817 }
7818
7819 ////////////
7820 // UBJSON //
7821 ////////////
7822
7823 /*!
7824 @param[in] get_char whether a new character should be retrieved from the
7825 input (true, default) or whether the last read
7826 character should be considered instead
7827
7828 @return whether a valid UBJSON value was passed to the SAX parser
7829 */
7830 bool parse_ubjson_internal(const bool get_char = true)
7831 {
7832 return get_ubjson_value(get_char ? get_ignore_noop() : current);
7833 }
7834
7835 /*!
7836 @brief reads a UBJSON string
7837
7838 This function is either called after reading the 'S' byte explicitly
7839 indicating a string, or in case of an object key where the 'S' byte can be
7840 left out.
7841
7842 @param[out] result created string
7843 @param[in] get_char whether a new character should be retrieved from the
7844 input (true, default) or whether the last read
7845 character should be considered instead
7846
7847 @return whether string creation completed
7848 */
7849 bool get_ubjson_string(string_t& result, const bool get_char = true)
7850 {
7851 if (get_char)
7852 {
7853 get(); // TODO: may we ignore N here?
7854 }
7855
7856 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
7857 {
7858 return false;
7859 }
7860
7861 switch (current)
7862 {
7863 case 'U':
7864 {
7865 uint8_t len;
7866 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
7867 }
7868
7869 case 'i':
7870 {
7871 int8_t len;
7872 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
7873 }
7874
7875 case 'I':
7876 {
7877 int16_t len;
7878 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
7879 }
7880
7881 case 'l':
7882 {
7883 int32_t len;
7884 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
7885 }
7886
7887 case 'L':
7888 {
7889 int64_t len;
7890 return get_number(input_format_t::ubjson, len) and get_string(input_format_t::ubjson, len, result);
7891 }
7892
7893 default:
7894 auto last_token = get_token_string();
7895 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L); last byte: 0x" + last_token, "string")));
7896 }
7897 }
7898
7899 /*!
7900 @param[out] result determined size
7901 @return whether size determination completed
7902 */
7903 bool get_ubjson_size_value(std::size_t& result)
7904 {
7905 switch (get_ignore_noop())
7906 {
7907 case 'U':
7908 {
7909 uint8_t number;
7910 if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number)))
7911 {
7912 return false;
7913 }
7914 result = static_cast<std::size_t>(number);
7915 return true;
7916 }
7917
7918 case 'i':
7919 {
7920 int8_t number;
7921 if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number)))
7922 {
7923 return false;
7924 }
7925 result = static_cast<std::size_t>(number);
7926 return true;
7927 }
7928
7929 case 'I':
7930 {
7931 int16_t number;
7932 if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number)))
7933 {
7934 return false;
7935 }
7936 result = static_cast<std::size_t>(number);
7937 return true;
7938 }
7939
7940 case 'l':
7941 {
7942 int32_t number;
7943 if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number)))
7944 {
7945 return false;
7946 }
7947 result = static_cast<std::size_t>(number);
7948 return true;
7949 }
7950
7951 case 'L':
7952 {
7953 int64_t number;
7954 if (JSON_UNLIKELY(not get_number(input_format_t::ubjson, number)))
7955 {
7956 return false;
7957 }
7958 result = static_cast<std::size_t>(number);
7959 return true;
7960 }
7961
7962 default:
7963 {
7964 auto last_token = get_token_string();
7965 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "expected length type specification (U, i, I, l, L) after '#'; last byte: 0x" + last_token, "size")));
7966 }
7967 }
7968 }
7969
7970 /*!
7971 @brief determine the type and size for a container
7972
7973 In the optimized UBJSON format, a type and a size can be provided to allow
7974 for a more compact representation.
7975
7976 @param[out] result pair of the size and the type
7977
7978 @return whether pair creation completed
7979 */
7980 bool get_ubjson_size_type(std::pair<std::size_t, int>& result)
7981 {
7982 result.first = string_t::npos; // size
7983 result.second = 0; // type
7984
7985 get_ignore_noop();
7986
7987 if (current == '$')
7988 {
7989 result.second = get(); // must not ignore 'N', because 'N' maybe the type
7990 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "type")))
7991 {
7992 return false;
7993 }
7994
7995 get_ignore_noop();
7996 if (JSON_UNLIKELY(current != '#'))
7997 {
7998 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "value")))
7999 {
8000 return false;
8001 }
8002 auto last_token = get_token_string();
8003 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "expected '#' after type information; last byte: 0x" + last_token, "size")));
8004 }
8005
8006 return get_ubjson_size_value(result.first);
8007 }
8008 else if (current == '#')
8009 {
8010 return get_ubjson_size_value(result.first);
8011 }
8012 return true;
8013 }
8014
8015 /*!
8016 @param prefix the previously read or set type prefix
8017 @return whether value creation completed
8018 */
8019 bool get_ubjson_value(const int prefix)
8020 {
8021 switch (prefix)
8022 {
8023 case std::char_traits<char>::eof(): // EOF
8024 return unexpect_eof(input_format_t::ubjson, "value");
8025
8026 case 'T': // true
8027 return sax->boolean(true);
8028 case 'F': // false
8029 return sax->boolean(false);
8030
8031 case 'Z': // null
8032 return sax->null();
8033
8034 case 'U':
8035 {
8036 uint8_t number;
8037 return get_number(input_format_t::ubjson, number) and sax->number_unsigned(number);
8038 }
8039
8040 case 'i':
8041 {
8042 int8_t number;
8043 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
8044 }
8045
8046 case 'I':
8047 {
8048 int16_t number;
8049 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
8050 }
8051
8052 case 'l':
8053 {
8054 int32_t number;
8055 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
8056 }
8057
8058 case 'L':
8059 {
8060 int64_t number;
8061 return get_number(input_format_t::ubjson, number) and sax->number_integer(number);
8062 }
8063
8064 case 'd':
8065 {
8066 float number;
8067 return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
8068 }
8069
8070 case 'D':
8071 {
8072 double number;
8073 return get_number(input_format_t::ubjson, number) and sax->number_float(static_cast<number_float_t>(number), "");
8074 }
8075
8076 case 'C': // char
8077 {
8078 get();
8079 if (JSON_UNLIKELY(not unexpect_eof(input_format_t::ubjson, "char")))
8080 {
8081 return false;
8082 }
8083 if (JSON_UNLIKELY(current > 127))
8084 {
8085 auto last_token = get_token_string();
8086 return sax->parse_error(chars_read, last_token, parse_error::create(113, chars_read, exception_message(input_format_t::ubjson, "byte after 'C' must be in range 0x00..0x7F; last byte: 0x" + last_token, "char")));
8087 }
8088 string_t s(1, static_cast<char>(current));
8089 return sax->string(s);
8090 }
8091
8092 case 'S': // string
8093 {
8094 string_t s;
8095 return get_ubjson_string(s) and sax->string(s);
8096 }
8097
8098 case '[': // array
8099 return get_ubjson_array();
8100
8101 case '{': // object
8102 return get_ubjson_object();
8103
8104 default: // anything else
8105 {
8106 auto last_token = get_token_string();
8107 return sax->parse_error(chars_read, last_token, parse_error::create(112, chars_read, exception_message(input_format_t::ubjson, "invalid byte: 0x" + last_token, "value")));
8108 }
8109 }
8110 }
8111
8112 /*!
8113 @return whether array creation completed
8114 */
8115 bool get_ubjson_array()
8116 {
8117 std::pair<std::size_t, int> size_and_type;
8118 if (JSON_UNLIKELY(not get_ubjson_size_type(size_and_type)))
8119 {
8120 return false;
8121 }
8122
8123 if (size_and_type.first != string_t::npos)
8124 {
8125 if (JSON_UNLIKELY(not sax->start_array(size_and_type.first)))
8126 {
8127 return false;
8128 }
8129
8130 if (size_and_type.second != 0)
8131 {
8132 if (size_and_type.second != 'N')
8133 {
8134 for (std::size_t i = 0; i < size_and_type.first; ++i)
8135 {
8136 if (JSON_UNLIKELY(not get_ubjson_value(size_and_type.second)))
8137 {
8138 return false;
8139 }
8140 }
8141 }
8142 }
8143 else
8144 {
8145 for (std::size_t i = 0; i < size_and_type.first; ++i)
8146 {
8147 if (JSON_UNLIKELY(not parse_ubjson_internal()))
8148 {
8149 return false;
8150 }
8151 }
8152 }
8153 }
8154 else
8155 {
8156 if (JSON_UNLIKELY(not sax->start_array(std::size_t(-1))))
8157 {
8158 return false;
8159 }
8160
8161 while (current != ']')
8162 {
8163 if (JSON_UNLIKELY(not parse_ubjson_internal(false)))
8164 {
8165 return false;
8166 }
8167 get_ignore_noop();
8168 }
8169 }
8170
8171 return sax->end_array();
8172 }
8173
8174 /*!
8175 @return whether object creation completed
8176 */
8177 bool get_ubjson_object()
8178 {
8179 std::pair<std::size_t, int> size_and_type;
8180 if (JSON_UNLIKELY(not get_ubjson_size_type(size_and_type)))
8181 {
8182 return false;
8183 }
8184
8185 string_t key;
8186 if (size_and_type.first != string_t::npos)
8187 {
8188 if (JSON_UNLIKELY(not sax->start_object(size_and_type.first)))
8189 {
8190 return false;
8191 }
8192
8193 if (size_and_type.second != 0)
8194 {
8195 for (std::size_t i = 0; i < size_and_type.first; ++i)
8196 {
8197 if (JSON_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
8198 {
8199 return false;
8200 }
8201 if (JSON_UNLIKELY(not get_ubjson_value(size_and_type.second)))
8202 {
8203 return false;
8204 }
8205 key.clear();
8206 }
8207 }
8208 else
8209 {
8210 for (std::size_t i = 0; i < size_and_type.first; ++i)
8211 {
8212 if (JSON_UNLIKELY(not get_ubjson_string(key) or not sax->key(key)))
8213 {
8214 return false;
8215 }
8216 if (JSON_UNLIKELY(not parse_ubjson_internal()))
8217 {
8218 return false;
8219 }
8220 key.clear();
8221 }
8222 }
8223 }
8224 else
8225 {
8226 if (JSON_UNLIKELY(not sax->start_object(std::size_t(-1))))
8227 {
8228 return false;
8229 }
8230
8231 while (current != '}')
8232 {
8233 if (JSON_UNLIKELY(not get_ubjson_string(key, false) or not sax->key(key)))
8234 {
8235 return false;
8236 }
8237 if (JSON_UNLIKELY(not parse_ubjson_internal()))
8238 {
8239 return false;
8240 }
8241 get_ignore_noop();
8242 key.clear();
8243 }
8244 }
8245
8246 return sax->end_object();
8247 }
8248
8249 ///////////////////////
8250 // Utility functions //
8251 ///////////////////////
8252
8253 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008254 @brief get next character from the input
8255
8256 This function provides the interface to the used input adapter. It does
8257 not throw in case the input reached EOF, but returns a -'ve valued
8258 `std::char_traits<char>::eof()` in that case.
8259
8260 @return character read from the input
8261 */
8262 int get()
8263 {
8264 ++chars_read;
8265 return (current = ia->get_character());
8266 }
8267
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008268 /*!
8269 @return character read from the input after ignoring all 'N' entries
8270 */
8271 int get_ignore_noop()
8272 {
8273 do
8274 {
8275 get();
8276 }
8277 while (current == 'N');
8278
8279 return current;
8280 }
8281
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008282 /*
8283 @brief read a number from the input
8284
8285 @tparam NumberType the type of the number
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008286 @param[in] format the current format (for diagnostics)
8287 @param[out] result number of type @a NumberType
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008288
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008289 @return whether conversion completed
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008290
8291 @note This function needs to respect the system's endianess, because
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008292 bytes in CBOR, MessagePack, and UBJSON are stored in network order
8293 (big endian) and therefore need reordering on little endian systems.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008294 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008295 template<typename NumberType, bool InputIsLittleEndian = false>
8296 bool get_number(const input_format_t format, NumberType& result)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008297 {
8298 // step 1: read input into array with system's byte order
8299 std::array<uint8_t, sizeof(NumberType)> vec;
8300 for (std::size_t i = 0; i < sizeof(NumberType); ++i)
8301 {
8302 get();
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008303 if (JSON_UNLIKELY(not unexpect_eof(format, "number")))
8304 {
8305 return false;
8306 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008307
8308 // reverse byte order prior to conversion if necessary
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008309 if (is_little_endian && !InputIsLittleEndian)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008310 {
8311 vec[sizeof(NumberType) - i - 1] = static_cast<uint8_t>(current);
8312 }
8313 else
8314 {
8315 vec[i] = static_cast<uint8_t>(current); // LCOV_EXCL_LINE
8316 }
8317 }
8318
8319 // step 2: convert array into number of type T and return
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008320 std::memcpy(&result, vec.data(), sizeof(NumberType));
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008321 return true;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008322 }
8323
8324 /*!
8325 @brief create a string by reading characters from the input
8326
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008327 @tparam NumberType the type of the number
8328 @param[in] format the current format (for diagnostics)
8329 @param[in] len number of characters to read
8330 @param[out] result string created by reading @a len bytes
8331
8332 @return whether string creation completed
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008333
8334 @note We can not reserve @a len bytes for the result, because @a len
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008335 may be too large. Usually, @ref unexpect_eof() detects the end of
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008336 the input before we run out of string memory.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008337 */
8338 template<typename NumberType>
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008339 bool get_string(const input_format_t format,
8340 const NumberType len,
8341 string_t& result)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008342 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008343 bool success = true;
8344 std::generate_n(std::back_inserter(result), len, [this, &success, &format]()
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008345 {
8346 get();
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008347 if (JSON_UNLIKELY(not unexpect_eof(format, "string")))
8348 {
8349 success = false;
8350 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008351 return static_cast<char>(current);
8352 });
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008353 return success;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008354 }
8355
8356 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008357 @param[in] format the current format (for diagnostics)
8358 @param[in] context further context information (for diagnostics)
8359 @return whether the last read character is not EOF
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008360 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008361 bool unexpect_eof(const input_format_t format, const char* context) const
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008362 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008363 if (JSON_UNLIKELY(current == std::char_traits<char>::eof()))
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008364 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008365 return sax->parse_error(chars_read, "<end of file>",
8366 parse_error::create(110, chars_read, exception_message(format, "unexpected end of input", context)));
8367 }
8368 return true;
8369 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008370
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008371 /*!
8372 @return a string representation of the last read byte
8373 */
8374 std::string get_token_string() const
8375 {
8376 char cr[3];
8377 (std::snprintf)(cr, 3, "%.2hhX", static_cast<unsigned char>(current));
8378 return std::string{cr};
8379 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008380
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008381 /*!
8382 @param[in] format the current format
8383 @param[in] detail a detailed error message
8384 @param[in] context further contect information
8385 @return a message string to use in the parse_error exceptions
8386 */
8387 std::string exception_message(const input_format_t format,
8388 const std::string& detail,
8389 const std::string& context) const
8390 {
8391 std::string error_msg = "syntax error while parsing ";
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008392
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008393 switch (format)
8394 {
8395 case input_format_t::cbor:
8396 error_msg += "CBOR";
8397 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008398
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008399 case input_format_t::msgpack:
8400 error_msg += "MessagePack";
8401 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008402
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008403 case input_format_t::ubjson:
8404 error_msg += "UBJSON";
8405 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008406
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008407 case input_format_t::bson:
8408 error_msg += "BSON";
8409 break;
8410
8411 // LCOV_EXCL_START
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008412 default:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008413 assert(false);
8414 // LCOV_EXCL_STOP
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008415 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008416
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008417 return error_msg + " " + context + ": " + detail;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008418 }
8419
8420 private:
8421 /// input adapter
8422 input_adapter_t ia = nullptr;
8423
8424 /// the current character
8425 int current = std::char_traits<char>::eof();
8426
8427 /// the number of characters read
8428 std::size_t chars_read = 0;
8429
8430 /// whether we can assume little endianess
8431 const bool is_little_endian = little_endianess();
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008432
8433 /// the SAX parser
8434 json_sax_t* sax = nullptr;
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008435};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008436} // namespace detail
8437} // namespace nlohmann
8438
8439// #include <nlohmann/detail/output/binary_writer.hpp>
8440
8441
8442#include <algorithm> // reverse
8443#include <array> // array
8444#include <cstdint> // uint8_t, uint16_t, uint32_t, uint64_t
8445#include <cstring> // memcpy
8446#include <limits> // numeric_limits
8447
8448// #include <nlohmann/detail/input/binary_reader.hpp>
8449
8450// #include <nlohmann/detail/output/output_adapters.hpp>
8451
8452
8453namespace nlohmann
8454{
8455namespace detail
8456{
8457///////////////////
8458// binary writer //
8459///////////////////
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008460
8461/*!
8462@brief serialization to CBOR and MessagePack values
8463*/
8464template<typename BasicJsonType, typename CharType>
8465class binary_writer
8466{
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008467 using string_t = typename BasicJsonType::string_t;
8468
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008469 public:
8470 /*!
8471 @brief create a binary writer
8472
8473 @param[in] adapter output adapter to write to
8474 */
8475 explicit binary_writer(output_adapter_t<CharType> adapter) : oa(adapter)
8476 {
8477 assert(oa);
8478 }
8479
8480 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008481 @param[in] j JSON value to serialize
8482 @pre j.type() == value_t::object
8483 */
8484 void write_bson(const BasicJsonType& j)
8485 {
8486 switch (j.type())
8487 {
8488 case value_t::object:
8489 {
8490 write_bson_object(*j.m_value.object);
8491 break;
8492 }
8493
8494 default:
8495 {
8496 JSON_THROW(type_error::create(317, "to serialize to BSON, top-level type must be object, but is " + std::string(j.type_name())));
8497 }
8498 }
8499 }
8500
8501 /*!
8502 @param[in] j JSON value to serialize
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008503 */
8504 void write_cbor(const BasicJsonType& j)
8505 {
8506 switch (j.type())
8507 {
8508 case value_t::null:
8509 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008510 oa->write_character(to_char_type(0xF6));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008511 break;
8512 }
8513
8514 case value_t::boolean:
8515 {
8516 oa->write_character(j.m_value.boolean
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008517 ? to_char_type(0xF5)
8518 : to_char_type(0xF4));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008519 break;
8520 }
8521
8522 case value_t::number_integer:
8523 {
8524 if (j.m_value.number_integer >= 0)
8525 {
8526 // CBOR does not differentiate between positive signed
8527 // integers and unsigned integers. Therefore, we used the
8528 // code from the value_t::number_unsigned case here.
8529 if (j.m_value.number_integer <= 0x17)
8530 {
8531 write_number(static_cast<uint8_t>(j.m_value.number_integer));
8532 }
8533 else if (j.m_value.number_integer <= (std::numeric_limits<uint8_t>::max)())
8534 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008535 oa->write_character(to_char_type(0x18));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008536 write_number(static_cast<uint8_t>(j.m_value.number_integer));
8537 }
8538 else if (j.m_value.number_integer <= (std::numeric_limits<uint16_t>::max)())
8539 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008540 oa->write_character(to_char_type(0x19));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008541 write_number(static_cast<uint16_t>(j.m_value.number_integer));
8542 }
8543 else if (j.m_value.number_integer <= (std::numeric_limits<uint32_t>::max)())
8544 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008545 oa->write_character(to_char_type(0x1A));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008546 write_number(static_cast<uint32_t>(j.m_value.number_integer));
8547 }
8548 else
8549 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008550 oa->write_character(to_char_type(0x1B));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008551 write_number(static_cast<uint64_t>(j.m_value.number_integer));
8552 }
8553 }
8554 else
8555 {
8556 // The conversions below encode the sign in the first
8557 // byte, and the value is converted to a positive number.
8558 const auto positive_number = -1 - j.m_value.number_integer;
8559 if (j.m_value.number_integer >= -24)
8560 {
8561 write_number(static_cast<uint8_t>(0x20 + positive_number));
8562 }
8563 else if (positive_number <= (std::numeric_limits<uint8_t>::max)())
8564 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008565 oa->write_character(to_char_type(0x38));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008566 write_number(static_cast<uint8_t>(positive_number));
8567 }
8568 else if (positive_number <= (std::numeric_limits<uint16_t>::max)())
8569 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008570 oa->write_character(to_char_type(0x39));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008571 write_number(static_cast<uint16_t>(positive_number));
8572 }
8573 else if (positive_number <= (std::numeric_limits<uint32_t>::max)())
8574 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008575 oa->write_character(to_char_type(0x3A));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008576 write_number(static_cast<uint32_t>(positive_number));
8577 }
8578 else
8579 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008580 oa->write_character(to_char_type(0x3B));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008581 write_number(static_cast<uint64_t>(positive_number));
8582 }
8583 }
8584 break;
8585 }
8586
8587 case value_t::number_unsigned:
8588 {
8589 if (j.m_value.number_unsigned <= 0x17)
8590 {
8591 write_number(static_cast<uint8_t>(j.m_value.number_unsigned));
8592 }
8593 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
8594 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008595 oa->write_character(to_char_type(0x18));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008596 write_number(static_cast<uint8_t>(j.m_value.number_unsigned));
8597 }
8598 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint16_t>::max)())
8599 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008600 oa->write_character(to_char_type(0x19));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008601 write_number(static_cast<uint16_t>(j.m_value.number_unsigned));
8602 }
8603 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint32_t>::max)())
8604 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008605 oa->write_character(to_char_type(0x1A));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008606 write_number(static_cast<uint32_t>(j.m_value.number_unsigned));
8607 }
8608 else
8609 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008610 oa->write_character(to_char_type(0x1B));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008611 write_number(static_cast<uint64_t>(j.m_value.number_unsigned));
8612 }
8613 break;
8614 }
8615
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008616 case value_t::number_float:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008617 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008618 oa->write_character(get_cbor_float_prefix(j.m_value.number_float));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008619 write_number(j.m_value.number_float);
8620 break;
8621 }
8622
8623 case value_t::string:
8624 {
8625 // step 1: write control byte and the string length
8626 const auto N = j.m_value.string->size();
8627 if (N <= 0x17)
8628 {
8629 write_number(static_cast<uint8_t>(0x60 + N));
8630 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008631 else if (N <= (std::numeric_limits<uint8_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008632 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008633 oa->write_character(to_char_type(0x78));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008634 write_number(static_cast<uint8_t>(N));
8635 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008636 else if (N <= (std::numeric_limits<uint16_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008637 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008638 oa->write_character(to_char_type(0x79));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008639 write_number(static_cast<uint16_t>(N));
8640 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008641 else if (N <= (std::numeric_limits<uint32_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008642 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008643 oa->write_character(to_char_type(0x7A));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008644 write_number(static_cast<uint32_t>(N));
8645 }
8646 // LCOV_EXCL_START
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008647 else if (N <= (std::numeric_limits<uint64_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008648 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008649 oa->write_character(to_char_type(0x7B));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008650 write_number(static_cast<uint64_t>(N));
8651 }
8652 // LCOV_EXCL_STOP
8653
8654 // step 2: write the string
8655 oa->write_characters(
8656 reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
8657 j.m_value.string->size());
8658 break;
8659 }
8660
8661 case value_t::array:
8662 {
8663 // step 1: write control byte and the array size
8664 const auto N = j.m_value.array->size();
8665 if (N <= 0x17)
8666 {
8667 write_number(static_cast<uint8_t>(0x80 + N));
8668 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008669 else if (N <= (std::numeric_limits<uint8_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008670 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008671 oa->write_character(to_char_type(0x98));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008672 write_number(static_cast<uint8_t>(N));
8673 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008674 else if (N <= (std::numeric_limits<uint16_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008675 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008676 oa->write_character(to_char_type(0x99));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008677 write_number(static_cast<uint16_t>(N));
8678 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008679 else if (N <= (std::numeric_limits<uint32_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008680 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008681 oa->write_character(to_char_type(0x9A));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008682 write_number(static_cast<uint32_t>(N));
8683 }
8684 // LCOV_EXCL_START
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008685 else if (N <= (std::numeric_limits<uint64_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008686 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008687 oa->write_character(to_char_type(0x9B));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008688 write_number(static_cast<uint64_t>(N));
8689 }
8690 // LCOV_EXCL_STOP
8691
8692 // step 2: write each element
8693 for (const auto& el : *j.m_value.array)
8694 {
8695 write_cbor(el);
8696 }
8697 break;
8698 }
8699
8700 case value_t::object:
8701 {
8702 // step 1: write control byte and the object size
8703 const auto N = j.m_value.object->size();
8704 if (N <= 0x17)
8705 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008706 write_number(static_cast<uint8_t>(0xA0 + N));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008707 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008708 else if (N <= (std::numeric_limits<uint8_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008709 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008710 oa->write_character(to_char_type(0xB8));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008711 write_number(static_cast<uint8_t>(N));
8712 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008713 else if (N <= (std::numeric_limits<uint16_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008714 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008715 oa->write_character(to_char_type(0xB9));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008716 write_number(static_cast<uint16_t>(N));
8717 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008718 else if (N <= (std::numeric_limits<uint32_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008719 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008720 oa->write_character(to_char_type(0xBA));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008721 write_number(static_cast<uint32_t>(N));
8722 }
8723 // LCOV_EXCL_START
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008724 else if (N <= (std::numeric_limits<uint64_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008725 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008726 oa->write_character(to_char_type(0xBB));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008727 write_number(static_cast<uint64_t>(N));
8728 }
8729 // LCOV_EXCL_STOP
8730
8731 // step 2: write each element
8732 for (const auto& el : *j.m_value.object)
8733 {
8734 write_cbor(el.first);
8735 write_cbor(el.second);
8736 }
8737 break;
8738 }
8739
8740 default:
8741 break;
8742 }
8743 }
8744
8745 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008746 @param[in] j JSON value to serialize
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008747 */
8748 void write_msgpack(const BasicJsonType& j)
8749 {
8750 switch (j.type())
8751 {
8752 case value_t::null: // nil
8753 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008754 oa->write_character(to_char_type(0xC0));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008755 break;
8756 }
8757
8758 case value_t::boolean: // true and false
8759 {
8760 oa->write_character(j.m_value.boolean
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008761 ? to_char_type(0xC3)
8762 : to_char_type(0xC2));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008763 break;
8764 }
8765
8766 case value_t::number_integer:
8767 {
8768 if (j.m_value.number_integer >= 0)
8769 {
8770 // MessagePack does not differentiate between positive
8771 // signed integers and unsigned integers. Therefore, we used
8772 // the code from the value_t::number_unsigned case here.
8773 if (j.m_value.number_unsigned < 128)
8774 {
8775 // positive fixnum
8776 write_number(static_cast<uint8_t>(j.m_value.number_integer));
8777 }
8778 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
8779 {
8780 // uint 8
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008781 oa->write_character(to_char_type(0xCC));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008782 write_number(static_cast<uint8_t>(j.m_value.number_integer));
8783 }
8784 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint16_t>::max)())
8785 {
8786 // uint 16
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008787 oa->write_character(to_char_type(0xCD));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008788 write_number(static_cast<uint16_t>(j.m_value.number_integer));
8789 }
8790 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint32_t>::max)())
8791 {
8792 // uint 32
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008793 oa->write_character(to_char_type(0xCE));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008794 write_number(static_cast<uint32_t>(j.m_value.number_integer));
8795 }
8796 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint64_t>::max)())
8797 {
8798 // uint 64
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008799 oa->write_character(to_char_type(0xCF));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008800 write_number(static_cast<uint64_t>(j.m_value.number_integer));
8801 }
8802 }
8803 else
8804 {
8805 if (j.m_value.number_integer >= -32)
8806 {
8807 // negative fixnum
8808 write_number(static_cast<int8_t>(j.m_value.number_integer));
8809 }
8810 else if (j.m_value.number_integer >= (std::numeric_limits<int8_t>::min)() and
8811 j.m_value.number_integer <= (std::numeric_limits<int8_t>::max)())
8812 {
8813 // int 8
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008814 oa->write_character(to_char_type(0xD0));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008815 write_number(static_cast<int8_t>(j.m_value.number_integer));
8816 }
8817 else if (j.m_value.number_integer >= (std::numeric_limits<int16_t>::min)() and
8818 j.m_value.number_integer <= (std::numeric_limits<int16_t>::max)())
8819 {
8820 // int 16
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008821 oa->write_character(to_char_type(0xD1));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008822 write_number(static_cast<int16_t>(j.m_value.number_integer));
8823 }
8824 else if (j.m_value.number_integer >= (std::numeric_limits<int32_t>::min)() and
8825 j.m_value.number_integer <= (std::numeric_limits<int32_t>::max)())
8826 {
8827 // int 32
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008828 oa->write_character(to_char_type(0xD2));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008829 write_number(static_cast<int32_t>(j.m_value.number_integer));
8830 }
8831 else if (j.m_value.number_integer >= (std::numeric_limits<int64_t>::min)() and
8832 j.m_value.number_integer <= (std::numeric_limits<int64_t>::max)())
8833 {
8834 // int 64
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008835 oa->write_character(to_char_type(0xD3));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008836 write_number(static_cast<int64_t>(j.m_value.number_integer));
8837 }
8838 }
8839 break;
8840 }
8841
8842 case value_t::number_unsigned:
8843 {
8844 if (j.m_value.number_unsigned < 128)
8845 {
8846 // positive fixnum
8847 write_number(static_cast<uint8_t>(j.m_value.number_integer));
8848 }
8849 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
8850 {
8851 // uint 8
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008852 oa->write_character(to_char_type(0xCC));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008853 write_number(static_cast<uint8_t>(j.m_value.number_integer));
8854 }
8855 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint16_t>::max)())
8856 {
8857 // uint 16
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008858 oa->write_character(to_char_type(0xCD));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008859 write_number(static_cast<uint16_t>(j.m_value.number_integer));
8860 }
8861 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint32_t>::max)())
8862 {
8863 // uint 32
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008864 oa->write_character(to_char_type(0xCE));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008865 write_number(static_cast<uint32_t>(j.m_value.number_integer));
8866 }
8867 else if (j.m_value.number_unsigned <= (std::numeric_limits<uint64_t>::max)())
8868 {
8869 // uint 64
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008870 oa->write_character(to_char_type(0xCF));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008871 write_number(static_cast<uint64_t>(j.m_value.number_integer));
8872 }
8873 break;
8874 }
8875
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008876 case value_t::number_float:
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008877 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008878 oa->write_character(get_msgpack_float_prefix(j.m_value.number_float));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008879 write_number(j.m_value.number_float);
8880 break;
8881 }
8882
8883 case value_t::string:
8884 {
8885 // step 1: write control byte and the string length
8886 const auto N = j.m_value.string->size();
8887 if (N <= 31)
8888 {
8889 // fixstr
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008890 write_number(static_cast<uint8_t>(0xA0 | N));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008891 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008892 else if (N <= (std::numeric_limits<uint8_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008893 {
8894 // str 8
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008895 oa->write_character(to_char_type(0xD9));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008896 write_number(static_cast<uint8_t>(N));
8897 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008898 else if (N <= (std::numeric_limits<uint16_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008899 {
8900 // str 16
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008901 oa->write_character(to_char_type(0xDA));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008902 write_number(static_cast<uint16_t>(N));
8903 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008904 else if (N <= (std::numeric_limits<uint32_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008905 {
8906 // str 32
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008907 oa->write_character(to_char_type(0xDB));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008908 write_number(static_cast<uint32_t>(N));
8909 }
8910
8911 // step 2: write the string
8912 oa->write_characters(
8913 reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
8914 j.m_value.string->size());
8915 break;
8916 }
8917
8918 case value_t::array:
8919 {
8920 // step 1: write control byte and the array size
8921 const auto N = j.m_value.array->size();
8922 if (N <= 15)
8923 {
8924 // fixarray
8925 write_number(static_cast<uint8_t>(0x90 | N));
8926 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008927 else if (N <= (std::numeric_limits<uint16_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008928 {
8929 // array 16
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008930 oa->write_character(to_char_type(0xDC));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008931 write_number(static_cast<uint16_t>(N));
8932 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008933 else if (N <= (std::numeric_limits<uint32_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008934 {
8935 // array 32
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008936 oa->write_character(to_char_type(0xDD));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008937 write_number(static_cast<uint32_t>(N));
8938 }
8939
8940 // step 2: write each element
8941 for (const auto& el : *j.m_value.array)
8942 {
8943 write_msgpack(el);
8944 }
8945 break;
8946 }
8947
8948 case value_t::object:
8949 {
8950 // step 1: write control byte and the object size
8951 const auto N = j.m_value.object->size();
8952 if (N <= 15)
8953 {
8954 // fixmap
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008955 write_number(static_cast<uint8_t>(0x80 | (N & 0xF)));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008956 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008957 else if (N <= (std::numeric_limits<uint16_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008958 {
8959 // map 16
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008960 oa->write_character(to_char_type(0xDE));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008961 write_number(static_cast<uint16_t>(N));
8962 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008963 else if (N <= (std::numeric_limits<uint32_t>::max)())
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008964 {
8965 // map 32
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008966 oa->write_character(to_char_type(0xDF));
Syoyo Fujita2e21be72017-11-05 17:13:01 +09008967 write_number(static_cast<uint32_t>(N));
8968 }
8969
8970 // step 2: write each element
8971 for (const auto& el : *j.m_value.object)
8972 {
8973 write_msgpack(el.first);
8974 write_msgpack(el.second);
8975 }
8976 break;
8977 }
8978
8979 default:
8980 break;
8981 }
8982 }
8983
Syoyo Fujitac0d02512019-02-04 16:19:13 +09008984 /*!
8985 @param[in] j JSON value to serialize
8986 @param[in] use_count whether to use '#' prefixes (optimized format)
8987 @param[in] use_type whether to use '$' prefixes (optimized format)
8988 @param[in] add_prefix whether prefixes need to be used for this value
8989 */
8990 void write_ubjson(const BasicJsonType& j, const bool use_count,
8991 const bool use_type, const bool add_prefix = true)
8992 {
8993 switch (j.type())
8994 {
8995 case value_t::null:
8996 {
8997 if (add_prefix)
8998 {
8999 oa->write_character(to_char_type('Z'));
9000 }
9001 break;
9002 }
9003
9004 case value_t::boolean:
9005 {
9006 if (add_prefix)
9007 {
9008 oa->write_character(j.m_value.boolean
9009 ? to_char_type('T')
9010 : to_char_type('F'));
9011 }
9012 break;
9013 }
9014
9015 case value_t::number_integer:
9016 {
9017 write_number_with_ubjson_prefix(j.m_value.number_integer, add_prefix);
9018 break;
9019 }
9020
9021 case value_t::number_unsigned:
9022 {
9023 write_number_with_ubjson_prefix(j.m_value.number_unsigned, add_prefix);
9024 break;
9025 }
9026
9027 case value_t::number_float:
9028 {
9029 write_number_with_ubjson_prefix(j.m_value.number_float, add_prefix);
9030 break;
9031 }
9032
9033 case value_t::string:
9034 {
9035 if (add_prefix)
9036 {
9037 oa->write_character(to_char_type('S'));
9038 }
9039 write_number_with_ubjson_prefix(j.m_value.string->size(), true);
9040 oa->write_characters(
9041 reinterpret_cast<const CharType*>(j.m_value.string->c_str()),
9042 j.m_value.string->size());
9043 break;
9044 }
9045
9046 case value_t::array:
9047 {
9048 if (add_prefix)
9049 {
9050 oa->write_character(to_char_type('['));
9051 }
9052
9053 bool prefix_required = true;
9054 if (use_type and not j.m_value.array->empty())
9055 {
9056 assert(use_count);
9057 const CharType first_prefix = ubjson_prefix(j.front());
9058 const bool same_prefix = std::all_of(j.begin() + 1, j.end(),
9059 [this, first_prefix](const BasicJsonType & v)
9060 {
9061 return ubjson_prefix(v) == first_prefix;
9062 });
9063
9064 if (same_prefix)
9065 {
9066 prefix_required = false;
9067 oa->write_character(to_char_type('$'));
9068 oa->write_character(first_prefix);
9069 }
9070 }
9071
9072 if (use_count)
9073 {
9074 oa->write_character(to_char_type('#'));
9075 write_number_with_ubjson_prefix(j.m_value.array->size(), true);
9076 }
9077
9078 for (const auto& el : *j.m_value.array)
9079 {
9080 write_ubjson(el, use_count, use_type, prefix_required);
9081 }
9082
9083 if (not use_count)
9084 {
9085 oa->write_character(to_char_type(']'));
9086 }
9087
9088 break;
9089 }
9090
9091 case value_t::object:
9092 {
9093 if (add_prefix)
9094 {
9095 oa->write_character(to_char_type('{'));
9096 }
9097
9098 bool prefix_required = true;
9099 if (use_type and not j.m_value.object->empty())
9100 {
9101 assert(use_count);
9102 const CharType first_prefix = ubjson_prefix(j.front());
9103 const bool same_prefix = std::all_of(j.begin(), j.end(),
9104 [this, first_prefix](const BasicJsonType & v)
9105 {
9106 return ubjson_prefix(v) == first_prefix;
9107 });
9108
9109 if (same_prefix)
9110 {
9111 prefix_required = false;
9112 oa->write_character(to_char_type('$'));
9113 oa->write_character(first_prefix);
9114 }
9115 }
9116
9117 if (use_count)
9118 {
9119 oa->write_character(to_char_type('#'));
9120 write_number_with_ubjson_prefix(j.m_value.object->size(), true);
9121 }
9122
9123 for (const auto& el : *j.m_value.object)
9124 {
9125 write_number_with_ubjson_prefix(el.first.size(), true);
9126 oa->write_characters(
9127 reinterpret_cast<const CharType*>(el.first.c_str()),
9128 el.first.size());
9129 write_ubjson(el.second, use_count, use_type, prefix_required);
9130 }
9131
9132 if (not use_count)
9133 {
9134 oa->write_character(to_char_type('}'));
9135 }
9136
9137 break;
9138 }
9139
9140 default:
9141 break;
9142 }
9143 }
9144
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009145 private:
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009146 //////////
9147 // BSON //
9148 //////////
9149
9150 /*!
9151 @return The size of a BSON document entry header, including the id marker
9152 and the entry name size (and its null-terminator).
9153 */
9154 static std::size_t calc_bson_entry_header_size(const string_t& name)
9155 {
9156 const auto it = name.find(static_cast<typename string_t::value_type>(0));
9157 if (JSON_UNLIKELY(it != BasicJsonType::string_t::npos))
9158 {
9159 JSON_THROW(out_of_range::create(409,
9160 "BSON key cannot contain code point U+0000 (at byte " + std::to_string(it) + ")"));
9161 }
9162
9163 return /*id*/ 1ul + name.size() + /*zero-terminator*/1u;
9164 }
9165
9166 /*!
9167 @brief Writes the given @a element_type and @a name to the output adapter
9168 */
9169 void write_bson_entry_header(const string_t& name,
9170 const std::uint8_t element_type)
9171 {
9172 oa->write_character(to_char_type(element_type)); // boolean
9173 oa->write_characters(
9174 reinterpret_cast<const CharType*>(name.c_str()),
9175 name.size() + 1u);
9176 }
9177
9178 /*!
9179 @brief Writes a BSON element with key @a name and boolean value @a value
9180 */
9181 void write_bson_boolean(const string_t& name,
9182 const bool value)
9183 {
9184 write_bson_entry_header(name, 0x08);
9185 oa->write_character(value ? to_char_type(0x01) : to_char_type(0x00));
9186 }
9187
9188 /*!
9189 @brief Writes a BSON element with key @a name and double value @a value
9190 */
9191 void write_bson_double(const string_t& name,
9192 const double value)
9193 {
9194 write_bson_entry_header(name, 0x01);
9195 write_number<double, true>(value);
9196 }
9197
9198 /*!
9199 @return The size of the BSON-encoded string in @a value
9200 */
9201 static std::size_t calc_bson_string_size(const string_t& value)
9202 {
9203 return sizeof(std::int32_t) + value.size() + 1ul;
9204 }
9205
9206 /*!
9207 @brief Writes a BSON element with key @a name and string value @a value
9208 */
9209 void write_bson_string(const string_t& name,
9210 const string_t& value)
9211 {
9212 write_bson_entry_header(name, 0x02);
9213
9214 write_number<std::int32_t, true>(static_cast<std::int32_t>(value.size() + 1ul));
9215 oa->write_characters(
9216 reinterpret_cast<const CharType*>(value.c_str()),
9217 value.size() + 1);
9218 }
9219
9220 /*!
9221 @brief Writes a BSON element with key @a name and null value
9222 */
9223 void write_bson_null(const string_t& name)
9224 {
9225 write_bson_entry_header(name, 0x0A);
9226 }
9227
9228 /*!
9229 @return The size of the BSON-encoded integer @a value
9230 */
9231 static std::size_t calc_bson_integer_size(const std::int64_t value)
9232 {
9233 if ((std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)())
9234 {
9235 return sizeof(std::int32_t);
9236 }
9237 else
9238 {
9239 return sizeof(std::int64_t);
9240 }
9241 }
9242
9243 /*!
9244 @brief Writes a BSON element with key @a name and integer @a value
9245 */
9246 void write_bson_integer(const string_t& name,
9247 const std::int64_t value)
9248 {
9249 if ((std::numeric_limits<std::int32_t>::min)() <= value and value <= (std::numeric_limits<std::int32_t>::max)())
9250 {
9251 write_bson_entry_header(name, 0x10); // int32
9252 write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
9253 }
9254 else
9255 {
9256 write_bson_entry_header(name, 0x12); // int64
9257 write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
9258 }
9259 }
9260
9261 /*!
9262 @return The size of the BSON-encoded unsigned integer in @a j
9263 */
9264 static constexpr std::size_t calc_bson_unsigned_size(const std::uint64_t value) noexcept
9265 {
9266 return (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
9267 ? sizeof(std::int32_t)
9268 : sizeof(std::int64_t);
9269 }
9270
9271 /*!
9272 @brief Writes a BSON element with key @a name and unsigned @a value
9273 */
9274 void write_bson_unsigned(const string_t& name,
9275 const std::uint64_t value)
9276 {
9277 if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int32_t>::max)()))
9278 {
9279 write_bson_entry_header(name, 0x10 /* int32 */);
9280 write_number<std::int32_t, true>(static_cast<std::int32_t>(value));
9281 }
9282 else if (value <= static_cast<std::uint64_t>((std::numeric_limits<std::int64_t>::max)()))
9283 {
9284 write_bson_entry_header(name, 0x12 /* int64 */);
9285 write_number<std::int64_t, true>(static_cast<std::int64_t>(value));
9286 }
9287 else
9288 {
9289 JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(value) + " cannot be represented by BSON as it does not fit int64"));
9290 }
9291 }
9292
9293 /*!
9294 @brief Writes a BSON element with key @a name and object @a value
9295 */
9296 void write_bson_object_entry(const string_t& name,
9297 const typename BasicJsonType::object_t& value)
9298 {
9299 write_bson_entry_header(name, 0x03); // object
9300 write_bson_object(value);
9301 }
9302
9303 /*!
9304 @return The size of the BSON-encoded array @a value
9305 */
9306 static std::size_t calc_bson_array_size(const typename BasicJsonType::array_t& value)
9307 {
9308 std::size_t embedded_document_size = 0ul;
9309 std::size_t array_index = 0ul;
9310
9311 for (const auto& el : value)
9312 {
9313 embedded_document_size += calc_bson_element_size(std::to_string(array_index++), el);
9314 }
9315
9316 return sizeof(std::int32_t) + embedded_document_size + 1ul;
9317 }
9318
9319 /*!
9320 @brief Writes a BSON element with key @a name and array @a value
9321 */
9322 void write_bson_array(const string_t& name,
9323 const typename BasicJsonType::array_t& value)
9324 {
9325 write_bson_entry_header(name, 0x04); // array
9326 write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_array_size(value)));
9327
9328 std::size_t array_index = 0ul;
9329
9330 for (const auto& el : value)
9331 {
9332 write_bson_element(std::to_string(array_index++), el);
9333 }
9334
9335 oa->write_character(to_char_type(0x00));
9336 }
9337
9338 /*!
9339 @brief Calculates the size necessary to serialize the JSON value @a j with its @a name
9340 @return The calculated size for the BSON document entry for @a j with the given @a name.
9341 */
9342 static std::size_t calc_bson_element_size(const string_t& name,
9343 const BasicJsonType& j)
9344 {
9345 const auto header_size = calc_bson_entry_header_size(name);
9346 switch (j.type())
9347 {
9348 case value_t::object:
9349 return header_size + calc_bson_object_size(*j.m_value.object);
9350
9351 case value_t::array:
9352 return header_size + calc_bson_array_size(*j.m_value.array);
9353
9354 case value_t::boolean:
9355 return header_size + 1ul;
9356
9357 case value_t::number_float:
9358 return header_size + 8ul;
9359
9360 case value_t::number_integer:
9361 return header_size + calc_bson_integer_size(j.m_value.number_integer);
9362
9363 case value_t::number_unsigned:
9364 return header_size + calc_bson_unsigned_size(j.m_value.number_unsigned);
9365
9366 case value_t::string:
9367 return header_size + calc_bson_string_size(*j.m_value.string);
9368
9369 case value_t::null:
9370 return header_size + 0ul;
9371
9372 // LCOV_EXCL_START
9373 default:
9374 assert(false);
9375 return 0ul;
9376 // LCOV_EXCL_STOP
9377 };
9378 }
9379
9380 /*!
9381 @brief Serializes the JSON value @a j to BSON and associates it with the
9382 key @a name.
9383 @param name The name to associate with the JSON entity @a j within the
9384 current BSON document
9385 @return The size of the BSON entry
9386 */
9387 void write_bson_element(const string_t& name,
9388 const BasicJsonType& j)
9389 {
9390 switch (j.type())
9391 {
9392 case value_t::object:
9393 return write_bson_object_entry(name, *j.m_value.object);
9394
9395 case value_t::array:
9396 return write_bson_array(name, *j.m_value.array);
9397
9398 case value_t::boolean:
9399 return write_bson_boolean(name, j.m_value.boolean);
9400
9401 case value_t::number_float:
9402 return write_bson_double(name, j.m_value.number_float);
9403
9404 case value_t::number_integer:
9405 return write_bson_integer(name, j.m_value.number_integer);
9406
9407 case value_t::number_unsigned:
9408 return write_bson_unsigned(name, j.m_value.number_unsigned);
9409
9410 case value_t::string:
9411 return write_bson_string(name, *j.m_value.string);
9412
9413 case value_t::null:
9414 return write_bson_null(name);
9415
9416 // LCOV_EXCL_START
9417 default:
9418 assert(false);
9419 return;
9420 // LCOV_EXCL_STOP
9421 };
9422 }
9423
9424 /*!
9425 @brief Calculates the size of the BSON serialization of the given
9426 JSON-object @a j.
9427 @param[in] j JSON value to serialize
9428 @pre j.type() == value_t::object
9429 */
9430 static std::size_t calc_bson_object_size(const typename BasicJsonType::object_t& value)
9431 {
9432 std::size_t document_size = std::accumulate(value.begin(), value.end(), 0ul,
9433 [](size_t result, const typename BasicJsonType::object_t::value_type & el)
9434 {
9435 return result += calc_bson_element_size(el.first, el.second);
9436 });
9437
9438 return sizeof(std::int32_t) + document_size + 1ul;
9439 }
9440
9441 /*!
9442 @param[in] j JSON value to serialize
9443 @pre j.type() == value_t::object
9444 */
9445 void write_bson_object(const typename BasicJsonType::object_t& value)
9446 {
9447 write_number<std::int32_t, true>(static_cast<std::int32_t>(calc_bson_object_size(value)));
9448
9449 for (const auto& el : value)
9450 {
9451 write_bson_element(el.first, el.second);
9452 }
9453
9454 oa->write_character(to_char_type(0x00));
9455 }
9456
9457 //////////
9458 // CBOR //
9459 //////////
9460
9461 static constexpr CharType get_cbor_float_prefix(float /*unused*/)
9462 {
9463 return to_char_type(0xFA); // Single-Precision Float
9464 }
9465
9466 static constexpr CharType get_cbor_float_prefix(double /*unused*/)
9467 {
9468 return to_char_type(0xFB); // Double-Precision Float
9469 }
9470
9471 /////////////
9472 // MsgPack //
9473 /////////////
9474
9475 static constexpr CharType get_msgpack_float_prefix(float /*unused*/)
9476 {
9477 return to_char_type(0xCA); // float 32
9478 }
9479
9480 static constexpr CharType get_msgpack_float_prefix(double /*unused*/)
9481 {
9482 return to_char_type(0xCB); // float 64
9483 }
9484
9485 ////////////
9486 // UBJSON //
9487 ////////////
9488
9489 // UBJSON: write number (floating point)
9490 template<typename NumberType, typename std::enable_if<
9491 std::is_floating_point<NumberType>::value, int>::type = 0>
9492 void write_number_with_ubjson_prefix(const NumberType n,
9493 const bool add_prefix)
9494 {
9495 if (add_prefix)
9496 {
9497 oa->write_character(get_ubjson_float_prefix(n));
9498 }
9499 write_number(n);
9500 }
9501
9502 // UBJSON: write number (unsigned integer)
9503 template<typename NumberType, typename std::enable_if<
9504 std::is_unsigned<NumberType>::value, int>::type = 0>
9505 void write_number_with_ubjson_prefix(const NumberType n,
9506 const bool add_prefix)
9507 {
9508 if (n <= static_cast<uint64_t>((std::numeric_limits<int8_t>::max)()))
9509 {
9510 if (add_prefix)
9511 {
9512 oa->write_character(to_char_type('i')); // int8
9513 }
9514 write_number(static_cast<uint8_t>(n));
9515 }
9516 else if (n <= (std::numeric_limits<uint8_t>::max)())
9517 {
9518 if (add_prefix)
9519 {
9520 oa->write_character(to_char_type('U')); // uint8
9521 }
9522 write_number(static_cast<uint8_t>(n));
9523 }
9524 else if (n <= static_cast<uint64_t>((std::numeric_limits<int16_t>::max)()))
9525 {
9526 if (add_prefix)
9527 {
9528 oa->write_character(to_char_type('I')); // int16
9529 }
9530 write_number(static_cast<int16_t>(n));
9531 }
9532 else if (n <= static_cast<uint64_t>((std::numeric_limits<int32_t>::max)()))
9533 {
9534 if (add_prefix)
9535 {
9536 oa->write_character(to_char_type('l')); // int32
9537 }
9538 write_number(static_cast<int32_t>(n));
9539 }
9540 else if (n <= static_cast<uint64_t>((std::numeric_limits<int64_t>::max)()))
9541 {
9542 if (add_prefix)
9543 {
9544 oa->write_character(to_char_type('L')); // int64
9545 }
9546 write_number(static_cast<int64_t>(n));
9547 }
9548 else
9549 {
9550 JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
9551 }
9552 }
9553
9554 // UBJSON: write number (signed integer)
9555 template<typename NumberType, typename std::enable_if<
9556 std::is_signed<NumberType>::value and
9557 not std::is_floating_point<NumberType>::value, int>::type = 0>
9558 void write_number_with_ubjson_prefix(const NumberType n,
9559 const bool add_prefix)
9560 {
9561 if ((std::numeric_limits<int8_t>::min)() <= n and n <= (std::numeric_limits<int8_t>::max)())
9562 {
9563 if (add_prefix)
9564 {
9565 oa->write_character(to_char_type('i')); // int8
9566 }
9567 write_number(static_cast<int8_t>(n));
9568 }
9569 else if (static_cast<int64_t>((std::numeric_limits<uint8_t>::min)()) <= n and n <= static_cast<int64_t>((std::numeric_limits<uint8_t>::max)()))
9570 {
9571 if (add_prefix)
9572 {
9573 oa->write_character(to_char_type('U')); // uint8
9574 }
9575 write_number(static_cast<uint8_t>(n));
9576 }
9577 else if ((std::numeric_limits<int16_t>::min)() <= n and n <= (std::numeric_limits<int16_t>::max)())
9578 {
9579 if (add_prefix)
9580 {
9581 oa->write_character(to_char_type('I')); // int16
9582 }
9583 write_number(static_cast<int16_t>(n));
9584 }
9585 else if ((std::numeric_limits<int32_t>::min)() <= n and n <= (std::numeric_limits<int32_t>::max)())
9586 {
9587 if (add_prefix)
9588 {
9589 oa->write_character(to_char_type('l')); // int32
9590 }
9591 write_number(static_cast<int32_t>(n));
9592 }
9593 else if ((std::numeric_limits<int64_t>::min)() <= n and n <= (std::numeric_limits<int64_t>::max)())
9594 {
9595 if (add_prefix)
9596 {
9597 oa->write_character(to_char_type('L')); // int64
9598 }
9599 write_number(static_cast<int64_t>(n));
9600 }
9601 // LCOV_EXCL_START
9602 else
9603 {
9604 JSON_THROW(out_of_range::create(407, "integer number " + std::to_string(n) + " cannot be represented by UBJSON as it does not fit int64"));
9605 }
9606 // LCOV_EXCL_STOP
9607 }
9608
9609 /*!
9610 @brief determine the type prefix of container values
9611
9612 @note This function does not need to be 100% accurate when it comes to
9613 integer limits. In case a number exceeds the limits of int64_t,
9614 this will be detected by a later call to function
9615 write_number_with_ubjson_prefix. Therefore, we return 'L' for any
9616 value that does not fit the previous limits.
9617 */
9618 CharType ubjson_prefix(const BasicJsonType& j) const noexcept
9619 {
9620 switch (j.type())
9621 {
9622 case value_t::null:
9623 return 'Z';
9624
9625 case value_t::boolean:
9626 return j.m_value.boolean ? 'T' : 'F';
9627
9628 case value_t::number_integer:
9629 {
9630 if ((std::numeric_limits<int8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<int8_t>::max)())
9631 {
9632 return 'i';
9633 }
9634 if ((std::numeric_limits<uint8_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<uint8_t>::max)())
9635 {
9636 return 'U';
9637 }
9638 if ((std::numeric_limits<int16_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<int16_t>::max)())
9639 {
9640 return 'I';
9641 }
9642 if ((std::numeric_limits<int32_t>::min)() <= j.m_value.number_integer and j.m_value.number_integer <= (std::numeric_limits<int32_t>::max)())
9643 {
9644 return 'l';
9645 }
9646 // no check and assume int64_t (see note above)
9647 return 'L';
9648 }
9649
9650 case value_t::number_unsigned:
9651 {
9652 if (j.m_value.number_unsigned <= (std::numeric_limits<int8_t>::max)())
9653 {
9654 return 'i';
9655 }
9656 if (j.m_value.number_unsigned <= (std::numeric_limits<uint8_t>::max)())
9657 {
9658 return 'U';
9659 }
9660 if (j.m_value.number_unsigned <= (std::numeric_limits<int16_t>::max)())
9661 {
9662 return 'I';
9663 }
9664 if (j.m_value.number_unsigned <= (std::numeric_limits<int32_t>::max)())
9665 {
9666 return 'l';
9667 }
9668 // no check and assume int64_t (see note above)
9669 return 'L';
9670 }
9671
9672 case value_t::number_float:
9673 return get_ubjson_float_prefix(j.m_value.number_float);
9674
9675 case value_t::string:
9676 return 'S';
9677
9678 case value_t::array:
9679 return '[';
9680
9681 case value_t::object:
9682 return '{';
9683
9684 default: // discarded values
9685 return 'N';
9686 }
9687 }
9688
9689 static constexpr CharType get_ubjson_float_prefix(float /*unused*/)
9690 {
9691 return 'd'; // float 32
9692 }
9693
9694 static constexpr CharType get_ubjson_float_prefix(double /*unused*/)
9695 {
9696 return 'D'; // float 64
9697 }
9698
9699 ///////////////////////
9700 // Utility functions //
9701 ///////////////////////
9702
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009703 /*
9704 @brief write a number to output input
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009705 @param[in] n number of type @a NumberType
9706 @tparam NumberType the type of the number
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009707 @tparam OutputIsLittleEndian Set to true if output data is
9708 required to be little endian
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009709
9710 @note This function needs to respect the system's endianess, because bytes
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009711 in CBOR, MessagePack, and UBJSON are stored in network order (big
9712 endian) and therefore need reordering on little endian systems.
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009713 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009714 template<typename NumberType, bool OutputIsLittleEndian = false>
9715 void write_number(const NumberType n)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009716 {
9717 // step 1: write number to array of length NumberType
9718 std::array<CharType, sizeof(NumberType)> vec;
9719 std::memcpy(vec.data(), &n, sizeof(NumberType));
9720
9721 // step 2: write array to output (with possible reordering)
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009722 if (is_little_endian and not OutputIsLittleEndian)
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009723 {
9724 // reverse byte order prior to conversion if necessary
9725 std::reverse(vec.begin(), vec.end());
9726 }
9727
9728 oa->write_characters(vec.data(), sizeof(NumberType));
9729 }
9730
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009731 public:
9732 // The following to_char_type functions are implement the conversion
9733 // between uint8_t and CharType. In case CharType is not unsigned,
9734 // such a conversion is required to allow values greater than 128.
9735 // See <https://github.com/nlohmann/json/issues/1286> for a discussion.
9736 template < typename C = CharType,
9737 enable_if_t < std::is_signed<C>::value and std::is_signed<char>::value > * = nullptr >
9738 static constexpr CharType to_char_type(std::uint8_t x) noexcept
9739 {
9740 return *reinterpret_cast<char*>(&x);
9741 }
9742
9743 template < typename C = CharType,
9744 enable_if_t < std::is_signed<C>::value and std::is_unsigned<char>::value > * = nullptr >
9745 static CharType to_char_type(std::uint8_t x) noexcept
9746 {
9747 static_assert(sizeof(std::uint8_t) == sizeof(CharType), "size of CharType must be equal to std::uint8_t");
9748 static_assert(std::is_pod<CharType>::value, "CharType must be POD");
9749 CharType result;
9750 std::memcpy(&result, &x, sizeof(x));
9751 return result;
9752 }
9753
9754 template<typename C = CharType,
9755 enable_if_t<std::is_unsigned<C>::value>* = nullptr>
9756 static constexpr CharType to_char_type(std::uint8_t x) noexcept
9757 {
9758 return x;
9759 }
9760
9761 template < typename InputCharType, typename C = CharType,
9762 enable_if_t <
9763 std::is_signed<C>::value and
9764 std::is_signed<char>::value and
9765 std::is_same<char, typename std::remove_cv<InputCharType>::type>::value
9766 > * = nullptr >
9767 static constexpr CharType to_char_type(InputCharType x) noexcept
9768 {
9769 return x;
9770 }
9771
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009772 private:
9773 /// whether we can assume little endianess
9774 const bool is_little_endian = binary_reader<BasicJsonType>::little_endianess();
9775
9776 /// the output
9777 output_adapter_t<CharType> oa = nullptr;
9778};
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009779} // namespace detail
9780} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +09009781
Syoyo Fujitac0d02512019-02-04 16:19:13 +09009782// #include <nlohmann/detail/output/serializer.hpp>
9783
9784
9785#include <algorithm> // reverse, remove, fill, find, none_of
9786#include <array> // array
9787#include <cassert> // assert
9788#include <ciso646> // and, or
9789#include <clocale> // localeconv, lconv
9790#include <cmath> // labs, isfinite, isnan, signbit
9791#include <cstddef> // size_t, ptrdiff_t
9792#include <cstdint> // uint8_t
9793#include <cstdio> // snprintf
9794#include <limits> // numeric_limits
9795#include <string> // string
9796#include <type_traits> // is_same
9797
9798// #include <nlohmann/detail/exceptions.hpp>
9799
9800// #include <nlohmann/detail/conversions/to_chars.hpp>
9801
9802
9803#include <cassert> // assert
9804#include <ciso646> // or, and, not
9805#include <cmath> // signbit, isfinite
9806#include <cstdint> // intN_t, uintN_t
9807#include <cstring> // memcpy, memmove
9808
9809namespace nlohmann
9810{
9811namespace detail
9812{
9813
9814/*!
9815@brief implements the Grisu2 algorithm for binary to decimal floating-point
9816conversion.
9817
9818This implementation is a slightly modified version of the reference
9819implementation which may be obtained from
9820http://florian.loitsch.com/publications (bench.tar.gz).
9821
9822The code is distributed under the MIT license, Copyright (c) 2009 Florian Loitsch.
9823
9824For a detailed description of the algorithm see:
9825
9826[1] Loitsch, "Printing Floating-Point Numbers Quickly and Accurately with
9827 Integers", Proceedings of the ACM SIGPLAN 2010 Conference on Programming
9828 Language Design and Implementation, PLDI 2010
9829[2] Burger, Dybvig, "Printing Floating-Point Numbers Quickly and Accurately",
9830 Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language
9831 Design and Implementation, PLDI 1996
9832*/
9833namespace dtoa_impl
9834{
9835
9836template <typename Target, typename Source>
9837Target reinterpret_bits(const Source source)
9838{
9839 static_assert(sizeof(Target) == sizeof(Source), "size mismatch");
9840
9841 Target target;
9842 std::memcpy(&target, &source, sizeof(Source));
9843 return target;
9844}
9845
9846struct diyfp // f * 2^e
9847{
9848 static constexpr int kPrecision = 64; // = q
9849
9850 uint64_t f = 0;
9851 int e = 0;
9852
9853 constexpr diyfp(uint64_t f_, int e_) noexcept : f(f_), e(e_) {}
9854
9855 /*!
9856 @brief returns x - y
9857 @pre x.e == y.e and x.f >= y.f
9858 */
9859 static diyfp sub(const diyfp& x, const diyfp& y) noexcept
9860 {
9861 assert(x.e == y.e);
9862 assert(x.f >= y.f);
9863
9864 return {x.f - y.f, x.e};
9865 }
9866
9867 /*!
9868 @brief returns x * y
9869 @note The result is rounded. (Only the upper q bits are returned.)
9870 */
9871 static diyfp mul(const diyfp& x, const diyfp& y) noexcept
9872 {
9873 static_assert(kPrecision == 64, "internal error");
9874
9875 // Computes:
9876 // f = round((x.f * y.f) / 2^q)
9877 // e = x.e + y.e + q
9878
9879 // Emulate the 64-bit * 64-bit multiplication:
9880 //
9881 // p = u * v
9882 // = (u_lo + 2^32 u_hi) (v_lo + 2^32 v_hi)
9883 // = (u_lo v_lo ) + 2^32 ((u_lo v_hi ) + (u_hi v_lo )) + 2^64 (u_hi v_hi )
9884 // = (p0 ) + 2^32 ((p1 ) + (p2 )) + 2^64 (p3 )
9885 // = (p0_lo + 2^32 p0_hi) + 2^32 ((p1_lo + 2^32 p1_hi) + (p2_lo + 2^32 p2_hi)) + 2^64 (p3 )
9886 // = (p0_lo ) + 2^32 (p0_hi + p1_lo + p2_lo ) + 2^64 (p1_hi + p2_hi + p3)
9887 // = (p0_lo ) + 2^32 (Q ) + 2^64 (H )
9888 // = (p0_lo ) + 2^32 (Q_lo + 2^32 Q_hi ) + 2^64 (H )
9889 //
9890 // (Since Q might be larger than 2^32 - 1)
9891 //
9892 // = (p0_lo + 2^32 Q_lo) + 2^64 (Q_hi + H)
9893 //
9894 // (Q_hi + H does not overflow a 64-bit int)
9895 //
9896 // = p_lo + 2^64 p_hi
9897
9898 const uint64_t u_lo = x.f & 0xFFFFFFFF;
9899 const uint64_t u_hi = x.f >> 32;
9900 const uint64_t v_lo = y.f & 0xFFFFFFFF;
9901 const uint64_t v_hi = y.f >> 32;
9902
9903 const uint64_t p0 = u_lo * v_lo;
9904 const uint64_t p1 = u_lo * v_hi;
9905 const uint64_t p2 = u_hi * v_lo;
9906 const uint64_t p3 = u_hi * v_hi;
9907
9908 const uint64_t p0_hi = p0 >> 32;
9909 const uint64_t p1_lo = p1 & 0xFFFFFFFF;
9910 const uint64_t p1_hi = p1 >> 32;
9911 const uint64_t p2_lo = p2 & 0xFFFFFFFF;
9912 const uint64_t p2_hi = p2 >> 32;
9913
9914 uint64_t Q = p0_hi + p1_lo + p2_lo;
9915
9916 // The full product might now be computed as
9917 //
9918 // p_hi = p3 + p2_hi + p1_hi + (Q >> 32)
9919 // p_lo = p0_lo + (Q << 32)
9920 //
9921 // But in this particular case here, the full p_lo is not required.
9922 // Effectively we only need to add the highest bit in p_lo to p_hi (and
9923 // Q_hi + 1 does not overflow).
9924
9925 Q += uint64_t{1} << (64 - 32 - 1); // round, ties up
9926
9927 const uint64_t h = p3 + p2_hi + p1_hi + (Q >> 32);
9928
9929 return {h, x.e + y.e + 64};
9930 }
9931
9932 /*!
9933 @brief normalize x such that the significand is >= 2^(q-1)
9934 @pre x.f != 0
9935 */
9936 static diyfp normalize(diyfp x) noexcept
9937 {
9938 assert(x.f != 0);
9939
9940 while ((x.f >> 63) == 0)
9941 {
9942 x.f <<= 1;
9943 x.e--;
9944 }
9945
9946 return x;
9947 }
9948
9949 /*!
9950 @brief normalize x such that the result has the exponent E
9951 @pre e >= x.e and the upper e - x.e bits of x.f must be zero.
9952 */
9953 static diyfp normalize_to(const diyfp& x, const int target_exponent) noexcept
9954 {
9955 const int delta = x.e - target_exponent;
9956
9957 assert(delta >= 0);
9958 assert(((x.f << delta) >> delta) == x.f);
9959
9960 return {x.f << delta, target_exponent};
9961 }
9962};
9963
9964struct boundaries
9965{
9966 diyfp w;
9967 diyfp minus;
9968 diyfp plus;
9969};
9970
9971/*!
9972Compute the (normalized) diyfp representing the input number 'value' and its
9973boundaries.
9974
9975@pre value must be finite and positive
9976*/
9977template <typename FloatType>
9978boundaries compute_boundaries(FloatType value)
9979{
9980 assert(std::isfinite(value));
9981 assert(value > 0);
9982
9983 // Convert the IEEE representation into a diyfp.
9984 //
9985 // If v is denormal:
9986 // value = 0.F * 2^(1 - bias) = ( F) * 2^(1 - bias - (p-1))
9987 // If v is normalized:
9988 // value = 1.F * 2^(E - bias) = (2^(p-1) + F) * 2^(E - bias - (p-1))
9989
9990 static_assert(std::numeric_limits<FloatType>::is_iec559,
9991 "internal error: dtoa_short requires an IEEE-754 floating-point implementation");
9992
9993 constexpr int kPrecision = std::numeric_limits<FloatType>::digits; // = p (includes the hidden bit)
9994 constexpr int kBias = std::numeric_limits<FloatType>::max_exponent - 1 + (kPrecision - 1);
9995 constexpr int kMinExp = 1 - kBias;
9996 constexpr uint64_t kHiddenBit = uint64_t{1} << (kPrecision - 1); // = 2^(p-1)
9997
9998 using bits_type = typename std::conditional< kPrecision == 24, uint32_t, uint64_t >::type;
9999
10000 const uint64_t bits = reinterpret_bits<bits_type>(value);
10001 const uint64_t E = bits >> (kPrecision - 1);
10002 const uint64_t F = bits & (kHiddenBit - 1);
10003
10004 const bool is_denormal = (E == 0);
10005 const diyfp v = is_denormal
10006 ? diyfp(F, kMinExp)
10007 : diyfp(F + kHiddenBit, static_cast<int>(E) - kBias);
10008
10009 // Compute the boundaries m- and m+ of the floating-point value
10010 // v = f * 2^e.
10011 //
10012 // Determine v- and v+, the floating-point predecessor and successor if v,
10013 // respectively.
10014 //
10015 // v- = v - 2^e if f != 2^(p-1) or e == e_min (A)
10016 // = v - 2^(e-1) if f == 2^(p-1) and e > e_min (B)
10017 //
10018 // v+ = v + 2^e
10019 //
10020 // Let m- = (v- + v) / 2 and m+ = (v + v+) / 2. All real numbers _strictly_
10021 // between m- and m+ round to v, regardless of how the input rounding
10022 // algorithm breaks ties.
10023 //
10024 // ---+-------------+-------------+-------------+-------------+--- (A)
10025 // v- m- v m+ v+
10026 //
10027 // -----------------+------+------+-------------+-------------+--- (B)
10028 // v- m- v m+ v+
10029
10030 const bool lower_boundary_is_closer = (F == 0 and E > 1);
10031 const diyfp m_plus = diyfp(2 * v.f + 1, v.e - 1);
10032 const diyfp m_minus = lower_boundary_is_closer
10033 ? diyfp(4 * v.f - 1, v.e - 2) // (B)
10034 : diyfp(2 * v.f - 1, v.e - 1); // (A)
10035
10036 // Determine the normalized w+ = m+.
10037 const diyfp w_plus = diyfp::normalize(m_plus);
10038
10039 // Determine w- = m- such that e_(w-) = e_(w+).
10040 const diyfp w_minus = diyfp::normalize_to(m_minus, w_plus.e);
10041
10042 return {diyfp::normalize(v), w_minus, w_plus};
10043}
10044
10045// Given normalized diyfp w, Grisu needs to find a (normalized) cached
10046// power-of-ten c, such that the exponent of the product c * w = f * 2^e lies
10047// within a certain range [alpha, gamma] (Definition 3.2 from [1])
10048//
10049// alpha <= e = e_c + e_w + q <= gamma
10050//
10051// or
10052//
10053// f_c * f_w * 2^alpha <= f_c 2^(e_c) * f_w 2^(e_w) * 2^q
10054// <= f_c * f_w * 2^gamma
10055//
10056// Since c and w are normalized, i.e. 2^(q-1) <= f < 2^q, this implies
10057//
10058// 2^(q-1) * 2^(q-1) * 2^alpha <= c * w * 2^q < 2^q * 2^q * 2^gamma
10059//
10060// or
10061//
10062// 2^(q - 2 + alpha) <= c * w < 2^(q + gamma)
10063//
10064// The choice of (alpha,gamma) determines the size of the table and the form of
10065// the digit generation procedure. Using (alpha,gamma)=(-60,-32) works out well
10066// in practice:
10067//
10068// The idea is to cut the number c * w = f * 2^e into two parts, which can be
10069// processed independently: An integral part p1, and a fractional part p2:
10070//
10071// f * 2^e = ( (f div 2^-e) * 2^-e + (f mod 2^-e) ) * 2^e
10072// = (f div 2^-e) + (f mod 2^-e) * 2^e
10073// = p1 + p2 * 2^e
10074//
10075// The conversion of p1 into decimal form requires a series of divisions and
10076// modulos by (a power of) 10. These operations are faster for 32-bit than for
10077// 64-bit integers, so p1 should ideally fit into a 32-bit integer. This can be
10078// achieved by choosing
10079//
10080// -e >= 32 or e <= -32 := gamma
10081//
10082// In order to convert the fractional part
10083//
10084// p2 * 2^e = p2 / 2^-e = d[-1] / 10^1 + d[-2] / 10^2 + ...
10085//
10086// into decimal form, the fraction is repeatedly multiplied by 10 and the digits
10087// d[-i] are extracted in order:
10088//
10089// (10 * p2) div 2^-e = d[-1]
10090// (10 * p2) mod 2^-e = d[-2] / 10^1 + ...
10091//
10092// The multiplication by 10 must not overflow. It is sufficient to choose
10093//
10094// 10 * p2 < 16 * p2 = 2^4 * p2 <= 2^64.
10095//
10096// Since p2 = f mod 2^-e < 2^-e,
10097//
10098// -e <= 60 or e >= -60 := alpha
10099
10100constexpr int kAlpha = -60;
10101constexpr int kGamma = -32;
10102
10103struct cached_power // c = f * 2^e ~= 10^k
10104{
10105 uint64_t f;
10106 int e;
10107 int k;
10108};
10109
10110/*!
10111For a normalized diyfp w = f * 2^e, this function returns a (normalized) cached
10112power-of-ten c = f_c * 2^e_c, such that the exponent of the product w * c
10113satisfies (Definition 3.2 from [1])
10114
10115 alpha <= e_c + e + q <= gamma.
10116*/
10117inline cached_power get_cached_power_for_binary_exponent(int e)
10118{
10119 // Now
10120 //
10121 // alpha <= e_c + e + q <= gamma (1)
10122 // ==> f_c * 2^alpha <= c * 2^e * 2^q
10123 //
10124 // and since the c's are normalized, 2^(q-1) <= f_c,
10125 //
10126 // ==> 2^(q - 1 + alpha) <= c * 2^(e + q)
10127 // ==> 2^(alpha - e - 1) <= c
10128 //
10129 // If c were an exakt power of ten, i.e. c = 10^k, one may determine k as
10130 //
10131 // k = ceil( log_10( 2^(alpha - e - 1) ) )
10132 // = ceil( (alpha - e - 1) * log_10(2) )
10133 //
10134 // From the paper:
10135 // "In theory the result of the procedure could be wrong since c is rounded,
10136 // and the computation itself is approximated [...]. In practice, however,
10137 // this simple function is sufficient."
10138 //
10139 // For IEEE double precision floating-point numbers converted into
10140 // normalized diyfp's w = f * 2^e, with q = 64,
10141 //
10142 // e >= -1022 (min IEEE exponent)
10143 // -52 (p - 1)
10144 // -52 (p - 1, possibly normalize denormal IEEE numbers)
10145 // -11 (normalize the diyfp)
10146 // = -1137
10147 //
10148 // and
10149 //
10150 // e <= +1023 (max IEEE exponent)
10151 // -52 (p - 1)
10152 // -11 (normalize the diyfp)
10153 // = 960
10154 //
10155 // This binary exponent range [-1137,960] results in a decimal exponent
10156 // range [-307,324]. One does not need to store a cached power for each
10157 // k in this range. For each such k it suffices to find a cached power
10158 // such that the exponent of the product lies in [alpha,gamma].
10159 // This implies that the difference of the decimal exponents of adjacent
10160 // table entries must be less than or equal to
10161 //
10162 // floor( (gamma - alpha) * log_10(2) ) = 8.
10163 //
10164 // (A smaller distance gamma-alpha would require a larger table.)
10165
10166 // NB:
10167 // Actually this function returns c, such that -60 <= e_c + e + 64 <= -34.
10168
10169 constexpr int kCachedPowersSize = 79;
10170 constexpr int kCachedPowersMinDecExp = -300;
10171 constexpr int kCachedPowersDecStep = 8;
10172
10173 static constexpr cached_power kCachedPowers[] =
10174 {
10175 { 0xAB70FE17C79AC6CA, -1060, -300 },
10176 { 0xFF77B1FCBEBCDC4F, -1034, -292 },
10177 { 0xBE5691EF416BD60C, -1007, -284 },
10178 { 0x8DD01FAD907FFC3C, -980, -276 },
10179 { 0xD3515C2831559A83, -954, -268 },
10180 { 0x9D71AC8FADA6C9B5, -927, -260 },
10181 { 0xEA9C227723EE8BCB, -901, -252 },
10182 { 0xAECC49914078536D, -874, -244 },
10183 { 0x823C12795DB6CE57, -847, -236 },
10184 { 0xC21094364DFB5637, -821, -228 },
10185 { 0x9096EA6F3848984F, -794, -220 },
10186 { 0xD77485CB25823AC7, -768, -212 },
10187 { 0xA086CFCD97BF97F4, -741, -204 },
10188 { 0xEF340A98172AACE5, -715, -196 },
10189 { 0xB23867FB2A35B28E, -688, -188 },
10190 { 0x84C8D4DFD2C63F3B, -661, -180 },
10191 { 0xC5DD44271AD3CDBA, -635, -172 },
10192 { 0x936B9FCEBB25C996, -608, -164 },
10193 { 0xDBAC6C247D62A584, -582, -156 },
10194 { 0xA3AB66580D5FDAF6, -555, -148 },
10195 { 0xF3E2F893DEC3F126, -529, -140 },
10196 { 0xB5B5ADA8AAFF80B8, -502, -132 },
10197 { 0x87625F056C7C4A8B, -475, -124 },
10198 { 0xC9BCFF6034C13053, -449, -116 },
10199 { 0x964E858C91BA2655, -422, -108 },
10200 { 0xDFF9772470297EBD, -396, -100 },
10201 { 0xA6DFBD9FB8E5B88F, -369, -92 },
10202 { 0xF8A95FCF88747D94, -343, -84 },
10203 { 0xB94470938FA89BCF, -316, -76 },
10204 { 0x8A08F0F8BF0F156B, -289, -68 },
10205 { 0xCDB02555653131B6, -263, -60 },
10206 { 0x993FE2C6D07B7FAC, -236, -52 },
10207 { 0xE45C10C42A2B3B06, -210, -44 },
10208 { 0xAA242499697392D3, -183, -36 },
10209 { 0xFD87B5F28300CA0E, -157, -28 },
10210 { 0xBCE5086492111AEB, -130, -20 },
10211 { 0x8CBCCC096F5088CC, -103, -12 },
10212 { 0xD1B71758E219652C, -77, -4 },
10213 { 0x9C40000000000000, -50, 4 },
10214 { 0xE8D4A51000000000, -24, 12 },
10215 { 0xAD78EBC5AC620000, 3, 20 },
10216 { 0x813F3978F8940984, 30, 28 },
10217 { 0xC097CE7BC90715B3, 56, 36 },
10218 { 0x8F7E32CE7BEA5C70, 83, 44 },
10219 { 0xD5D238A4ABE98068, 109, 52 },
10220 { 0x9F4F2726179A2245, 136, 60 },
10221 { 0xED63A231D4C4FB27, 162, 68 },
10222 { 0xB0DE65388CC8ADA8, 189, 76 },
10223 { 0x83C7088E1AAB65DB, 216, 84 },
10224 { 0xC45D1DF942711D9A, 242, 92 },
10225 { 0x924D692CA61BE758, 269, 100 },
10226 { 0xDA01EE641A708DEA, 295, 108 },
10227 { 0xA26DA3999AEF774A, 322, 116 },
10228 { 0xF209787BB47D6B85, 348, 124 },
10229 { 0xB454E4A179DD1877, 375, 132 },
10230 { 0x865B86925B9BC5C2, 402, 140 },
10231 { 0xC83553C5C8965D3D, 428, 148 },
10232 { 0x952AB45CFA97A0B3, 455, 156 },
10233 { 0xDE469FBD99A05FE3, 481, 164 },
10234 { 0xA59BC234DB398C25, 508, 172 },
10235 { 0xF6C69A72A3989F5C, 534, 180 },
10236 { 0xB7DCBF5354E9BECE, 561, 188 },
10237 { 0x88FCF317F22241E2, 588, 196 },
10238 { 0xCC20CE9BD35C78A5, 614, 204 },
10239 { 0x98165AF37B2153DF, 641, 212 },
10240 { 0xE2A0B5DC971F303A, 667, 220 },
10241 { 0xA8D9D1535CE3B396, 694, 228 },
10242 { 0xFB9B7CD9A4A7443C, 720, 236 },
10243 { 0xBB764C4CA7A44410, 747, 244 },
10244 { 0x8BAB8EEFB6409C1A, 774, 252 },
10245 { 0xD01FEF10A657842C, 800, 260 },
10246 { 0x9B10A4E5E9913129, 827, 268 },
10247 { 0xE7109BFBA19C0C9D, 853, 276 },
10248 { 0xAC2820D9623BF429, 880, 284 },
10249 { 0x80444B5E7AA7CF85, 907, 292 },
10250 { 0xBF21E44003ACDD2D, 933, 300 },
10251 { 0x8E679C2F5E44FF8F, 960, 308 },
10252 { 0xD433179D9C8CB841, 986, 316 },
10253 { 0x9E19DB92B4E31BA9, 1013, 324 },
10254 };
10255
10256 // This computation gives exactly the same results for k as
10257 // k = ceil((kAlpha - e - 1) * 0.30102999566398114)
10258 // for |e| <= 1500, but doesn't require floating-point operations.
10259 // NB: log_10(2) ~= 78913 / 2^18
10260 assert(e >= -1500);
10261 assert(e <= 1500);
10262 const int f = kAlpha - e - 1;
10263 const int k = (f * 78913) / (1 << 18) + static_cast<int>(f > 0);
10264
10265 const int index = (-kCachedPowersMinDecExp + k + (kCachedPowersDecStep - 1)) / kCachedPowersDecStep;
10266 assert(index >= 0);
10267 assert(index < kCachedPowersSize);
10268 static_cast<void>(kCachedPowersSize); // Fix warning.
10269
10270 const cached_power cached = kCachedPowers[index];
10271 assert(kAlpha <= cached.e + e + 64);
10272 assert(kGamma >= cached.e + e + 64);
10273
10274 return cached;
10275}
10276
10277/*!
10278For n != 0, returns k, such that pow10 := 10^(k-1) <= n < 10^k.
10279For n == 0, returns 1 and sets pow10 := 1.
10280*/
10281inline int find_largest_pow10(const uint32_t n, uint32_t& pow10)
10282{
10283 // LCOV_EXCL_START
10284 if (n >= 1000000000)
10285 {
10286 pow10 = 1000000000;
10287 return 10;
10288 }
10289 // LCOV_EXCL_STOP
10290 else if (n >= 100000000)
10291 {
10292 pow10 = 100000000;
10293 return 9;
10294 }
10295 else if (n >= 10000000)
10296 {
10297 pow10 = 10000000;
10298 return 8;
10299 }
10300 else if (n >= 1000000)
10301 {
10302 pow10 = 1000000;
10303 return 7;
10304 }
10305 else if (n >= 100000)
10306 {
10307 pow10 = 100000;
10308 return 6;
10309 }
10310 else if (n >= 10000)
10311 {
10312 pow10 = 10000;
10313 return 5;
10314 }
10315 else if (n >= 1000)
10316 {
10317 pow10 = 1000;
10318 return 4;
10319 }
10320 else if (n >= 100)
10321 {
10322 pow10 = 100;
10323 return 3;
10324 }
10325 else if (n >= 10)
10326 {
10327 pow10 = 10;
10328 return 2;
10329 }
10330 else
10331 {
10332 pow10 = 1;
10333 return 1;
10334 }
10335}
10336
10337inline void grisu2_round(char* buf, int len, uint64_t dist, uint64_t delta,
10338 uint64_t rest, uint64_t ten_k)
10339{
10340 assert(len >= 1);
10341 assert(dist <= delta);
10342 assert(rest <= delta);
10343 assert(ten_k > 0);
10344
10345 // <--------------------------- delta ---->
10346 // <---- dist --------->
10347 // --------------[------------------+-------------------]--------------
10348 // M- w M+
10349 //
10350 // ten_k
10351 // <------>
10352 // <---- rest ---->
10353 // --------------[------------------+----+--------------]--------------
10354 // w V
10355 // = buf * 10^k
10356 //
10357 // ten_k represents a unit-in-the-last-place in the decimal representation
10358 // stored in buf.
10359 // Decrement buf by ten_k while this takes buf closer to w.
10360
10361 // The tests are written in this order to avoid overflow in unsigned
10362 // integer arithmetic.
10363
10364 while (rest < dist
10365 and delta - rest >= ten_k
10366 and (rest + ten_k < dist or dist - rest > rest + ten_k - dist))
10367 {
10368 assert(buf[len - 1] != '0');
10369 buf[len - 1]--;
10370 rest += ten_k;
10371 }
10372}
10373
10374/*!
10375Generates V = buffer * 10^decimal_exponent, such that M- <= V <= M+.
10376M- and M+ must be normalized and share the same exponent -60 <= e <= -32.
10377*/
10378inline void grisu2_digit_gen(char* buffer, int& length, int& decimal_exponent,
10379 diyfp M_minus, diyfp w, diyfp M_plus)
10380{
10381 static_assert(kAlpha >= -60, "internal error");
10382 static_assert(kGamma <= -32, "internal error");
10383
10384 // Generates the digits (and the exponent) of a decimal floating-point
10385 // number V = buffer * 10^decimal_exponent in the range [M-, M+]. The diyfp's
10386 // w, M- and M+ share the same exponent e, which satisfies alpha <= e <= gamma.
10387 //
10388 // <--------------------------- delta ---->
10389 // <---- dist --------->
10390 // --------------[------------------+-------------------]--------------
10391 // M- w M+
10392 //
10393 // Grisu2 generates the digits of M+ from left to right and stops as soon as
10394 // V is in [M-,M+].
10395
10396 assert(M_plus.e >= kAlpha);
10397 assert(M_plus.e <= kGamma);
10398
10399 uint64_t delta = diyfp::sub(M_plus, M_minus).f; // (significand of (M+ - M-), implicit exponent is e)
10400 uint64_t dist = diyfp::sub(M_plus, w ).f; // (significand of (M+ - w ), implicit exponent is e)
10401
10402 // Split M+ = f * 2^e into two parts p1 and p2 (note: e < 0):
10403 //
10404 // M+ = f * 2^e
10405 // = ((f div 2^-e) * 2^-e + (f mod 2^-e)) * 2^e
10406 // = ((p1 ) * 2^-e + (p2 )) * 2^e
10407 // = p1 + p2 * 2^e
10408
10409 const diyfp one(uint64_t{1} << -M_plus.e, M_plus.e);
10410
10411 auto p1 = static_cast<uint32_t>(M_plus.f >> -one.e); // p1 = f div 2^-e (Since -e >= 32, p1 fits into a 32-bit int.)
10412 uint64_t p2 = M_plus.f & (one.f - 1); // p2 = f mod 2^-e
10413
10414 // 1)
10415 //
10416 // Generate the digits of the integral part p1 = d[n-1]...d[1]d[0]
10417
10418 assert(p1 > 0);
10419
10420 uint32_t pow10;
10421 const int k = find_largest_pow10(p1, pow10);
10422
10423 // 10^(k-1) <= p1 < 10^k, pow10 = 10^(k-1)
10424 //
10425 // p1 = (p1 div 10^(k-1)) * 10^(k-1) + (p1 mod 10^(k-1))
10426 // = (d[k-1] ) * 10^(k-1) + (p1 mod 10^(k-1))
10427 //
10428 // M+ = p1 + p2 * 2^e
10429 // = d[k-1] * 10^(k-1) + (p1 mod 10^(k-1)) + p2 * 2^e
10430 // = d[k-1] * 10^(k-1) + ((p1 mod 10^(k-1)) * 2^-e + p2) * 2^e
10431 // = d[k-1] * 10^(k-1) + ( rest) * 2^e
10432 //
10433 // Now generate the digits d[n] of p1 from left to right (n = k-1,...,0)
10434 //
10435 // p1 = d[k-1]...d[n] * 10^n + d[n-1]...d[0]
10436 //
10437 // but stop as soon as
10438 //
10439 // rest * 2^e = (d[n-1]...d[0] * 2^-e + p2) * 2^e <= delta * 2^e
10440
10441 int n = k;
10442 while (n > 0)
10443 {
10444 // Invariants:
10445 // M+ = buffer * 10^n + (p1 + p2 * 2^e) (buffer = 0 for n = k)
10446 // pow10 = 10^(n-1) <= p1 < 10^n
10447 //
10448 const uint32_t d = p1 / pow10; // d = p1 div 10^(n-1)
10449 const uint32_t r = p1 % pow10; // r = p1 mod 10^(n-1)
10450 //
10451 // M+ = buffer * 10^n + (d * 10^(n-1) + r) + p2 * 2^e
10452 // = (buffer * 10 + d) * 10^(n-1) + (r + p2 * 2^e)
10453 //
10454 assert(d <= 9);
10455 buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
10456 //
10457 // M+ = buffer * 10^(n-1) + (r + p2 * 2^e)
10458 //
10459 p1 = r;
10460 n--;
10461 //
10462 // M+ = buffer * 10^n + (p1 + p2 * 2^e)
10463 // pow10 = 10^n
10464 //
10465
10466 // Now check if enough digits have been generated.
10467 // Compute
10468 //
10469 // p1 + p2 * 2^e = (p1 * 2^-e + p2) * 2^e = rest * 2^e
10470 //
10471 // Note:
10472 // Since rest and delta share the same exponent e, it suffices to
10473 // compare the significands.
10474 const uint64_t rest = (uint64_t{p1} << -one.e) + p2;
10475 if (rest <= delta)
10476 {
10477 // V = buffer * 10^n, with M- <= V <= M+.
10478
10479 decimal_exponent += n;
10480
10481 // We may now just stop. But instead look if the buffer could be
10482 // decremented to bring V closer to w.
10483 //
10484 // pow10 = 10^n is now 1 ulp in the decimal representation V.
10485 // The rounding procedure works with diyfp's with an implicit
10486 // exponent of e.
10487 //
10488 // 10^n = (10^n * 2^-e) * 2^e = ulp * 2^e
10489 //
10490 const uint64_t ten_n = uint64_t{pow10} << -one.e;
10491 grisu2_round(buffer, length, dist, delta, rest, ten_n);
10492
10493 return;
10494 }
10495
10496 pow10 /= 10;
10497 //
10498 // pow10 = 10^(n-1) <= p1 < 10^n
10499 // Invariants restored.
10500 }
10501
10502 // 2)
10503 //
10504 // The digits of the integral part have been generated:
10505 //
10506 // M+ = d[k-1]...d[1]d[0] + p2 * 2^e
10507 // = buffer + p2 * 2^e
10508 //
10509 // Now generate the digits of the fractional part p2 * 2^e.
10510 //
10511 // Note:
10512 // No decimal point is generated: the exponent is adjusted instead.
10513 //
10514 // p2 actually represents the fraction
10515 //
10516 // p2 * 2^e
10517 // = p2 / 2^-e
10518 // = d[-1] / 10^1 + d[-2] / 10^2 + ...
10519 //
10520 // Now generate the digits d[-m] of p1 from left to right (m = 1,2,...)
10521 //
10522 // p2 * 2^e = d[-1]d[-2]...d[-m] * 10^-m
10523 // + 10^-m * (d[-m-1] / 10^1 + d[-m-2] / 10^2 + ...)
10524 //
10525 // using
10526 //
10527 // 10^m * p2 = ((10^m * p2) div 2^-e) * 2^-e + ((10^m * p2) mod 2^-e)
10528 // = ( d) * 2^-e + ( r)
10529 //
10530 // or
10531 // 10^m * p2 * 2^e = d + r * 2^e
10532 //
10533 // i.e.
10534 //
10535 // M+ = buffer + p2 * 2^e
10536 // = buffer + 10^-m * (d + r * 2^e)
10537 // = (buffer * 10^m + d) * 10^-m + 10^-m * r * 2^e
10538 //
10539 // and stop as soon as 10^-m * r * 2^e <= delta * 2^e
10540
10541 assert(p2 > delta);
10542
10543 int m = 0;
10544 for (;;)
10545 {
10546 // Invariant:
10547 // M+ = buffer * 10^-m + 10^-m * (d[-m-1] / 10 + d[-m-2] / 10^2 + ...) * 2^e
10548 // = buffer * 10^-m + 10^-m * (p2 ) * 2^e
10549 // = buffer * 10^-m + 10^-m * (1/10 * (10 * p2) ) * 2^e
10550 // = buffer * 10^-m + 10^-m * (1/10 * ((10*p2 div 2^-e) * 2^-e + (10*p2 mod 2^-e)) * 2^e
10551 //
10552 assert(p2 <= UINT64_MAX / 10);
10553 p2 *= 10;
10554 const uint64_t d = p2 >> -one.e; // d = (10 * p2) div 2^-e
10555 const uint64_t r = p2 & (one.f - 1); // r = (10 * p2) mod 2^-e
10556 //
10557 // M+ = buffer * 10^-m + 10^-m * (1/10 * (d * 2^-e + r) * 2^e
10558 // = buffer * 10^-m + 10^-m * (1/10 * (d + r * 2^e))
10559 // = (buffer * 10 + d) * 10^(-m-1) + 10^(-m-1) * r * 2^e
10560 //
10561 assert(d <= 9);
10562 buffer[length++] = static_cast<char>('0' + d); // buffer := buffer * 10 + d
10563 //
10564 // M+ = buffer * 10^(-m-1) + 10^(-m-1) * r * 2^e
10565 //
10566 p2 = r;
10567 m++;
10568 //
10569 // M+ = buffer * 10^-m + 10^-m * p2 * 2^e
10570 // Invariant restored.
10571
10572 // Check if enough digits have been generated.
10573 //
10574 // 10^-m * p2 * 2^e <= delta * 2^e
10575 // p2 * 2^e <= 10^m * delta * 2^e
10576 // p2 <= 10^m * delta
10577 delta *= 10;
10578 dist *= 10;
10579 if (p2 <= delta)
10580 {
10581 break;
10582 }
10583 }
10584
10585 // V = buffer * 10^-m, with M- <= V <= M+.
10586
10587 decimal_exponent -= m;
10588
10589 // 1 ulp in the decimal representation is now 10^-m.
10590 // Since delta and dist are now scaled by 10^m, we need to do the
10591 // same with ulp in order to keep the units in sync.
10592 //
10593 // 10^m * 10^-m = 1 = 2^-e * 2^e = ten_m * 2^e
10594 //
10595 const uint64_t ten_m = one.f;
10596 grisu2_round(buffer, length, dist, delta, p2, ten_m);
10597
10598 // By construction this algorithm generates the shortest possible decimal
10599 // number (Loitsch, Theorem 6.2) which rounds back to w.
10600 // For an input number of precision p, at least
10601 //
10602 // N = 1 + ceil(p * log_10(2))
10603 //
10604 // decimal digits are sufficient to identify all binary floating-point
10605 // numbers (Matula, "In-and-Out conversions").
10606 // This implies that the algorithm does not produce more than N decimal
10607 // digits.
10608 //
10609 // N = 17 for p = 53 (IEEE double precision)
10610 // N = 9 for p = 24 (IEEE single precision)
10611}
10612
10613/*!
10614v = buf * 10^decimal_exponent
10615len is the length of the buffer (number of decimal digits)
10616The buffer must be large enough, i.e. >= max_digits10.
10617*/
10618inline void grisu2(char* buf, int& len, int& decimal_exponent,
10619 diyfp m_minus, diyfp v, diyfp m_plus)
10620{
10621 assert(m_plus.e == m_minus.e);
10622 assert(m_plus.e == v.e);
10623
10624 // --------(-----------------------+-----------------------)-------- (A)
10625 // m- v m+
10626 //
10627 // --------------------(-----------+-----------------------)-------- (B)
10628 // m- v m+
10629 //
10630 // First scale v (and m- and m+) such that the exponent is in the range
10631 // [alpha, gamma].
10632
10633 const cached_power cached = get_cached_power_for_binary_exponent(m_plus.e);
10634
10635 const diyfp c_minus_k(cached.f, cached.e); // = c ~= 10^-k
10636
10637 // The exponent of the products is = v.e + c_minus_k.e + q and is in the range [alpha,gamma]
10638 const diyfp w = diyfp::mul(v, c_minus_k);
10639 const diyfp w_minus = diyfp::mul(m_minus, c_minus_k);
10640 const diyfp w_plus = diyfp::mul(m_plus, c_minus_k);
10641
10642 // ----(---+---)---------------(---+---)---------------(---+---)----
10643 // w- w w+
10644 // = c*m- = c*v = c*m+
10645 //
10646 // diyfp::mul rounds its result and c_minus_k is approximated too. w, w- and
10647 // w+ are now off by a small amount.
10648 // In fact:
10649 //
10650 // w - v * 10^k < 1 ulp
10651 //
10652 // To account for this inaccuracy, add resp. subtract 1 ulp.
10653 //
10654 // --------+---[---------------(---+---)---------------]---+--------
10655 // w- M- w M+ w+
10656 //
10657 // Now any number in [M-, M+] (bounds included) will round to w when input,
10658 // regardless of how the input rounding algorithm breaks ties.
10659 //
10660 // And digit_gen generates the shortest possible such number in [M-, M+].
10661 // Note that this does not mean that Grisu2 always generates the shortest
10662 // possible number in the interval (m-, m+).
10663 const diyfp M_minus(w_minus.f + 1, w_minus.e);
10664 const diyfp M_plus (w_plus.f - 1, w_plus.e );
10665
10666 decimal_exponent = -cached.k; // = -(-k) = k
10667
10668 grisu2_digit_gen(buf, len, decimal_exponent, M_minus, w, M_plus);
10669}
10670
10671/*!
10672v = buf * 10^decimal_exponent
10673len is the length of the buffer (number of decimal digits)
10674The buffer must be large enough, i.e. >= max_digits10.
10675*/
10676template <typename FloatType>
10677void grisu2(char* buf, int& len, int& decimal_exponent, FloatType value)
10678{
10679 static_assert(diyfp::kPrecision >= std::numeric_limits<FloatType>::digits + 3,
10680 "internal error: not enough precision");
10681
10682 assert(std::isfinite(value));
10683 assert(value > 0);
10684
10685 // If the neighbors (and boundaries) of 'value' are always computed for double-precision
10686 // numbers, all float's can be recovered using strtod (and strtof). However, the resulting
10687 // decimal representations are not exactly "short".
10688 //
10689 // The documentation for 'std::to_chars' (https://en.cppreference.com/w/cpp/utility/to_chars)
10690 // says "value is converted to a string as if by std::sprintf in the default ("C") locale"
10691 // and since sprintf promotes float's to double's, I think this is exactly what 'std::to_chars'
10692 // does.
10693 // On the other hand, the documentation for 'std::to_chars' requires that "parsing the
10694 // representation using the corresponding std::from_chars function recovers value exactly". That
10695 // indicates that single precision floating-point numbers should be recovered using
10696 // 'std::strtof'.
10697 //
10698 // NB: If the neighbors are computed for single-precision numbers, there is a single float
10699 // (7.0385307e-26f) which can't be recovered using strtod. The resulting double precision
10700 // value is off by 1 ulp.
10701#if 0
10702 const boundaries w = compute_boundaries(static_cast<double>(value));
10703#else
10704 const boundaries w = compute_boundaries(value);
10705#endif
10706
10707 grisu2(buf, len, decimal_exponent, w.minus, w.w, w.plus);
10708}
10709
10710/*!
10711@brief appends a decimal representation of e to buf
10712@return a pointer to the element following the exponent.
10713@pre -1000 < e < 1000
10714*/
10715inline char* append_exponent(char* buf, int e)
10716{
10717 assert(e > -1000);
10718 assert(e < 1000);
10719
10720 if (e < 0)
10721 {
10722 e = -e;
10723 *buf++ = '-';
10724 }
10725 else
10726 {
10727 *buf++ = '+';
10728 }
10729
10730 auto k = static_cast<uint32_t>(e);
10731 if (k < 10)
10732 {
10733 // Always print at least two digits in the exponent.
10734 // This is for compatibility with printf("%g").
10735 *buf++ = '0';
10736 *buf++ = static_cast<char>('0' + k);
10737 }
10738 else if (k < 100)
10739 {
10740 *buf++ = static_cast<char>('0' + k / 10);
10741 k %= 10;
10742 *buf++ = static_cast<char>('0' + k);
10743 }
10744 else
10745 {
10746 *buf++ = static_cast<char>('0' + k / 100);
10747 k %= 100;
10748 *buf++ = static_cast<char>('0' + k / 10);
10749 k %= 10;
10750 *buf++ = static_cast<char>('0' + k);
10751 }
10752
10753 return buf;
10754}
10755
10756/*!
10757@brief prettify v = buf * 10^decimal_exponent
10758
10759If v is in the range [10^min_exp, 10^max_exp) it will be printed in fixed-point
10760notation. Otherwise it will be printed in exponential notation.
10761
10762@pre min_exp < 0
10763@pre max_exp > 0
10764*/
10765inline char* format_buffer(char* buf, int len, int decimal_exponent,
10766 int min_exp, int max_exp)
10767{
10768 assert(min_exp < 0);
10769 assert(max_exp > 0);
10770
10771 const int k = len;
10772 const int n = len + decimal_exponent;
10773
10774 // v = buf * 10^(n-k)
10775 // k is the length of the buffer (number of decimal digits)
10776 // n is the position of the decimal point relative to the start of the buffer.
10777
10778 if (k <= n and n <= max_exp)
10779 {
10780 // digits[000]
10781 // len <= max_exp + 2
10782
10783 std::memset(buf + k, '0', static_cast<size_t>(n - k));
10784 // Make it look like a floating-point number (#362, #378)
10785 buf[n + 0] = '.';
10786 buf[n + 1] = '0';
10787 return buf + (n + 2);
10788 }
10789
10790 if (0 < n and n <= max_exp)
10791 {
10792 // dig.its
10793 // len <= max_digits10 + 1
10794
10795 assert(k > n);
10796
10797 std::memmove(buf + (n + 1), buf + n, static_cast<size_t>(k - n));
10798 buf[n] = '.';
10799 return buf + (k + 1);
10800 }
10801
10802 if (min_exp < n and n <= 0)
10803 {
10804 // 0.[000]digits
10805 // len <= 2 + (-min_exp - 1) + max_digits10
10806
10807 std::memmove(buf + (2 + -n), buf, static_cast<size_t>(k));
10808 buf[0] = '0';
10809 buf[1] = '.';
10810 std::memset(buf + 2, '0', static_cast<size_t>(-n));
10811 return buf + (2 + (-n) + k);
10812 }
10813
10814 if (k == 1)
10815 {
10816 // dE+123
10817 // len <= 1 + 5
10818
10819 buf += 1;
10820 }
10821 else
10822 {
10823 // d.igitsE+123
10824 // len <= max_digits10 + 1 + 5
10825
10826 std::memmove(buf + 2, buf + 1, static_cast<size_t>(k - 1));
10827 buf[1] = '.';
10828 buf += 1 + k;
10829 }
10830
10831 *buf++ = 'e';
10832 return append_exponent(buf, n - 1);
10833}
10834
10835} // namespace dtoa_impl
10836
10837/*!
10838@brief generates a decimal representation of the floating-point number value in [first, last).
10839
10840The format of the resulting decimal representation is similar to printf's %g
10841format. Returns an iterator pointing past-the-end of the decimal representation.
10842
10843@note The input number must be finite, i.e. NaN's and Inf's are not supported.
10844@note The buffer must be large enough.
10845@note The result is NOT null-terminated.
10846*/
10847template <typename FloatType>
10848char* to_chars(char* first, const char* last, FloatType value)
10849{
10850 static_cast<void>(last); // maybe unused - fix warning
10851 assert(std::isfinite(value));
10852
10853 // Use signbit(value) instead of (value < 0) since signbit works for -0.
10854 if (std::signbit(value))
10855 {
10856 value = -value;
10857 *first++ = '-';
10858 }
10859
10860 if (value == 0) // +-0
10861 {
10862 *first++ = '0';
10863 // Make it look like a floating-point number (#362, #378)
10864 *first++ = '.';
10865 *first++ = '0';
10866 return first;
10867 }
10868
10869 assert(last - first >= std::numeric_limits<FloatType>::max_digits10);
10870
10871 // Compute v = buffer * 10^decimal_exponent.
10872 // The decimal digits are stored in the buffer, which needs to be interpreted
10873 // as an unsigned decimal integer.
10874 // len is the length of the buffer, i.e. the number of decimal digits.
10875 int len = 0;
10876 int decimal_exponent = 0;
10877 dtoa_impl::grisu2(first, len, decimal_exponent, value);
10878
10879 assert(len <= std::numeric_limits<FloatType>::max_digits10);
10880
10881 // Format the buffer like printf("%.*g", prec, value)
10882 constexpr int kMinExp = -4;
10883 // Use digits10 here to increase compatibility with version 2.
10884 constexpr int kMaxExp = std::numeric_limits<FloatType>::digits10;
10885
10886 assert(last - first >= kMaxExp + 2);
10887 assert(last - first >= 2 + (-kMinExp - 1) + std::numeric_limits<FloatType>::max_digits10);
10888 assert(last - first >= std::numeric_limits<FloatType>::max_digits10 + 6);
10889
10890 return dtoa_impl::format_buffer(first, len, decimal_exponent, kMinExp, kMaxExp);
10891}
10892
10893} // namespace detail
10894} // namespace nlohmann
10895
10896// #include <nlohmann/detail/macro_scope.hpp>
10897
10898// #include <nlohmann/detail/meta/cpp_future.hpp>
10899
10900// #include <nlohmann/detail/output/binary_writer.hpp>
10901
10902// #include <nlohmann/detail/output/output_adapters.hpp>
10903
10904// #include <nlohmann/detail/value_t.hpp>
10905
10906
10907namespace nlohmann
10908{
10909namespace detail
10910{
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010911///////////////////
10912// serialization //
10913///////////////////
10914
Syoyo Fujitac0d02512019-02-04 16:19:13 +090010915/// how to treat decoding errors
10916enum class error_handler_t
10917{
10918 strict, ///< throw a type_error exception in case of invalid UTF-8
10919 replace, ///< replace invalid UTF-8 sequences with U+FFFD
10920 ignore ///< ignore invalid UTF-8 sequences
10921};
10922
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010923template<typename BasicJsonType>
10924class serializer
10925{
10926 using string_t = typename BasicJsonType::string_t;
10927 using number_float_t = typename BasicJsonType::number_float_t;
10928 using number_integer_t = typename BasicJsonType::number_integer_t;
10929 using number_unsigned_t = typename BasicJsonType::number_unsigned_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090010930 static constexpr uint8_t UTF8_ACCEPT = 0;
10931 static constexpr uint8_t UTF8_REJECT = 1;
10932
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010933 public:
10934 /*!
10935 @param[in] s output stream to serialize to
10936 @param[in] ichar indentation character to use
Syoyo Fujitac0d02512019-02-04 16:19:13 +090010937 @param[in] error_handler_ how to react on decoding errors
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010938 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090010939 serializer(output_adapter_t<char> s, const char ichar,
10940 error_handler_t error_handler_ = error_handler_t::strict)
10941 : o(std::move(s))
10942 , loc(std::localeconv())
10943 , thousands_sep(loc->thousands_sep == nullptr ? '\0' : * (loc->thousands_sep))
10944 , decimal_point(loc->decimal_point == nullptr ? '\0' : * (loc->decimal_point))
10945 , indent_char(ichar)
10946 , indent_string(512, indent_char)
10947 , error_handler(error_handler_)
10948 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010949
10950 // delete because of pointer members
10951 serializer(const serializer&) = delete;
10952 serializer& operator=(const serializer&) = delete;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090010953 serializer(serializer&&) = delete;
10954 serializer& operator=(serializer&&) = delete;
10955 ~serializer() = default;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090010956
10957 /*!
10958 @brief internal implementation of the serialization function
10959
10960 This function is called by the public member function dump and organizes
10961 the serialization internally. The indentation level is propagated as
10962 additional parameter. In case of arrays and objects, the function is
10963 called recursively.
10964
10965 - strings and object keys are escaped using `escape_string()`
10966 - integer numbers are converted implicitly via `operator<<`
10967 - floating-point numbers are converted to a string using `"%g"` format
10968
10969 @param[in] val value to serialize
10970 @param[in] pretty_print whether the output shall be pretty-printed
10971 @param[in] indent_step the indent level
10972 @param[in] current_indent the current indent level (only used internally)
10973 */
10974 void dump(const BasicJsonType& val, const bool pretty_print,
10975 const bool ensure_ascii,
10976 const unsigned int indent_step,
10977 const unsigned int current_indent = 0)
10978 {
10979 switch (val.m_type)
10980 {
10981 case value_t::object:
10982 {
10983 if (val.m_value.object->empty())
10984 {
10985 o->write_characters("{}", 2);
10986 return;
10987 }
10988
10989 if (pretty_print)
10990 {
10991 o->write_characters("{\n", 2);
10992
10993 // variable to hold indentation for recursive calls
10994 const auto new_indent = current_indent + indent_step;
10995 if (JSON_UNLIKELY(indent_string.size() < new_indent))
10996 {
10997 indent_string.resize(indent_string.size() * 2, ' ');
10998 }
10999
11000 // first n-1 elements
11001 auto i = val.m_value.object->cbegin();
11002 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
11003 {
11004 o->write_characters(indent_string.c_str(), new_indent);
11005 o->write_character('\"');
11006 dump_escaped(i->first, ensure_ascii);
11007 o->write_characters("\": ", 3);
11008 dump(i->second, true, ensure_ascii, indent_step, new_indent);
11009 o->write_characters(",\n", 2);
11010 }
11011
11012 // last element
11013 assert(i != val.m_value.object->cend());
11014 assert(std::next(i) == val.m_value.object->cend());
11015 o->write_characters(indent_string.c_str(), new_indent);
11016 o->write_character('\"');
11017 dump_escaped(i->first, ensure_ascii);
11018 o->write_characters("\": ", 3);
11019 dump(i->second, true, ensure_ascii, indent_step, new_indent);
11020
11021 o->write_character('\n');
11022 o->write_characters(indent_string.c_str(), current_indent);
11023 o->write_character('}');
11024 }
11025 else
11026 {
11027 o->write_character('{');
11028
11029 // first n-1 elements
11030 auto i = val.m_value.object->cbegin();
11031 for (std::size_t cnt = 0; cnt < val.m_value.object->size() - 1; ++cnt, ++i)
11032 {
11033 o->write_character('\"');
11034 dump_escaped(i->first, ensure_ascii);
11035 o->write_characters("\":", 2);
11036 dump(i->second, false, ensure_ascii, indent_step, current_indent);
11037 o->write_character(',');
11038 }
11039
11040 // last element
11041 assert(i != val.m_value.object->cend());
11042 assert(std::next(i) == val.m_value.object->cend());
11043 o->write_character('\"');
11044 dump_escaped(i->first, ensure_ascii);
11045 o->write_characters("\":", 2);
11046 dump(i->second, false, ensure_ascii, indent_step, current_indent);
11047
11048 o->write_character('}');
11049 }
11050
11051 return;
11052 }
11053
11054 case value_t::array:
11055 {
11056 if (val.m_value.array->empty())
11057 {
11058 o->write_characters("[]", 2);
11059 return;
11060 }
11061
11062 if (pretty_print)
11063 {
11064 o->write_characters("[\n", 2);
11065
11066 // variable to hold indentation for recursive calls
11067 const auto new_indent = current_indent + indent_step;
11068 if (JSON_UNLIKELY(indent_string.size() < new_indent))
11069 {
11070 indent_string.resize(indent_string.size() * 2, ' ');
11071 }
11072
11073 // first n-1 elements
11074 for (auto i = val.m_value.array->cbegin();
11075 i != val.m_value.array->cend() - 1; ++i)
11076 {
11077 o->write_characters(indent_string.c_str(), new_indent);
11078 dump(*i, true, ensure_ascii, indent_step, new_indent);
11079 o->write_characters(",\n", 2);
11080 }
11081
11082 // last element
11083 assert(not val.m_value.array->empty());
11084 o->write_characters(indent_string.c_str(), new_indent);
11085 dump(val.m_value.array->back(), true, ensure_ascii, indent_step, new_indent);
11086
11087 o->write_character('\n');
11088 o->write_characters(indent_string.c_str(), current_indent);
11089 o->write_character(']');
11090 }
11091 else
11092 {
11093 o->write_character('[');
11094
11095 // first n-1 elements
11096 for (auto i = val.m_value.array->cbegin();
11097 i != val.m_value.array->cend() - 1; ++i)
11098 {
11099 dump(*i, false, ensure_ascii, indent_step, current_indent);
11100 o->write_character(',');
11101 }
11102
11103 // last element
11104 assert(not val.m_value.array->empty());
11105 dump(val.m_value.array->back(), false, ensure_ascii, indent_step, current_indent);
11106
11107 o->write_character(']');
11108 }
11109
11110 return;
11111 }
11112
11113 case value_t::string:
11114 {
11115 o->write_character('\"');
11116 dump_escaped(*val.m_value.string, ensure_ascii);
11117 o->write_character('\"');
11118 return;
11119 }
11120
11121 case value_t::boolean:
11122 {
11123 if (val.m_value.boolean)
11124 {
11125 o->write_characters("true", 4);
11126 }
11127 else
11128 {
11129 o->write_characters("false", 5);
11130 }
11131 return;
11132 }
11133
11134 case value_t::number_integer:
11135 {
11136 dump_integer(val.m_value.number_integer);
11137 return;
11138 }
11139
11140 case value_t::number_unsigned:
11141 {
11142 dump_integer(val.m_value.number_unsigned);
11143 return;
11144 }
11145
11146 case value_t::number_float:
11147 {
11148 dump_float(val.m_value.number_float);
11149 return;
11150 }
11151
11152 case value_t::discarded:
11153 {
11154 o->write_characters("<discarded>", 11);
11155 return;
11156 }
11157
11158 case value_t::null:
11159 {
11160 o->write_characters("null", 4);
11161 return;
11162 }
11163 }
11164 }
11165
11166 private:
11167 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011168 @brief dump escaped string
11169
11170 Escape a string by replacing certain special characters by a sequence of an
11171 escape character (backslash) and another character and other control
11172 characters by a sequence of "\u" followed by a four-digit hex
11173 representation. The escaped string is written to output stream @a o.
11174
11175 @param[in] s the string to escape
11176 @param[in] ensure_ascii whether to escape non-ASCII characters with
11177 \uXXXX sequences
11178
11179 @complexity Linear in the length of string @a s.
11180 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011181 void dump_escaped(const string_t& s, const bool ensure_ascii)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011182 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011183 uint32_t codepoint;
11184 uint8_t state = UTF8_ACCEPT;
11185 std::size_t bytes = 0; // number of bytes written to string_buffer
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011186
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011187 // number of bytes written at the point of the last valid byte
11188 std::size_t bytes_after_last_accept = 0;
11189 std::size_t undumped_chars = 0;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011190
11191 for (std::size_t i = 0; i < s.size(); ++i)
11192 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011193 const auto byte = static_cast<uint8_t>(s[i]);
11194
11195 switch (decode(state, codepoint, byte))
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011196 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011197 case UTF8_ACCEPT: // decode found a new code point
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011198 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011199 switch (codepoint)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011200 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011201 case 0x08: // backspace
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011202 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011203 string_buffer[bytes++] = '\\';
11204 string_buffer[bytes++] = 'b';
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011205 break;
11206 }
11207
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011208 case 0x09: // horizontal tab
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011209 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011210 string_buffer[bytes++] = '\\';
11211 string_buffer[bytes++] = 't';
11212 break;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011213 }
11214
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011215 case 0x0A: // newline
11216 {
11217 string_buffer[bytes++] = '\\';
11218 string_buffer[bytes++] = 'n';
11219 break;
11220 }
11221
11222 case 0x0C: // formfeed
11223 {
11224 string_buffer[bytes++] = '\\';
11225 string_buffer[bytes++] = 'f';
11226 break;
11227 }
11228
11229 case 0x0D: // carriage return
11230 {
11231 string_buffer[bytes++] = '\\';
11232 string_buffer[bytes++] = 'r';
11233 break;
11234 }
11235
11236 case 0x22: // quotation mark
11237 {
11238 string_buffer[bytes++] = '\\';
11239 string_buffer[bytes++] = '\"';
11240 break;
11241 }
11242
11243 case 0x5C: // reverse solidus
11244 {
11245 string_buffer[bytes++] = '\\';
11246 string_buffer[bytes++] = '\\';
11247 break;
11248 }
11249
11250 default:
11251 {
11252 // escape control characters (0x00..0x1F) or, if
11253 // ensure_ascii parameter is used, non-ASCII characters
11254 if ((codepoint <= 0x1F) or (ensure_ascii and (codepoint >= 0x7F)))
11255 {
11256 if (codepoint <= 0xFFFF)
11257 {
11258 (std::snprintf)(string_buffer.data() + bytes, 7, "\\u%04x",
11259 static_cast<uint16_t>(codepoint));
11260 bytes += 6;
11261 }
11262 else
11263 {
11264 (std::snprintf)(string_buffer.data() + bytes, 13, "\\u%04x\\u%04x",
11265 static_cast<uint16_t>(0xD7C0 + (codepoint >> 10)),
11266 static_cast<uint16_t>(0xDC00 + (codepoint & 0x3FF)));
11267 bytes += 12;
11268 }
11269 }
11270 else
11271 {
11272 // copy byte to buffer (all previous bytes
11273 // been copied have in default case above)
11274 string_buffer[bytes++] = s[i];
11275 }
11276 break;
11277 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011278 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011279
11280 // write buffer and reset index; there must be 13 bytes
11281 // left, as this is the maximal number of bytes to be
11282 // written ("\uxxxx\uxxxx\0") for one code point
11283 if (string_buffer.size() - bytes < 13)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011284 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011285 o->write_characters(string_buffer.data(), bytes);
11286 bytes = 0;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011287 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011288
11289 // remember the byte position of this accept
11290 bytes_after_last_accept = bytes;
11291 undumped_chars = 0;
11292 break;
11293 }
11294
11295 case UTF8_REJECT: // decode found invalid UTF-8 byte
11296 {
11297 switch (error_handler)
11298 {
11299 case error_handler_t::strict:
11300 {
11301 std::string sn(3, '\0');
11302 (std::snprintf)(&sn[0], sn.size(), "%.2X", byte);
11303 JSON_THROW(type_error::create(316, "invalid UTF-8 byte at index " + std::to_string(i) + ": 0x" + sn));
11304 }
11305
11306 case error_handler_t::ignore:
11307 case error_handler_t::replace:
11308 {
11309 // in case we saw this character the first time, we
11310 // would like to read it again, because the byte
11311 // may be OK for itself, but just not OK for the
11312 // previous sequence
11313 if (undumped_chars > 0)
11314 {
11315 --i;
11316 }
11317
11318 // reset length buffer to the last accepted index;
11319 // thus removing/ignoring the invalid characters
11320 bytes = bytes_after_last_accept;
11321
11322 if (error_handler == error_handler_t::replace)
11323 {
11324 // add a replacement character
11325 if (ensure_ascii)
11326 {
11327 string_buffer[bytes++] = '\\';
11328 string_buffer[bytes++] = 'u';
11329 string_buffer[bytes++] = 'f';
11330 string_buffer[bytes++] = 'f';
11331 string_buffer[bytes++] = 'f';
11332 string_buffer[bytes++] = 'd';
11333 }
11334 else
11335 {
11336 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xEF');
11337 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBF');
11338 string_buffer[bytes++] = detail::binary_writer<BasicJsonType, char>::to_char_type('\xBD');
11339 }
11340 bytes_after_last_accept = bytes;
11341 }
11342
11343 undumped_chars = 0;
11344
11345 // continue processing the string
11346 state = UTF8_ACCEPT;
11347 break;
11348 }
11349 }
11350 break;
11351 }
11352
11353 default: // decode found yet incomplete multi-byte code point
11354 {
11355 if (not ensure_ascii)
11356 {
11357 // code point will not be escaped - copy byte to buffer
11358 string_buffer[bytes++] = s[i];
11359 }
11360 ++undumped_chars;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011361 break;
11362 }
11363 }
11364 }
11365
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011366 // we finished processing the string
11367 if (JSON_LIKELY(state == UTF8_ACCEPT))
11368 {
11369 // write buffer
11370 if (bytes > 0)
11371 {
11372 o->write_characters(string_buffer.data(), bytes);
11373 }
11374 }
11375 else
11376 {
11377 // we finish reading, but do not accept: string was incomplete
11378 switch (error_handler)
11379 {
11380 case error_handler_t::strict:
11381 {
11382 std::string sn(3, '\0');
11383 (std::snprintf)(&sn[0], sn.size(), "%.2X", static_cast<uint8_t>(s.back()));
11384 JSON_THROW(type_error::create(316, "incomplete UTF-8 string; last byte: 0x" + sn));
11385 }
11386
11387 case error_handler_t::ignore:
11388 {
11389 // write all accepted bytes
11390 o->write_characters(string_buffer.data(), bytes_after_last_accept);
11391 break;
11392 }
11393
11394 case error_handler_t::replace:
11395 {
11396 // write all accepted bytes
11397 o->write_characters(string_buffer.data(), bytes_after_last_accept);
11398 // add a replacement character
11399 if (ensure_ascii)
11400 {
11401 o->write_characters("\\ufffd", 6);
11402 }
11403 else
11404 {
11405 o->write_characters("\xEF\xBF\xBD", 3);
11406 }
11407 break;
11408 }
11409 }
11410 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011411 }
11412
11413 /*!
11414 @brief dump an integer
11415
11416 Dump a given integer to output stream @a o. Works internally with
11417 @a number_buffer.
11418
11419 @param[in] x integer number (signed or unsigned) to dump
11420 @tparam NumberType either @a number_integer_t or @a number_unsigned_t
11421 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011422 template<typename NumberType, detail::enable_if_t<
11423 std::is_same<NumberType, number_unsigned_t>::value or
11424 std::is_same<NumberType, number_integer_t>::value,
11425 int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011426 void dump_integer(NumberType x)
11427 {
11428 // special case for "0"
11429 if (x == 0)
11430 {
11431 o->write_character('0');
11432 return;
11433 }
11434
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011435 const bool is_negative = std::is_same<NumberType, number_integer_t>::value and not (x >= 0); // see issue #755
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011436 std::size_t i = 0;
11437
11438 while (x != 0)
11439 {
11440 // spare 1 byte for '\0'
11441 assert(i < number_buffer.size() - 1);
11442
11443 const auto digit = std::labs(static_cast<long>(x % 10));
11444 number_buffer[i++] = static_cast<char>('0' + digit);
11445 x /= 10;
11446 }
11447
11448 if (is_negative)
11449 {
11450 // make sure there is capacity for the '-'
11451 assert(i < number_buffer.size() - 2);
11452 number_buffer[i++] = '-';
11453 }
11454
11455 std::reverse(number_buffer.begin(), number_buffer.begin() + i);
11456 o->write_characters(number_buffer.data(), i);
11457 }
11458
11459 /*!
11460 @brief dump a floating-point number
11461
11462 Dump a given floating-point number to output stream @a o. Works internally
11463 with @a number_buffer.
11464
11465 @param[in] x floating-point number to dump
11466 */
11467 void dump_float(number_float_t x)
11468 {
11469 // NaN / inf
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011470 if (not std::isfinite(x))
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011471 {
11472 o->write_characters("null", 4);
11473 return;
11474 }
11475
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011476 // If number_float_t is an IEEE-754 single or double precision number,
11477 // use the Grisu2 algorithm to produce short numbers which are
11478 // guaranteed to round-trip, using strtof and strtod, resp.
11479 //
11480 // NB: The test below works if <long double> == <double>.
11481 static constexpr bool is_ieee_single_or_double
11482 = (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 24 and std::numeric_limits<number_float_t>::max_exponent == 128) or
11483 (std::numeric_limits<number_float_t>::is_iec559 and std::numeric_limits<number_float_t>::digits == 53 and std::numeric_limits<number_float_t>::max_exponent == 1024);
11484
11485 dump_float(x, std::integral_constant<bool, is_ieee_single_or_double>());
11486 }
11487
11488 void dump_float(number_float_t x, std::true_type /*is_ieee_single_or_double*/)
11489 {
11490 char* begin = number_buffer.data();
11491 char* end = ::nlohmann::detail::to_chars(begin, begin + number_buffer.size(), x);
11492
11493 o->write_characters(begin, static_cast<size_t>(end - begin));
11494 }
11495
11496 void dump_float(number_float_t x, std::false_type /*is_ieee_single_or_double*/)
11497 {
11498 // get number of digits for a float -> text -> float round-trip
11499 static constexpr auto d = std::numeric_limits<number_float_t>::max_digits10;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011500
11501 // the actual conversion
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011502 std::ptrdiff_t len = (std::snprintf)(number_buffer.data(), number_buffer.size(), "%.*g", d, x);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011503
11504 // negative value indicates an error
11505 assert(len > 0);
11506 // check if buffer was large enough
11507 assert(static_cast<std::size_t>(len) < number_buffer.size());
11508
11509 // erase thousands separator
11510 if (thousands_sep != '\0')
11511 {
11512 const auto end = std::remove(number_buffer.begin(),
11513 number_buffer.begin() + len, thousands_sep);
11514 std::fill(end, number_buffer.end(), '\0');
11515 assert((end - number_buffer.begin()) <= len);
11516 len = (end - number_buffer.begin());
11517 }
11518
11519 // convert decimal point to '.'
11520 if (decimal_point != '\0' and decimal_point != '.')
11521 {
11522 const auto dec_pos = std::find(number_buffer.begin(), number_buffer.end(), decimal_point);
11523 if (dec_pos != number_buffer.end())
11524 {
11525 *dec_pos = '.';
11526 }
11527 }
11528
11529 o->write_characters(number_buffer.data(), static_cast<std::size_t>(len));
11530
11531 // determine if need to append ".0"
11532 const bool value_is_int_like =
11533 std::none_of(number_buffer.begin(), number_buffer.begin() + len + 1,
11534 [](char c)
11535 {
11536 return (c == '.' or c == 'e');
11537 });
11538
11539 if (value_is_int_like)
11540 {
11541 o->write_characters(".0", 2);
11542 }
11543 }
11544
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011545 /*!
11546 @brief check whether a string is UTF-8 encoded
11547
11548 The function checks each byte of a string whether it is UTF-8 encoded. The
11549 result of the check is stored in the @a state parameter. The function must
11550 be called initially with state 0 (accept). State 1 means the string must
11551 be rejected, because the current byte is not allowed. If the string is
11552 completely processed, but the state is non-zero, the string ended
11553 prematurely; that is, the last byte indicated more bytes should have
11554 followed.
11555
11556 @param[in,out] state the state of the decoding
11557 @param[in,out] codep codepoint (valid only if resulting state is UTF8_ACCEPT)
11558 @param[in] byte next byte to decode
11559 @return new state
11560
11561 @note The function has been edited: a std::array is used.
11562
11563 @copyright Copyright (c) 2008-2009 Bjoern Hoehrmann <bjoern@hoehrmann.de>
11564 @sa http://bjoern.hoehrmann.de/utf-8/decoder/dfa/
11565 */
11566 static uint8_t decode(uint8_t& state, uint32_t& codep, const uint8_t byte) noexcept
11567 {
11568 static const std::array<uint8_t, 400> utf8d =
11569 {
11570 {
11571 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 00..1F
11572 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 20..3F
11573 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 40..5F
11574 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 60..7F
11575 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, // 80..9F
11576 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, // A0..BF
11577 8, 8, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // C0..DF
11578 0xA, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x3, 0x4, 0x3, 0x3, // E0..EF
11579 0xB, 0x6, 0x6, 0x6, 0x5, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, 0x8, // F0..FF
11580 0x0, 0x1, 0x2, 0x3, 0x5, 0x8, 0x7, 0x1, 0x1, 0x1, 0x4, 0x6, 0x1, 0x1, 0x1, 0x1, // s0..s0
11581 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, // s1..s2
11582 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, // s3..s4
11583 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, // s5..s6
11584 1, 3, 1, 1, 1, 1, 1, 3, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 // s7..s8
11585 }
11586 };
11587
11588 const uint8_t type = utf8d[byte];
11589
11590 codep = (state != UTF8_ACCEPT)
11591 ? (byte & 0x3fu) | (codep << 6)
11592 : static_cast<uint32_t>(0xff >> type) & (byte);
11593
11594 state = utf8d[256u + state * 16u + type];
11595 return state;
11596 }
11597
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011598 private:
11599 /// the output of the serializer
11600 output_adapter_t<char> o = nullptr;
11601
11602 /// a (hopefully) large enough character buffer
11603 std::array<char, 64> number_buffer{{}};
11604
11605 /// the locale
11606 const std::lconv* loc = nullptr;
11607 /// the locale's thousand separator character
11608 const char thousands_sep = '\0';
11609 /// the locale's decimal point character
11610 const char decimal_point = '\0';
11611
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011612 /// string buffer
11613 std::array<char, 512> string_buffer{{}};
11614
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011615 /// the indentation character
11616 const char indent_char;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011617 /// the indentation string
11618 string_t indent_string;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011619
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011620 /// error_handler how to react on decoding errors
11621 const error_handler_t error_handler;
11622};
11623} // namespace detail
11624} // namespace nlohmann
11625
11626// #include <nlohmann/detail/json_ref.hpp>
11627
11628
11629#include <initializer_list>
11630#include <utility>
11631
11632// #include <nlohmann/detail/meta/type_traits.hpp>
11633
11634
11635namespace nlohmann
11636{
11637namespace detail
11638{
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011639template<typename BasicJsonType>
11640class json_ref
11641{
11642 public:
11643 using value_type = BasicJsonType;
11644
11645 json_ref(value_type&& value)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011646 : owned_value(std::move(value)), value_ref(&owned_value), is_rvalue(true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011647 {}
11648
11649 json_ref(const value_type& value)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011650 : value_ref(const_cast<value_type*>(&value)), is_rvalue(false)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011651 {}
11652
11653 json_ref(std::initializer_list<json_ref> init)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011654 : owned_value(init), value_ref(&owned_value), is_rvalue(true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011655 {}
11656
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011657 template <
11658 class... Args,
11659 enable_if_t<std::is_constructible<value_type, Args...>::value, int> = 0 >
11660 json_ref(Args && ... args)
11661 : owned_value(std::forward<Args>(args)...), value_ref(&owned_value),
11662 is_rvalue(true) {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011663
11664 // class should be movable only
11665 json_ref(json_ref&&) = default;
11666 json_ref(const json_ref&) = delete;
11667 json_ref& operator=(const json_ref&) = delete;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011668 json_ref& operator=(json_ref&&) = delete;
11669 ~json_ref() = default;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011670
11671 value_type moved_or_copied() const
11672 {
11673 if (is_rvalue)
11674 {
11675 return std::move(*value_ref);
11676 }
11677 return *value_ref;
11678 }
11679
11680 value_type const& operator*() const
11681 {
11682 return *static_cast<value_type const*>(value_ref);
11683 }
11684
11685 value_type const* operator->() const
11686 {
11687 return static_cast<value_type const*>(value_ref);
11688 }
11689
11690 private:
11691 mutable value_type owned_value = nullptr;
11692 value_type* value_ref = nullptr;
11693 const bool is_rvalue;
11694};
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011695} // namespace detail
11696} // namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011697
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011698// #include <nlohmann/detail/json_pointer.hpp>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011699
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011700
11701#include <cassert> // assert
11702#include <numeric> // accumulate
11703#include <string> // string
11704#include <vector> // vector
11705
11706// #include <nlohmann/detail/macro_scope.hpp>
11707
11708// #include <nlohmann/detail/exceptions.hpp>
11709
11710// #include <nlohmann/detail/value_t.hpp>
11711
11712
11713namespace nlohmann
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011714{
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011715template<typename BasicJsonType>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011716class json_pointer
11717{
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011718 // allow basic_json to access private members
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011719 NLOHMANN_BASIC_JSON_TPL_DECLARATION
11720 friend class basic_json;
11721
11722 public:
11723 /*!
11724 @brief create JSON pointer
11725
11726 Create a JSON pointer according to the syntax described in
11727 [Section 3 of RFC6901](https://tools.ietf.org/html/rfc6901#section-3).
11728
11729 @param[in] s string representing the JSON pointer; if omitted, the empty
11730 string is assumed which references the whole JSON value
11731
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011732 @throw parse_error.107 if the given JSON pointer @a s is nonempty and does
11733 not begin with a slash (`/`); see example below
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011734
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011735 @throw parse_error.108 if a tilde (`~`) in the given JSON pointer @a s is
11736 not followed by `0` (representing `~`) or `1` (representing `/`); see
11737 example below
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011738
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011739 @liveexample{The example shows the construction several valid JSON pointers
11740 as well as the exceptional behavior.,json_pointer}
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011741
11742 @since version 2.0.0
11743 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011744 explicit json_pointer(const std::string& s = "")
11745 : reference_tokens(split(s))
11746 {}
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011747
11748 /*!
11749 @brief return a string representation of the JSON pointer
11750
11751 @invariant For each JSON pointer `ptr`, it holds:
11752 @code {.cpp}
11753 ptr == json_pointer(ptr.to_string());
11754 @endcode
11755
11756 @return a string representation of the JSON pointer
11757
11758 @liveexample{The example shows the result of `to_string`.,
11759 json_pointer__to_string}
11760
11761 @since version 2.0.0
11762 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011763 std::string to_string() const
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011764 {
11765 return std::accumulate(reference_tokens.begin(), reference_tokens.end(),
11766 std::string{},
11767 [](const std::string & a, const std::string & b)
11768 {
11769 return a + "/" + escape(b);
11770 });
11771 }
11772
11773 /// @copydoc to_string()
11774 operator std::string() const
11775 {
11776 return to_string();
11777 }
11778
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011779 /*!
11780 @param[in] s reference token to be converted into an array index
11781
11782 @return integer representation of @a s
11783
11784 @throw out_of_range.404 if string @a s could not be converted to an integer
11785 */
11786 static int array_index(const std::string& s)
11787 {
11788 std::size_t processed_chars = 0;
11789 const int res = std::stoi(s, &processed_chars);
11790
11791 // check if the string was completely read
11792 if (JSON_UNLIKELY(processed_chars != s.size()))
11793 {
11794 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + s + "'"));
11795 }
11796
11797 return res;
11798 }
11799
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011800 private:
11801 /*!
11802 @brief remove and return last reference pointer
11803 @throw out_of_range.405 if JSON pointer has no parent
11804 */
11805 std::string pop_back()
11806 {
11807 if (JSON_UNLIKELY(is_root()))
11808 {
11809 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
11810 }
11811
11812 auto last = reference_tokens.back();
11813 reference_tokens.pop_back();
11814 return last;
11815 }
11816
11817 /// return whether pointer points to the root document
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011818 bool is_root() const noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011819 {
11820 return reference_tokens.empty();
11821 }
11822
11823 json_pointer top() const
11824 {
11825 if (JSON_UNLIKELY(is_root()))
11826 {
11827 JSON_THROW(detail::out_of_range::create(405, "JSON pointer has no parent"));
11828 }
11829
11830 json_pointer result = *this;
11831 result.reference_tokens = {reference_tokens[0]};
11832 return result;
11833 }
11834
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011835 /*!
11836 @brief create and return a reference to the pointed to value
11837
11838 @complexity Linear in the number of reference tokens.
11839
11840 @throw parse_error.109 if array index is not a number
11841 @throw type_error.313 if value cannot be unflattened
11842 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011843 BasicJsonType& get_and_create(BasicJsonType& j) const
11844 {
11845 using size_type = typename BasicJsonType::size_type;
11846 auto result = &j;
11847
11848 // in case no reference tokens exist, return a reference to the JSON value
11849 // j which will be overwritten by a primitive value
11850 for (const auto& reference_token : reference_tokens)
11851 {
11852 switch (result->m_type)
11853 {
11854 case detail::value_t::null:
11855 {
11856 if (reference_token == "0")
11857 {
11858 // start a new array if reference token is 0
11859 result = &result->operator[](0);
11860 }
11861 else
11862 {
11863 // start a new object otherwise
11864 result = &result->operator[](reference_token);
11865 }
11866 break;
11867 }
11868
11869 case detail::value_t::object:
11870 {
11871 // create an entry in the object
11872 result = &result->operator[](reference_token);
11873 break;
11874 }
11875
11876 case detail::value_t::array:
11877 {
11878 // create an entry in the array
11879 JSON_TRY
11880 {
11881 result = &result->operator[](static_cast<size_type>(array_index(reference_token)));
11882 }
11883 JSON_CATCH(std::invalid_argument&)
11884 {
11885 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
11886 }
11887 break;
11888 }
11889
11890 /*
11891 The following code is only reached if there exists a reference
11892 token _and_ the current value is primitive. In this case, we have
11893 an error situation, because primitive values may only occur as
11894 single value; that is, with an empty list of reference tokens.
11895 */
11896 default:
11897 JSON_THROW(detail::type_error::create(313, "invalid value to unflatten"));
11898 }
11899 }
11900
11901 return *result;
11902 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011903
11904 /*!
11905 @brief return a reference to the pointed to value
11906
11907 @note This version does not throw if a value is not present, but tries to
11908 create nested values instead. For instance, calling this function
11909 with pointer `"/this/that"` on a null value is equivalent to calling
11910 `operator[]("this").operator[]("that")` on that value, effectively
11911 changing the null value to an object.
11912
11913 @param[in] ptr a JSON value
11914
11915 @return reference to the JSON value pointed to by the JSON pointer
11916
11917 @complexity Linear in the length of the JSON pointer.
11918
11919 @throw parse_error.106 if an array index begins with '0'
11920 @throw parse_error.109 if an array index was not a number
11921 @throw out_of_range.404 if the JSON pointer can not be resolved
11922 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011923 BasicJsonType& get_unchecked(BasicJsonType* ptr) const
11924 {
11925 using size_type = typename BasicJsonType::size_type;
11926 for (const auto& reference_token : reference_tokens)
11927 {
11928 // convert null values to arrays or objects before continuing
11929 if (ptr->m_type == detail::value_t::null)
11930 {
11931 // check if reference token is a number
11932 const bool nums =
11933 std::all_of(reference_token.begin(), reference_token.end(),
11934 [](const char x)
11935 {
11936 return (x >= '0' and x <= '9');
11937 });
11938
11939 // change value to array for numbers or "-" or to object otherwise
11940 *ptr = (nums or reference_token == "-")
11941 ? detail::value_t::array
11942 : detail::value_t::object;
11943 }
11944
11945 switch (ptr->m_type)
11946 {
11947 case detail::value_t::object:
11948 {
11949 // use unchecked object access
11950 ptr = &ptr->operator[](reference_token);
11951 break;
11952 }
11953
11954 case detail::value_t::array:
11955 {
11956 // error condition (cf. RFC 6901, Sect. 4)
11957 if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
11958 {
11959 JSON_THROW(detail::parse_error::create(106, 0,
11960 "array index '" + reference_token +
11961 "' must not begin with '0'"));
11962 }
11963
11964 if (reference_token == "-")
11965 {
11966 // explicitly treat "-" as index beyond the end
11967 ptr = &ptr->operator[](ptr->m_value.array->size());
11968 }
11969 else
11970 {
11971 // convert array index to number; unchecked access
11972 JSON_TRY
11973 {
11974 ptr = &ptr->operator[](
11975 static_cast<size_type>(array_index(reference_token)));
11976 }
11977 JSON_CATCH(std::invalid_argument&)
11978 {
11979 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
11980 }
11981 }
11982 break;
11983 }
11984
11985 default:
11986 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
11987 }
11988 }
11989
11990 return *ptr;
11991 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090011992
11993 /*!
11994 @throw parse_error.106 if an array index begins with '0'
11995 @throw parse_error.109 if an array index was not a number
11996 @throw out_of_range.402 if the array index '-' is used
11997 @throw out_of_range.404 if the JSON pointer can not be resolved
11998 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090011999 BasicJsonType& get_checked(BasicJsonType* ptr) const
12000 {
12001 using size_type = typename BasicJsonType::size_type;
12002 for (const auto& reference_token : reference_tokens)
12003 {
12004 switch (ptr->m_type)
12005 {
12006 case detail::value_t::object:
12007 {
12008 // note: at performs range check
12009 ptr = &ptr->at(reference_token);
12010 break;
12011 }
12012
12013 case detail::value_t::array:
12014 {
12015 if (JSON_UNLIKELY(reference_token == "-"))
12016 {
12017 // "-" always fails the range check
12018 JSON_THROW(detail::out_of_range::create(402,
12019 "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
12020 ") is out of range"));
12021 }
12022
12023 // error condition (cf. RFC 6901, Sect. 4)
12024 if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
12025 {
12026 JSON_THROW(detail::parse_error::create(106, 0,
12027 "array index '" + reference_token +
12028 "' must not begin with '0'"));
12029 }
12030
12031 // note: at performs range check
12032 JSON_TRY
12033 {
12034 ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
12035 }
12036 JSON_CATCH(std::invalid_argument&)
12037 {
12038 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
12039 }
12040 break;
12041 }
12042
12043 default:
12044 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
12045 }
12046 }
12047
12048 return *ptr;
12049 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012050
12051 /*!
12052 @brief return a const reference to the pointed to value
12053
12054 @param[in] ptr a JSON value
12055
12056 @return const reference to the JSON value pointed to by the JSON
12057 pointer
12058
12059 @throw parse_error.106 if an array index begins with '0'
12060 @throw parse_error.109 if an array index was not a number
12061 @throw out_of_range.402 if the array index '-' is used
12062 @throw out_of_range.404 if the JSON pointer can not be resolved
12063 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012064 const BasicJsonType& get_unchecked(const BasicJsonType* ptr) const
12065 {
12066 using size_type = typename BasicJsonType::size_type;
12067 for (const auto& reference_token : reference_tokens)
12068 {
12069 switch (ptr->m_type)
12070 {
12071 case detail::value_t::object:
12072 {
12073 // use unchecked object access
12074 ptr = &ptr->operator[](reference_token);
12075 break;
12076 }
12077
12078 case detail::value_t::array:
12079 {
12080 if (JSON_UNLIKELY(reference_token == "-"))
12081 {
12082 // "-" cannot be used for const access
12083 JSON_THROW(detail::out_of_range::create(402,
12084 "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
12085 ") is out of range"));
12086 }
12087
12088 // error condition (cf. RFC 6901, Sect. 4)
12089 if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
12090 {
12091 JSON_THROW(detail::parse_error::create(106, 0,
12092 "array index '" + reference_token +
12093 "' must not begin with '0'"));
12094 }
12095
12096 // use unchecked array access
12097 JSON_TRY
12098 {
12099 ptr = &ptr->operator[](
12100 static_cast<size_type>(array_index(reference_token)));
12101 }
12102 JSON_CATCH(std::invalid_argument&)
12103 {
12104 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
12105 }
12106 break;
12107 }
12108
12109 default:
12110 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
12111 }
12112 }
12113
12114 return *ptr;
12115 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012116
12117 /*!
12118 @throw parse_error.106 if an array index begins with '0'
12119 @throw parse_error.109 if an array index was not a number
12120 @throw out_of_range.402 if the array index '-' is used
12121 @throw out_of_range.404 if the JSON pointer can not be resolved
12122 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012123 const BasicJsonType& get_checked(const BasicJsonType* ptr) const
12124 {
12125 using size_type = typename BasicJsonType::size_type;
12126 for (const auto& reference_token : reference_tokens)
12127 {
12128 switch (ptr->m_type)
12129 {
12130 case detail::value_t::object:
12131 {
12132 // note: at performs range check
12133 ptr = &ptr->at(reference_token);
12134 break;
12135 }
12136
12137 case detail::value_t::array:
12138 {
12139 if (JSON_UNLIKELY(reference_token == "-"))
12140 {
12141 // "-" always fails the range check
12142 JSON_THROW(detail::out_of_range::create(402,
12143 "array index '-' (" + std::to_string(ptr->m_value.array->size()) +
12144 ") is out of range"));
12145 }
12146
12147 // error condition (cf. RFC 6901, Sect. 4)
12148 if (JSON_UNLIKELY(reference_token.size() > 1 and reference_token[0] == '0'))
12149 {
12150 JSON_THROW(detail::parse_error::create(106, 0,
12151 "array index '" + reference_token +
12152 "' must not begin with '0'"));
12153 }
12154
12155 // note: at performs range check
12156 JSON_TRY
12157 {
12158 ptr = &ptr->at(static_cast<size_type>(array_index(reference_token)));
12159 }
12160 JSON_CATCH(std::invalid_argument&)
12161 {
12162 JSON_THROW(detail::parse_error::create(109, 0, "array index '" + reference_token + "' is not a number"));
12163 }
12164 break;
12165 }
12166
12167 default:
12168 JSON_THROW(detail::out_of_range::create(404, "unresolved reference token '" + reference_token + "'"));
12169 }
12170 }
12171
12172 return *ptr;
12173 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012174
12175 /*!
12176 @brief split the string input to reference tokens
12177
12178 @note This function is only called by the json_pointer constructor.
12179 All exceptions below are documented there.
12180
12181 @throw parse_error.107 if the pointer is not empty or begins with '/'
12182 @throw parse_error.108 if character '~' is not followed by '0' or '1'
12183 */
12184 static std::vector<std::string> split(const std::string& reference_string)
12185 {
12186 std::vector<std::string> result;
12187
12188 // special case: empty reference string -> no reference tokens
12189 if (reference_string.empty())
12190 {
12191 return result;
12192 }
12193
12194 // check if nonempty reference string begins with slash
12195 if (JSON_UNLIKELY(reference_string[0] != '/'))
12196 {
12197 JSON_THROW(detail::parse_error::create(107, 1,
12198 "JSON pointer must be empty or begin with '/' - was: '" +
12199 reference_string + "'"));
12200 }
12201
12202 // extract the reference tokens:
12203 // - slash: position of the last read slash (or end of string)
12204 // - start: position after the previous slash
12205 for (
12206 // search for the first slash after the first character
12207 std::size_t slash = reference_string.find_first_of('/', 1),
12208 // set the beginning of the first reference token
12209 start = 1;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012210 // we can stop if start == 0 (if slash == std::string::npos)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012211 start != 0;
12212 // set the beginning of the next reference token
12213 // (will eventually be 0 if slash == std::string::npos)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012214 start = (slash == std::string::npos) ? 0 : slash + 1,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012215 // find next slash
12216 slash = reference_string.find_first_of('/', start))
12217 {
12218 // use the text between the beginning of the reference token
12219 // (start) and the last slash (slash).
12220 auto reference_token = reference_string.substr(start, slash - start);
12221
12222 // check reference tokens are properly escaped
12223 for (std::size_t pos = reference_token.find_first_of('~');
12224 pos != std::string::npos;
12225 pos = reference_token.find_first_of('~', pos + 1))
12226 {
12227 assert(reference_token[pos] == '~');
12228
12229 // ~ must be followed by 0 or 1
12230 if (JSON_UNLIKELY(pos == reference_token.size() - 1 or
12231 (reference_token[pos + 1] != '0' and
12232 reference_token[pos + 1] != '1')))
12233 {
12234 JSON_THROW(detail::parse_error::create(108, 0, "escape character '~' must be followed with '0' or '1'"));
12235 }
12236 }
12237
12238 // finally, store the reference token
12239 unescape(reference_token);
12240 result.push_back(reference_token);
12241 }
12242
12243 return result;
12244 }
12245
12246 /*!
12247 @brief replace all occurrences of a substring by another string
12248
12249 @param[in,out] s the string to manipulate; changed so that all
12250 occurrences of @a f are replaced with @a t
12251 @param[in] f the substring to replace with @a t
12252 @param[in] t the string to replace @a f
12253
12254 @pre The search string @a f must not be empty. **This precondition is
12255 enforced with an assertion.**
12256
12257 @since version 2.0.0
12258 */
12259 static void replace_substring(std::string& s, const std::string& f,
12260 const std::string& t)
12261 {
12262 assert(not f.empty());
12263 for (auto pos = s.find(f); // find first occurrence of f
12264 pos != std::string::npos; // make sure f was found
12265 s.replace(pos, f.size(), t), // replace with t, and
12266 pos = s.find(f, pos + t.size())) // find next occurrence of f
12267 {}
12268 }
12269
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012270 /// escape "~" to "~0" and "/" to "~1"
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012271 static std::string escape(std::string s)
12272 {
12273 replace_substring(s, "~", "~0");
12274 replace_substring(s, "/", "~1");
12275 return s;
12276 }
12277
12278 /// unescape "~1" to tilde and "~0" to slash (order is important!)
12279 static void unescape(std::string& s)
12280 {
12281 replace_substring(s, "~1", "/");
12282 replace_substring(s, "~0", "~");
12283 }
12284
12285 /*!
12286 @param[in] reference_string the reference string to the current value
12287 @param[in] value the value to consider
12288 @param[in,out] result the result object to insert values to
12289
12290 @note Empty objects or arrays are flattened to `null`.
12291 */
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012292 static void flatten(const std::string& reference_string,
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012293 const BasicJsonType& value,
12294 BasicJsonType& result)
12295 {
12296 switch (value.m_type)
12297 {
12298 case detail::value_t::array:
12299 {
12300 if (value.m_value.array->empty())
12301 {
12302 // flatten empty array as null
12303 result[reference_string] = nullptr;
12304 }
12305 else
12306 {
12307 // iterate array and use index as reference string
12308 for (std::size_t i = 0; i < value.m_value.array->size(); ++i)
12309 {
12310 flatten(reference_string + "/" + std::to_string(i),
12311 value.m_value.array->operator[](i), result);
12312 }
12313 }
12314 break;
12315 }
12316
12317 case detail::value_t::object:
12318 {
12319 if (value.m_value.object->empty())
12320 {
12321 // flatten empty object as null
12322 result[reference_string] = nullptr;
12323 }
12324 else
12325 {
12326 // iterate object and use keys as reference string
12327 for (const auto& element : *value.m_value.object)
12328 {
12329 flatten(reference_string + "/" + escape(element.first), element.second, result);
12330 }
12331 }
12332 break;
12333 }
12334
12335 default:
12336 {
12337 // add primitive value with its reference string
12338 result[reference_string] = value;
12339 break;
12340 }
12341 }
12342 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012343
12344 /*!
12345 @param[in] value flattened JSON
12346
12347 @return unflattened JSON
12348
12349 @throw parse_error.109 if array index is not a number
12350 @throw type_error.314 if value is not an object
12351 @throw type_error.315 if object values are not primitive
12352 @throw type_error.313 if value cannot be unflattened
12353 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012354 static BasicJsonType
12355 unflatten(const BasicJsonType& value)
12356 {
12357 if (JSON_UNLIKELY(not value.is_object()))
12358 {
12359 JSON_THROW(detail::type_error::create(314, "only objects can be unflattened"));
12360 }
12361
12362 BasicJsonType result;
12363
12364 // iterate the JSON object values
12365 for (const auto& element : *value.m_value.object)
12366 {
12367 if (JSON_UNLIKELY(not element.second.is_primitive()))
12368 {
12369 JSON_THROW(detail::type_error::create(315, "values in object must be primitive"));
12370 }
12371
12372 // assign value to reference pointed to by JSON pointer; Note that if
12373 // the JSON pointer is "" (i.e., points to the whole value), function
12374 // get_and_create returns a reference to result itself. An assignment
12375 // will then create a primitive value.
12376 json_pointer(element.first).get_and_create(result) = element.second;
12377 }
12378
12379 return result;
12380 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012381
12382 friend bool operator==(json_pointer const& lhs,
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012383 json_pointer const& rhs) noexcept
12384 {
12385 return (lhs.reference_tokens == rhs.reference_tokens);
12386 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012387
12388 friend bool operator!=(json_pointer const& lhs,
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012389 json_pointer const& rhs) noexcept
12390 {
12391 return not (lhs == rhs);
12392 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012393
12394 /// the reference tokens
12395 std::vector<std::string> reference_tokens;
12396};
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012397} // namespace nlohmann
12398
12399// #include <nlohmann/adl_serializer.hpp>
12400
12401
12402#include <utility>
12403
12404// #include <nlohmann/detail/conversions/from_json.hpp>
12405
12406// #include <nlohmann/detail/conversions/to_json.hpp>
12407
12408
12409namespace nlohmann
12410{
12411
12412template<typename, typename>
12413struct adl_serializer
12414{
12415 /*!
12416 @brief convert a JSON value to any value type
12417
12418 This function is usually called by the `get()` function of the
12419 @ref basic_json class (either explicit or via conversion operators).
12420
12421 @param[in] j JSON value to read from
12422 @param[in,out] val value to write to
12423 */
12424 template<typename BasicJsonType, typename ValueType>
12425 static auto from_json(BasicJsonType&& j, ValueType& val) noexcept(
12426 noexcept(::nlohmann::from_json(std::forward<BasicJsonType>(j), val)))
12427 -> decltype(::nlohmann::from_json(std::forward<BasicJsonType>(j), val), void())
12428 {
12429 ::nlohmann::from_json(std::forward<BasicJsonType>(j), val);
12430 }
12431
12432 /*!
12433 @brief convert any value type to a JSON value
12434
12435 This function is usually called by the constructors of the @ref basic_json
12436 class.
12437
12438 @param[in,out] j JSON value to write to
12439 @param[in] val value to read from
12440 */
12441 template <typename BasicJsonType, typename ValueType>
12442 static auto to_json(BasicJsonType& j, ValueType&& val) noexcept(
12443 noexcept(::nlohmann::to_json(j, std::forward<ValueType>(val))))
12444 -> decltype(::nlohmann::to_json(j, std::forward<ValueType>(val)), void())
12445 {
12446 ::nlohmann::to_json(j, std::forward<ValueType>(val));
12447 }
12448};
12449
12450} // namespace nlohmann
12451
12452
12453/*!
12454@brief namespace for Niels Lohmann
12455@see https://github.com/nlohmann
12456@since version 1.0.0
12457*/
12458namespace nlohmann
12459{
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012460
12461/*!
12462@brief a class to store JSON values
12463
12464@tparam ObjectType type for JSON objects (`std::map` by default; will be used
12465in @ref object_t)
12466@tparam ArrayType type for JSON arrays (`std::vector` by default; will be used
12467in @ref array_t)
12468@tparam StringType type for JSON strings and object keys (`std::string` by
12469default; will be used in @ref string_t)
12470@tparam BooleanType type for JSON booleans (`bool` by default; will be used
12471in @ref boolean_t)
12472@tparam NumberIntegerType type for JSON integer numbers (`int64_t` by
12473default; will be used in @ref number_integer_t)
12474@tparam NumberUnsignedType type for JSON unsigned integer numbers (@c
12475`uint64_t` by default; will be used in @ref number_unsigned_t)
12476@tparam NumberFloatType type for JSON floating-point numbers (`double` by
12477default; will be used in @ref number_float_t)
12478@tparam AllocatorType type of the allocator to use (`std::allocator` by
12479default)
12480@tparam JSONSerializer the serializer to resolve internal calls to `to_json()`
12481and `from_json()` (@ref adl_serializer by default)
12482
12483@requirement The class satisfies the following concept requirements:
12484- Basic
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012485 - [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012486 JSON values can be default constructed. The result will be a JSON null
12487 value.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012488 - [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012489 A JSON value can be constructed from an rvalue argument.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012490 - [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012491 A JSON value can be copy-constructed from an lvalue expression.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012492 - [MoveAssignable](https://en.cppreference.com/w/cpp/named_req/MoveAssignable):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012493 A JSON value van be assigned from an rvalue argument.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012494 - [CopyAssignable](https://en.cppreference.com/w/cpp/named_req/CopyAssignable):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012495 A JSON value can be copy-assigned from an lvalue expression.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012496 - [Destructible](https://en.cppreference.com/w/cpp/named_req/Destructible):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012497 JSON values can be destructed.
12498- Layout
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012499 - [StandardLayoutType](https://en.cppreference.com/w/cpp/named_req/StandardLayoutType):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012500 JSON values have
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012501 [standard layout](https://en.cppreference.com/w/cpp/language/data_members#Standard_layout):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012502 All non-static data members are private and standard layout types, the
12503 class has no virtual functions or (virtual) base classes.
12504- Library-wide
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012505 - [EqualityComparable](https://en.cppreference.com/w/cpp/named_req/EqualityComparable):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012506 JSON values can be compared with `==`, see @ref
12507 operator==(const_reference,const_reference).
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012508 - [LessThanComparable](https://en.cppreference.com/w/cpp/named_req/LessThanComparable):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012509 JSON values can be compared with `<`, see @ref
12510 operator<(const_reference,const_reference).
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012511 - [Swappable](https://en.cppreference.com/w/cpp/named_req/Swappable):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012512 Any JSON lvalue or rvalue of can be swapped with any lvalue or rvalue of
12513 other compatible types, using unqualified function call @ref swap().
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012514 - [NullablePointer](https://en.cppreference.com/w/cpp/named_req/NullablePointer):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012515 JSON values can be compared against `std::nullptr_t` objects which are used
12516 to model the `null` value.
12517- Container
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012518 - [Container](https://en.cppreference.com/w/cpp/named_req/Container):
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012519 JSON values can be used like STL containers and provide iterator access.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012520 - [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012521 JSON values can be used like STL containers and provide reverse iterator
12522 access.
12523
12524@invariant The member variables @a m_value and @a m_type have the following
12525relationship:
12526- If `m_type == value_t::object`, then `m_value.object != nullptr`.
12527- If `m_type == value_t::array`, then `m_value.array != nullptr`.
12528- If `m_type == value_t::string`, then `m_value.string != nullptr`.
12529The invariants are checked by member function assert_invariant().
12530
12531@internal
12532@note ObjectType trick from http://stackoverflow.com/a/9860911
12533@endinternal
12534
12535@see [RFC 7159: The JavaScript Object Notation (JSON) Data Interchange
12536Format](http://rfc7159.net/rfc7159)
12537
12538@since version 1.0.0
12539
12540@nosubgrouping
12541*/
12542NLOHMANN_BASIC_JSON_TPL_DECLARATION
12543class basic_json
12544{
12545 private:
12546 template<detail::value_t> friend struct detail::external_constructor;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012547 friend ::nlohmann::json_pointer<basic_json>;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012548 friend ::nlohmann::detail::parser<basic_json>;
12549 friend ::nlohmann::detail::serializer<basic_json>;
12550 template<typename BasicJsonType>
12551 friend class ::nlohmann::detail::iter_impl;
12552 template<typename BasicJsonType, typename CharType>
12553 friend class ::nlohmann::detail::binary_writer;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012554 template<typename BasicJsonType, typename SAX>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012555 friend class ::nlohmann::detail::binary_reader;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012556 template<typename BasicJsonType>
12557 friend class ::nlohmann::detail::json_sax_dom_parser;
12558 template<typename BasicJsonType>
12559 friend class ::nlohmann::detail::json_sax_dom_callback_parser;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012560
12561 /// workaround type for MSVC
12562 using basic_json_t = NLOHMANN_BASIC_JSON_TPL;
12563
12564 // convenience aliases for types residing in namespace detail;
12565 using lexer = ::nlohmann::detail::lexer<basic_json>;
12566 using parser = ::nlohmann::detail::parser<basic_json>;
12567
12568 using primitive_iterator_t = ::nlohmann::detail::primitive_iterator_t;
12569 template<typename BasicJsonType>
12570 using internal_iterator = ::nlohmann::detail::internal_iterator<BasicJsonType>;
12571 template<typename BasicJsonType>
12572 using iter_impl = ::nlohmann::detail::iter_impl<BasicJsonType>;
12573 template<typename Iterator>
12574 using iteration_proxy = ::nlohmann::detail::iteration_proxy<Iterator>;
12575 template<typename Base> using json_reverse_iterator = ::nlohmann::detail::json_reverse_iterator<Base>;
12576
12577 template<typename CharType>
12578 using output_adapter_t = ::nlohmann::detail::output_adapter_t<CharType>;
12579
12580 using binary_reader = ::nlohmann::detail::binary_reader<basic_json>;
12581 template<typename CharType> using binary_writer = ::nlohmann::detail::binary_writer<basic_json, CharType>;
12582
12583 using serializer = ::nlohmann::detail::serializer<basic_json>;
12584
12585 public:
12586 using value_t = detail::value_t;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012587 /// JSON Pointer, see @ref nlohmann::json_pointer
12588 using json_pointer = ::nlohmann::json_pointer<basic_json>;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012589 template<typename T, typename SFINAE>
12590 using json_serializer = JSONSerializer<T, SFINAE>;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012591 /// how to treat decoding errors
12592 using error_handler_t = detail::error_handler_t;
12593 /// helper type for initializer lists of basic_json values
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012594 using initializer_list_t = std::initializer_list<detail::json_ref<basic_json>>;
12595
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012596 using input_format_t = detail::input_format_t;
12597 /// SAX interface type, see @ref nlohmann::json_sax
12598 using json_sax_t = json_sax<basic_json>;
12599
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012600 ////////////////
12601 // exceptions //
12602 ////////////////
12603
12604 /// @name exceptions
12605 /// Classes to implement user-defined exceptions.
12606 /// @{
12607
12608 /// @copydoc detail::exception
12609 using exception = detail::exception;
12610 /// @copydoc detail::parse_error
12611 using parse_error = detail::parse_error;
12612 /// @copydoc detail::invalid_iterator
12613 using invalid_iterator = detail::invalid_iterator;
12614 /// @copydoc detail::type_error
12615 using type_error = detail::type_error;
12616 /// @copydoc detail::out_of_range
12617 using out_of_range = detail::out_of_range;
12618 /// @copydoc detail::other_error
12619 using other_error = detail::other_error;
12620
12621 /// @}
12622
12623
12624 /////////////////////
12625 // container types //
12626 /////////////////////
12627
12628 /// @name container types
12629 /// The canonic container types to use @ref basic_json like any other STL
12630 /// container.
12631 /// @{
12632
12633 /// the type of elements in a basic_json container
12634 using value_type = basic_json;
12635
12636 /// the type of an element reference
12637 using reference = value_type&;
12638 /// the type of an element const reference
12639 using const_reference = const value_type&;
12640
12641 /// a type to represent differences between iterators
12642 using difference_type = std::ptrdiff_t;
12643 /// a type to represent container sizes
12644 using size_type = std::size_t;
12645
12646 /// the allocator type
12647 using allocator_type = AllocatorType<basic_json>;
12648
12649 /// the type of an element pointer
12650 using pointer = typename std::allocator_traits<allocator_type>::pointer;
12651 /// the type of an element const pointer
12652 using const_pointer = typename std::allocator_traits<allocator_type>::const_pointer;
12653
12654 /// an iterator for a basic_json container
12655 using iterator = iter_impl<basic_json>;
12656 /// a const iterator for a basic_json container
12657 using const_iterator = iter_impl<const basic_json>;
12658 /// a reverse iterator for a basic_json container
12659 using reverse_iterator = json_reverse_iterator<typename basic_json::iterator>;
12660 /// a const reverse iterator for a basic_json container
12661 using const_reverse_iterator = json_reverse_iterator<typename basic_json::const_iterator>;
12662
12663 /// @}
12664
12665
12666 /*!
12667 @brief returns the allocator associated with the container
12668 */
12669 static allocator_type get_allocator()
12670 {
12671 return allocator_type();
12672 }
12673
12674 /*!
12675 @brief returns version information on the library
12676
12677 This function returns a JSON object with information about the library,
12678 including the version number and information on the platform and compiler.
12679
12680 @return JSON object holding version information
12681 key | description
12682 ----------- | ---------------
12683 `compiler` | Information on the used compiler. It is an object with the following keys: `c++` (the used C++ standard), `family` (the compiler family; possible values are `clang`, `icc`, `gcc`, `ilecpp`, `msvc`, `pgcpp`, `sunpro`, and `unknown`), and `version` (the compiler version).
12684 `copyright` | The copyright line for the library as string.
12685 `name` | The name of the library as string.
12686 `platform` | The used platform as string. Possible values are `win32`, `linux`, `apple`, `unix`, and `unknown`.
12687 `url` | The URL of the project as string.
12688 `version` | The version of the library. It is an object with the following keys: `major`, `minor`, and `patch` as defined by [Semantic Versioning](http://semver.org), and `string` (the version string).
12689
12690 @liveexample{The following code shows an example output of the `meta()`
12691 function.,meta}
12692
12693 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
12694 changes to any JSON value.
12695
12696 @complexity Constant.
12697
12698 @since 2.1.0
12699 */
12700 static basic_json meta()
12701 {
12702 basic_json result;
12703
12704 result["copyright"] = "(C) 2013-2017 Niels Lohmann";
12705 result["name"] = "JSON for Modern C++";
12706 result["url"] = "https://github.com/nlohmann/json";
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012707 result["version"]["string"] =
12708 std::to_string(NLOHMANN_JSON_VERSION_MAJOR) + "." +
12709 std::to_string(NLOHMANN_JSON_VERSION_MINOR) + "." +
12710 std::to_string(NLOHMANN_JSON_VERSION_PATCH);
12711 result["version"]["major"] = NLOHMANN_JSON_VERSION_MAJOR;
12712 result["version"]["minor"] = NLOHMANN_JSON_VERSION_MINOR;
12713 result["version"]["patch"] = NLOHMANN_JSON_VERSION_PATCH;
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012714
12715#ifdef _WIN32
12716 result["platform"] = "win32";
12717#elif defined __linux__
12718 result["platform"] = "linux";
12719#elif defined __APPLE__
12720 result["platform"] = "apple";
12721#elif defined __unix__
12722 result["platform"] = "unix";
12723#else
12724 result["platform"] = "unknown";
12725#endif
12726
12727#if defined(__ICC) || defined(__INTEL_COMPILER)
12728 result["compiler"] = {{"family", "icc"}, {"version", __INTEL_COMPILER}};
12729#elif defined(__clang__)
12730 result["compiler"] = {{"family", "clang"}, {"version", __clang_version__}};
12731#elif defined(__GNUC__) || defined(__GNUG__)
12732 result["compiler"] = {{"family", "gcc"}, {"version", std::to_string(__GNUC__) + "." + std::to_string(__GNUC_MINOR__) + "." + std::to_string(__GNUC_PATCHLEVEL__)}};
12733#elif defined(__HP_cc) || defined(__HP_aCC)
12734 result["compiler"] = "hp"
12735#elif defined(__IBMCPP__)
12736 result["compiler"] = {{"family", "ilecpp"}, {"version", __IBMCPP__}};
12737#elif defined(_MSC_VER)
12738 result["compiler"] = {{"family", "msvc"}, {"version", _MSC_VER}};
12739#elif defined(__PGI)
12740 result["compiler"] = {{"family", "pgcpp"}, {"version", __PGI}};
12741#elif defined(__SUNPRO_CC)
12742 result["compiler"] = {{"family", "sunpro"}, {"version", __SUNPRO_CC}};
12743#else
12744 result["compiler"] = {{"family", "unknown"}, {"version", "unknown"}};
12745#endif
12746
12747#ifdef __cplusplus
12748 result["compiler"]["c++"] = std::to_string(__cplusplus);
12749#else
12750 result["compiler"]["c++"] = "unknown";
12751#endif
12752 return result;
12753 }
12754
12755
12756 ///////////////////////////
12757 // JSON value data types //
12758 ///////////////////////////
12759
12760 /// @name JSON value data types
12761 /// The data types to store a JSON value. These types are derived from
12762 /// the template arguments passed to class @ref basic_json.
12763 /// @{
12764
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012765#if defined(JSON_HAS_CPP_14)
12766 // Use transparent comparator if possible, combined with perfect forwarding
12767 // on find() and count() calls prevents unnecessary string construction.
12768 using object_comparator_t = std::less<>;
12769#else
12770 using object_comparator_t = std::less<StringType>;
12771#endif
12772
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012773 /*!
12774 @brief a type for an object
12775
12776 [RFC 7159](http://rfc7159.net/rfc7159) describes JSON objects as follows:
12777 > An object is an unordered collection of zero or more name/value pairs,
12778 > where a name is a string and a value is a string, number, boolean, null,
12779 > object, or array.
12780
12781 To store objects in C++, a type is defined by the template parameters
12782 described below.
12783
12784 @tparam ObjectType the container to store objects (e.g., `std::map` or
12785 `std::unordered_map`)
12786 @tparam StringType the type of the keys or names (e.g., `std::string`).
12787 The comparison function `std::less<StringType>` is used to order elements
12788 inside the container.
12789 @tparam AllocatorType the allocator to use for objects (e.g.,
12790 `std::allocator`)
12791
12792 #### Default type
12793
12794 With the default values for @a ObjectType (`std::map`), @a StringType
12795 (`std::string`), and @a AllocatorType (`std::allocator`), the default
12796 value for @a object_t is:
12797
12798 @code {.cpp}
12799 std::map<
12800 std::string, // key_type
12801 basic_json, // value_type
12802 std::less<std::string>, // key_compare
12803 std::allocator<std::pair<const std::string, basic_json>> // allocator_type
12804 >
12805 @endcode
12806
12807 #### Behavior
12808
12809 The choice of @a object_t influences the behavior of the JSON class. With
12810 the default type, objects have the following behavior:
12811
12812 - When all names are unique, objects will be interoperable in the sense
12813 that all software implementations receiving that object will agree on
12814 the name-value mappings.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090012815 - When the names within an object are not unique, it is unspecified which
12816 one of the values for a given key will be chosen. For instance,
12817 `{"key": 2, "key": 1}` could be equal to either `{"key": 1}` or
12818 `{"key": 2}`.
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012819 - Internally, name/value pairs are stored in lexicographical order of the
12820 names. Objects will also be serialized (see @ref dump) in this order.
12821 For instance, `{"b": 1, "a": 2}` and `{"a": 2, "b": 1}` will be stored
12822 and serialized as `{"a": 2, "b": 1}`.
12823 - When comparing objects, the order of the name/value pairs is irrelevant.
12824 This makes objects interoperable in the sense that they will not be
12825 affected by these differences. For instance, `{"b": 1, "a": 2}` and
12826 `{"a": 2, "b": 1}` will be treated as equal.
12827
12828 #### Limits
12829
12830 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
12831 > An implementation may set limits on the maximum depth of nesting.
12832
12833 In this class, the object's limit of nesting is not explicitly constrained.
12834 However, a maximum depth of nesting may be introduced by the compiler or
12835 runtime environment. A theoretical limit can be queried by calling the
12836 @ref max_size function of a JSON object.
12837
12838 #### Storage
12839
12840 Objects are stored as pointers in a @ref basic_json type. That is, for any
12841 access to object values, a pointer of type `object_t*` must be
12842 dereferenced.
12843
12844 @sa @ref array_t -- type for an array value
12845
12846 @since version 1.0.0
12847
12848 @note The order name/value pairs are added to the object is *not*
12849 preserved by the library. Therefore, iterating an object may return
12850 name/value pairs in a different order than they were originally stored. In
12851 fact, keys will be traversed in alphabetical order as `std::map` with
12852 `std::less` is used by default. Please note this behavior conforms to [RFC
12853 7159](http://rfc7159.net/rfc7159), because any order implements the
12854 specified "unordered" nature of JSON objects.
12855 */
Syoyo Fujita2e21be72017-11-05 17:13:01 +090012856 using object_t = ObjectType<StringType,
12857 basic_json,
12858 object_comparator_t,
12859 AllocatorType<std::pair<const StringType,
12860 basic_json>>>;
12861
12862 /*!
12863 @brief a type for an array
12864
12865 [RFC 7159](http://rfc7159.net/rfc7159) describes JSON arrays as follows:
12866 > An array is an ordered sequence of zero or more values.
12867
12868 To store objects in C++, a type is defined by the template parameters
12869 explained below.
12870
12871 @tparam ArrayType container type to store arrays (e.g., `std::vector` or
12872 `std::list`)
12873 @tparam AllocatorType allocator to use for arrays (e.g., `std::allocator`)
12874
12875 #### Default type
12876
12877 With the default values for @a ArrayType (`std::vector`) and @a
12878 AllocatorType (`std::allocator`), the default value for @a array_t is:
12879
12880 @code {.cpp}
12881 std::vector<
12882 basic_json, // value_type
12883 std::allocator<basic_json> // allocator_type
12884 >
12885 @endcode
12886
12887 #### Limits
12888
12889 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
12890 > An implementation may set limits on the maximum depth of nesting.
12891
12892 In this class, the array's limit of nesting is not explicitly constrained.
12893 However, a maximum depth of nesting may be introduced by the compiler or
12894 runtime environment. A theoretical limit can be queried by calling the
12895 @ref max_size function of a JSON array.
12896
12897 #### Storage
12898
12899 Arrays are stored as pointers in a @ref basic_json type. That is, for any
12900 access to array values, a pointer of type `array_t*` must be dereferenced.
12901
12902 @sa @ref object_t -- type for an object value
12903
12904 @since version 1.0.0
12905 */
12906 using array_t = ArrayType<basic_json, AllocatorType<basic_json>>;
12907
12908 /*!
12909 @brief a type for a string
12910
12911 [RFC 7159](http://rfc7159.net/rfc7159) describes JSON strings as follows:
12912 > A string is a sequence of zero or more Unicode characters.
12913
12914 To store objects in C++, a type is defined by the template parameter
12915 described below. Unicode values are split by the JSON class into
12916 byte-sized characters during deserialization.
12917
12918 @tparam StringType the container to store strings (e.g., `std::string`).
12919 Note this container is used for keys/names in objects, see @ref object_t.
12920
12921 #### Default type
12922
12923 With the default values for @a StringType (`std::string`), the default
12924 value for @a string_t is:
12925
12926 @code {.cpp}
12927 std::string
12928 @endcode
12929
12930 #### Encoding
12931
12932 Strings are stored in UTF-8 encoding. Therefore, functions like
12933 `std::string::size()` or `std::string::length()` return the number of
12934 bytes in the string rather than the number of characters or glyphs.
12935
12936 #### String comparison
12937
12938 [RFC 7159](http://rfc7159.net/rfc7159) states:
12939 > Software implementations are typically required to test names of object
12940 > members for equality. Implementations that transform the textual
12941 > representation into sequences of Unicode code units and then perform the
12942 > comparison numerically, code unit by code unit, are interoperable in the
12943 > sense that implementations will agree in all cases on equality or
12944 > inequality of two strings. For example, implementations that compare
12945 > strings with escaped characters unconverted may incorrectly find that
12946 > `"a\\b"` and `"a\u005Cb"` are not equal.
12947
12948 This implementation is interoperable as it does compare strings code unit
12949 by code unit.
12950
12951 #### Storage
12952
12953 String values are stored as pointers in a @ref basic_json type. That is,
12954 for any access to string values, a pointer of type `string_t*` must be
12955 dereferenced.
12956
12957 @since version 1.0.0
12958 */
12959 using string_t = StringType;
12960
12961 /*!
12962 @brief a type for a boolean
12963
12964 [RFC 7159](http://rfc7159.net/rfc7159) implicitly describes a boolean as a
12965 type which differentiates the two literals `true` and `false`.
12966
12967 To store objects in C++, a type is defined by the template parameter @a
12968 BooleanType which chooses the type to use.
12969
12970 #### Default type
12971
12972 With the default values for @a BooleanType (`bool`), the default value for
12973 @a boolean_t is:
12974
12975 @code {.cpp}
12976 bool
12977 @endcode
12978
12979 #### Storage
12980
12981 Boolean values are stored directly inside a @ref basic_json type.
12982
12983 @since version 1.0.0
12984 */
12985 using boolean_t = BooleanType;
12986
12987 /*!
12988 @brief a type for a number (integer)
12989
12990 [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
12991 > The representation of numbers is similar to that used in most
12992 > programming languages. A number is represented in base 10 using decimal
12993 > digits. It contains an integer component that may be prefixed with an
12994 > optional minus sign, which may be followed by a fraction part and/or an
12995 > exponent part. Leading zeros are not allowed. (...) Numeric values that
12996 > cannot be represented in the grammar below (such as Infinity and NaN)
12997 > are not permitted.
12998
12999 This description includes both integer and floating-point numbers.
13000 However, C++ allows more precise storage if it is known whether the number
13001 is a signed integer, an unsigned integer or a floating-point number.
13002 Therefore, three different types, @ref number_integer_t, @ref
13003 number_unsigned_t and @ref number_float_t are used.
13004
13005 To store integer numbers in C++, a type is defined by the template
13006 parameter @a NumberIntegerType which chooses the type to use.
13007
13008 #### Default type
13009
13010 With the default values for @a NumberIntegerType (`int64_t`), the default
13011 value for @a number_integer_t is:
13012
13013 @code {.cpp}
13014 int64_t
13015 @endcode
13016
13017 #### Default behavior
13018
13019 - The restrictions about leading zeros is not enforced in C++. Instead,
13020 leading zeros in integer literals lead to an interpretation as octal
13021 number. Internally, the value will be stored as decimal number. For
13022 instance, the C++ integer literal `010` will be serialized to `8`.
13023 During deserialization, leading zeros yield an error.
13024 - Not-a-number (NaN) values will be serialized to `null`.
13025
13026 #### Limits
13027
13028 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
13029 > An implementation may set limits on the range and precision of numbers.
13030
13031 When the default type is used, the maximal integer number that can be
13032 stored is `9223372036854775807` (INT64_MAX) and the minimal integer number
13033 that can be stored is `-9223372036854775808` (INT64_MIN). Integer numbers
13034 that are out of range will yield over/underflow when used in a
13035 constructor. During deserialization, too large or small integer numbers
13036 will be automatically be stored as @ref number_unsigned_t or @ref
13037 number_float_t.
13038
13039 [RFC 7159](http://rfc7159.net/rfc7159) further states:
13040 > Note that when such software is used, numbers that are integers and are
13041 > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
13042 > that implementations will agree exactly on their numeric values.
13043
13044 As this range is a subrange of the exactly supported range [INT64_MIN,
13045 INT64_MAX], this class's integer type is interoperable.
13046
13047 #### Storage
13048
13049 Integer number values are stored directly inside a @ref basic_json type.
13050
13051 @sa @ref number_float_t -- type for number values (floating-point)
13052
13053 @sa @ref number_unsigned_t -- type for number values (unsigned integer)
13054
13055 @since version 1.0.0
13056 */
13057 using number_integer_t = NumberIntegerType;
13058
13059 /*!
13060 @brief a type for a number (unsigned)
13061
13062 [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
13063 > The representation of numbers is similar to that used in most
13064 > programming languages. A number is represented in base 10 using decimal
13065 > digits. It contains an integer component that may be prefixed with an
13066 > optional minus sign, which may be followed by a fraction part and/or an
13067 > exponent part. Leading zeros are not allowed. (...) Numeric values that
13068 > cannot be represented in the grammar below (such as Infinity and NaN)
13069 > are not permitted.
13070
13071 This description includes both integer and floating-point numbers.
13072 However, C++ allows more precise storage if it is known whether the number
13073 is a signed integer, an unsigned integer or a floating-point number.
13074 Therefore, three different types, @ref number_integer_t, @ref
13075 number_unsigned_t and @ref number_float_t are used.
13076
13077 To store unsigned integer numbers in C++, a type is defined by the
13078 template parameter @a NumberUnsignedType which chooses the type to use.
13079
13080 #### Default type
13081
13082 With the default values for @a NumberUnsignedType (`uint64_t`), the
13083 default value for @a number_unsigned_t is:
13084
13085 @code {.cpp}
13086 uint64_t
13087 @endcode
13088
13089 #### Default behavior
13090
13091 - The restrictions about leading zeros is not enforced in C++. Instead,
13092 leading zeros in integer literals lead to an interpretation as octal
13093 number. Internally, the value will be stored as decimal number. For
13094 instance, the C++ integer literal `010` will be serialized to `8`.
13095 During deserialization, leading zeros yield an error.
13096 - Not-a-number (NaN) values will be serialized to `null`.
13097
13098 #### Limits
13099
13100 [RFC 7159](http://rfc7159.net/rfc7159) specifies:
13101 > An implementation may set limits on the range and precision of numbers.
13102
13103 When the default type is used, the maximal integer number that can be
13104 stored is `18446744073709551615` (UINT64_MAX) and the minimal integer
13105 number that can be stored is `0`. Integer numbers that are out of range
13106 will yield over/underflow when used in a constructor. During
13107 deserialization, too large or small integer numbers will be automatically
13108 be stored as @ref number_integer_t or @ref number_float_t.
13109
13110 [RFC 7159](http://rfc7159.net/rfc7159) further states:
13111 > Note that when such software is used, numbers that are integers and are
13112 > in the range \f$[-2^{53}+1, 2^{53}-1]\f$ are interoperable in the sense
13113 > that implementations will agree exactly on their numeric values.
13114
13115 As this range is a subrange (when considered in conjunction with the
13116 number_integer_t type) of the exactly supported range [0, UINT64_MAX],
13117 this class's integer type is interoperable.
13118
13119 #### Storage
13120
13121 Integer number values are stored directly inside a @ref basic_json type.
13122
13123 @sa @ref number_float_t -- type for number values (floating-point)
13124 @sa @ref number_integer_t -- type for number values (integer)
13125
13126 @since version 2.0.0
13127 */
13128 using number_unsigned_t = NumberUnsignedType;
13129
13130 /*!
13131 @brief a type for a number (floating-point)
13132
13133 [RFC 7159](http://rfc7159.net/rfc7159) describes numbers as follows:
13134 > The representation of numbers is similar to that used in most
13135 > programming languages. A number is represented in base 10 using decimal
13136 > digits. It contains an integer component that may be prefixed with an
13137 > optional minus sign, which may be followed by a fraction part and/or an
13138 > exponent part. Leading zeros are not allowed. (...) Numeric values that
13139 > cannot be represented in the grammar below (such as Infinity and NaN)
13140 > are not permitted.
13141
13142 This description includes both integer and floating-point numbers.
13143 However, C++ allows more precise storage if it is known whether the number
13144 is a signed integer, an unsigned integer or a floating-point number.
13145 Therefore, three different types, @ref number_integer_t, @ref
13146 number_unsigned_t and @ref number_float_t are used.
13147
13148 To store floating-point numbers in C++, a type is defined by the template
13149 parameter @a NumberFloatType which chooses the type to use.
13150
13151 #### Default type
13152
13153 With the default values for @a NumberFloatType (`double`), the default
13154 value for @a number_float_t is:
13155
13156 @code {.cpp}
13157 double
13158 @endcode
13159
13160 #### Default behavior
13161
13162 - The restrictions about leading zeros is not enforced in C++. Instead,
13163 leading zeros in floating-point literals will be ignored. Internally,
13164 the value will be stored as decimal number. For instance, the C++
13165 floating-point literal `01.2` will be serialized to `1.2`. During
13166 deserialization, leading zeros yield an error.
13167 - Not-a-number (NaN) values will be serialized to `null`.
13168
13169 #### Limits
13170
13171 [RFC 7159](http://rfc7159.net/rfc7159) states:
13172 > This specification allows implementations to set limits on the range and
13173 > precision of numbers accepted. Since software that implements IEEE
13174 > 754-2008 binary64 (double precision) numbers is generally available and
13175 > widely used, good interoperability can be achieved by implementations
13176 > that expect no more precision or range than these provide, in the sense
13177 > that implementations will approximate JSON numbers within the expected
13178 > precision.
13179
13180 This implementation does exactly follow this approach, as it uses double
13181 precision floating-point numbers. Note values smaller than
13182 `-1.79769313486232e+308` and values greater than `1.79769313486232e+308`
13183 will be stored as NaN internally and be serialized to `null`.
13184
13185 #### Storage
13186
13187 Floating-point number values are stored directly inside a @ref basic_json
13188 type.
13189
13190 @sa @ref number_integer_t -- type for number values (integer)
13191
13192 @sa @ref number_unsigned_t -- type for number values (unsigned integer)
13193
13194 @since version 1.0.0
13195 */
13196 using number_float_t = NumberFloatType;
13197
13198 /// @}
13199
13200 private:
13201
13202 /// helper for exception-safe object creation
13203 template<typename T, typename... Args>
13204 static T* create(Args&& ... args)
13205 {
13206 AllocatorType<T> alloc;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013207 using AllocatorTraits = std::allocator_traits<AllocatorType<T>>;
13208
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013209 auto deleter = [&](T * object)
13210 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013211 AllocatorTraits::deallocate(alloc, object, 1);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013212 };
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013213 std::unique_ptr<T, decltype(deleter)> object(AllocatorTraits::allocate(alloc, 1), deleter);
13214 AllocatorTraits::construct(alloc, object.get(), std::forward<Args>(args)...);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013215 assert(object != nullptr);
13216 return object.release();
13217 }
13218
13219 ////////////////////////
13220 // JSON value storage //
13221 ////////////////////////
13222
13223 /*!
13224 @brief a JSON value
13225
13226 The actual storage for a JSON value of the @ref basic_json class. This
13227 union combines the different storage types for the JSON value types
13228 defined in @ref value_t.
13229
13230 JSON type | value_t type | used type
13231 --------- | --------------- | ------------------------
13232 object | object | pointer to @ref object_t
13233 array | array | pointer to @ref array_t
13234 string | string | pointer to @ref string_t
13235 boolean | boolean | @ref boolean_t
13236 number | number_integer | @ref number_integer_t
13237 number | number_unsigned | @ref number_unsigned_t
13238 number | number_float | @ref number_float_t
13239 null | null | *no value is stored*
13240
13241 @note Variable-length types (objects, arrays, and strings) are stored as
13242 pointers. The size of the union should not exceed 64 bits if the default
13243 value types are used.
13244
13245 @since version 1.0.0
13246 */
13247 union json_value
13248 {
13249 /// object (stored with pointer to save storage)
13250 object_t* object;
13251 /// array (stored with pointer to save storage)
13252 array_t* array;
13253 /// string (stored with pointer to save storage)
13254 string_t* string;
13255 /// boolean
13256 boolean_t boolean;
13257 /// number (integer)
13258 number_integer_t number_integer;
13259 /// number (unsigned integer)
13260 number_unsigned_t number_unsigned;
13261 /// number (floating-point)
13262 number_float_t number_float;
13263
13264 /// default constructor (for null values)
13265 json_value() = default;
13266 /// constructor for booleans
13267 json_value(boolean_t v) noexcept : boolean(v) {}
13268 /// constructor for numbers (integer)
13269 json_value(number_integer_t v) noexcept : number_integer(v) {}
13270 /// constructor for numbers (unsigned)
13271 json_value(number_unsigned_t v) noexcept : number_unsigned(v) {}
13272 /// constructor for numbers (floating-point)
13273 json_value(number_float_t v) noexcept : number_float(v) {}
13274 /// constructor for empty values of a given type
13275 json_value(value_t t)
13276 {
13277 switch (t)
13278 {
13279 case value_t::object:
13280 {
13281 object = create<object_t>();
13282 break;
13283 }
13284
13285 case value_t::array:
13286 {
13287 array = create<array_t>();
13288 break;
13289 }
13290
13291 case value_t::string:
13292 {
13293 string = create<string_t>("");
13294 break;
13295 }
13296
13297 case value_t::boolean:
13298 {
13299 boolean = boolean_t(false);
13300 break;
13301 }
13302
13303 case value_t::number_integer:
13304 {
13305 number_integer = number_integer_t(0);
13306 break;
13307 }
13308
13309 case value_t::number_unsigned:
13310 {
13311 number_unsigned = number_unsigned_t(0);
13312 break;
13313 }
13314
13315 case value_t::number_float:
13316 {
13317 number_float = number_float_t(0.0);
13318 break;
13319 }
13320
13321 case value_t::null:
13322 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013323 object = nullptr; // silence warning, see #821
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013324 break;
13325 }
13326
13327 default:
13328 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013329 object = nullptr; // silence warning, see #821
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013330 if (JSON_UNLIKELY(t == value_t::null))
13331 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013332 JSON_THROW(other_error::create(500, "961c151d2e87f2686a955a9be24d316f1362bf21 3.5.0")); // LCOV_EXCL_LINE
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013333 }
13334 break;
13335 }
13336 }
13337 }
13338
13339 /// constructor for strings
13340 json_value(const string_t& value)
13341 {
13342 string = create<string_t>(value);
13343 }
13344
13345 /// constructor for rvalue strings
13346 json_value(string_t&& value)
13347 {
13348 string = create<string_t>(std::move(value));
13349 }
13350
13351 /// constructor for objects
13352 json_value(const object_t& value)
13353 {
13354 object = create<object_t>(value);
13355 }
13356
13357 /// constructor for rvalue objects
13358 json_value(object_t&& value)
13359 {
13360 object = create<object_t>(std::move(value));
13361 }
13362
13363 /// constructor for arrays
13364 json_value(const array_t& value)
13365 {
13366 array = create<array_t>(value);
13367 }
13368
13369 /// constructor for rvalue arrays
13370 json_value(array_t&& value)
13371 {
13372 array = create<array_t>(std::move(value));
13373 }
13374
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013375 void destroy(value_t t) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013376 {
13377 switch (t)
13378 {
13379 case value_t::object:
13380 {
13381 AllocatorType<object_t> alloc;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013382 std::allocator_traits<decltype(alloc)>::destroy(alloc, object);
13383 std::allocator_traits<decltype(alloc)>::deallocate(alloc, object, 1);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013384 break;
13385 }
13386
13387 case value_t::array:
13388 {
13389 AllocatorType<array_t> alloc;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013390 std::allocator_traits<decltype(alloc)>::destroy(alloc, array);
13391 std::allocator_traits<decltype(alloc)>::deallocate(alloc, array, 1);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013392 break;
13393 }
13394
13395 case value_t::string:
13396 {
13397 AllocatorType<string_t> alloc;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013398 std::allocator_traits<decltype(alloc)>::destroy(alloc, string);
13399 std::allocator_traits<decltype(alloc)>::deallocate(alloc, string, 1);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013400 break;
13401 }
13402
13403 default:
13404 {
13405 break;
13406 }
13407 }
13408 }
13409 };
13410
13411 /*!
13412 @brief checks the class invariants
13413
13414 This function asserts the class invariants. It needs to be called at the
13415 end of every constructor to make sure that created objects respect the
13416 invariant. Furthermore, it has to be called each time the type of a JSON
13417 value is changed, because the invariant expresses a relationship between
13418 @a m_type and @a m_value.
13419 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013420 void assert_invariant() const noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013421 {
13422 assert(m_type != value_t::object or m_value.object != nullptr);
13423 assert(m_type != value_t::array or m_value.array != nullptr);
13424 assert(m_type != value_t::string or m_value.string != nullptr);
13425 }
13426
13427 public:
13428 //////////////////////////
13429 // JSON parser callback //
13430 //////////////////////////
13431
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013432 /*!
13433 @brief parser event types
13434
13435 The parser callback distinguishes the following events:
13436 - `object_start`: the parser read `{` and started to process a JSON object
13437 - `key`: the parser read a key of a value in an object
13438 - `object_end`: the parser read `}` and finished processing a JSON object
13439 - `array_start`: the parser read `[` and started to process a JSON array
13440 - `array_end`: the parser read `]` and finished processing a JSON array
13441 - `value`: the parser finished reading a JSON value
13442
13443 @image html callback_events.png "Example when certain parse events are triggered"
13444
13445 @sa @ref parser_callback_t for more information and examples
13446 */
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013447 using parse_event_t = typename parser::parse_event_t;
13448
13449 /*!
13450 @brief per-element parser callback type
13451
13452 With a parser callback function, the result of parsing a JSON text can be
13453 influenced. When passed to @ref parse, it is called on certain events
13454 (passed as @ref parse_event_t via parameter @a event) with a set recursion
13455 depth @a depth and context JSON value @a parsed. The return value of the
13456 callback function is a boolean indicating whether the element that emitted
13457 the callback shall be kept or not.
13458
13459 We distinguish six scenarios (determined by the event type) in which the
13460 callback function can be called. The following table describes the values
13461 of the parameters @a depth, @a event, and @a parsed.
13462
13463 parameter @a event | description | parameter @a depth | parameter @a parsed
13464 ------------------ | ----------- | ------------------ | -------------------
13465 parse_event_t::object_start | the parser read `{` and started to process a JSON object | depth of the parent of the JSON object | a JSON value with type discarded
13466 parse_event_t::key | the parser read a key of a value in an object | depth of the currently parsed JSON object | a JSON string containing the key
13467 parse_event_t::object_end | the parser read `}` and finished processing a JSON object | depth of the parent of the JSON object | the parsed JSON object
13468 parse_event_t::array_start | the parser read `[` and started to process a JSON array | depth of the parent of the JSON array | a JSON value with type discarded
13469 parse_event_t::array_end | the parser read `]` and finished processing a JSON array | depth of the parent of the JSON array | the parsed JSON array
13470 parse_event_t::value | the parser finished reading a JSON value | depth of the value | the parsed JSON value
13471
13472 @image html callback_events.png "Example when certain parse events are triggered"
13473
13474 Discarding a value (i.e., returning `false`) has different effects
13475 depending on the context in which function was called:
13476
13477 - Discarded values in structured types are skipped. That is, the parser
13478 will behave as if the discarded value was never read.
13479 - In case a value outside a structured type is skipped, it is replaced
13480 with `null`. This case happens if the top-level element is skipped.
13481
13482 @param[in] depth the depth of the recursion during parsing
13483
13484 @param[in] event an event of type parse_event_t indicating the context in
13485 the callback function has been called
13486
13487 @param[in,out] parsed the current intermediate parse result; note that
13488 writing to this value has no effect for parse_event_t::key events
13489
13490 @return Whether the JSON value which called the function during parsing
13491 should be kept (`true`) or not (`false`). In the latter case, it is either
13492 skipped completely or replaced by an empty discarded object.
13493
13494 @sa @ref parse for examples
13495
13496 @since version 1.0.0
13497 */
13498 using parser_callback_t = typename parser::parser_callback_t;
13499
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013500 //////////////////
13501 // constructors //
13502 //////////////////
13503
13504 /// @name constructors and destructors
13505 /// Constructors of class @ref basic_json, copy/move constructor, copy
13506 /// assignment, static functions creating objects, and the destructor.
13507 /// @{
13508
13509 /*!
13510 @brief create an empty value with a given type
13511
13512 Create an empty JSON value with a given type. The value will be default
13513 initialized with an empty value which depends on the type:
13514
13515 Value type | initial value
13516 ----------- | -------------
13517 null | `null`
13518 boolean | `false`
13519 string | `""`
13520 number | `0`
13521 object | `{}`
13522 array | `[]`
13523
13524 @param[in] v the type of the value to create
13525
13526 @complexity Constant.
13527
13528 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
13529 changes to any JSON value.
13530
13531 @liveexample{The following code shows the constructor for different @ref
13532 value_t values,basic_json__value_t}
13533
13534 @sa @ref clear() -- restores the postcondition of this constructor
13535
13536 @since version 1.0.0
13537 */
13538 basic_json(const value_t v)
13539 : m_type(v), m_value(v)
13540 {
13541 assert_invariant();
13542 }
13543
13544 /*!
13545 @brief create a null object
13546
13547 Create a `null` JSON value. It either takes a null pointer as parameter
13548 (explicitly creating `null`) or no parameter (implicitly creating `null`).
13549 The passed null pointer itself is not read -- it is only used to choose
13550 the right constructor.
13551
13552 @complexity Constant.
13553
13554 @exceptionsafety No-throw guarantee: this constructor never throws
13555 exceptions.
13556
13557 @liveexample{The following code shows the constructor with and without a
13558 null pointer parameter.,basic_json__nullptr_t}
13559
13560 @since version 1.0.0
13561 */
13562 basic_json(std::nullptr_t = nullptr) noexcept
13563 : basic_json(value_t::null)
13564 {
13565 assert_invariant();
13566 }
13567
13568 /*!
13569 @brief create a JSON value
13570
13571 This is a "catch all" constructor for all compatible JSON types; that is,
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013572 types for which a `to_json()` method exists. The constructor forwards the
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013573 parameter @a val to that method (to `json_serializer<U>::to_json` method
13574 with `U = uncvref_t<CompatibleType>`, to be exact).
13575
13576 Template type @a CompatibleType includes, but is not limited to, the
13577 following types:
13578 - **arrays**: @ref array_t and all kinds of compatible containers such as
13579 `std::vector`, `std::deque`, `std::list`, `std::forward_list`,
13580 `std::array`, `std::valarray`, `std::set`, `std::unordered_set`,
13581 `std::multiset`, and `std::unordered_multiset` with a `value_type` from
13582 which a @ref basic_json value can be constructed.
13583 - **objects**: @ref object_t and all kinds of compatible associative
13584 containers such as `std::map`, `std::unordered_map`, `std::multimap`,
13585 and `std::unordered_multimap` with a `key_type` compatible to
13586 @ref string_t and a `value_type` from which a @ref basic_json value can
13587 be constructed.
13588 - **strings**: @ref string_t, string literals, and all compatible string
13589 containers can be used.
13590 - **numbers**: @ref number_integer_t, @ref number_unsigned_t,
13591 @ref number_float_t, and all convertible number types such as `int`,
13592 `size_t`, `int64_t`, `float` or `double` can be used.
13593 - **boolean**: @ref boolean_t / `bool` can be used.
13594
13595 See the examples below.
13596
13597 @tparam CompatibleType a type such that:
13598 - @a CompatibleType is not derived from `std::istream`,
13599 - @a CompatibleType is not @ref basic_json (to avoid hijacking copy/move
13600 constructors),
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013601 - @a CompatibleType is not a different @ref basic_json type (i.e. with different template arguments)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013602 - @a CompatibleType is not a @ref basic_json nested type (e.g.,
13603 @ref json_pointer, @ref iterator, etc ...)
13604 - @ref @ref json_serializer<U> has a
13605 `to_json(basic_json_t&, CompatibleType&&)` method
13606
13607 @tparam U = `uncvref_t<CompatibleType>`
13608
13609 @param[in] val the value to be forwarded to the respective constructor
13610
13611 @complexity Usually linear in the size of the passed @a val, also
13612 depending on the implementation of the called `to_json()`
13613 method.
13614
13615 @exceptionsafety Depends on the called constructor. For types directly
13616 supported by the library (i.e., all types for which no `to_json()` function
13617 was provided), strong guarantee holds: if an exception is thrown, there are
13618 no changes to any JSON value.
13619
13620 @liveexample{The following code shows the constructor with several
13621 compatible types.,basic_json__CompatibleType}
13622
13623 @since version 2.1.0
13624 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013625 template <typename CompatibleType,
13626 typename U = detail::uncvref_t<CompatibleType>,
13627 detail::enable_if_t<
13628 not detail::is_basic_json<U>::value and detail::is_compatible_type<basic_json_t, U>::value, int> = 0>
13629 basic_json(CompatibleType && val) noexcept(noexcept(
13630 JSONSerializer<U>::to_json(std::declval<basic_json_t&>(),
13631 std::forward<CompatibleType>(val))))
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013632 {
13633 JSONSerializer<U>::to_json(*this, std::forward<CompatibleType>(val));
13634 assert_invariant();
13635 }
13636
13637 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013638 @brief create a JSON value from an existing one
13639
13640 This is a constructor for existing @ref basic_json types.
13641 It does not hijack copy/move constructors, since the parameter has different
13642 template arguments than the current ones.
13643
13644 The constructor tries to convert the internal @ref m_value of the parameter.
13645
13646 @tparam BasicJsonType a type such that:
13647 - @a BasicJsonType is a @ref basic_json type.
13648 - @a BasicJsonType has different template arguments than @ref basic_json_t.
13649
13650 @param[in] val the @ref basic_json value to be converted.
13651
13652 @complexity Usually linear in the size of the passed @a val, also
13653 depending on the implementation of the called `to_json()`
13654 method.
13655
13656 @exceptionsafety Depends on the called constructor. For types directly
13657 supported by the library (i.e., all types for which no `to_json()` function
13658 was provided), strong guarantee holds: if an exception is thrown, there are
13659 no changes to any JSON value.
13660
13661 @since version 3.2.0
13662 */
13663 template <typename BasicJsonType,
13664 detail::enable_if_t<
13665 detail::is_basic_json<BasicJsonType>::value and not std::is_same<basic_json, BasicJsonType>::value, int> = 0>
13666 basic_json(const BasicJsonType& val)
13667 {
13668 using other_boolean_t = typename BasicJsonType::boolean_t;
13669 using other_number_float_t = typename BasicJsonType::number_float_t;
13670 using other_number_integer_t = typename BasicJsonType::number_integer_t;
13671 using other_number_unsigned_t = typename BasicJsonType::number_unsigned_t;
13672 using other_string_t = typename BasicJsonType::string_t;
13673 using other_object_t = typename BasicJsonType::object_t;
13674 using other_array_t = typename BasicJsonType::array_t;
13675
13676 switch (val.type())
13677 {
13678 case value_t::boolean:
13679 JSONSerializer<other_boolean_t>::to_json(*this, val.template get<other_boolean_t>());
13680 break;
13681 case value_t::number_float:
13682 JSONSerializer<other_number_float_t>::to_json(*this, val.template get<other_number_float_t>());
13683 break;
13684 case value_t::number_integer:
13685 JSONSerializer<other_number_integer_t>::to_json(*this, val.template get<other_number_integer_t>());
13686 break;
13687 case value_t::number_unsigned:
13688 JSONSerializer<other_number_unsigned_t>::to_json(*this, val.template get<other_number_unsigned_t>());
13689 break;
13690 case value_t::string:
13691 JSONSerializer<other_string_t>::to_json(*this, val.template get_ref<const other_string_t&>());
13692 break;
13693 case value_t::object:
13694 JSONSerializer<other_object_t>::to_json(*this, val.template get_ref<const other_object_t&>());
13695 break;
13696 case value_t::array:
13697 JSONSerializer<other_array_t>::to_json(*this, val.template get_ref<const other_array_t&>());
13698 break;
13699 case value_t::null:
13700 *this = nullptr;
13701 break;
13702 case value_t::discarded:
13703 m_type = value_t::discarded;
13704 break;
13705 }
13706 assert_invariant();
13707 }
13708
13709 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013710 @brief create a container (array or object) from an initializer list
13711
13712 Creates a JSON value of type array or object from the passed initializer
13713 list @a init. In case @a type_deduction is `true` (default), the type of
13714 the JSON value to be created is deducted from the initializer list @a init
13715 according to the following rules:
13716
13717 1. If the list is empty, an empty JSON object value `{}` is created.
13718 2. If the list consists of pairs whose first element is a string, a JSON
13719 object value is created where the first elements of the pairs are
13720 treated as keys and the second elements are as values.
13721 3. In all other cases, an array is created.
13722
13723 The rules aim to create the best fit between a C++ initializer list and
13724 JSON values. The rationale is as follows:
13725
13726 1. The empty initializer list is written as `{}` which is exactly an empty
13727 JSON object.
13728 2. C++ has no way of describing mapped types other than to list a list of
13729 pairs. As JSON requires that keys must be of type string, rule 2 is the
13730 weakest constraint one can pose on initializer lists to interpret them
13731 as an object.
13732 3. In all other cases, the initializer list could not be interpreted as
13733 JSON object type, so interpreting it as JSON array type is safe.
13734
13735 With the rules described above, the following JSON values cannot be
13736 expressed by an initializer list:
13737
13738 - the empty array (`[]`): use @ref array(initializer_list_t)
13739 with an empty initializer list in this case
13740 - arrays whose elements satisfy rule 2: use @ref
13741 array(initializer_list_t) with the same initializer list
13742 in this case
13743
13744 @note When used without parentheses around an empty initializer list, @ref
13745 basic_json() is called instead of this function, yielding the JSON null
13746 value.
13747
13748 @param[in] init initializer list with JSON values
13749
13750 @param[in] type_deduction internal parameter; when set to `true`, the type
13751 of the JSON value is deducted from the initializer list @a init; when set
13752 to `false`, the type provided via @a manual_type is forced. This mode is
13753 used by the functions @ref array(initializer_list_t) and
13754 @ref object(initializer_list_t).
13755
13756 @param[in] manual_type internal parameter; when @a type_deduction is set
13757 to `false`, the created JSON value will use the provided type (only @ref
13758 value_t::array and @ref value_t::object are valid); when @a type_deduction
13759 is set to `true`, this parameter has no effect
13760
13761 @throw type_error.301 if @a type_deduction is `false`, @a manual_type is
13762 `value_t::object`, but @a init contains an element which is not a pair
13763 whose first element is a string. In this case, the constructor could not
13764 create an object. If @a type_deduction would have be `true`, an array
13765 would have been created. See @ref object(initializer_list_t)
13766 for an example.
13767
13768 @complexity Linear in the size of the initializer list @a init.
13769
13770 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
13771 changes to any JSON value.
13772
13773 @liveexample{The example below shows how JSON values are created from
13774 initializer lists.,basic_json__list_init_t}
13775
13776 @sa @ref array(initializer_list_t) -- create a JSON array
13777 value from an initializer list
13778 @sa @ref object(initializer_list_t) -- create a JSON object
13779 value from an initializer list
13780
13781 @since version 1.0.0
13782 */
13783 basic_json(initializer_list_t init,
13784 bool type_deduction = true,
13785 value_t manual_type = value_t::array)
13786 {
13787 // check if each element is an array with two elements whose first
13788 // element is a string
13789 bool is_an_object = std::all_of(init.begin(), init.end(),
13790 [](const detail::json_ref<basic_json>& element_ref)
13791 {
13792 return (element_ref->is_array() and element_ref->size() == 2 and (*element_ref)[0].is_string());
13793 });
13794
13795 // adjust type if type deduction is not wanted
13796 if (not type_deduction)
13797 {
13798 // if array is wanted, do not create an object though possible
13799 if (manual_type == value_t::array)
13800 {
13801 is_an_object = false;
13802 }
13803
13804 // if object is wanted but impossible, throw an exception
13805 if (JSON_UNLIKELY(manual_type == value_t::object and not is_an_object))
13806 {
13807 JSON_THROW(type_error::create(301, "cannot create object from initializer list"));
13808 }
13809 }
13810
13811 if (is_an_object)
13812 {
13813 // the initializer list is a list of pairs -> create object
13814 m_type = value_t::object;
13815 m_value = value_t::object;
13816
13817 std::for_each(init.begin(), init.end(), [this](const detail::json_ref<basic_json>& element_ref)
13818 {
13819 auto element = element_ref.moved_or_copied();
13820 m_value.object->emplace(
13821 std::move(*((*element.m_value.array)[0].m_value.string)),
13822 std::move((*element.m_value.array)[1]));
13823 });
13824 }
13825 else
13826 {
13827 // the initializer list describes an array -> create array
13828 m_type = value_t::array;
13829 m_value.array = create<array_t>(init.begin(), init.end());
13830 }
13831
13832 assert_invariant();
13833 }
13834
13835 /*!
13836 @brief explicitly create an array from an initializer list
13837
13838 Creates a JSON array value from a given initializer list. That is, given a
13839 list of values `a, b, c`, creates the JSON value `[a, b, c]`. If the
13840 initializer list is empty, the empty array `[]` is created.
13841
13842 @note This function is only needed to express two edge cases that cannot
13843 be realized with the initializer list constructor (@ref
13844 basic_json(initializer_list_t, bool, value_t)). These cases
13845 are:
13846 1. creating an array whose elements are all pairs whose first element is a
13847 string -- in this case, the initializer list constructor would create an
13848 object, taking the first elements as keys
13849 2. creating an empty array -- passing the empty initializer list to the
13850 initializer list constructor yields an empty object
13851
13852 @param[in] init initializer list with JSON values to create an array from
13853 (optional)
13854
13855 @return JSON array value
13856
13857 @complexity Linear in the size of @a init.
13858
13859 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
13860 changes to any JSON value.
13861
13862 @liveexample{The following code shows an example for the `array`
13863 function.,array}
13864
13865 @sa @ref basic_json(initializer_list_t, bool, value_t) --
13866 create a JSON value from an initializer list
13867 @sa @ref object(initializer_list_t) -- create a JSON object
13868 value from an initializer list
13869
13870 @since version 1.0.0
13871 */
13872 static basic_json array(initializer_list_t init = {})
13873 {
13874 return basic_json(init, false, value_t::array);
13875 }
13876
13877 /*!
13878 @brief explicitly create an object from an initializer list
13879
13880 Creates a JSON object value from a given initializer list. The initializer
13881 lists elements must be pairs, and their first elements must be strings. If
13882 the initializer list is empty, the empty object `{}` is created.
13883
13884 @note This function is only added for symmetry reasons. In contrast to the
13885 related function @ref array(initializer_list_t), there are
13886 no cases which can only be expressed by this function. That is, any
13887 initializer list @a init can also be passed to the initializer list
13888 constructor @ref basic_json(initializer_list_t, bool, value_t).
13889
13890 @param[in] init initializer list to create an object from (optional)
13891
13892 @return JSON object value
13893
13894 @throw type_error.301 if @a init is not a list of pairs whose first
13895 elements are strings. In this case, no object can be created. When such a
13896 value is passed to @ref basic_json(initializer_list_t, bool, value_t),
13897 an array would have been created from the passed initializer list @a init.
13898 See example below.
13899
13900 @complexity Linear in the size of @a init.
13901
13902 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
13903 changes to any JSON value.
13904
13905 @liveexample{The following code shows an example for the `object`
13906 function.,object}
13907
13908 @sa @ref basic_json(initializer_list_t, bool, value_t) --
13909 create a JSON value from an initializer list
13910 @sa @ref array(initializer_list_t) -- create a JSON array
13911 value from an initializer list
13912
13913 @since version 1.0.0
13914 */
13915 static basic_json object(initializer_list_t init = {})
13916 {
13917 return basic_json(init, false, value_t::object);
13918 }
13919
13920 /*!
13921 @brief construct an array with count copies of given value
13922
13923 Constructs a JSON array value by creating @a cnt copies of a passed value.
13924 In case @a cnt is `0`, an empty array is created.
13925
13926 @param[in] cnt the number of JSON copies of @a val to create
13927 @param[in] val the JSON value to copy
13928
13929 @post `std::distance(begin(),end()) == cnt` holds.
13930
13931 @complexity Linear in @a cnt.
13932
13933 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
13934 changes to any JSON value.
13935
13936 @liveexample{The following code shows examples for the @ref
13937 basic_json(size_type\, const basic_json&)
13938 constructor.,basic_json__size_type_basic_json}
13939
13940 @since version 1.0.0
13941 */
13942 basic_json(size_type cnt, const basic_json& val)
13943 : m_type(value_t::array)
13944 {
13945 m_value.array = create<array_t>(cnt, val);
13946 assert_invariant();
13947 }
13948
13949 /*!
13950 @brief construct a JSON container given an iterator range
13951
13952 Constructs the JSON value with the contents of the range `[first, last)`.
13953 The semantics depends on the different types a JSON value can have:
13954 - In case of a null type, invalid_iterator.206 is thrown.
13955 - In case of other primitive types (number, boolean, or string), @a first
13956 must be `begin()` and @a last must be `end()`. In this case, the value is
13957 copied. Otherwise, invalid_iterator.204 is thrown.
13958 - In case of structured types (array, object), the constructor behaves as
13959 similar versions for `std::vector` or `std::map`; that is, a JSON array
13960 or object is constructed from the values in the range.
13961
13962 @tparam InputIT an input iterator type (@ref iterator or @ref
13963 const_iterator)
13964
13965 @param[in] first begin of the range to copy from (included)
13966 @param[in] last end of the range to copy from (excluded)
13967
13968 @pre Iterators @a first and @a last must be initialized. **This
13969 precondition is enforced with an assertion (see warning).** If
13970 assertions are switched off, a violation of this precondition yields
13971 undefined behavior.
13972
13973 @pre Range `[first, last)` is valid. Usually, this precondition cannot be
13974 checked efficiently. Only certain edge cases are detected; see the
13975 description of the exceptions below. A violation of this precondition
13976 yields undefined behavior.
13977
13978 @warning A precondition is enforced with a runtime assertion that will
13979 result in calling `std::abort` if this precondition is not met.
13980 Assertions can be disabled by defining `NDEBUG` at compile time.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090013981 See https://en.cppreference.com/w/cpp/error/assert for more
Syoyo Fujita2e21be72017-11-05 17:13:01 +090013982 information.
13983
13984 @throw invalid_iterator.201 if iterators @a first and @a last are not
13985 compatible (i.e., do not belong to the same JSON value). In this case,
13986 the range `[first, last)` is undefined.
13987 @throw invalid_iterator.204 if iterators @a first and @a last belong to a
13988 primitive type (number, boolean, or string), but @a first does not point
13989 to the first element any more. In this case, the range `[first, last)` is
13990 undefined. See example code below.
13991 @throw invalid_iterator.206 if iterators @a first and @a last belong to a
13992 null value. In this case, the range `[first, last)` is undefined.
13993
13994 @complexity Linear in distance between @a first and @a last.
13995
13996 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
13997 changes to any JSON value.
13998
13999 @liveexample{The example below shows several ways to create JSON values by
14000 specifying a subrange with iterators.,basic_json__InputIt_InputIt}
14001
14002 @since version 1.0.0
14003 */
14004 template<class InputIT, typename std::enable_if<
14005 std::is_same<InputIT, typename basic_json_t::iterator>::value or
14006 std::is_same<InputIT, typename basic_json_t::const_iterator>::value, int>::type = 0>
14007 basic_json(InputIT first, InputIT last)
14008 {
14009 assert(first.m_object != nullptr);
14010 assert(last.m_object != nullptr);
14011
14012 // make sure iterator fits the current value
14013 if (JSON_UNLIKELY(first.m_object != last.m_object))
14014 {
14015 JSON_THROW(invalid_iterator::create(201, "iterators are not compatible"));
14016 }
14017
14018 // copy type from first iterator
14019 m_type = first.m_object->m_type;
14020
14021 // check if iterator range is complete for primitive values
14022 switch (m_type)
14023 {
14024 case value_t::boolean:
14025 case value_t::number_float:
14026 case value_t::number_integer:
14027 case value_t::number_unsigned:
14028 case value_t::string:
14029 {
14030 if (JSON_UNLIKELY(not first.m_it.primitive_iterator.is_begin()
14031 or not last.m_it.primitive_iterator.is_end()))
14032 {
14033 JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
14034 }
14035 break;
14036 }
14037
14038 default:
14039 break;
14040 }
14041
14042 switch (m_type)
14043 {
14044 case value_t::number_integer:
14045 {
14046 m_value.number_integer = first.m_object->m_value.number_integer;
14047 break;
14048 }
14049
14050 case value_t::number_unsigned:
14051 {
14052 m_value.number_unsigned = first.m_object->m_value.number_unsigned;
14053 break;
14054 }
14055
14056 case value_t::number_float:
14057 {
14058 m_value.number_float = first.m_object->m_value.number_float;
14059 break;
14060 }
14061
14062 case value_t::boolean:
14063 {
14064 m_value.boolean = first.m_object->m_value.boolean;
14065 break;
14066 }
14067
14068 case value_t::string:
14069 {
14070 m_value = *first.m_object->m_value.string;
14071 break;
14072 }
14073
14074 case value_t::object:
14075 {
14076 m_value.object = create<object_t>(first.m_it.object_iterator,
14077 last.m_it.object_iterator);
14078 break;
14079 }
14080
14081 case value_t::array:
14082 {
14083 m_value.array = create<array_t>(first.m_it.array_iterator,
14084 last.m_it.array_iterator);
14085 break;
14086 }
14087
14088 default:
14089 JSON_THROW(invalid_iterator::create(206, "cannot construct with iterators from " +
14090 std::string(first.m_object->type_name())));
14091 }
14092
14093 assert_invariant();
14094 }
14095
14096
14097 ///////////////////////////////////////
14098 // other constructors and destructor //
14099 ///////////////////////////////////////
14100
14101 /// @private
14102 basic_json(const detail::json_ref<basic_json>& ref)
14103 : basic_json(ref.moved_or_copied())
14104 {}
14105
14106 /*!
14107 @brief copy constructor
14108
14109 Creates a copy of a given JSON value.
14110
14111 @param[in] other the JSON value to copy
14112
14113 @post `*this == other`
14114
14115 @complexity Linear in the size of @a other.
14116
14117 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
14118 changes to any JSON value.
14119
14120 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014121 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014122 requirements:
14123 - The complexity is linear.
14124 - As postcondition, it holds: `other == basic_json(other)`.
14125
14126 @liveexample{The following code shows an example for the copy
14127 constructor.,basic_json__basic_json}
14128
14129 @since version 1.0.0
14130 */
14131 basic_json(const basic_json& other)
14132 : m_type(other.m_type)
14133 {
14134 // check of passed value is valid
14135 other.assert_invariant();
14136
14137 switch (m_type)
14138 {
14139 case value_t::object:
14140 {
14141 m_value = *other.m_value.object;
14142 break;
14143 }
14144
14145 case value_t::array:
14146 {
14147 m_value = *other.m_value.array;
14148 break;
14149 }
14150
14151 case value_t::string:
14152 {
14153 m_value = *other.m_value.string;
14154 break;
14155 }
14156
14157 case value_t::boolean:
14158 {
14159 m_value = other.m_value.boolean;
14160 break;
14161 }
14162
14163 case value_t::number_integer:
14164 {
14165 m_value = other.m_value.number_integer;
14166 break;
14167 }
14168
14169 case value_t::number_unsigned:
14170 {
14171 m_value = other.m_value.number_unsigned;
14172 break;
14173 }
14174
14175 case value_t::number_float:
14176 {
14177 m_value = other.m_value.number_float;
14178 break;
14179 }
14180
14181 default:
14182 break;
14183 }
14184
14185 assert_invariant();
14186 }
14187
14188 /*!
14189 @brief move constructor
14190
14191 Move constructor. Constructs a JSON value with the contents of the given
14192 value @a other using move semantics. It "steals" the resources from @a
14193 other and leaves it as JSON null value.
14194
14195 @param[in,out] other value to move to this object
14196
14197 @post `*this` has the same value as @a other before the call.
14198 @post @a other is a JSON null value.
14199
14200 @complexity Constant.
14201
14202 @exceptionsafety No-throw guarantee: this constructor never throws
14203 exceptions.
14204
14205 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014206 [MoveConstructible](https://en.cppreference.com/w/cpp/named_req/MoveConstructible)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014207 requirements.
14208
14209 @liveexample{The code below shows the move constructor explicitly called
14210 via std::move.,basic_json__moveconstructor}
14211
14212 @since version 1.0.0
14213 */
14214 basic_json(basic_json&& other) noexcept
14215 : m_type(std::move(other.m_type)),
14216 m_value(std::move(other.m_value))
14217 {
14218 // check that passed value is valid
14219 other.assert_invariant();
14220
14221 // invalidate payload
14222 other.m_type = value_t::null;
14223 other.m_value = {};
14224
14225 assert_invariant();
14226 }
14227
14228 /*!
14229 @brief copy assignment
14230
14231 Copy assignment operator. Copies a JSON value via the "copy and swap"
14232 strategy: It is expressed in terms of the copy constructor, destructor,
14233 and the `swap()` member function.
14234
14235 @param[in] other value to copy from
14236
14237 @complexity Linear.
14238
14239 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014240 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014241 requirements:
14242 - The complexity is linear.
14243
14244 @liveexample{The code below shows and example for the copy assignment. It
14245 creates a copy of value `a` which is then swapped with `b`. Finally\, the
14246 copy of `a` (which is the null value after the swap) is
14247 destroyed.,basic_json__copyassignment}
14248
14249 @since version 1.0.0
14250 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014251 basic_json& operator=(basic_json other) noexcept (
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014252 std::is_nothrow_move_constructible<value_t>::value and
14253 std::is_nothrow_move_assignable<value_t>::value and
14254 std::is_nothrow_move_constructible<json_value>::value and
14255 std::is_nothrow_move_assignable<json_value>::value
14256 )
14257 {
14258 // check that passed value is valid
14259 other.assert_invariant();
14260
14261 using std::swap;
14262 swap(m_type, other.m_type);
14263 swap(m_value, other.m_value);
14264
14265 assert_invariant();
14266 return *this;
14267 }
14268
14269 /*!
14270 @brief destructor
14271
14272 Destroys the JSON value and frees all allocated memory.
14273
14274 @complexity Linear.
14275
14276 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014277 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014278 requirements:
14279 - The complexity is linear.
14280 - All stored elements are destroyed and all memory is freed.
14281
14282 @since version 1.0.0
14283 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014284 ~basic_json() noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014285 {
14286 assert_invariant();
14287 m_value.destroy(m_type);
14288 }
14289
14290 /// @}
14291
14292 public:
14293 ///////////////////////
14294 // object inspection //
14295 ///////////////////////
14296
14297 /// @name object inspection
14298 /// Functions to inspect the type of a JSON value.
14299 /// @{
14300
14301 /*!
14302 @brief serialization
14303
14304 Serialization function for JSON values. The function tries to mimic
14305 Python's `json.dumps()` function, and currently supports its @a indent
14306 and @a ensure_ascii parameters.
14307
14308 @param[in] indent If indent is nonnegative, then array elements and object
14309 members will be pretty-printed with that indent level. An indent level of
14310 `0` will only insert newlines. `-1` (the default) selects the most compact
14311 representation.
14312 @param[in] indent_char The character to use for indentation if @a indent is
14313 greater than `0`. The default is ` ` (space).
14314 @param[in] ensure_ascii If @a ensure_ascii is true, all non-ASCII characters
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014315 in the output are escaped with `\uXXXX` sequences, and the result consists
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014316 of ASCII characters only.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014317 @param[in] error_handler how to react on decoding errors; there are three
14318 possible values: `strict` (throws and exception in case a decoding error
14319 occurs; default), `replace` (replace invalid UTF-8 sequences with U+FFFD),
14320 and `ignore` (ignore invalid UTF-8 sequences during serialization).
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014321
14322 @return string containing the serialization of the JSON value
14323
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014324 @throw type_error.316 if a string stored inside the JSON value is not
14325 UTF-8 encoded
14326
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014327 @complexity Linear.
14328
14329 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
14330 changes in the JSON value.
14331
14332 @liveexample{The following example shows the effect of different @a indent\,
14333 @a indent_char\, and @a ensure_ascii parameters to the result of the
14334 serialization.,dump}
14335
14336 @see https://docs.python.org/2/library/json.html#json.dump
14337
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014338 @since version 1.0.0; indentation character @a indent_char, option
14339 @a ensure_ascii and exceptions added in version 3.0.0; error
14340 handlers added in version 3.4.0.
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014341 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014342 string_t dump(const int indent = -1,
14343 const char indent_char = ' ',
14344 const bool ensure_ascii = false,
14345 const error_handler_t error_handler = error_handler_t::strict) const
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014346 {
14347 string_t result;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014348 serializer s(detail::output_adapter<char, string_t>(result), indent_char, error_handler);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014349
14350 if (indent >= 0)
14351 {
14352 s.dump(*this, true, ensure_ascii, static_cast<unsigned int>(indent));
14353 }
14354 else
14355 {
14356 s.dump(*this, false, ensure_ascii, 0);
14357 }
14358
14359 return result;
14360 }
14361
14362 /*!
14363 @brief return the type of the JSON value (explicit)
14364
14365 Return the type of the JSON value as a value from the @ref value_t
14366 enumeration.
14367
14368 @return the type of the JSON value
14369 Value type | return value
14370 ------------------------- | -------------------------
14371 null | value_t::null
14372 boolean | value_t::boolean
14373 string | value_t::string
14374 number (integer) | value_t::number_integer
14375 number (unsigned integer) | value_t::number_unsigned
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014376 number (floating-point) | value_t::number_float
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014377 object | value_t::object
14378 array | value_t::array
14379 discarded | value_t::discarded
14380
14381 @complexity Constant.
14382
14383 @exceptionsafety No-throw guarantee: this member function never throws
14384 exceptions.
14385
14386 @liveexample{The following code exemplifies `type()` for all JSON
14387 types.,type}
14388
14389 @sa @ref operator value_t() -- return the type of the JSON value (implicit)
14390 @sa @ref type_name() -- return the type as string
14391
14392 @since version 1.0.0
14393 */
14394 constexpr value_t type() const noexcept
14395 {
14396 return m_type;
14397 }
14398
14399 /*!
14400 @brief return whether type is primitive
14401
14402 This function returns true if and only if the JSON type is primitive
14403 (string, number, boolean, or null).
14404
14405 @return `true` if type is primitive (string, number, boolean, or null),
14406 `false` otherwise.
14407
14408 @complexity Constant.
14409
14410 @exceptionsafety No-throw guarantee: this member function never throws
14411 exceptions.
14412
14413 @liveexample{The following code exemplifies `is_primitive()` for all JSON
14414 types.,is_primitive}
14415
14416 @sa @ref is_structured() -- returns whether JSON value is structured
14417 @sa @ref is_null() -- returns whether JSON value is `null`
14418 @sa @ref is_string() -- returns whether JSON value is a string
14419 @sa @ref is_boolean() -- returns whether JSON value is a boolean
14420 @sa @ref is_number() -- returns whether JSON value is a number
14421
14422 @since version 1.0.0
14423 */
14424 constexpr bool is_primitive() const noexcept
14425 {
14426 return is_null() or is_string() or is_boolean() or is_number();
14427 }
14428
14429 /*!
14430 @brief return whether type is structured
14431
14432 This function returns true if and only if the JSON type is structured
14433 (array or object).
14434
14435 @return `true` if type is structured (array or object), `false` otherwise.
14436
14437 @complexity Constant.
14438
14439 @exceptionsafety No-throw guarantee: this member function never throws
14440 exceptions.
14441
14442 @liveexample{The following code exemplifies `is_structured()` for all JSON
14443 types.,is_structured}
14444
14445 @sa @ref is_primitive() -- returns whether value is primitive
14446 @sa @ref is_array() -- returns whether value is an array
14447 @sa @ref is_object() -- returns whether value is an object
14448
14449 @since version 1.0.0
14450 */
14451 constexpr bool is_structured() const noexcept
14452 {
14453 return is_array() or is_object();
14454 }
14455
14456 /*!
14457 @brief return whether value is null
14458
14459 This function returns true if and only if the JSON value is null.
14460
14461 @return `true` if type is null, `false` otherwise.
14462
14463 @complexity Constant.
14464
14465 @exceptionsafety No-throw guarantee: this member function never throws
14466 exceptions.
14467
14468 @liveexample{The following code exemplifies `is_null()` for all JSON
14469 types.,is_null}
14470
14471 @since version 1.0.0
14472 */
14473 constexpr bool is_null() const noexcept
14474 {
14475 return (m_type == value_t::null);
14476 }
14477
14478 /*!
14479 @brief return whether value is a boolean
14480
14481 This function returns true if and only if the JSON value is a boolean.
14482
14483 @return `true` if type is boolean, `false` otherwise.
14484
14485 @complexity Constant.
14486
14487 @exceptionsafety No-throw guarantee: this member function never throws
14488 exceptions.
14489
14490 @liveexample{The following code exemplifies `is_boolean()` for all JSON
14491 types.,is_boolean}
14492
14493 @since version 1.0.0
14494 */
14495 constexpr bool is_boolean() const noexcept
14496 {
14497 return (m_type == value_t::boolean);
14498 }
14499
14500 /*!
14501 @brief return whether value is a number
14502
14503 This function returns true if and only if the JSON value is a number. This
14504 includes both integer (signed and unsigned) and floating-point values.
14505
14506 @return `true` if type is number (regardless whether integer, unsigned
14507 integer or floating-type), `false` otherwise.
14508
14509 @complexity Constant.
14510
14511 @exceptionsafety No-throw guarantee: this member function never throws
14512 exceptions.
14513
14514 @liveexample{The following code exemplifies `is_number()` for all JSON
14515 types.,is_number}
14516
14517 @sa @ref is_number_integer() -- check if value is an integer or unsigned
14518 integer number
14519 @sa @ref is_number_unsigned() -- check if value is an unsigned integer
14520 number
14521 @sa @ref is_number_float() -- check if value is a floating-point number
14522
14523 @since version 1.0.0
14524 */
14525 constexpr bool is_number() const noexcept
14526 {
14527 return is_number_integer() or is_number_float();
14528 }
14529
14530 /*!
14531 @brief return whether value is an integer number
14532
14533 This function returns true if and only if the JSON value is a signed or
14534 unsigned integer number. This excludes floating-point values.
14535
14536 @return `true` if type is an integer or unsigned integer number, `false`
14537 otherwise.
14538
14539 @complexity Constant.
14540
14541 @exceptionsafety No-throw guarantee: this member function never throws
14542 exceptions.
14543
14544 @liveexample{The following code exemplifies `is_number_integer()` for all
14545 JSON types.,is_number_integer}
14546
14547 @sa @ref is_number() -- check if value is a number
14548 @sa @ref is_number_unsigned() -- check if value is an unsigned integer
14549 number
14550 @sa @ref is_number_float() -- check if value is a floating-point number
14551
14552 @since version 1.0.0
14553 */
14554 constexpr bool is_number_integer() const noexcept
14555 {
14556 return (m_type == value_t::number_integer or m_type == value_t::number_unsigned);
14557 }
14558
14559 /*!
14560 @brief return whether value is an unsigned integer number
14561
14562 This function returns true if and only if the JSON value is an unsigned
14563 integer number. This excludes floating-point and signed integer values.
14564
14565 @return `true` if type is an unsigned integer number, `false` otherwise.
14566
14567 @complexity Constant.
14568
14569 @exceptionsafety No-throw guarantee: this member function never throws
14570 exceptions.
14571
14572 @liveexample{The following code exemplifies `is_number_unsigned()` for all
14573 JSON types.,is_number_unsigned}
14574
14575 @sa @ref is_number() -- check if value is a number
14576 @sa @ref is_number_integer() -- check if value is an integer or unsigned
14577 integer number
14578 @sa @ref is_number_float() -- check if value is a floating-point number
14579
14580 @since version 2.0.0
14581 */
14582 constexpr bool is_number_unsigned() const noexcept
14583 {
14584 return (m_type == value_t::number_unsigned);
14585 }
14586
14587 /*!
14588 @brief return whether value is a floating-point number
14589
14590 This function returns true if and only if the JSON value is a
14591 floating-point number. This excludes signed and unsigned integer values.
14592
14593 @return `true` if type is a floating-point number, `false` otherwise.
14594
14595 @complexity Constant.
14596
14597 @exceptionsafety No-throw guarantee: this member function never throws
14598 exceptions.
14599
14600 @liveexample{The following code exemplifies `is_number_float()` for all
14601 JSON types.,is_number_float}
14602
14603 @sa @ref is_number() -- check if value is number
14604 @sa @ref is_number_integer() -- check if value is an integer number
14605 @sa @ref is_number_unsigned() -- check if value is an unsigned integer
14606 number
14607
14608 @since version 1.0.0
14609 */
14610 constexpr bool is_number_float() const noexcept
14611 {
14612 return (m_type == value_t::number_float);
14613 }
14614
14615 /*!
14616 @brief return whether value is an object
14617
14618 This function returns true if and only if the JSON value is an object.
14619
14620 @return `true` if type is object, `false` otherwise.
14621
14622 @complexity Constant.
14623
14624 @exceptionsafety No-throw guarantee: this member function never throws
14625 exceptions.
14626
14627 @liveexample{The following code exemplifies `is_object()` for all JSON
14628 types.,is_object}
14629
14630 @since version 1.0.0
14631 */
14632 constexpr bool is_object() const noexcept
14633 {
14634 return (m_type == value_t::object);
14635 }
14636
14637 /*!
14638 @brief return whether value is an array
14639
14640 This function returns true if and only if the JSON value is an array.
14641
14642 @return `true` if type is array, `false` otherwise.
14643
14644 @complexity Constant.
14645
14646 @exceptionsafety No-throw guarantee: this member function never throws
14647 exceptions.
14648
14649 @liveexample{The following code exemplifies `is_array()` for all JSON
14650 types.,is_array}
14651
14652 @since version 1.0.0
14653 */
14654 constexpr bool is_array() const noexcept
14655 {
14656 return (m_type == value_t::array);
14657 }
14658
14659 /*!
14660 @brief return whether value is a string
14661
14662 This function returns true if and only if the JSON value is a string.
14663
14664 @return `true` if type is string, `false` otherwise.
14665
14666 @complexity Constant.
14667
14668 @exceptionsafety No-throw guarantee: this member function never throws
14669 exceptions.
14670
14671 @liveexample{The following code exemplifies `is_string()` for all JSON
14672 types.,is_string}
14673
14674 @since version 1.0.0
14675 */
14676 constexpr bool is_string() const noexcept
14677 {
14678 return (m_type == value_t::string);
14679 }
14680
14681 /*!
14682 @brief return whether value is discarded
14683
14684 This function returns true if and only if the JSON value was discarded
14685 during parsing with a callback function (see @ref parser_callback_t).
14686
14687 @note This function will always be `false` for JSON values after parsing.
14688 That is, discarded values can only occur during parsing, but will be
14689 removed when inside a structured value or replaced by null in other cases.
14690
14691 @return `true` if type is discarded, `false` otherwise.
14692
14693 @complexity Constant.
14694
14695 @exceptionsafety No-throw guarantee: this member function never throws
14696 exceptions.
14697
14698 @liveexample{The following code exemplifies `is_discarded()` for all JSON
14699 types.,is_discarded}
14700
14701 @since version 1.0.0
14702 */
14703 constexpr bool is_discarded() const noexcept
14704 {
14705 return (m_type == value_t::discarded);
14706 }
14707
14708 /*!
14709 @brief return the type of the JSON value (implicit)
14710
14711 Implicitly return the type of the JSON value as a value from the @ref
14712 value_t enumeration.
14713
14714 @return the type of the JSON value
14715
14716 @complexity Constant.
14717
14718 @exceptionsafety No-throw guarantee: this member function never throws
14719 exceptions.
14720
14721 @liveexample{The following code exemplifies the @ref value_t operator for
14722 all JSON types.,operator__value_t}
14723
14724 @sa @ref type() -- return the type of the JSON value (explicit)
14725 @sa @ref type_name() -- return the type as string
14726
14727 @since version 1.0.0
14728 */
14729 constexpr operator value_t() const noexcept
14730 {
14731 return m_type;
14732 }
14733
14734 /// @}
14735
14736 private:
14737 //////////////////
14738 // value access //
14739 //////////////////
14740
14741 /// get a boolean (explicit)
14742 boolean_t get_impl(boolean_t* /*unused*/) const
14743 {
14744 if (JSON_LIKELY(is_boolean()))
14745 {
14746 return m_value.boolean;
14747 }
14748
14749 JSON_THROW(type_error::create(302, "type must be boolean, but is " + std::string(type_name())));
14750 }
14751
14752 /// get a pointer to the value (object)
14753 object_t* get_impl_ptr(object_t* /*unused*/) noexcept
14754 {
14755 return is_object() ? m_value.object : nullptr;
14756 }
14757
14758 /// get a pointer to the value (object)
14759 constexpr const object_t* get_impl_ptr(const object_t* /*unused*/) const noexcept
14760 {
14761 return is_object() ? m_value.object : nullptr;
14762 }
14763
14764 /// get a pointer to the value (array)
14765 array_t* get_impl_ptr(array_t* /*unused*/) noexcept
14766 {
14767 return is_array() ? m_value.array : nullptr;
14768 }
14769
14770 /// get a pointer to the value (array)
14771 constexpr const array_t* get_impl_ptr(const array_t* /*unused*/) const noexcept
14772 {
14773 return is_array() ? m_value.array : nullptr;
14774 }
14775
14776 /// get a pointer to the value (string)
14777 string_t* get_impl_ptr(string_t* /*unused*/) noexcept
14778 {
14779 return is_string() ? m_value.string : nullptr;
14780 }
14781
14782 /// get a pointer to the value (string)
14783 constexpr const string_t* get_impl_ptr(const string_t* /*unused*/) const noexcept
14784 {
14785 return is_string() ? m_value.string : nullptr;
14786 }
14787
14788 /// get a pointer to the value (boolean)
14789 boolean_t* get_impl_ptr(boolean_t* /*unused*/) noexcept
14790 {
14791 return is_boolean() ? &m_value.boolean : nullptr;
14792 }
14793
14794 /// get a pointer to the value (boolean)
14795 constexpr const boolean_t* get_impl_ptr(const boolean_t* /*unused*/) const noexcept
14796 {
14797 return is_boolean() ? &m_value.boolean : nullptr;
14798 }
14799
14800 /// get a pointer to the value (integer number)
14801 number_integer_t* get_impl_ptr(number_integer_t* /*unused*/) noexcept
14802 {
14803 return is_number_integer() ? &m_value.number_integer : nullptr;
14804 }
14805
14806 /// get a pointer to the value (integer number)
14807 constexpr const number_integer_t* get_impl_ptr(const number_integer_t* /*unused*/) const noexcept
14808 {
14809 return is_number_integer() ? &m_value.number_integer : nullptr;
14810 }
14811
14812 /// get a pointer to the value (unsigned number)
14813 number_unsigned_t* get_impl_ptr(number_unsigned_t* /*unused*/) noexcept
14814 {
14815 return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
14816 }
14817
14818 /// get a pointer to the value (unsigned number)
14819 constexpr const number_unsigned_t* get_impl_ptr(const number_unsigned_t* /*unused*/) const noexcept
14820 {
14821 return is_number_unsigned() ? &m_value.number_unsigned : nullptr;
14822 }
14823
14824 /// get a pointer to the value (floating-point number)
14825 number_float_t* get_impl_ptr(number_float_t* /*unused*/) noexcept
14826 {
14827 return is_number_float() ? &m_value.number_float : nullptr;
14828 }
14829
14830 /// get a pointer to the value (floating-point number)
14831 constexpr const number_float_t* get_impl_ptr(const number_float_t* /*unused*/) const noexcept
14832 {
14833 return is_number_float() ? &m_value.number_float : nullptr;
14834 }
14835
14836 /*!
14837 @brief helper function to implement get_ref()
14838
14839 This function helps to implement get_ref() without code duplication for
14840 const and non-const overloads
14841
14842 @tparam ThisType will be deduced as `basic_json` or `const basic_json`
14843
14844 @throw type_error.303 if ReferenceType does not match underlying value
14845 type of the current JSON
14846 */
14847 template<typename ReferenceType, typename ThisType>
14848 static ReferenceType get_ref_impl(ThisType& obj)
14849 {
14850 // delegate the call to get_ptr<>()
14851 auto ptr = obj.template get_ptr<typename std::add_pointer<ReferenceType>::type>();
14852
14853 if (JSON_LIKELY(ptr != nullptr))
14854 {
14855 return *ptr;
14856 }
14857
14858 JSON_THROW(type_error::create(303, "incompatible ReferenceType for get_ref, actual type is " + std::string(obj.type_name())));
14859 }
14860
14861 public:
14862 /// @name value access
14863 /// Direct access to the stored value of a JSON value.
14864 /// @{
14865
14866 /*!
14867 @brief get special-case overload
14868
14869 This overloads avoids a lot of template boilerplate, it can be seen as the
14870 identity method
14871
14872 @tparam BasicJsonType == @ref basic_json
14873
14874 @return a copy of *this
14875
14876 @complexity Constant.
14877
14878 @since version 2.1.0
14879 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014880 template<typename BasicJsonType, detail::enable_if_t<
14881 std::is_same<typename std::remove_const<BasicJsonType>::type, basic_json_t>::value,
14882 int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014883 basic_json get() const
14884 {
14885 return *this;
14886 }
14887
14888 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014889 @brief get special-case overload
14890
14891 This overloads converts the current @ref basic_json in a different
14892 @ref basic_json type
14893
14894 @tparam BasicJsonType == @ref basic_json
14895
14896 @return a copy of *this, converted into @tparam BasicJsonType
14897
14898 @complexity Depending on the implementation of the called `from_json()`
14899 method.
14900
14901 @since version 3.2.0
14902 */
14903 template<typename BasicJsonType, detail::enable_if_t<
14904 not std::is_same<BasicJsonType, basic_json>::value and
14905 detail::is_basic_json<BasicJsonType>::value, int> = 0>
14906 BasicJsonType get() const
14907 {
14908 return *this;
14909 }
14910
14911 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014912 @brief get a value (explicit)
14913
14914 Explicit type conversion between the JSON value and a compatible value
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014915 which is [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
14916 and [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014917 The value is converted by calling the @ref json_serializer<ValueType>
14918 `from_json()` method.
14919
14920 The function is equivalent to executing
14921 @code {.cpp}
14922 ValueType ret;
14923 JSONSerializer<ValueType>::from_json(*this, ret);
14924 return ret;
14925 @endcode
14926
14927 This overloads is chosen if:
14928 - @a ValueType is not @ref basic_json,
14929 - @ref json_serializer<ValueType> has a `from_json()` method of the form
14930 `void from_json(const basic_json&, ValueType&)`, and
14931 - @ref json_serializer<ValueType> does not have a `from_json()` method of
14932 the form `ValueType from_json(const basic_json&)`
14933
14934 @tparam ValueTypeCV the provided value type
14935 @tparam ValueType the returned value type
14936
14937 @return copy of the JSON value, converted to @a ValueType
14938
14939 @throw what @ref json_serializer<ValueType> `from_json()` method throws
14940
14941 @liveexample{The example below shows several conversions from JSON values
14942 to other types. There a few things to note: (1) Floating-point numbers can
14943 be converted to integers\, (2) A JSON array can be converted to a standard
14944 `std::vector<short>`\, (3) A JSON object can be converted to C++
14945 associative containers such as `std::unordered_map<std::string\,
14946 json>`.,get__ValueType_const}
14947
14948 @since version 2.1.0
14949 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014950 template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
14951 detail::enable_if_t <
14952 not detail::is_basic_json<ValueType>::value and
14953 detail::has_from_json<basic_json_t, ValueType>::value and
14954 not detail::has_non_default_from_json<basic_json_t, ValueType>::value,
14955 int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014956 ValueType get() const noexcept(noexcept(
14957 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), std::declval<ValueType&>())))
14958 {
14959 // we cannot static_assert on ValueTypeCV being non-const, because
14960 // there is support for get<const basic_json_t>(), which is why we
14961 // still need the uncvref
14962 static_assert(not std::is_reference<ValueTypeCV>::value,
14963 "get() cannot be used with reference types, you might want to use get_ref()");
14964 static_assert(std::is_default_constructible<ValueType>::value,
14965 "types must be DefaultConstructible when used with get()");
14966
14967 ValueType ret;
14968 JSONSerializer<ValueType>::from_json(*this, ret);
14969 return ret;
14970 }
14971
14972 /*!
14973 @brief get a value (explicit); special case
14974
14975 Explicit type conversion between the JSON value and a compatible value
Syoyo Fujitac0d02512019-02-04 16:19:13 +090014976 which is **not** [CopyConstructible](https://en.cppreference.com/w/cpp/named_req/CopyConstructible)
14977 and **not** [DefaultConstructible](https://en.cppreference.com/w/cpp/named_req/DefaultConstructible).
Syoyo Fujita2e21be72017-11-05 17:13:01 +090014978 The value is converted by calling the @ref json_serializer<ValueType>
14979 `from_json()` method.
14980
14981 The function is equivalent to executing
14982 @code {.cpp}
14983 return JSONSerializer<ValueTypeCV>::from_json(*this);
14984 @endcode
14985
14986 This overloads is chosen if:
14987 - @a ValueType is not @ref basic_json and
14988 - @ref json_serializer<ValueType> has a `from_json()` method of the form
14989 `ValueType from_json(const basic_json&)`
14990
14991 @note If @ref json_serializer<ValueType> has both overloads of
14992 `from_json()`, this one is chosen.
14993
14994 @tparam ValueTypeCV the provided value type
14995 @tparam ValueType the returned value type
14996
14997 @return copy of the JSON value, converted to @a ValueType
14998
14999 @throw what @ref json_serializer<ValueType> `from_json()` method throws
15000
15001 @since version 2.1.0
15002 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015003 template<typename ValueTypeCV, typename ValueType = detail::uncvref_t<ValueTypeCV>,
15004 detail::enable_if_t<not std::is_same<basic_json_t, ValueType>::value and
15005 detail::has_non_default_from_json<basic_json_t, ValueType>::value,
15006 int> = 0>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015007 ValueType get() const noexcept(noexcept(
15008 JSONSerializer<ValueTypeCV>::from_json(std::declval<const basic_json_t&>())))
15009 {
15010 static_assert(not std::is_reference<ValueTypeCV>::value,
15011 "get() cannot be used with reference types, you might want to use get_ref()");
15012 return JSONSerializer<ValueTypeCV>::from_json(*this);
15013 }
15014
15015 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015016 @brief get a value (explicit)
15017
15018 Explicit type conversion between the JSON value and a compatible value.
15019 The value is filled into the input parameter by calling the @ref json_serializer<ValueType>
15020 `from_json()` method.
15021
15022 The function is equivalent to executing
15023 @code {.cpp}
15024 ValueType v;
15025 JSONSerializer<ValueType>::from_json(*this, v);
15026 @endcode
15027
15028 This overloads is chosen if:
15029 - @a ValueType is not @ref basic_json,
15030 - @ref json_serializer<ValueType> has a `from_json()` method of the form
15031 `void from_json(const basic_json&, ValueType&)`, and
15032
15033 @tparam ValueType the input parameter type.
15034
15035 @return the input parameter, allowing chaining calls.
15036
15037 @throw what @ref json_serializer<ValueType> `from_json()` method throws
15038
15039 @liveexample{The example below shows several conversions from JSON values
15040 to other types. There a few things to note: (1) Floating-point numbers can
15041 be converted to integers\, (2) A JSON array can be converted to a standard
15042 `std::vector<short>`\, (3) A JSON object can be converted to C++
15043 associative containers such as `std::unordered_map<std::string\,
15044 json>`.,get_to}
15045
15046 @since version 3.3.0
15047 */
15048 template<typename ValueType,
15049 detail::enable_if_t <
15050 not detail::is_basic_json<ValueType>::value and
15051 detail::has_from_json<basic_json_t, ValueType>::value,
15052 int> = 0>
15053 ValueType & get_to(ValueType& v) const noexcept(noexcept(
15054 JSONSerializer<ValueType>::from_json(std::declval<const basic_json_t&>(), v)))
15055 {
15056 JSONSerializer<ValueType>::from_json(*this, v);
15057 return v;
15058 }
15059
15060
15061 /*!
15062 @brief get a pointer value (implicit)
15063
15064 Implicit pointer access to the internally stored JSON value. No copies are
15065 made.
15066
15067 @warning Writing data to the pointee of the result yields an undefined
15068 state.
15069
15070 @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
15071 object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
15072 @ref number_unsigned_t, or @ref number_float_t. Enforced by a static
15073 assertion.
15074
15075 @return pointer to the internally stored JSON value if the requested
15076 pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
15077
15078 @complexity Constant.
15079
15080 @liveexample{The example below shows how pointers to internal values of a
15081 JSON value can be requested. Note that no type conversions are made and a
15082 `nullptr` is returned if the value and the requested pointer type does not
15083 match.,get_ptr}
15084
15085 @since version 1.0.0
15086 */
15087 template<typename PointerType, typename std::enable_if<
15088 std::is_pointer<PointerType>::value, int>::type = 0>
15089 auto get_ptr() noexcept -> decltype(std::declval<basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
15090 {
15091 // delegate the call to get_impl_ptr<>()
15092 return get_impl_ptr(static_cast<PointerType>(nullptr));
15093 }
15094
15095 /*!
15096 @brief get a pointer value (implicit)
15097 @copydoc get_ptr()
15098 */
15099 template<typename PointerType, typename std::enable_if<
15100 std::is_pointer<PointerType>::value and
15101 std::is_const<typename std::remove_pointer<PointerType>::type>::value, int>::type = 0>
15102 constexpr auto get_ptr() const noexcept -> decltype(std::declval<const basic_json_t&>().get_impl_ptr(std::declval<PointerType>()))
15103 {
15104 // delegate the call to get_impl_ptr<>() const
15105 return get_impl_ptr(static_cast<PointerType>(nullptr));
15106 }
15107
15108 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015109 @brief get a pointer value (explicit)
15110
15111 Explicit pointer access to the internally stored JSON value. No copies are
15112 made.
15113
15114 @warning The pointer becomes invalid if the underlying JSON object
15115 changes.
15116
15117 @tparam PointerType pointer type; must be a pointer to @ref array_t, @ref
15118 object_t, @ref string_t, @ref boolean_t, @ref number_integer_t,
15119 @ref number_unsigned_t, or @ref number_float_t.
15120
15121 @return pointer to the internally stored JSON value if the requested
15122 pointer type @a PointerType fits to the JSON value; `nullptr` otherwise
15123
15124 @complexity Constant.
15125
15126 @liveexample{The example below shows how pointers to internal values of a
15127 JSON value can be requested. Note that no type conversions are made and a
15128 `nullptr` is returned if the value and the requested pointer type does not
15129 match.,get__PointerType}
15130
15131 @sa @ref get_ptr() for explicit pointer-member access
15132
15133 @since version 1.0.0
15134 */
15135 template<typename PointerType, typename std::enable_if<
15136 std::is_pointer<PointerType>::value, int>::type = 0>
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015137 auto get() noexcept -> decltype(std::declval<basic_json_t&>().template get_ptr<PointerType>())
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015138 {
15139 // delegate the call to get_ptr
15140 return get_ptr<PointerType>();
15141 }
15142
15143 /*!
15144 @brief get a pointer value (explicit)
15145 @copydoc get()
15146 */
15147 template<typename PointerType, typename std::enable_if<
15148 std::is_pointer<PointerType>::value, int>::type = 0>
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015149 constexpr auto get() const noexcept -> decltype(std::declval<const basic_json_t&>().template get_ptr<PointerType>())
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015150 {
15151 // delegate the call to get_ptr
15152 return get_ptr<PointerType>();
15153 }
15154
15155 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015156 @brief get a reference value (implicit)
15157
15158 Implicit reference access to the internally stored JSON value. No copies
15159 are made.
15160
15161 @warning Writing data to the referee of the result yields an undefined
15162 state.
15163
15164 @tparam ReferenceType reference type; must be a reference to @ref array_t,
15165 @ref object_t, @ref string_t, @ref boolean_t, @ref number_integer_t, or
15166 @ref number_float_t. Enforced by static assertion.
15167
15168 @return reference to the internally stored JSON value if the requested
15169 reference type @a ReferenceType fits to the JSON value; throws
15170 type_error.303 otherwise
15171
15172 @throw type_error.303 in case passed type @a ReferenceType is incompatible
15173 with the stored JSON value; see example below
15174
15175 @complexity Constant.
15176
15177 @liveexample{The example shows several calls to `get_ref()`.,get_ref}
15178
15179 @since version 1.1.0
15180 */
15181 template<typename ReferenceType, typename std::enable_if<
15182 std::is_reference<ReferenceType>::value, int>::type = 0>
15183 ReferenceType get_ref()
15184 {
15185 // delegate call to get_ref_impl
15186 return get_ref_impl<ReferenceType>(*this);
15187 }
15188
15189 /*!
15190 @brief get a reference value (implicit)
15191 @copydoc get_ref()
15192 */
15193 template<typename ReferenceType, typename std::enable_if<
15194 std::is_reference<ReferenceType>::value and
15195 std::is_const<typename std::remove_reference<ReferenceType>::type>::value, int>::type = 0>
15196 ReferenceType get_ref() const
15197 {
15198 // delegate call to get_ref_impl
15199 return get_ref_impl<ReferenceType>(*this);
15200 }
15201
15202 /*!
15203 @brief get a value (implicit)
15204
15205 Implicit type conversion between the JSON value and a compatible value.
15206 The call is realized by calling @ref get() const.
15207
15208 @tparam ValueType non-pointer type compatible to the JSON value, for
15209 instance `int` for JSON integer numbers, `bool` for JSON booleans, or
15210 `std::vector` types for JSON arrays. The character type of @ref string_t
15211 as well as an initializer list of this type is excluded to avoid
15212 ambiguities as these types implicitly convert to `std::string`.
15213
15214 @return copy of the JSON value, converted to type @a ValueType
15215
15216 @throw type_error.302 in case passed type @a ValueType is incompatible
15217 to the JSON value type (e.g., the JSON value is of type boolean, but a
15218 string is requested); see example below
15219
15220 @complexity Linear in the size of the JSON value.
15221
15222 @liveexample{The example below shows several conversions from JSON values
15223 to other types. There a few things to note: (1) Floating-point numbers can
15224 be converted to integers\, (2) A JSON array can be converted to a standard
15225 `std::vector<short>`\, (3) A JSON object can be converted to C++
15226 associative containers such as `std::unordered_map<std::string\,
15227 json>`.,operator__ValueType}
15228
15229 @since version 1.0.0
15230 */
15231 template < typename ValueType, typename std::enable_if <
15232 not std::is_pointer<ValueType>::value and
15233 not std::is_same<ValueType, detail::json_ref<basic_json>>::value and
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015234 not std::is_same<ValueType, typename string_t::value_type>::value and
15235 not detail::is_basic_json<ValueType>::value
15236
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015237#ifndef _MSC_VER // fix for issue #167 operator<< ambiguity under VS2015
15238 and not std::is_same<ValueType, std::initializer_list<typename string_t::value_type>>::value
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015239#if defined(JSON_HAS_CPP_17) && defined(_MSC_VER) and _MSC_VER <= 1914
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015240 and not std::is_same<ValueType, typename std::string_view>::value
15241#endif
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015242#endif
15243 and detail::is_detected<detail::get_template_function, const basic_json_t&, ValueType>::value
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015244 , int >::type = 0 >
15245 operator ValueType() const
15246 {
15247 // delegate the call to get<>() const
15248 return get<ValueType>();
15249 }
15250
15251 /// @}
15252
15253
15254 ////////////////////
15255 // element access //
15256 ////////////////////
15257
15258 /// @name element access
15259 /// Access to the JSON value.
15260 /// @{
15261
15262 /*!
15263 @brief access specified array element with bounds checking
15264
15265 Returns a reference to the element at specified location @a idx, with
15266 bounds checking.
15267
15268 @param[in] idx index of the element to access
15269
15270 @return reference to the element at index @a idx
15271
15272 @throw type_error.304 if the JSON value is not an array; in this case,
15273 calling `at` with an index makes no sense. See example below.
15274 @throw out_of_range.401 if the index @a idx is out of range of the array;
15275 that is, `idx >= size()`. See example below.
15276
15277 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15278 changes in the JSON value.
15279
15280 @complexity Constant.
15281
15282 @since version 1.0.0
15283
15284 @liveexample{The example below shows how array elements can be read and
15285 written using `at()`. It also demonstrates the different exceptions that
15286 can be thrown.,at__size_type}
15287 */
15288 reference at(size_type idx)
15289 {
15290 // at only works for arrays
15291 if (JSON_LIKELY(is_array()))
15292 {
15293 JSON_TRY
15294 {
15295 return m_value.array->at(idx);
15296 }
15297 JSON_CATCH (std::out_of_range&)
15298 {
15299 // create better exception explanation
15300 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
15301 }
15302 }
15303 else
15304 {
15305 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
15306 }
15307 }
15308
15309 /*!
15310 @brief access specified array element with bounds checking
15311
15312 Returns a const reference to the element at specified location @a idx,
15313 with bounds checking.
15314
15315 @param[in] idx index of the element to access
15316
15317 @return const reference to the element at index @a idx
15318
15319 @throw type_error.304 if the JSON value is not an array; in this case,
15320 calling `at` with an index makes no sense. See example below.
15321 @throw out_of_range.401 if the index @a idx is out of range of the array;
15322 that is, `idx >= size()`. See example below.
15323
15324 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15325 changes in the JSON value.
15326
15327 @complexity Constant.
15328
15329 @since version 1.0.0
15330
15331 @liveexample{The example below shows how array elements can be read using
15332 `at()`. It also demonstrates the different exceptions that can be thrown.,
15333 at__size_type_const}
15334 */
15335 const_reference at(size_type idx) const
15336 {
15337 // at only works for arrays
15338 if (JSON_LIKELY(is_array()))
15339 {
15340 JSON_TRY
15341 {
15342 return m_value.array->at(idx);
15343 }
15344 JSON_CATCH (std::out_of_range&)
15345 {
15346 // create better exception explanation
15347 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
15348 }
15349 }
15350 else
15351 {
15352 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
15353 }
15354 }
15355
15356 /*!
15357 @brief access specified object element with bounds checking
15358
15359 Returns a reference to the element at with specified key @a key, with
15360 bounds checking.
15361
15362 @param[in] key key of the element to access
15363
15364 @return reference to the element at key @a key
15365
15366 @throw type_error.304 if the JSON value is not an object; in this case,
15367 calling `at` with a key makes no sense. See example below.
15368 @throw out_of_range.403 if the key @a key is is not stored in the object;
15369 that is, `find(key) == end()`. See example below.
15370
15371 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15372 changes in the JSON value.
15373
15374 @complexity Logarithmic in the size of the container.
15375
15376 @sa @ref operator[](const typename object_t::key_type&) for unchecked
15377 access by reference
15378 @sa @ref value() for access by value with a default value
15379
15380 @since version 1.0.0
15381
15382 @liveexample{The example below shows how object elements can be read and
15383 written using `at()`. It also demonstrates the different exceptions that
15384 can be thrown.,at__object_t_key_type}
15385 */
15386 reference at(const typename object_t::key_type& key)
15387 {
15388 // at only works for objects
15389 if (JSON_LIKELY(is_object()))
15390 {
15391 JSON_TRY
15392 {
15393 return m_value.object->at(key);
15394 }
15395 JSON_CATCH (std::out_of_range&)
15396 {
15397 // create better exception explanation
15398 JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
15399 }
15400 }
15401 else
15402 {
15403 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
15404 }
15405 }
15406
15407 /*!
15408 @brief access specified object element with bounds checking
15409
15410 Returns a const reference to the element at with specified key @a key,
15411 with bounds checking.
15412
15413 @param[in] key key of the element to access
15414
15415 @return const reference to the element at key @a key
15416
15417 @throw type_error.304 if the JSON value is not an object; in this case,
15418 calling `at` with a key makes no sense. See example below.
15419 @throw out_of_range.403 if the key @a key is is not stored in the object;
15420 that is, `find(key) == end()`. See example below.
15421
15422 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
15423 changes in the JSON value.
15424
15425 @complexity Logarithmic in the size of the container.
15426
15427 @sa @ref operator[](const typename object_t::key_type&) for unchecked
15428 access by reference
15429 @sa @ref value() for access by value with a default value
15430
15431 @since version 1.0.0
15432
15433 @liveexample{The example below shows how object elements can be read using
15434 `at()`. It also demonstrates the different exceptions that can be thrown.,
15435 at__object_t_key_type_const}
15436 */
15437 const_reference at(const typename object_t::key_type& key) const
15438 {
15439 // at only works for objects
15440 if (JSON_LIKELY(is_object()))
15441 {
15442 JSON_TRY
15443 {
15444 return m_value.object->at(key);
15445 }
15446 JSON_CATCH (std::out_of_range&)
15447 {
15448 // create better exception explanation
15449 JSON_THROW(out_of_range::create(403, "key '" + key + "' not found"));
15450 }
15451 }
15452 else
15453 {
15454 JSON_THROW(type_error::create(304, "cannot use at() with " + std::string(type_name())));
15455 }
15456 }
15457
15458 /*!
15459 @brief access specified array element
15460
15461 Returns a reference to the element at specified location @a idx.
15462
15463 @note If @a idx is beyond the range of the array (i.e., `idx >= size()`),
15464 then the array is silently filled up with `null` values to make `idx` a
15465 valid reference to the last stored element.
15466
15467 @param[in] idx index of the element to access
15468
15469 @return reference to the element at index @a idx
15470
15471 @throw type_error.305 if the JSON value is not an array or null; in that
15472 cases, using the [] operator with an index makes no sense.
15473
15474 @complexity Constant if @a idx is in the range of the array. Otherwise
15475 linear in `idx - size()`.
15476
15477 @liveexample{The example below shows how array elements can be read and
15478 written using `[]` operator. Note the addition of `null`
15479 values.,operatorarray__size_type}
15480
15481 @since version 1.0.0
15482 */
15483 reference operator[](size_type idx)
15484 {
15485 // implicitly convert null value to an empty array
15486 if (is_null())
15487 {
15488 m_type = value_t::array;
15489 m_value.array = create<array_t>();
15490 assert_invariant();
15491 }
15492
15493 // operator[] only works for arrays
15494 if (JSON_LIKELY(is_array()))
15495 {
15496 // fill up array with null values if given idx is outside range
15497 if (idx >= m_value.array->size())
15498 {
15499 m_value.array->insert(m_value.array->end(),
15500 idx - m_value.array->size() + 1,
15501 basic_json());
15502 }
15503
15504 return m_value.array->operator[](idx);
15505 }
15506
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015507 JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015508 }
15509
15510 /*!
15511 @brief access specified array element
15512
15513 Returns a const reference to the element at specified location @a idx.
15514
15515 @param[in] idx index of the element to access
15516
15517 @return const reference to the element at index @a idx
15518
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015519 @throw type_error.305 if the JSON value is not an array; in that case,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015520 using the [] operator with an index makes no sense.
15521
15522 @complexity Constant.
15523
15524 @liveexample{The example below shows how array elements can be read using
15525 the `[]` operator.,operatorarray__size_type_const}
15526
15527 @since version 1.0.0
15528 */
15529 const_reference operator[](size_type idx) const
15530 {
15531 // const operator[] only works for arrays
15532 if (JSON_LIKELY(is_array()))
15533 {
15534 return m_value.array->operator[](idx);
15535 }
15536
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015537 JSON_THROW(type_error::create(305, "cannot use operator[] with a numeric argument with " + std::string(type_name())));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015538 }
15539
15540 /*!
15541 @brief access specified object element
15542
15543 Returns a reference to the element at with specified key @a key.
15544
15545 @note If @a key is not found in the object, then it is silently added to
15546 the object and filled with a `null` value to make `key` a valid reference.
15547 In case the value was `null` before, it is converted to an object.
15548
15549 @param[in] key key of the element to access
15550
15551 @return reference to the element at key @a key
15552
15553 @throw type_error.305 if the JSON value is not an object or null; in that
15554 cases, using the [] operator with a key makes no sense.
15555
15556 @complexity Logarithmic in the size of the container.
15557
15558 @liveexample{The example below shows how object elements can be read and
15559 written using the `[]` operator.,operatorarray__key_type}
15560
15561 @sa @ref at(const typename object_t::key_type&) for access by reference
15562 with range checking
15563 @sa @ref value() for access by value with a default value
15564
15565 @since version 1.0.0
15566 */
15567 reference operator[](const typename object_t::key_type& key)
15568 {
15569 // implicitly convert null value to an empty object
15570 if (is_null())
15571 {
15572 m_type = value_t::object;
15573 m_value.object = create<object_t>();
15574 assert_invariant();
15575 }
15576
15577 // operator[] only works for objects
15578 if (JSON_LIKELY(is_object()))
15579 {
15580 return m_value.object->operator[](key);
15581 }
15582
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015583 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015584 }
15585
15586 /*!
15587 @brief read-only access specified object element
15588
15589 Returns a const reference to the element at with specified key @a key. No
15590 bounds checking is performed.
15591
15592 @warning If the element with key @a key does not exist, the behavior is
15593 undefined.
15594
15595 @param[in] key key of the element to access
15596
15597 @return const reference to the element at key @a key
15598
15599 @pre The element with key @a key must exist. **This precondition is
15600 enforced with an assertion.**
15601
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015602 @throw type_error.305 if the JSON value is not an object; in that case,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015603 using the [] operator with a key makes no sense.
15604
15605 @complexity Logarithmic in the size of the container.
15606
15607 @liveexample{The example below shows how object elements can be read using
15608 the `[]` operator.,operatorarray__key_type_const}
15609
15610 @sa @ref at(const typename object_t::key_type&) for access by reference
15611 with range checking
15612 @sa @ref value() for access by value with a default value
15613
15614 @since version 1.0.0
15615 */
15616 const_reference operator[](const typename object_t::key_type& key) const
15617 {
15618 // const operator[] only works for objects
15619 if (JSON_LIKELY(is_object()))
15620 {
15621 assert(m_value.object->find(key) != m_value.object->end());
15622 return m_value.object->find(key)->second;
15623 }
15624
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015625 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015626 }
15627
15628 /*!
15629 @brief access specified object element
15630
15631 Returns a reference to the element at with specified key @a key.
15632
15633 @note If @a key is not found in the object, then it is silently added to
15634 the object and filled with a `null` value to make `key` a valid reference.
15635 In case the value was `null` before, it is converted to an object.
15636
15637 @param[in] key key of the element to access
15638
15639 @return reference to the element at key @a key
15640
15641 @throw type_error.305 if the JSON value is not an object or null; in that
15642 cases, using the [] operator with a key makes no sense.
15643
15644 @complexity Logarithmic in the size of the container.
15645
15646 @liveexample{The example below shows how object elements can be read and
15647 written using the `[]` operator.,operatorarray__key_type}
15648
15649 @sa @ref at(const typename object_t::key_type&) for access by reference
15650 with range checking
15651 @sa @ref value() for access by value with a default value
15652
15653 @since version 1.1.0
15654 */
15655 template<typename T>
15656 reference operator[](T* key)
15657 {
15658 // implicitly convert null to object
15659 if (is_null())
15660 {
15661 m_type = value_t::object;
15662 m_value = value_t::object;
15663 assert_invariant();
15664 }
15665
15666 // at only works for objects
15667 if (JSON_LIKELY(is_object()))
15668 {
15669 return m_value.object->operator[](key);
15670 }
15671
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015672 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015673 }
15674
15675 /*!
15676 @brief read-only access specified object element
15677
15678 Returns a const reference to the element at with specified key @a key. No
15679 bounds checking is performed.
15680
15681 @warning If the element with key @a key does not exist, the behavior is
15682 undefined.
15683
15684 @param[in] key key of the element to access
15685
15686 @return const reference to the element at key @a key
15687
15688 @pre The element with key @a key must exist. **This precondition is
15689 enforced with an assertion.**
15690
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015691 @throw type_error.305 if the JSON value is not an object; in that case,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015692 using the [] operator with a key makes no sense.
15693
15694 @complexity Logarithmic in the size of the container.
15695
15696 @liveexample{The example below shows how object elements can be read using
15697 the `[]` operator.,operatorarray__key_type_const}
15698
15699 @sa @ref at(const typename object_t::key_type&) for access by reference
15700 with range checking
15701 @sa @ref value() for access by value with a default value
15702
15703 @since version 1.1.0
15704 */
15705 template<typename T>
15706 const_reference operator[](T* key) const
15707 {
15708 // at only works for objects
15709 if (JSON_LIKELY(is_object()))
15710 {
15711 assert(m_value.object->find(key) != m_value.object->end());
15712 return m_value.object->find(key)->second;
15713 }
15714
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015715 JSON_THROW(type_error::create(305, "cannot use operator[] with a string argument with " + std::string(type_name())));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015716 }
15717
15718 /*!
15719 @brief access specified object element with default value
15720
15721 Returns either a copy of an object's element at the specified key @a key
15722 or a given default value if no element with key @a key exists.
15723
15724 The function is basically equivalent to executing
15725 @code {.cpp}
15726 try {
15727 return at(key);
15728 } catch(out_of_range) {
15729 return default_value;
15730 }
15731 @endcode
15732
15733 @note Unlike @ref at(const typename object_t::key_type&), this function
15734 does not throw if the given key @a key was not found.
15735
15736 @note Unlike @ref operator[](const typename object_t::key_type& key), this
15737 function does not implicitly add an element to the position defined by @a
15738 key. This function is furthermore also applicable to const objects.
15739
15740 @param[in] key key of the element to access
15741 @param[in] default_value the value to return if @a key is not found
15742
15743 @tparam ValueType type compatible to JSON values, for instance `int` for
15744 JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
15745 JSON arrays. Note the type of the expected value at @a key and the default
15746 value @a default_value must be compatible.
15747
15748 @return copy of the element at key @a key or @a default_value if @a key
15749 is not found
15750
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015751 @throw type_error.306 if the JSON value is not an object; in that case,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015752 using `value()` with a key makes no sense.
15753
15754 @complexity Logarithmic in the size of the container.
15755
15756 @liveexample{The example below shows how object elements can be queried
15757 with a default value.,basic_json__value}
15758
15759 @sa @ref at(const typename object_t::key_type&) for access by reference
15760 with range checking
15761 @sa @ref operator[](const typename object_t::key_type&) for unchecked
15762 access by reference
15763
15764 @since version 1.0.0
15765 */
15766 template<class ValueType, typename std::enable_if<
15767 std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
15768 ValueType value(const typename object_t::key_type& key, const ValueType& default_value) const
15769 {
15770 // at only works for objects
15771 if (JSON_LIKELY(is_object()))
15772 {
15773 // if key is found, return value and given default value otherwise
15774 const auto it = find(key);
15775 if (it != end())
15776 {
15777 return *it;
15778 }
15779
15780 return default_value;
15781 }
15782
15783 JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
15784 }
15785
15786 /*!
15787 @brief overload for a default value of type const char*
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015788 @copydoc basic_json::value(const typename object_t::key_type&, const ValueType&) const
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015789 */
15790 string_t value(const typename object_t::key_type& key, const char* default_value) const
15791 {
15792 return value(key, string_t(default_value));
15793 }
15794
15795 /*!
15796 @brief access specified object element via JSON Pointer with default value
15797
15798 Returns either a copy of an object's element at the specified key @a key
15799 or a given default value if no element with key @a key exists.
15800
15801 The function is basically equivalent to executing
15802 @code {.cpp}
15803 try {
15804 return at(ptr);
15805 } catch(out_of_range) {
15806 return default_value;
15807 }
15808 @endcode
15809
15810 @note Unlike @ref at(const json_pointer&), this function does not throw
15811 if the given key @a key was not found.
15812
15813 @param[in] ptr a JSON pointer to the element to access
15814 @param[in] default_value the value to return if @a ptr found no value
15815
15816 @tparam ValueType type compatible to JSON values, for instance `int` for
15817 JSON integer numbers, `bool` for JSON booleans, or `std::vector` types for
15818 JSON arrays. Note the type of the expected value at @a key and the default
15819 value @a default_value must be compatible.
15820
15821 @return copy of the element at key @a key or @a default_value if @a key
15822 is not found
15823
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015824 @throw type_error.306 if the JSON value is not an object; in that case,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015825 using `value()` with a key makes no sense.
15826
15827 @complexity Logarithmic in the size of the container.
15828
15829 @liveexample{The example below shows how object elements can be queried
15830 with a default value.,basic_json__value_ptr}
15831
15832 @sa @ref operator[](const json_pointer&) for unchecked access by reference
15833
15834 @since version 2.0.2
15835 */
15836 template<class ValueType, typename std::enable_if<
15837 std::is_convertible<basic_json_t, ValueType>::value, int>::type = 0>
15838 ValueType value(const json_pointer& ptr, const ValueType& default_value) const
15839 {
15840 // at only works for objects
15841 if (JSON_LIKELY(is_object()))
15842 {
15843 // if pointer resolves a value, return it or use default value
15844 JSON_TRY
15845 {
15846 return ptr.get_checked(this);
15847 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +090015848 JSON_INTERNAL_CATCH (out_of_range&)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090015849 {
15850 return default_value;
15851 }
15852 }
15853
15854 JSON_THROW(type_error::create(306, "cannot use value() with " + std::string(type_name())));
15855 }
15856
15857 /*!
15858 @brief overload for a default value of type const char*
15859 @copydoc basic_json::value(const json_pointer&, ValueType) const
15860 */
15861 string_t value(const json_pointer& ptr, const char* default_value) const
15862 {
15863 return value(ptr, string_t(default_value));
15864 }
15865
15866 /*!
15867 @brief access the first element
15868
15869 Returns a reference to the first element in the container. For a JSON
15870 container `c`, the expression `c.front()` is equivalent to `*c.begin()`.
15871
15872 @return In case of a structured type (array or object), a reference to the
15873 first element is returned. In case of number, string, or boolean values, a
15874 reference to the value is returned.
15875
15876 @complexity Constant.
15877
15878 @pre The JSON value must not be `null` (would throw `std::out_of_range`)
15879 or an empty array or object (undefined behavior, **guarded by
15880 assertions**).
15881 @post The JSON value remains unchanged.
15882
15883 @throw invalid_iterator.214 when called on `null` value
15884
15885 @liveexample{The following code shows an example for `front()`.,front}
15886
15887 @sa @ref back() -- access the last element
15888
15889 @since version 1.0.0
15890 */
15891 reference front()
15892 {
15893 return *begin();
15894 }
15895
15896 /*!
15897 @copydoc basic_json::front()
15898 */
15899 const_reference front() const
15900 {
15901 return *cbegin();
15902 }
15903
15904 /*!
15905 @brief access the last element
15906
15907 Returns a reference to the last element in the container. For a JSON
15908 container `c`, the expression `c.back()` is equivalent to
15909 @code {.cpp}
15910 auto tmp = c.end();
15911 --tmp;
15912 return *tmp;
15913 @endcode
15914
15915 @return In case of a structured type (array or object), a reference to the
15916 last element is returned. In case of number, string, or boolean values, a
15917 reference to the value is returned.
15918
15919 @complexity Constant.
15920
15921 @pre The JSON value must not be `null` (would throw `std::out_of_range`)
15922 or an empty array or object (undefined behavior, **guarded by
15923 assertions**).
15924 @post The JSON value remains unchanged.
15925
15926 @throw invalid_iterator.214 when called on a `null` value. See example
15927 below.
15928
15929 @liveexample{The following code shows an example for `back()`.,back}
15930
15931 @sa @ref front() -- access the first element
15932
15933 @since version 1.0.0
15934 */
15935 reference back()
15936 {
15937 auto tmp = end();
15938 --tmp;
15939 return *tmp;
15940 }
15941
15942 /*!
15943 @copydoc basic_json::back()
15944 */
15945 const_reference back() const
15946 {
15947 auto tmp = cend();
15948 --tmp;
15949 return *tmp;
15950 }
15951
15952 /*!
15953 @brief remove element given an iterator
15954
15955 Removes the element specified by iterator @a pos. The iterator @a pos must
15956 be valid and dereferenceable. Thus the `end()` iterator (which is valid,
15957 but is not dereferenceable) cannot be used as a value for @a pos.
15958
15959 If called on a primitive type other than `null`, the resulting JSON value
15960 will be `null`.
15961
15962 @param[in] pos iterator to the element to remove
15963 @return Iterator following the last removed element. If the iterator @a
15964 pos refers to the last element, the `end()` iterator is returned.
15965
15966 @tparam IteratorType an @ref iterator or @ref const_iterator
15967
15968 @post Invalidates iterators and references at or after the point of the
15969 erase, including the `end()` iterator.
15970
15971 @throw type_error.307 if called on a `null` value; example: `"cannot use
15972 erase() with null"`
15973 @throw invalid_iterator.202 if called on an iterator which does not belong
15974 to the current JSON value; example: `"iterator does not fit current
15975 value"`
15976 @throw invalid_iterator.205 if called on a primitive type with invalid
15977 iterator (i.e., any iterator which is not `begin()`); example: `"iterator
15978 out of range"`
15979
15980 @complexity The complexity depends on the type:
15981 - objects: amortized constant
15982 - arrays: linear in distance between @a pos and the end of the container
15983 - strings: linear in the length of the string
15984 - other types: constant
15985
15986 @liveexample{The example shows the result of `erase()` for different JSON
15987 types.,erase__IteratorType}
15988
15989 @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
15990 the given range
15991 @sa @ref erase(const typename object_t::key_type&) -- removes the element
15992 from an object at the given key
15993 @sa @ref erase(const size_type) -- removes the element from an array at
15994 the given index
15995
15996 @since version 1.0.0
15997 */
15998 template<class IteratorType, typename std::enable_if<
15999 std::is_same<IteratorType, typename basic_json_t::iterator>::value or
16000 std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
16001 = 0>
16002 IteratorType erase(IteratorType pos)
16003 {
16004 // make sure iterator fits the current value
16005 if (JSON_UNLIKELY(this != pos.m_object))
16006 {
16007 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
16008 }
16009
16010 IteratorType result = end();
16011
16012 switch (m_type)
16013 {
16014 case value_t::boolean:
16015 case value_t::number_float:
16016 case value_t::number_integer:
16017 case value_t::number_unsigned:
16018 case value_t::string:
16019 {
16020 if (JSON_UNLIKELY(not pos.m_it.primitive_iterator.is_begin()))
16021 {
16022 JSON_THROW(invalid_iterator::create(205, "iterator out of range"));
16023 }
16024
16025 if (is_string())
16026 {
16027 AllocatorType<string_t> alloc;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016028 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
16029 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016030 m_value.string = nullptr;
16031 }
16032
16033 m_type = value_t::null;
16034 assert_invariant();
16035 break;
16036 }
16037
16038 case value_t::object:
16039 {
16040 result.m_it.object_iterator = m_value.object->erase(pos.m_it.object_iterator);
16041 break;
16042 }
16043
16044 case value_t::array:
16045 {
16046 result.m_it.array_iterator = m_value.array->erase(pos.m_it.array_iterator);
16047 break;
16048 }
16049
16050 default:
16051 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
16052 }
16053
16054 return result;
16055 }
16056
16057 /*!
16058 @brief remove elements given an iterator range
16059
16060 Removes the element specified by the range `[first; last)`. The iterator
16061 @a first does not need to be dereferenceable if `first == last`: erasing
16062 an empty range is a no-op.
16063
16064 If called on a primitive type other than `null`, the resulting JSON value
16065 will be `null`.
16066
16067 @param[in] first iterator to the beginning of the range to remove
16068 @param[in] last iterator past the end of the range to remove
16069 @return Iterator following the last removed element. If the iterator @a
16070 second refers to the last element, the `end()` iterator is returned.
16071
16072 @tparam IteratorType an @ref iterator or @ref const_iterator
16073
16074 @post Invalidates iterators and references at or after the point of the
16075 erase, including the `end()` iterator.
16076
16077 @throw type_error.307 if called on a `null` value; example: `"cannot use
16078 erase() with null"`
16079 @throw invalid_iterator.203 if called on iterators which does not belong
16080 to the current JSON value; example: `"iterators do not fit current value"`
16081 @throw invalid_iterator.204 if called on a primitive type with invalid
16082 iterators (i.e., if `first != begin()` and `last != end()`); example:
16083 `"iterators out of range"`
16084
16085 @complexity The complexity depends on the type:
16086 - objects: `log(size()) + std::distance(first, last)`
16087 - arrays: linear in the distance between @a first and @a last, plus linear
16088 in the distance between @a last and end of the container
16089 - strings: linear in the length of the string
16090 - other types: constant
16091
16092 @liveexample{The example shows the result of `erase()` for different JSON
16093 types.,erase__IteratorType_IteratorType}
16094
16095 @sa @ref erase(IteratorType) -- removes the element at a given position
16096 @sa @ref erase(const typename object_t::key_type&) -- removes the element
16097 from an object at the given key
16098 @sa @ref erase(const size_type) -- removes the element from an array at
16099 the given index
16100
16101 @since version 1.0.0
16102 */
16103 template<class IteratorType, typename std::enable_if<
16104 std::is_same<IteratorType, typename basic_json_t::iterator>::value or
16105 std::is_same<IteratorType, typename basic_json_t::const_iterator>::value, int>::type
16106 = 0>
16107 IteratorType erase(IteratorType first, IteratorType last)
16108 {
16109 // make sure iterator fits the current value
16110 if (JSON_UNLIKELY(this != first.m_object or this != last.m_object))
16111 {
16112 JSON_THROW(invalid_iterator::create(203, "iterators do not fit current value"));
16113 }
16114
16115 IteratorType result = end();
16116
16117 switch (m_type)
16118 {
16119 case value_t::boolean:
16120 case value_t::number_float:
16121 case value_t::number_integer:
16122 case value_t::number_unsigned:
16123 case value_t::string:
16124 {
16125 if (JSON_LIKELY(not first.m_it.primitive_iterator.is_begin()
16126 or not last.m_it.primitive_iterator.is_end()))
16127 {
16128 JSON_THROW(invalid_iterator::create(204, "iterators out of range"));
16129 }
16130
16131 if (is_string())
16132 {
16133 AllocatorType<string_t> alloc;
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016134 std::allocator_traits<decltype(alloc)>::destroy(alloc, m_value.string);
16135 std::allocator_traits<decltype(alloc)>::deallocate(alloc, m_value.string, 1);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016136 m_value.string = nullptr;
16137 }
16138
16139 m_type = value_t::null;
16140 assert_invariant();
16141 break;
16142 }
16143
16144 case value_t::object:
16145 {
16146 result.m_it.object_iterator = m_value.object->erase(first.m_it.object_iterator,
16147 last.m_it.object_iterator);
16148 break;
16149 }
16150
16151 case value_t::array:
16152 {
16153 result.m_it.array_iterator = m_value.array->erase(first.m_it.array_iterator,
16154 last.m_it.array_iterator);
16155 break;
16156 }
16157
16158 default:
16159 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
16160 }
16161
16162 return result;
16163 }
16164
16165 /*!
16166 @brief remove element from a JSON object given a key
16167
16168 Removes elements from a JSON object with the key value @a key.
16169
16170 @param[in] key value of the elements to remove
16171
16172 @return Number of elements removed. If @a ObjectType is the default
16173 `std::map` type, the return value will always be `0` (@a key was not
16174 found) or `1` (@a key was found).
16175
16176 @post References and iterators to the erased elements are invalidated.
16177 Other references and iterators are not affected.
16178
16179 @throw type_error.307 when called on a type other than JSON object;
16180 example: `"cannot use erase() with null"`
16181
16182 @complexity `log(size()) + count(key)`
16183
16184 @liveexample{The example shows the effect of `erase()`.,erase__key_type}
16185
16186 @sa @ref erase(IteratorType) -- removes the element at a given position
16187 @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
16188 the given range
16189 @sa @ref erase(const size_type) -- removes the element from an array at
16190 the given index
16191
16192 @since version 1.0.0
16193 */
16194 size_type erase(const typename object_t::key_type& key)
16195 {
16196 // this erase only works for objects
16197 if (JSON_LIKELY(is_object()))
16198 {
16199 return m_value.object->erase(key);
16200 }
16201
16202 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
16203 }
16204
16205 /*!
16206 @brief remove element from a JSON array given an index
16207
16208 Removes element from a JSON array at the index @a idx.
16209
16210 @param[in] idx index of the element to remove
16211
16212 @throw type_error.307 when called on a type other than JSON object;
16213 example: `"cannot use erase() with null"`
16214 @throw out_of_range.401 when `idx >= size()`; example: `"array index 17
16215 is out of range"`
16216
16217 @complexity Linear in distance between @a idx and the end of the container.
16218
16219 @liveexample{The example shows the effect of `erase()`.,erase__size_type}
16220
16221 @sa @ref erase(IteratorType) -- removes the element at a given position
16222 @sa @ref erase(IteratorType, IteratorType) -- removes the elements in
16223 the given range
16224 @sa @ref erase(const typename object_t::key_type&) -- removes the element
16225 from an object at the given key
16226
16227 @since version 1.0.0
16228 */
16229 void erase(const size_type idx)
16230 {
16231 // this erase only works for arrays
16232 if (JSON_LIKELY(is_array()))
16233 {
16234 if (JSON_UNLIKELY(idx >= size()))
16235 {
16236 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
16237 }
16238
16239 m_value.array->erase(m_value.array->begin() + static_cast<difference_type>(idx));
16240 }
16241 else
16242 {
16243 JSON_THROW(type_error::create(307, "cannot use erase() with " + std::string(type_name())));
16244 }
16245 }
16246
16247 /// @}
16248
16249
16250 ////////////
16251 // lookup //
16252 ////////////
16253
16254 /// @name lookup
16255 /// @{
16256
16257 /*!
16258 @brief find an element in a JSON object
16259
16260 Finds an element in a JSON object with key equivalent to @a key. If the
16261 element is not found or the JSON value is not an object, end() is
16262 returned.
16263
16264 @note This method always returns @ref end() when executed on a JSON type
16265 that is not an object.
16266
16267 @param[in] key key value of the element to search for.
16268
16269 @return Iterator to an element with key equivalent to @a key. If no such
16270 element is found or the JSON value is not an object, past-the-end (see
16271 @ref end()) iterator is returned.
16272
16273 @complexity Logarithmic in the size of the JSON object.
16274
16275 @liveexample{The example shows how `find()` is used.,find__key_type}
16276
16277 @since version 1.0.0
16278 */
16279 template<typename KeyT>
16280 iterator find(KeyT&& key)
16281 {
16282 auto result = end();
16283
16284 if (is_object())
16285 {
16286 result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
16287 }
16288
16289 return result;
16290 }
16291
16292 /*!
16293 @brief find an element in a JSON object
16294 @copydoc find(KeyT&&)
16295 */
16296 template<typename KeyT>
16297 const_iterator find(KeyT&& key) const
16298 {
16299 auto result = cend();
16300
16301 if (is_object())
16302 {
16303 result.m_it.object_iterator = m_value.object->find(std::forward<KeyT>(key));
16304 }
16305
16306 return result;
16307 }
16308
16309 /*!
16310 @brief returns the number of occurrences of a key in a JSON object
16311
16312 Returns the number of elements with key @a key. If ObjectType is the
16313 default `std::map` type, the return value will always be `0` (@a key was
16314 not found) or `1` (@a key was found).
16315
16316 @note This method always returns `0` when executed on a JSON type that is
16317 not an object.
16318
16319 @param[in] key key value of the element to count
16320
16321 @return Number of elements with key @a key. If the JSON value is not an
16322 object, the return value will be `0`.
16323
16324 @complexity Logarithmic in the size of the JSON object.
16325
16326 @liveexample{The example shows how `count()` is used.,count}
16327
16328 @since version 1.0.0
16329 */
16330 template<typename KeyT>
16331 size_type count(KeyT&& key) const
16332 {
16333 // return 0 for all nonobject types
16334 return is_object() ? m_value.object->count(std::forward<KeyT>(key)) : 0;
16335 }
16336
16337 /// @}
16338
16339
16340 ///////////////
16341 // iterators //
16342 ///////////////
16343
16344 /// @name iterators
16345 /// @{
16346
16347 /*!
16348 @brief returns an iterator to the first element
16349
16350 Returns an iterator to the first element.
16351
16352 @image html range-begin-end.svg "Illustration from cppreference.com"
16353
16354 @return iterator to the first element
16355
16356 @complexity Constant.
16357
16358 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016359 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016360 requirements:
16361 - The complexity is constant.
16362
16363 @liveexample{The following code shows an example for `begin()`.,begin}
16364
16365 @sa @ref cbegin() -- returns a const iterator to the beginning
16366 @sa @ref end() -- returns an iterator to the end
16367 @sa @ref cend() -- returns a const iterator to the end
16368
16369 @since version 1.0.0
16370 */
16371 iterator begin() noexcept
16372 {
16373 iterator result(this);
16374 result.set_begin();
16375 return result;
16376 }
16377
16378 /*!
16379 @copydoc basic_json::cbegin()
16380 */
16381 const_iterator begin() const noexcept
16382 {
16383 return cbegin();
16384 }
16385
16386 /*!
16387 @brief returns a const iterator to the first element
16388
16389 Returns a const iterator to the first element.
16390
16391 @image html range-begin-end.svg "Illustration from cppreference.com"
16392
16393 @return const iterator to the first element
16394
16395 @complexity Constant.
16396
16397 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016398 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016399 requirements:
16400 - The complexity is constant.
16401 - Has the semantics of `const_cast<const basic_json&>(*this).begin()`.
16402
16403 @liveexample{The following code shows an example for `cbegin()`.,cbegin}
16404
16405 @sa @ref begin() -- returns an iterator to the beginning
16406 @sa @ref end() -- returns an iterator to the end
16407 @sa @ref cend() -- returns a const iterator to the end
16408
16409 @since version 1.0.0
16410 */
16411 const_iterator cbegin() const noexcept
16412 {
16413 const_iterator result(this);
16414 result.set_begin();
16415 return result;
16416 }
16417
16418 /*!
16419 @brief returns an iterator to one past the last element
16420
16421 Returns an iterator to one past the last element.
16422
16423 @image html range-begin-end.svg "Illustration from cppreference.com"
16424
16425 @return iterator one past the last element
16426
16427 @complexity Constant.
16428
16429 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016430 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016431 requirements:
16432 - The complexity is constant.
16433
16434 @liveexample{The following code shows an example for `end()`.,end}
16435
16436 @sa @ref cend() -- returns a const iterator to the end
16437 @sa @ref begin() -- returns an iterator to the beginning
16438 @sa @ref cbegin() -- returns a const iterator to the beginning
16439
16440 @since version 1.0.0
16441 */
16442 iterator end() noexcept
16443 {
16444 iterator result(this);
16445 result.set_end();
16446 return result;
16447 }
16448
16449 /*!
16450 @copydoc basic_json::cend()
16451 */
16452 const_iterator end() const noexcept
16453 {
16454 return cend();
16455 }
16456
16457 /*!
16458 @brief returns a const iterator to one past the last element
16459
16460 Returns a const iterator to one past the last element.
16461
16462 @image html range-begin-end.svg "Illustration from cppreference.com"
16463
16464 @return const iterator one past the last element
16465
16466 @complexity Constant.
16467
16468 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016469 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016470 requirements:
16471 - The complexity is constant.
16472 - Has the semantics of `const_cast<const basic_json&>(*this).end()`.
16473
16474 @liveexample{The following code shows an example for `cend()`.,cend}
16475
16476 @sa @ref end() -- returns an iterator to the end
16477 @sa @ref begin() -- returns an iterator to the beginning
16478 @sa @ref cbegin() -- returns a const iterator to the beginning
16479
16480 @since version 1.0.0
16481 */
16482 const_iterator cend() const noexcept
16483 {
16484 const_iterator result(this);
16485 result.set_end();
16486 return result;
16487 }
16488
16489 /*!
16490 @brief returns an iterator to the reverse-beginning
16491
16492 Returns an iterator to the reverse-beginning; that is, the last element.
16493
16494 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
16495
16496 @complexity Constant.
16497
16498 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016499 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016500 requirements:
16501 - The complexity is constant.
16502 - Has the semantics of `reverse_iterator(end())`.
16503
16504 @liveexample{The following code shows an example for `rbegin()`.,rbegin}
16505
16506 @sa @ref crbegin() -- returns a const reverse iterator to the beginning
16507 @sa @ref rend() -- returns a reverse iterator to the end
16508 @sa @ref crend() -- returns a const reverse iterator to the end
16509
16510 @since version 1.0.0
16511 */
16512 reverse_iterator rbegin() noexcept
16513 {
16514 return reverse_iterator(end());
16515 }
16516
16517 /*!
16518 @copydoc basic_json::crbegin()
16519 */
16520 const_reverse_iterator rbegin() const noexcept
16521 {
16522 return crbegin();
16523 }
16524
16525 /*!
16526 @brief returns an iterator to the reverse-end
16527
16528 Returns an iterator to the reverse-end; that is, one before the first
16529 element.
16530
16531 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
16532
16533 @complexity Constant.
16534
16535 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016536 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016537 requirements:
16538 - The complexity is constant.
16539 - Has the semantics of `reverse_iterator(begin())`.
16540
16541 @liveexample{The following code shows an example for `rend()`.,rend}
16542
16543 @sa @ref crend() -- returns a const reverse iterator to the end
16544 @sa @ref rbegin() -- returns a reverse iterator to the beginning
16545 @sa @ref crbegin() -- returns a const reverse iterator to the beginning
16546
16547 @since version 1.0.0
16548 */
16549 reverse_iterator rend() noexcept
16550 {
16551 return reverse_iterator(begin());
16552 }
16553
16554 /*!
16555 @copydoc basic_json::crend()
16556 */
16557 const_reverse_iterator rend() const noexcept
16558 {
16559 return crend();
16560 }
16561
16562 /*!
16563 @brief returns a const reverse iterator to the last element
16564
16565 Returns a const iterator to the reverse-beginning; that is, the last
16566 element.
16567
16568 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
16569
16570 @complexity Constant.
16571
16572 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016573 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016574 requirements:
16575 - The complexity is constant.
16576 - Has the semantics of `const_cast<const basic_json&>(*this).rbegin()`.
16577
16578 @liveexample{The following code shows an example for `crbegin()`.,crbegin}
16579
16580 @sa @ref rbegin() -- returns a reverse iterator to the beginning
16581 @sa @ref rend() -- returns a reverse iterator to the end
16582 @sa @ref crend() -- returns a const reverse iterator to the end
16583
16584 @since version 1.0.0
16585 */
16586 const_reverse_iterator crbegin() const noexcept
16587 {
16588 return const_reverse_iterator(cend());
16589 }
16590
16591 /*!
16592 @brief returns a const reverse iterator to one before the first
16593
16594 Returns a const reverse iterator to the reverse-end; that is, one before
16595 the first element.
16596
16597 @image html range-rbegin-rend.svg "Illustration from cppreference.com"
16598
16599 @complexity Constant.
16600
16601 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016602 [ReversibleContainer](https://en.cppreference.com/w/cpp/named_req/ReversibleContainer)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016603 requirements:
16604 - The complexity is constant.
16605 - Has the semantics of `const_cast<const basic_json&>(*this).rend()`.
16606
16607 @liveexample{The following code shows an example for `crend()`.,crend}
16608
16609 @sa @ref rend() -- returns a reverse iterator to the end
16610 @sa @ref rbegin() -- returns a reverse iterator to the beginning
16611 @sa @ref crbegin() -- returns a const reverse iterator to the beginning
16612
16613 @since version 1.0.0
16614 */
16615 const_reverse_iterator crend() const noexcept
16616 {
16617 return const_reverse_iterator(cbegin());
16618 }
16619
16620 public:
16621 /*!
16622 @brief wrapper to access iterator member functions in range-based for
16623
16624 This function allows to access @ref iterator::key() and @ref
16625 iterator::value() during range-based for loops. In these loops, a
16626 reference to the JSON values is returned, so there is no access to the
16627 underlying iterator.
16628
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016629 For loop without iterator_wrapper:
16630
16631 @code{cpp}
16632 for (auto it = j_object.begin(); it != j_object.end(); ++it)
16633 {
16634 std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
16635 }
16636 @endcode
16637
16638 Range-based for loop without iterator proxy:
16639
16640 @code{cpp}
16641 for (auto it : j_object)
16642 {
16643 // "it" is of type json::reference and has no key() member
16644 std::cout << "value: " << it << '\n';
16645 }
16646 @endcode
16647
16648 Range-based for loop with iterator proxy:
16649
16650 @code{cpp}
16651 for (auto it : json::iterator_wrapper(j_object))
16652 {
16653 std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
16654 }
16655 @endcode
16656
16657 @note When iterating over an array, `key()` will return the index of the
16658 element as string (see example).
16659
16660 @param[in] ref reference to a JSON value
16661 @return iteration proxy object wrapping @a ref with an interface to use in
16662 range-based for loops
16663
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016664 @liveexample{The following code shows how the wrapper is used,iterator_wrapper}
16665
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016666 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16667 changes in the JSON value.
16668
16669 @complexity Constant.
16670
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016671 @note The name of this function is not yet final and may change in the
16672 future.
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016673
16674 @deprecated This stream operator is deprecated and will be removed in
16675 future 4.0.0 of the library. Please use @ref items() instead;
16676 that is, replace `json::iterator_wrapper(j)` with `j.items()`.
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016677 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016678 JSON_DEPRECATED
16679 static iteration_proxy<iterator> iterator_wrapper(reference ref) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016680 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016681 return ref.items();
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016682 }
16683
16684 /*!
16685 @copydoc iterator_wrapper(reference)
16686 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016687 JSON_DEPRECATED
16688 static iteration_proxy<const_iterator> iterator_wrapper(const_reference ref) noexcept
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016689 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016690 return ref.items();
16691 }
16692
16693 /*!
16694 @brief helper to access iterator member functions in range-based for
16695
16696 This function allows to access @ref iterator::key() and @ref
16697 iterator::value() during range-based for loops. In these loops, a
16698 reference to the JSON values is returned, so there is no access to the
16699 underlying iterator.
16700
16701 For loop without `items()` function:
16702
16703 @code{cpp}
16704 for (auto it = j_object.begin(); it != j_object.end(); ++it)
16705 {
16706 std::cout << "key: " << it.key() << ", value:" << it.value() << '\n';
16707 }
16708 @endcode
16709
16710 Range-based for loop without `items()` function:
16711
16712 @code{cpp}
16713 for (auto it : j_object)
16714 {
16715 // "it" is of type json::reference and has no key() member
16716 std::cout << "value: " << it << '\n';
16717 }
16718 @endcode
16719
16720 Range-based for loop with `items()` function:
16721
16722 @code{cpp}
16723 for (auto& el : j_object.items())
16724 {
16725 std::cout << "key: " << el.key() << ", value:" << el.value() << '\n';
16726 }
16727 @endcode
16728
16729 The `items()` function also allows to use
16730 [structured bindings](https://en.cppreference.com/w/cpp/language/structured_binding)
16731 (C++17):
16732
16733 @code{cpp}
16734 for (auto& [key, val] : j_object.items())
16735 {
16736 std::cout << "key: " << key << ", value:" << val << '\n';
16737 }
16738 @endcode
16739
16740 @note When iterating over an array, `key()` will return the index of the
16741 element as string (see example). For primitive types (e.g., numbers),
16742 `key()` returns an empty string.
16743
16744 @return iteration proxy object wrapping @a ref with an interface to use in
16745 range-based for loops
16746
16747 @liveexample{The following code shows how the function is used.,items}
16748
16749 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
16750 changes in the JSON value.
16751
16752 @complexity Constant.
16753
16754 @since version 3.1.0, structured bindings support since 3.5.0.
16755 */
16756 iteration_proxy<iterator> items() noexcept
16757 {
16758 return iteration_proxy<iterator>(*this);
16759 }
16760
16761 /*!
16762 @copydoc items()
16763 */
16764 iteration_proxy<const_iterator> items() const noexcept
16765 {
16766 return iteration_proxy<const_iterator>(*this);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016767 }
16768
16769 /// @}
16770
16771
16772 //////////////
16773 // capacity //
16774 //////////////
16775
16776 /// @name capacity
16777 /// @{
16778
16779 /*!
16780 @brief checks whether the container is empty.
16781
16782 Checks if a JSON value has no elements (i.e. whether its @ref size is `0`).
16783
16784 @return The return value depends on the different types and is
16785 defined as follows:
16786 Value type | return value
16787 ----------- | -------------
16788 null | `true`
16789 boolean | `false`
16790 string | `false`
16791 number | `false`
16792 object | result of function `object_t::empty()`
16793 array | result of function `array_t::empty()`
16794
16795 @liveexample{The following code uses `empty()` to check if a JSON
16796 object contains any elements.,empty}
16797
16798 @complexity Constant, as long as @ref array_t and @ref object_t satisfy
16799 the Container concept; that is, their `empty()` functions have constant
16800 complexity.
16801
16802 @iterators No changes.
16803
16804 @exceptionsafety No-throw guarantee: this function never throws exceptions.
16805
16806 @note This function does not return whether a string stored as JSON value
16807 is empty - it returns whether the JSON container itself is empty which is
16808 false in the case of a string.
16809
16810 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016811 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016812 requirements:
16813 - The complexity is constant.
16814 - Has the semantics of `begin() == end()`.
16815
16816 @sa @ref size() -- returns the number of elements
16817
16818 @since version 1.0.0
16819 */
16820 bool empty() const noexcept
16821 {
16822 switch (m_type)
16823 {
16824 case value_t::null:
16825 {
16826 // null values are empty
16827 return true;
16828 }
16829
16830 case value_t::array:
16831 {
16832 // delegate call to array_t::empty()
16833 return m_value.array->empty();
16834 }
16835
16836 case value_t::object:
16837 {
16838 // delegate call to object_t::empty()
16839 return m_value.object->empty();
16840 }
16841
16842 default:
16843 {
16844 // all other types are nonempty
16845 return false;
16846 }
16847 }
16848 }
16849
16850 /*!
16851 @brief returns the number of elements
16852
16853 Returns the number of elements in a JSON value.
16854
16855 @return The return value depends on the different types and is
16856 defined as follows:
16857 Value type | return value
16858 ----------- | -------------
16859 null | `0`
16860 boolean | `1`
16861 string | `1`
16862 number | `1`
16863 object | result of function object_t::size()
16864 array | result of function array_t::size()
16865
16866 @liveexample{The following code calls `size()` on the different value
16867 types.,size}
16868
16869 @complexity Constant, as long as @ref array_t and @ref object_t satisfy
16870 the Container concept; that is, their size() functions have constant
16871 complexity.
16872
16873 @iterators No changes.
16874
16875 @exceptionsafety No-throw guarantee: this function never throws exceptions.
16876
16877 @note This function does not return the length of a string stored as JSON
16878 value - it returns the number of elements in the JSON value which is 1 in
16879 the case of a string.
16880
16881 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016882 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016883 requirements:
16884 - The complexity is constant.
16885 - Has the semantics of `std::distance(begin(), end())`.
16886
16887 @sa @ref empty() -- checks whether the container is empty
16888 @sa @ref max_size() -- returns the maximal number of elements
16889
16890 @since version 1.0.0
16891 */
16892 size_type size() const noexcept
16893 {
16894 switch (m_type)
16895 {
16896 case value_t::null:
16897 {
16898 // null values are empty
16899 return 0;
16900 }
16901
16902 case value_t::array:
16903 {
16904 // delegate call to array_t::size()
16905 return m_value.array->size();
16906 }
16907
16908 case value_t::object:
16909 {
16910 // delegate call to object_t::size()
16911 return m_value.object->size();
16912 }
16913
16914 default:
16915 {
16916 // all other types have size 1
16917 return 1;
16918 }
16919 }
16920 }
16921
16922 /*!
16923 @brief returns the maximum possible number of elements
16924
16925 Returns the maximum number of elements a JSON value is able to hold due to
16926 system or library implementation limitations, i.e. `std::distance(begin(),
16927 end())` for the JSON value.
16928
16929 @return The return value depends on the different types and is
16930 defined as follows:
16931 Value type | return value
16932 ----------- | -------------
16933 null | `0` (same as `size()`)
16934 boolean | `1` (same as `size()`)
16935 string | `1` (same as `size()`)
16936 number | `1` (same as `size()`)
16937 object | result of function `object_t::max_size()`
16938 array | result of function `array_t::max_size()`
16939
16940 @liveexample{The following code calls `max_size()` on the different value
16941 types. Note the output is implementation specific.,max_size}
16942
16943 @complexity Constant, as long as @ref array_t and @ref object_t satisfy
16944 the Container concept; that is, their `max_size()` functions have constant
16945 complexity.
16946
16947 @iterators No changes.
16948
16949 @exceptionsafety No-throw guarantee: this function never throws exceptions.
16950
16951 @requirement This function helps `basic_json` satisfying the
Syoyo Fujitac0d02512019-02-04 16:19:13 +090016952 [Container](https://en.cppreference.com/w/cpp/named_req/Container)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090016953 requirements:
16954 - The complexity is constant.
16955 - Has the semantics of returning `b.size()` where `b` is the largest
16956 possible JSON value.
16957
16958 @sa @ref size() -- returns the number of elements
16959
16960 @since version 1.0.0
16961 */
16962 size_type max_size() const noexcept
16963 {
16964 switch (m_type)
16965 {
16966 case value_t::array:
16967 {
16968 // delegate call to array_t::max_size()
16969 return m_value.array->max_size();
16970 }
16971
16972 case value_t::object:
16973 {
16974 // delegate call to object_t::max_size()
16975 return m_value.object->max_size();
16976 }
16977
16978 default:
16979 {
16980 // all other types have max_size() == size()
16981 return size();
16982 }
16983 }
16984 }
16985
16986 /// @}
16987
16988
16989 ///////////////
16990 // modifiers //
16991 ///////////////
16992
16993 /// @name modifiers
16994 /// @{
16995
16996 /*!
16997 @brief clears the contents
16998
16999 Clears the content of a JSON value and resets it to the default value as
17000 if @ref basic_json(value_t) would have been called with the current value
17001 type from @ref type():
17002
17003 Value type | initial value
17004 ----------- | -------------
17005 null | `null`
17006 boolean | `false`
17007 string | `""`
17008 number | `0`
17009 object | `{}`
17010 array | `[]`
17011
17012 @post Has the same effect as calling
17013 @code {.cpp}
17014 *this = basic_json(type());
17015 @endcode
17016
17017 @liveexample{The example below shows the effect of `clear()` to different
17018 JSON types.,clear}
17019
17020 @complexity Linear in the size of the JSON value.
17021
17022 @iterators All iterators, pointers and references related to this container
17023 are invalidated.
17024
17025 @exceptionsafety No-throw guarantee: this function never throws exceptions.
17026
17027 @sa @ref basic_json(value_t) -- constructor that creates an object with the
17028 same value than calling `clear()`
17029
17030 @since version 1.0.0
17031 */
17032 void clear() noexcept
17033 {
17034 switch (m_type)
17035 {
17036 case value_t::number_integer:
17037 {
17038 m_value.number_integer = 0;
17039 break;
17040 }
17041
17042 case value_t::number_unsigned:
17043 {
17044 m_value.number_unsigned = 0;
17045 break;
17046 }
17047
17048 case value_t::number_float:
17049 {
17050 m_value.number_float = 0.0;
17051 break;
17052 }
17053
17054 case value_t::boolean:
17055 {
17056 m_value.boolean = false;
17057 break;
17058 }
17059
17060 case value_t::string:
17061 {
17062 m_value.string->clear();
17063 break;
17064 }
17065
17066 case value_t::array:
17067 {
17068 m_value.array->clear();
17069 break;
17070 }
17071
17072 case value_t::object:
17073 {
17074 m_value.object->clear();
17075 break;
17076 }
17077
17078 default:
17079 break;
17080 }
17081 }
17082
17083 /*!
17084 @brief add an object to an array
17085
17086 Appends the given element @a val to the end of the JSON value. If the
17087 function is called on a JSON null value, an empty array is created before
17088 appending @a val.
17089
17090 @param[in] val the value to add to the JSON array
17091
17092 @throw type_error.308 when called on a type other than JSON array or
17093 null; example: `"cannot use push_back() with number"`
17094
17095 @complexity Amortized constant.
17096
17097 @liveexample{The example shows how `push_back()` and `+=` can be used to
17098 add elements to a JSON array. Note how the `null` value was silently
17099 converted to a JSON array.,push_back}
17100
17101 @since version 1.0.0
17102 */
17103 void push_back(basic_json&& val)
17104 {
17105 // push_back only works for null objects or arrays
17106 if (JSON_UNLIKELY(not(is_null() or is_array())))
17107 {
17108 JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
17109 }
17110
17111 // transform null object into an array
17112 if (is_null())
17113 {
17114 m_type = value_t::array;
17115 m_value = value_t::array;
17116 assert_invariant();
17117 }
17118
17119 // add element to array (move semantics)
17120 m_value.array->push_back(std::move(val));
17121 // invalidate object
17122 val.m_type = value_t::null;
17123 }
17124
17125 /*!
17126 @brief add an object to an array
17127 @copydoc push_back(basic_json&&)
17128 */
17129 reference operator+=(basic_json&& val)
17130 {
17131 push_back(std::move(val));
17132 return *this;
17133 }
17134
17135 /*!
17136 @brief add an object to an array
17137 @copydoc push_back(basic_json&&)
17138 */
17139 void push_back(const basic_json& val)
17140 {
17141 // push_back only works for null objects or arrays
17142 if (JSON_UNLIKELY(not(is_null() or is_array())))
17143 {
17144 JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
17145 }
17146
17147 // transform null object into an array
17148 if (is_null())
17149 {
17150 m_type = value_t::array;
17151 m_value = value_t::array;
17152 assert_invariant();
17153 }
17154
17155 // add element to array
17156 m_value.array->push_back(val);
17157 }
17158
17159 /*!
17160 @brief add an object to an array
17161 @copydoc push_back(basic_json&&)
17162 */
17163 reference operator+=(const basic_json& val)
17164 {
17165 push_back(val);
17166 return *this;
17167 }
17168
17169 /*!
17170 @brief add an object to an object
17171
17172 Inserts the given element @a val to the JSON object. If the function is
17173 called on a JSON null value, an empty object is created before inserting
17174 @a val.
17175
17176 @param[in] val the value to add to the JSON object
17177
17178 @throw type_error.308 when called on a type other than JSON object or
17179 null; example: `"cannot use push_back() with number"`
17180
17181 @complexity Logarithmic in the size of the container, O(log(`size()`)).
17182
17183 @liveexample{The example shows how `push_back()` and `+=` can be used to
17184 add elements to a JSON object. Note how the `null` value was silently
17185 converted to a JSON object.,push_back__object_t__value}
17186
17187 @since version 1.0.0
17188 */
17189 void push_back(const typename object_t::value_type& val)
17190 {
17191 // push_back only works for null objects or objects
17192 if (JSON_UNLIKELY(not(is_null() or is_object())))
17193 {
17194 JSON_THROW(type_error::create(308, "cannot use push_back() with " + std::string(type_name())));
17195 }
17196
17197 // transform null object into an object
17198 if (is_null())
17199 {
17200 m_type = value_t::object;
17201 m_value = value_t::object;
17202 assert_invariant();
17203 }
17204
17205 // add element to array
17206 m_value.object->insert(val);
17207 }
17208
17209 /*!
17210 @brief add an object to an object
17211 @copydoc push_back(const typename object_t::value_type&)
17212 */
17213 reference operator+=(const typename object_t::value_type& val)
17214 {
17215 push_back(val);
17216 return *this;
17217 }
17218
17219 /*!
17220 @brief add an object to an object
17221
17222 This function allows to use `push_back` with an initializer list. In case
17223
17224 1. the current value is an object,
17225 2. the initializer list @a init contains only two elements, and
17226 3. the first element of @a init is a string,
17227
17228 @a init is converted into an object element and added using
17229 @ref push_back(const typename object_t::value_type&). Otherwise, @a init
17230 is converted to a JSON value and added using @ref push_back(basic_json&&).
17231
17232 @param[in] init an initializer list
17233
17234 @complexity Linear in the size of the initializer list @a init.
17235
17236 @note This function is required to resolve an ambiguous overload error,
17237 because pairs like `{"key", "value"}` can be both interpreted as
17238 `object_t::value_type` or `std::initializer_list<basic_json>`, see
17239 https://github.com/nlohmann/json/issues/235 for more information.
17240
17241 @liveexample{The example shows how initializer lists are treated as
17242 objects when possible.,push_back__initializer_list}
17243 */
17244 void push_back(initializer_list_t init)
17245 {
17246 if (is_object() and init.size() == 2 and (*init.begin())->is_string())
17247 {
17248 basic_json&& key = init.begin()->moved_or_copied();
17249 push_back(typename object_t::value_type(
17250 std::move(key.get_ref<string_t&>()), (init.begin() + 1)->moved_or_copied()));
17251 }
17252 else
17253 {
17254 push_back(basic_json(init));
17255 }
17256 }
17257
17258 /*!
17259 @brief add an object to an object
17260 @copydoc push_back(initializer_list_t)
17261 */
17262 reference operator+=(initializer_list_t init)
17263 {
17264 push_back(init);
17265 return *this;
17266 }
17267
17268 /*!
17269 @brief add an object to an array
17270
17271 Creates a JSON value from the passed parameters @a args to the end of the
17272 JSON value. If the function is called on a JSON null value, an empty array
17273 is created before appending the value created from @a args.
17274
17275 @param[in] args arguments to forward to a constructor of @ref basic_json
17276 @tparam Args compatible types to create a @ref basic_json object
17277
17278 @throw type_error.311 when called on a type other than JSON array or
17279 null; example: `"cannot use emplace_back() with number"`
17280
17281 @complexity Amortized constant.
17282
17283 @liveexample{The example shows how `push_back()` can be used to add
17284 elements to a JSON array. Note how the `null` value was silently converted
17285 to a JSON array.,emplace_back}
17286
17287 @since version 2.0.8
17288 */
17289 template<class... Args>
17290 void emplace_back(Args&& ... args)
17291 {
17292 // emplace_back only works for null objects or arrays
17293 if (JSON_UNLIKELY(not(is_null() or is_array())))
17294 {
17295 JSON_THROW(type_error::create(311, "cannot use emplace_back() with " + std::string(type_name())));
17296 }
17297
17298 // transform null object into an array
17299 if (is_null())
17300 {
17301 m_type = value_t::array;
17302 m_value = value_t::array;
17303 assert_invariant();
17304 }
17305
17306 // add element to array (perfect forwarding)
17307 m_value.array->emplace_back(std::forward<Args>(args)...);
17308 }
17309
17310 /*!
17311 @brief add an object to an object if key does not exist
17312
17313 Inserts a new element into a JSON object constructed in-place with the
17314 given @a args if there is no element with the key in the container. If the
17315 function is called on a JSON null value, an empty object is created before
17316 appending the value created from @a args.
17317
17318 @param[in] args arguments to forward to a constructor of @ref basic_json
17319 @tparam Args compatible types to create a @ref basic_json object
17320
17321 @return a pair consisting of an iterator to the inserted element, or the
17322 already-existing element if no insertion happened, and a bool
17323 denoting whether the insertion took place.
17324
17325 @throw type_error.311 when called on a type other than JSON object or
17326 null; example: `"cannot use emplace() with number"`
17327
17328 @complexity Logarithmic in the size of the container, O(log(`size()`)).
17329
17330 @liveexample{The example shows how `emplace()` can be used to add elements
17331 to a JSON object. Note how the `null` value was silently converted to a
17332 JSON object. Further note how no value is added if there was already one
17333 value stored with the same key.,emplace}
17334
17335 @since version 2.0.8
17336 */
17337 template<class... Args>
17338 std::pair<iterator, bool> emplace(Args&& ... args)
17339 {
17340 // emplace only works for null objects or arrays
17341 if (JSON_UNLIKELY(not(is_null() or is_object())))
17342 {
17343 JSON_THROW(type_error::create(311, "cannot use emplace() with " + std::string(type_name())));
17344 }
17345
17346 // transform null object into an object
17347 if (is_null())
17348 {
17349 m_type = value_t::object;
17350 m_value = value_t::object;
17351 assert_invariant();
17352 }
17353
17354 // add element to array (perfect forwarding)
17355 auto res = m_value.object->emplace(std::forward<Args>(args)...);
17356 // create result iterator and set iterator to the result of emplace
17357 auto it = begin();
17358 it.m_it.object_iterator = res.first;
17359
17360 // return pair of iterator and boolean
17361 return {it, res.second};
17362 }
17363
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017364 /// Helper for insertion of an iterator
17365 /// @note: This uses std::distance to support GCC 4.8,
17366 /// see https://github.com/nlohmann/json/pull/1257
17367 template<typename... Args>
17368 iterator insert_iterator(const_iterator pos, Args&& ... args)
17369 {
17370 iterator result(this);
17371 assert(m_value.array != nullptr);
17372
17373 auto insert_pos = std::distance(m_value.array->begin(), pos.m_it.array_iterator);
17374 m_value.array->insert(pos.m_it.array_iterator, std::forward<Args>(args)...);
17375 result.m_it.array_iterator = m_value.array->begin() + insert_pos;
17376
17377 // This could have been written as:
17378 // result.m_it.array_iterator = m_value.array->insert(pos.m_it.array_iterator, cnt, val);
17379 // but the return value of insert is missing in GCC 4.8, so it is written this way instead.
17380
17381 return result;
17382 }
17383
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017384 /*!
17385 @brief inserts element
17386
17387 Inserts element @a val before iterator @a pos.
17388
17389 @param[in] pos iterator before which the content will be inserted; may be
17390 the end() iterator
17391 @param[in] val element to insert
17392 @return iterator pointing to the inserted @a val.
17393
17394 @throw type_error.309 if called on JSON values other than arrays;
17395 example: `"cannot use insert() with string"`
17396 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
17397 example: `"iterator does not fit current value"`
17398
17399 @complexity Constant plus linear in the distance between @a pos and end of
17400 the container.
17401
17402 @liveexample{The example shows how `insert()` is used.,insert}
17403
17404 @since version 1.0.0
17405 */
17406 iterator insert(const_iterator pos, const basic_json& val)
17407 {
17408 // insert only works for arrays
17409 if (JSON_LIKELY(is_array()))
17410 {
17411 // check if iterator pos fits to this JSON value
17412 if (JSON_UNLIKELY(pos.m_object != this))
17413 {
17414 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
17415 }
17416
17417 // insert to array and return iterator
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017418 return insert_iterator(pos, val);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017419 }
17420
17421 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
17422 }
17423
17424 /*!
17425 @brief inserts element
17426 @copydoc insert(const_iterator, const basic_json&)
17427 */
17428 iterator insert(const_iterator pos, basic_json&& val)
17429 {
17430 return insert(pos, val);
17431 }
17432
17433 /*!
17434 @brief inserts elements
17435
17436 Inserts @a cnt copies of @a val before iterator @a pos.
17437
17438 @param[in] pos iterator before which the content will be inserted; may be
17439 the end() iterator
17440 @param[in] cnt number of copies of @a val to insert
17441 @param[in] val element to insert
17442 @return iterator pointing to the first element inserted, or @a pos if
17443 `cnt==0`
17444
17445 @throw type_error.309 if called on JSON values other than arrays; example:
17446 `"cannot use insert() with string"`
17447 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
17448 example: `"iterator does not fit current value"`
17449
17450 @complexity Linear in @a cnt plus linear in the distance between @a pos
17451 and end of the container.
17452
17453 @liveexample{The example shows how `insert()` is used.,insert__count}
17454
17455 @since version 1.0.0
17456 */
17457 iterator insert(const_iterator pos, size_type cnt, const basic_json& val)
17458 {
17459 // insert only works for arrays
17460 if (JSON_LIKELY(is_array()))
17461 {
17462 // check if iterator pos fits to this JSON value
17463 if (JSON_UNLIKELY(pos.m_object != this))
17464 {
17465 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
17466 }
17467
17468 // insert to array and return iterator
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017469 return insert_iterator(pos, cnt, val);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017470 }
17471
17472 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
17473 }
17474
17475 /*!
17476 @brief inserts elements
17477
17478 Inserts elements from range `[first, last)` before iterator @a pos.
17479
17480 @param[in] pos iterator before which the content will be inserted; may be
17481 the end() iterator
17482 @param[in] first begin of the range of elements to insert
17483 @param[in] last end of the range of elements to insert
17484
17485 @throw type_error.309 if called on JSON values other than arrays; example:
17486 `"cannot use insert() with string"`
17487 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
17488 example: `"iterator does not fit current value"`
17489 @throw invalid_iterator.210 if @a first and @a last do not belong to the
17490 same JSON value; example: `"iterators do not fit"`
17491 @throw invalid_iterator.211 if @a first or @a last are iterators into
17492 container for which insert is called; example: `"passed iterators may not
17493 belong to container"`
17494
17495 @return iterator pointing to the first element inserted, or @a pos if
17496 `first==last`
17497
17498 @complexity Linear in `std::distance(first, last)` plus linear in the
17499 distance between @a pos and end of the container.
17500
17501 @liveexample{The example shows how `insert()` is used.,insert__range}
17502
17503 @since version 1.0.0
17504 */
17505 iterator insert(const_iterator pos, const_iterator first, const_iterator last)
17506 {
17507 // insert only works for arrays
17508 if (JSON_UNLIKELY(not is_array()))
17509 {
17510 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
17511 }
17512
17513 // check if iterator pos fits to this JSON value
17514 if (JSON_UNLIKELY(pos.m_object != this))
17515 {
17516 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
17517 }
17518
17519 // check if range iterators belong to the same JSON object
17520 if (JSON_UNLIKELY(first.m_object != last.m_object))
17521 {
17522 JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
17523 }
17524
17525 if (JSON_UNLIKELY(first.m_object == this))
17526 {
17527 JSON_THROW(invalid_iterator::create(211, "passed iterators may not belong to container"));
17528 }
17529
17530 // insert to array and return iterator
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017531 return insert_iterator(pos, first.m_it.array_iterator, last.m_it.array_iterator);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017532 }
17533
17534 /*!
17535 @brief inserts elements
17536
17537 Inserts elements from initializer list @a ilist before iterator @a pos.
17538
17539 @param[in] pos iterator before which the content will be inserted; may be
17540 the end() iterator
17541 @param[in] ilist initializer list to insert the values from
17542
17543 @throw type_error.309 if called on JSON values other than arrays; example:
17544 `"cannot use insert() with string"`
17545 @throw invalid_iterator.202 if @a pos is not an iterator of *this;
17546 example: `"iterator does not fit current value"`
17547
17548 @return iterator pointing to the first element inserted, or @a pos if
17549 `ilist` is empty
17550
17551 @complexity Linear in `ilist.size()` plus linear in the distance between
17552 @a pos and end of the container.
17553
17554 @liveexample{The example shows how `insert()` is used.,insert__ilist}
17555
17556 @since version 1.0.0
17557 */
17558 iterator insert(const_iterator pos, initializer_list_t ilist)
17559 {
17560 // insert only works for arrays
17561 if (JSON_UNLIKELY(not is_array()))
17562 {
17563 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
17564 }
17565
17566 // check if iterator pos fits to this JSON value
17567 if (JSON_UNLIKELY(pos.m_object != this))
17568 {
17569 JSON_THROW(invalid_iterator::create(202, "iterator does not fit current value"));
17570 }
17571
17572 // insert to array and return iterator
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017573 return insert_iterator(pos, ilist.begin(), ilist.end());
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017574 }
17575
17576 /*!
17577 @brief inserts elements
17578
17579 Inserts elements from range `[first, last)`.
17580
17581 @param[in] first begin of the range of elements to insert
17582 @param[in] last end of the range of elements to insert
17583
17584 @throw type_error.309 if called on JSON values other than objects; example:
17585 `"cannot use insert() with string"`
17586 @throw invalid_iterator.202 if iterator @a first or @a last does does not
17587 point to an object; example: `"iterators first and last must point to
17588 objects"`
17589 @throw invalid_iterator.210 if @a first and @a last do not belong to the
17590 same JSON value; example: `"iterators do not fit"`
17591
17592 @complexity Logarithmic: `O(N*log(size() + N))`, where `N` is the number
17593 of elements to insert.
17594
17595 @liveexample{The example shows how `insert()` is used.,insert__range_object}
17596
17597 @since version 3.0.0
17598 */
17599 void insert(const_iterator first, const_iterator last)
17600 {
17601 // insert only works for objects
17602 if (JSON_UNLIKELY(not is_object()))
17603 {
17604 JSON_THROW(type_error::create(309, "cannot use insert() with " + std::string(type_name())));
17605 }
17606
17607 // check if range iterators belong to the same JSON object
17608 if (JSON_UNLIKELY(first.m_object != last.m_object))
17609 {
17610 JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
17611 }
17612
17613 // passed iterators must belong to objects
17614 if (JSON_UNLIKELY(not first.m_object->is_object()))
17615 {
17616 JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
17617 }
17618
17619 m_value.object->insert(first.m_it.object_iterator, last.m_it.object_iterator);
17620 }
17621
17622 /*!
17623 @brief updates a JSON object from another object, overwriting existing keys
17624
17625 Inserts all values from JSON object @a j and overwrites existing keys.
17626
17627 @param[in] j JSON object to read values from
17628
17629 @throw type_error.312 if called on JSON values other than objects; example:
17630 `"cannot use update() with string"`
17631
17632 @complexity O(N*log(size() + N)), where N is the number of elements to
17633 insert.
17634
17635 @liveexample{The example shows how `update()` is used.,update}
17636
17637 @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
17638
17639 @since version 3.0.0
17640 */
17641 void update(const_reference j)
17642 {
17643 // implicitly convert null value to an empty object
17644 if (is_null())
17645 {
17646 m_type = value_t::object;
17647 m_value.object = create<object_t>();
17648 assert_invariant();
17649 }
17650
17651 if (JSON_UNLIKELY(not is_object()))
17652 {
17653 JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
17654 }
17655 if (JSON_UNLIKELY(not j.is_object()))
17656 {
17657 JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(j.type_name())));
17658 }
17659
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017660 for (auto it = j.cbegin(); it != j.cend(); ++it)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017661 {
17662 m_value.object->operator[](it.key()) = it.value();
17663 }
17664 }
17665
17666 /*!
17667 @brief updates a JSON object from another object, overwriting existing keys
17668
17669 Inserts all values from from range `[first, last)` and overwrites existing
17670 keys.
17671
17672 @param[in] first begin of the range of elements to insert
17673 @param[in] last end of the range of elements to insert
17674
17675 @throw type_error.312 if called on JSON values other than objects; example:
17676 `"cannot use update() with string"`
17677 @throw invalid_iterator.202 if iterator @a first or @a last does does not
17678 point to an object; example: `"iterators first and last must point to
17679 objects"`
17680 @throw invalid_iterator.210 if @a first and @a last do not belong to the
17681 same JSON value; example: `"iterators do not fit"`
17682
17683 @complexity O(N*log(size() + N)), where N is the number of elements to
17684 insert.
17685
17686 @liveexample{The example shows how `update()` is used__range.,update}
17687
17688 @sa https://docs.python.org/3.6/library/stdtypes.html#dict.update
17689
17690 @since version 3.0.0
17691 */
17692 void update(const_iterator first, const_iterator last)
17693 {
17694 // implicitly convert null value to an empty object
17695 if (is_null())
17696 {
17697 m_type = value_t::object;
17698 m_value.object = create<object_t>();
17699 assert_invariant();
17700 }
17701
17702 if (JSON_UNLIKELY(not is_object()))
17703 {
17704 JSON_THROW(type_error::create(312, "cannot use update() with " + std::string(type_name())));
17705 }
17706
17707 // check if range iterators belong to the same JSON object
17708 if (JSON_UNLIKELY(first.m_object != last.m_object))
17709 {
17710 JSON_THROW(invalid_iterator::create(210, "iterators do not fit"));
17711 }
17712
17713 // passed iterators must belong to objects
17714 if (JSON_UNLIKELY(not first.m_object->is_object()
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017715 or not last.m_object->is_object()))
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017716 {
17717 JSON_THROW(invalid_iterator::create(202, "iterators first and last must point to objects"));
17718 }
17719
17720 for (auto it = first; it != last; ++it)
17721 {
17722 m_value.object->operator[](it.key()) = it.value();
17723 }
17724 }
17725
17726 /*!
17727 @brief exchanges the values
17728
17729 Exchanges the contents of the JSON value with those of @a other. Does not
17730 invoke any move, copy, or swap operations on individual elements. All
17731 iterators and references remain valid. The past-the-end iterator is
17732 invalidated.
17733
17734 @param[in,out] other JSON value to exchange the contents with
17735
17736 @complexity Constant.
17737
17738 @liveexample{The example below shows how JSON values can be swapped with
17739 `swap()`.,swap__reference}
17740
17741 @since version 1.0.0
17742 */
17743 void swap(reference other) noexcept (
17744 std::is_nothrow_move_constructible<value_t>::value and
17745 std::is_nothrow_move_assignable<value_t>::value and
17746 std::is_nothrow_move_constructible<json_value>::value and
17747 std::is_nothrow_move_assignable<json_value>::value
17748 )
17749 {
17750 std::swap(m_type, other.m_type);
17751 std::swap(m_value, other.m_value);
17752 assert_invariant();
17753 }
17754
17755 /*!
17756 @brief exchanges the values
17757
17758 Exchanges the contents of a JSON array with those of @a other. Does not
17759 invoke any move, copy, or swap operations on individual elements. All
17760 iterators and references remain valid. The past-the-end iterator is
17761 invalidated.
17762
17763 @param[in,out] other array to exchange the contents with
17764
17765 @throw type_error.310 when JSON value is not an array; example: `"cannot
17766 use swap() with string"`
17767
17768 @complexity Constant.
17769
17770 @liveexample{The example below shows how arrays can be swapped with
17771 `swap()`.,swap__array_t}
17772
17773 @since version 1.0.0
17774 */
17775 void swap(array_t& other)
17776 {
17777 // swap only works for arrays
17778 if (JSON_LIKELY(is_array()))
17779 {
17780 std::swap(*(m_value.array), other);
17781 }
17782 else
17783 {
17784 JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
17785 }
17786 }
17787
17788 /*!
17789 @brief exchanges the values
17790
17791 Exchanges the contents of a JSON object with those of @a other. Does not
17792 invoke any move, copy, or swap operations on individual elements. All
17793 iterators and references remain valid. The past-the-end iterator is
17794 invalidated.
17795
17796 @param[in,out] other object to exchange the contents with
17797
17798 @throw type_error.310 when JSON value is not an object; example:
17799 `"cannot use swap() with string"`
17800
17801 @complexity Constant.
17802
17803 @liveexample{The example below shows how objects can be swapped with
17804 `swap()`.,swap__object_t}
17805
17806 @since version 1.0.0
17807 */
17808 void swap(object_t& other)
17809 {
17810 // swap only works for objects
17811 if (JSON_LIKELY(is_object()))
17812 {
17813 std::swap(*(m_value.object), other);
17814 }
17815 else
17816 {
17817 JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
17818 }
17819 }
17820
17821 /*!
17822 @brief exchanges the values
17823
17824 Exchanges the contents of a JSON string with those of @a other. Does not
17825 invoke any move, copy, or swap operations on individual elements. All
17826 iterators and references remain valid. The past-the-end iterator is
17827 invalidated.
17828
17829 @param[in,out] other string to exchange the contents with
17830
17831 @throw type_error.310 when JSON value is not a string; example: `"cannot
17832 use swap() with boolean"`
17833
17834 @complexity Constant.
17835
17836 @liveexample{The example below shows how strings can be swapped with
17837 `swap()`.,swap__string_t}
17838
17839 @since version 1.0.0
17840 */
17841 void swap(string_t& other)
17842 {
17843 // swap only works for strings
17844 if (JSON_LIKELY(is_string()))
17845 {
17846 std::swap(*(m_value.string), other);
17847 }
17848 else
17849 {
17850 JSON_THROW(type_error::create(310, "cannot use swap() with " + std::string(type_name())));
17851 }
17852 }
17853
17854 /// @}
17855
17856 public:
17857 //////////////////////////////////////////
17858 // lexicographical comparison operators //
17859 //////////////////////////////////////////
17860
17861 /// @name lexicographical comparison operators
17862 /// @{
17863
17864 /*!
17865 @brief comparison: equal
17866
17867 Compares two JSON values for equality according to the following rules:
17868 - Two JSON values are equal if (1) they are from the same type and (2)
17869 their stored values are the same according to their respective
17870 `operator==`.
17871 - Integer and floating-point numbers are automatically converted before
17872 comparison. Note than two NaN values are always treated as unequal.
17873 - Two JSON null values are equal.
17874
17875 @note Floating-point inside JSON values numbers are compared with
17876 `json::number_float_t::operator==` which is `double::operator==` by
17877 default. To compare floating-point while respecting an epsilon, an alternative
17878 [comparison function](https://github.com/mariokonrad/marnav/blob/master/src/marnav/math/floatingpoint.hpp#L34-#L39)
17879 could be used, for instance
17880 @code {.cpp}
Syoyo Fujitac0d02512019-02-04 16:19:13 +090017881 template<typename T, typename = typename std::enable_if<std::is_floating_point<T>::value, T>::type>
Syoyo Fujita2e21be72017-11-05 17:13:01 +090017882 inline bool is_same(T a, T b, T epsilon = std::numeric_limits<T>::epsilon()) noexcept
17883 {
17884 return std::abs(a - b) <= epsilon;
17885 }
17886 @endcode
17887
17888 @note NaN values never compare equal to themselves or to other NaN values.
17889
17890 @param[in] lhs first JSON value to consider
17891 @param[in] rhs second JSON value to consider
17892 @return whether the values @a lhs and @a rhs are equal
17893
17894 @exceptionsafety No-throw guarantee: this function never throws exceptions.
17895
17896 @complexity Linear.
17897
17898 @liveexample{The example demonstrates comparing several JSON
17899 types.,operator__equal}
17900
17901 @since version 1.0.0
17902 */
17903 friend bool operator==(const_reference lhs, const_reference rhs) noexcept
17904 {
17905 const auto lhs_type = lhs.type();
17906 const auto rhs_type = rhs.type();
17907
17908 if (lhs_type == rhs_type)
17909 {
17910 switch (lhs_type)
17911 {
17912 case value_t::array:
17913 return (*lhs.m_value.array == *rhs.m_value.array);
17914
17915 case value_t::object:
17916 return (*lhs.m_value.object == *rhs.m_value.object);
17917
17918 case value_t::null:
17919 return true;
17920
17921 case value_t::string:
17922 return (*lhs.m_value.string == *rhs.m_value.string);
17923
17924 case value_t::boolean:
17925 return (lhs.m_value.boolean == rhs.m_value.boolean);
17926
17927 case value_t::number_integer:
17928 return (lhs.m_value.number_integer == rhs.m_value.number_integer);
17929
17930 case value_t::number_unsigned:
17931 return (lhs.m_value.number_unsigned == rhs.m_value.number_unsigned);
17932
17933 case value_t::number_float:
17934 return (lhs.m_value.number_float == rhs.m_value.number_float);
17935
17936 default:
17937 return false;
17938 }
17939 }
17940 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
17941 {
17942 return (static_cast<number_float_t>(lhs.m_value.number_integer) == rhs.m_value.number_float);
17943 }
17944 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
17945 {
17946 return (lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_integer));
17947 }
17948 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
17949 {
17950 return (static_cast<number_float_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_float);
17951 }
17952 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
17953 {
17954 return (lhs.m_value.number_float == static_cast<number_float_t>(rhs.m_value.number_unsigned));
17955 }
17956 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
17957 {
17958 return (static_cast<number_integer_t>(lhs.m_value.number_unsigned) == rhs.m_value.number_integer);
17959 }
17960 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
17961 {
17962 return (lhs.m_value.number_integer == static_cast<number_integer_t>(rhs.m_value.number_unsigned));
17963 }
17964
17965 return false;
17966 }
17967
17968 /*!
17969 @brief comparison: equal
17970 @copydoc operator==(const_reference, const_reference)
17971 */
17972 template<typename ScalarType, typename std::enable_if<
17973 std::is_scalar<ScalarType>::value, int>::type = 0>
17974 friend bool operator==(const_reference lhs, const ScalarType rhs) noexcept
17975 {
17976 return (lhs == basic_json(rhs));
17977 }
17978
17979 /*!
17980 @brief comparison: equal
17981 @copydoc operator==(const_reference, const_reference)
17982 */
17983 template<typename ScalarType, typename std::enable_if<
17984 std::is_scalar<ScalarType>::value, int>::type = 0>
17985 friend bool operator==(const ScalarType lhs, const_reference rhs) noexcept
17986 {
17987 return (basic_json(lhs) == rhs);
17988 }
17989
17990 /*!
17991 @brief comparison: not equal
17992
17993 Compares two JSON values for inequality by calculating `not (lhs == rhs)`.
17994
17995 @param[in] lhs first JSON value to consider
17996 @param[in] rhs second JSON value to consider
17997 @return whether the values @a lhs and @a rhs are not equal
17998
17999 @complexity Linear.
18000
18001 @exceptionsafety No-throw guarantee: this function never throws exceptions.
18002
18003 @liveexample{The example demonstrates comparing several JSON
18004 types.,operator__notequal}
18005
18006 @since version 1.0.0
18007 */
18008 friend bool operator!=(const_reference lhs, const_reference rhs) noexcept
18009 {
18010 return not (lhs == rhs);
18011 }
18012
18013 /*!
18014 @brief comparison: not equal
18015 @copydoc operator!=(const_reference, const_reference)
18016 */
18017 template<typename ScalarType, typename std::enable_if<
18018 std::is_scalar<ScalarType>::value, int>::type = 0>
18019 friend bool operator!=(const_reference lhs, const ScalarType rhs) noexcept
18020 {
18021 return (lhs != basic_json(rhs));
18022 }
18023
18024 /*!
18025 @brief comparison: not equal
18026 @copydoc operator!=(const_reference, const_reference)
18027 */
18028 template<typename ScalarType, typename std::enable_if<
18029 std::is_scalar<ScalarType>::value, int>::type = 0>
18030 friend bool operator!=(const ScalarType lhs, const_reference rhs) noexcept
18031 {
18032 return (basic_json(lhs) != rhs);
18033 }
18034
18035 /*!
18036 @brief comparison: less than
18037
18038 Compares whether one JSON value @a lhs is less than another JSON value @a
18039 rhs according to the following rules:
18040 - If @a lhs and @a rhs have the same type, the values are compared using
18041 the default `<` operator.
18042 - Integer and floating-point numbers are automatically converted before
18043 comparison
18044 - In case @a lhs and @a rhs have different types, the values are ignored
18045 and the order of the types is considered, see
18046 @ref operator<(const value_t, const value_t).
18047
18048 @param[in] lhs first JSON value to consider
18049 @param[in] rhs second JSON value to consider
18050 @return whether @a lhs is less than @a rhs
18051
18052 @complexity Linear.
18053
18054 @exceptionsafety No-throw guarantee: this function never throws exceptions.
18055
18056 @liveexample{The example demonstrates comparing several JSON
18057 types.,operator__less}
18058
18059 @since version 1.0.0
18060 */
18061 friend bool operator<(const_reference lhs, const_reference rhs) noexcept
18062 {
18063 const auto lhs_type = lhs.type();
18064 const auto rhs_type = rhs.type();
18065
18066 if (lhs_type == rhs_type)
18067 {
18068 switch (lhs_type)
18069 {
18070 case value_t::array:
18071 return (*lhs.m_value.array) < (*rhs.m_value.array);
18072
18073 case value_t::object:
18074 return *lhs.m_value.object < *rhs.m_value.object;
18075
18076 case value_t::null:
18077 return false;
18078
18079 case value_t::string:
18080 return *lhs.m_value.string < *rhs.m_value.string;
18081
18082 case value_t::boolean:
18083 return lhs.m_value.boolean < rhs.m_value.boolean;
18084
18085 case value_t::number_integer:
18086 return lhs.m_value.number_integer < rhs.m_value.number_integer;
18087
18088 case value_t::number_unsigned:
18089 return lhs.m_value.number_unsigned < rhs.m_value.number_unsigned;
18090
18091 case value_t::number_float:
18092 return lhs.m_value.number_float < rhs.m_value.number_float;
18093
18094 default:
18095 return false;
18096 }
18097 }
18098 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_float)
18099 {
18100 return static_cast<number_float_t>(lhs.m_value.number_integer) < rhs.m_value.number_float;
18101 }
18102 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_integer)
18103 {
18104 return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_integer);
18105 }
18106 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_float)
18107 {
18108 return static_cast<number_float_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_float;
18109 }
18110 else if (lhs_type == value_t::number_float and rhs_type == value_t::number_unsigned)
18111 {
18112 return lhs.m_value.number_float < static_cast<number_float_t>(rhs.m_value.number_unsigned);
18113 }
18114 else if (lhs_type == value_t::number_integer and rhs_type == value_t::number_unsigned)
18115 {
18116 return lhs.m_value.number_integer < static_cast<number_integer_t>(rhs.m_value.number_unsigned);
18117 }
18118 else if (lhs_type == value_t::number_unsigned and rhs_type == value_t::number_integer)
18119 {
18120 return static_cast<number_integer_t>(lhs.m_value.number_unsigned) < rhs.m_value.number_integer;
18121 }
18122
18123 // We only reach this line if we cannot compare values. In that case,
18124 // we compare types. Note we have to call the operator explicitly,
18125 // because MSVC has problems otherwise.
18126 return operator<(lhs_type, rhs_type);
18127 }
18128
18129 /*!
18130 @brief comparison: less than
18131 @copydoc operator<(const_reference, const_reference)
18132 */
18133 template<typename ScalarType, typename std::enable_if<
18134 std::is_scalar<ScalarType>::value, int>::type = 0>
18135 friend bool operator<(const_reference lhs, const ScalarType rhs) noexcept
18136 {
18137 return (lhs < basic_json(rhs));
18138 }
18139
18140 /*!
18141 @brief comparison: less than
18142 @copydoc operator<(const_reference, const_reference)
18143 */
18144 template<typename ScalarType, typename std::enable_if<
18145 std::is_scalar<ScalarType>::value, int>::type = 0>
18146 friend bool operator<(const ScalarType lhs, const_reference rhs) noexcept
18147 {
18148 return (basic_json(lhs) < rhs);
18149 }
18150
18151 /*!
18152 @brief comparison: less than or equal
18153
18154 Compares whether one JSON value @a lhs is less than or equal to another
18155 JSON value by calculating `not (rhs < lhs)`.
18156
18157 @param[in] lhs first JSON value to consider
18158 @param[in] rhs second JSON value to consider
18159 @return whether @a lhs is less than or equal to @a rhs
18160
18161 @complexity Linear.
18162
18163 @exceptionsafety No-throw guarantee: this function never throws exceptions.
18164
18165 @liveexample{The example demonstrates comparing several JSON
18166 types.,operator__greater}
18167
18168 @since version 1.0.0
18169 */
18170 friend bool operator<=(const_reference lhs, const_reference rhs) noexcept
18171 {
18172 return not (rhs < lhs);
18173 }
18174
18175 /*!
18176 @brief comparison: less than or equal
18177 @copydoc operator<=(const_reference, const_reference)
18178 */
18179 template<typename ScalarType, typename std::enable_if<
18180 std::is_scalar<ScalarType>::value, int>::type = 0>
18181 friend bool operator<=(const_reference lhs, const ScalarType rhs) noexcept
18182 {
18183 return (lhs <= basic_json(rhs));
18184 }
18185
18186 /*!
18187 @brief comparison: less than or equal
18188 @copydoc operator<=(const_reference, const_reference)
18189 */
18190 template<typename ScalarType, typename std::enable_if<
18191 std::is_scalar<ScalarType>::value, int>::type = 0>
18192 friend bool operator<=(const ScalarType lhs, const_reference rhs) noexcept
18193 {
18194 return (basic_json(lhs) <= rhs);
18195 }
18196
18197 /*!
18198 @brief comparison: greater than
18199
18200 Compares whether one JSON value @a lhs is greater than another
18201 JSON value by calculating `not (lhs <= rhs)`.
18202
18203 @param[in] lhs first JSON value to consider
18204 @param[in] rhs second JSON value to consider
18205 @return whether @a lhs is greater than to @a rhs
18206
18207 @complexity Linear.
18208
18209 @exceptionsafety No-throw guarantee: this function never throws exceptions.
18210
18211 @liveexample{The example demonstrates comparing several JSON
18212 types.,operator__lessequal}
18213
18214 @since version 1.0.0
18215 */
18216 friend bool operator>(const_reference lhs, const_reference rhs) noexcept
18217 {
18218 return not (lhs <= rhs);
18219 }
18220
18221 /*!
18222 @brief comparison: greater than
18223 @copydoc operator>(const_reference, const_reference)
18224 */
18225 template<typename ScalarType, typename std::enable_if<
18226 std::is_scalar<ScalarType>::value, int>::type = 0>
18227 friend bool operator>(const_reference lhs, const ScalarType rhs) noexcept
18228 {
18229 return (lhs > basic_json(rhs));
18230 }
18231
18232 /*!
18233 @brief comparison: greater than
18234 @copydoc operator>(const_reference, const_reference)
18235 */
18236 template<typename ScalarType, typename std::enable_if<
18237 std::is_scalar<ScalarType>::value, int>::type = 0>
18238 friend bool operator>(const ScalarType lhs, const_reference rhs) noexcept
18239 {
18240 return (basic_json(lhs) > rhs);
18241 }
18242
18243 /*!
18244 @brief comparison: greater than or equal
18245
18246 Compares whether one JSON value @a lhs is greater than or equal to another
18247 JSON value by calculating `not (lhs < rhs)`.
18248
18249 @param[in] lhs first JSON value to consider
18250 @param[in] rhs second JSON value to consider
18251 @return whether @a lhs is greater than or equal to @a rhs
18252
18253 @complexity Linear.
18254
18255 @exceptionsafety No-throw guarantee: this function never throws exceptions.
18256
18257 @liveexample{The example demonstrates comparing several JSON
18258 types.,operator__greaterequal}
18259
18260 @since version 1.0.0
18261 */
18262 friend bool operator>=(const_reference lhs, const_reference rhs) noexcept
18263 {
18264 return not (lhs < rhs);
18265 }
18266
18267 /*!
18268 @brief comparison: greater than or equal
18269 @copydoc operator>=(const_reference, const_reference)
18270 */
18271 template<typename ScalarType, typename std::enable_if<
18272 std::is_scalar<ScalarType>::value, int>::type = 0>
18273 friend bool operator>=(const_reference lhs, const ScalarType rhs) noexcept
18274 {
18275 return (lhs >= basic_json(rhs));
18276 }
18277
18278 /*!
18279 @brief comparison: greater than or equal
18280 @copydoc operator>=(const_reference, const_reference)
18281 */
18282 template<typename ScalarType, typename std::enable_if<
18283 std::is_scalar<ScalarType>::value, int>::type = 0>
18284 friend bool operator>=(const ScalarType lhs, const_reference rhs) noexcept
18285 {
18286 return (basic_json(lhs) >= rhs);
18287 }
18288
18289 /// @}
18290
18291 ///////////////////
18292 // serialization //
18293 ///////////////////
18294
18295 /// @name serialization
18296 /// @{
18297
18298 /*!
18299 @brief serialize to stream
18300
18301 Serialize the given JSON value @a j to the output stream @a o. The JSON
18302 value will be serialized using the @ref dump member function.
18303
18304 - The indentation of the output can be controlled with the member variable
18305 `width` of the output stream @a o. For instance, using the manipulator
18306 `std::setw(4)` on @a o sets the indentation level to `4` and the
18307 serialization result is the same as calling `dump(4)`.
18308
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018309 - The indentation character can be controlled with the member variable
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018310 `fill` of the output stream @a o. For instance, the manipulator
18311 `std::setfill('\\t')` sets indentation to use a tab character rather than
18312 the default space character.
18313
18314 @param[in,out] o stream to serialize to
18315 @param[in] j JSON value to serialize
18316
18317 @return the stream @a o
18318
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018319 @throw type_error.316 if a string stored inside the JSON value is not
18320 UTF-8 encoded
18321
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018322 @complexity Linear.
18323
18324 @liveexample{The example below shows the serialization with different
18325 parameters to `width` to adjust the indentation level.,operator_serialize}
18326
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018327 @since version 1.0.0; indentation character added in version 3.0.0
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018328 */
18329 friend std::ostream& operator<<(std::ostream& o, const basic_json& j)
18330 {
18331 // read width member and use it as indentation parameter if nonzero
18332 const bool pretty_print = (o.width() > 0);
18333 const auto indentation = (pretty_print ? o.width() : 0);
18334
18335 // reset width to 0 for subsequent calls to this stream
18336 o.width(0);
18337
18338 // do the actual serialization
18339 serializer s(detail::output_adapter<char>(o), o.fill());
18340 s.dump(j, pretty_print, false, static_cast<unsigned int>(indentation));
18341 return o;
18342 }
18343
18344 /*!
18345 @brief serialize to stream
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018346 @deprecated This stream operator is deprecated and will be removed in
18347 future 4.0.0 of the library. Please use
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018348 @ref operator<<(std::ostream&, const basic_json&)
18349 instead; that is, replace calls like `j >> o;` with `o << j;`.
18350 @since version 1.0.0; deprecated since version 3.0.0
18351 */
18352 JSON_DEPRECATED
18353 friend std::ostream& operator>>(const basic_json& j, std::ostream& o)
18354 {
18355 return o << j;
18356 }
18357
18358 /// @}
18359
18360
18361 /////////////////////
18362 // deserialization //
18363 /////////////////////
18364
18365 /// @name deserialization
18366 /// @{
18367
18368 /*!
18369 @brief deserialize from a compatible input
18370
18371 This function reads from a compatible input. Examples are:
18372 - an array of 1-byte values
18373 - strings with character/literal type with size of 1 byte
18374 - input streams
18375 - container with contiguous storage of 1-byte values. Compatible container
18376 types include `std::vector`, `std::string`, `std::array`,
18377 `std::valarray`, and `std::initializer_list`. Furthermore, C-style
18378 arrays can be used with `std::begin()`/`std::end()`. User-defined
18379 containers can be used as long as they implement random-access iterators
18380 and a contiguous storage.
18381
18382 @pre Each element of the container has a size of 1 byte. Violating this
18383 precondition yields undefined behavior. **This precondition is enforced
18384 with a static assertion.**
18385
18386 @pre The container storage is contiguous. Violating this precondition
18387 yields undefined behavior. **This precondition is enforced with an
18388 assertion.**
18389 @pre Each element of the container has a size of 1 byte. Violating this
18390 precondition yields undefined behavior. **This precondition is enforced
18391 with a static assertion.**
18392
18393 @warning There is no way to enforce all preconditions at compile-time. If
18394 the function is called with a noncompliant container and with
18395 assertions switched off, the behavior is undefined and will most
18396 likely yield segmentation violation.
18397
18398 @param[in] i input to read from
18399 @param[in] cb a parser callback function of type @ref parser_callback_t
18400 which is used to control the deserialization by filtering unwanted values
18401 (optional)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018402 @param[in] allow_exceptions whether to throw exceptions in case of a
18403 parse error (optional, true by default)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018404
18405 @return result of the deserialization
18406
18407 @throw parse_error.101 if a parse error occurs; example: `""unexpected end
18408 of input; expected string literal""`
18409 @throw parse_error.102 if to_unicode fails or surrogate error
18410 @throw parse_error.103 if to_unicode fails
18411
18412 @complexity Linear in the length of the input. The parser is a predictive
18413 LL(1) parser. The complexity can be higher if the parser callback function
18414 @a cb has a super-linear complexity.
18415
18416 @note A UTF-8 byte order mark is silently ignored.
18417
18418 @liveexample{The example below demonstrates the `parse()` function reading
18419 from an array.,parse__array__parser_callback_t}
18420
18421 @liveexample{The example below demonstrates the `parse()` function with
18422 and without callback function.,parse__string__parser_callback_t}
18423
18424 @liveexample{The example below demonstrates the `parse()` function with
18425 and without callback function.,parse__istream__parser_callback_t}
18426
18427 @liveexample{The example below demonstrates the `parse()` function reading
18428 from a contiguous container.,parse__contiguouscontainer__parser_callback_t}
18429
18430 @since version 2.0.3 (contiguous containers)
18431 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018432 static basic_json parse(detail::input_adapter&& i,
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018433 const parser_callback_t cb = nullptr,
18434 const bool allow_exceptions = true)
18435 {
18436 basic_json result;
18437 parser(i, cb, allow_exceptions).parse(true, result);
18438 return result;
18439 }
18440
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018441 static bool accept(detail::input_adapter&& i)
18442 {
18443 return parser(i).accept(true);
18444 }
18445
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018446 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018447 @brief generate SAX events
18448
18449 The SAX event lister must follow the interface of @ref json_sax.
18450
18451 This function reads from a compatible input. Examples are:
18452 - an array of 1-byte values
18453 - strings with character/literal type with size of 1 byte
18454 - input streams
18455 - container with contiguous storage of 1-byte values. Compatible container
18456 types include `std::vector`, `std::string`, `std::array`,
18457 `std::valarray`, and `std::initializer_list`. Furthermore, C-style
18458 arrays can be used with `std::begin()`/`std::end()`. User-defined
18459 containers can be used as long as they implement random-access iterators
18460 and a contiguous storage.
18461
18462 @pre Each element of the container has a size of 1 byte. Violating this
18463 precondition yields undefined behavior. **This precondition is enforced
18464 with a static assertion.**
18465
18466 @pre The container storage is contiguous. Violating this precondition
18467 yields undefined behavior. **This precondition is enforced with an
18468 assertion.**
18469 @pre Each element of the container has a size of 1 byte. Violating this
18470 precondition yields undefined behavior. **This precondition is enforced
18471 with a static assertion.**
18472
18473 @warning There is no way to enforce all preconditions at compile-time. If
18474 the function is called with a noncompliant container and with
18475 assertions switched off, the behavior is undefined and will most
18476 likely yield segmentation violation.
18477
18478 @param[in] i input to read from
18479 @param[in,out] sax SAX event listener
18480 @param[in] format the format to parse (JSON, CBOR, MessagePack, or UBJSON)
18481 @param[in] strict whether the input has to be consumed completely
18482
18483 @return return value of the last processed SAX event
18484
18485 @throw parse_error.101 if a parse error occurs; example: `""unexpected end
18486 of input; expected string literal""`
18487 @throw parse_error.102 if to_unicode fails or surrogate error
18488 @throw parse_error.103 if to_unicode fails
18489
18490 @complexity Linear in the length of the input. The parser is a predictive
18491 LL(1) parser. The complexity can be higher if the SAX consumer @a sax has
18492 a super-linear complexity.
18493
18494 @note A UTF-8 byte order mark is silently ignored.
18495
18496 @liveexample{The example below demonstrates the `sax_parse()` function
18497 reading from string and processing the events with a user-defined SAX
18498 event consumer.,sax_parse}
18499
18500 @since version 3.2.0
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018501 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018502 template <typename SAX>
18503 static bool sax_parse(detail::input_adapter&& i, SAX* sax,
18504 input_format_t format = input_format_t::json,
18505 const bool strict = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018506 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018507 assert(sax);
18508 switch (format)
18509 {
18510 case input_format_t::json:
18511 return parser(std::move(i)).sax_parse(sax, strict);
18512 default:
18513 return detail::binary_reader<basic_json, SAX>(std::move(i)).sax_parse(format, sax, strict);
18514 }
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018515 }
18516
18517 /*!
18518 @brief deserialize from an iterator range with contiguous storage
18519
18520 This function reads from an iterator range of a container with contiguous
18521 storage of 1-byte values. Compatible container types include
18522 `std::vector`, `std::string`, `std::array`, `std::valarray`, and
18523 `std::initializer_list`. Furthermore, C-style arrays can be used with
18524 `std::begin()`/`std::end()`. User-defined containers can be used as long
18525 as they implement random-access iterators and a contiguous storage.
18526
18527 @pre The iterator range is contiguous. Violating this precondition yields
18528 undefined behavior. **This precondition is enforced with an assertion.**
18529 @pre Each element in the range has a size of 1 byte. Violating this
18530 precondition yields undefined behavior. **This precondition is enforced
18531 with a static assertion.**
18532
18533 @warning There is no way to enforce all preconditions at compile-time. If
18534 the function is called with noncompliant iterators and with
18535 assertions switched off, the behavior is undefined and will most
18536 likely yield segmentation violation.
18537
18538 @tparam IteratorType iterator of container with contiguous storage
18539 @param[in] first begin of the range to parse (included)
18540 @param[in] last end of the range to parse (excluded)
18541 @param[in] cb a parser callback function of type @ref parser_callback_t
18542 which is used to control the deserialization by filtering unwanted values
18543 (optional)
18544 @param[in] allow_exceptions whether to throw exceptions in case of a
18545 parse error (optional, true by default)
18546
18547 @return result of the deserialization
18548
18549 @throw parse_error.101 in case of an unexpected token
18550 @throw parse_error.102 if to_unicode fails or surrogate error
18551 @throw parse_error.103 if to_unicode fails
18552
18553 @complexity Linear in the length of the input. The parser is a predictive
18554 LL(1) parser. The complexity can be higher if the parser callback function
18555 @a cb has a super-linear complexity.
18556
18557 @note A UTF-8 byte order mark is silently ignored.
18558
18559 @liveexample{The example below demonstrates the `parse()` function reading
18560 from an iterator range.,parse__iteratortype__parser_callback_t}
18561
18562 @since version 2.0.3
18563 */
18564 template<class IteratorType, typename std::enable_if<
18565 std::is_base_of<
18566 std::random_access_iterator_tag,
18567 typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
18568 static basic_json parse(IteratorType first, IteratorType last,
18569 const parser_callback_t cb = nullptr,
18570 const bool allow_exceptions = true)
18571 {
18572 basic_json result;
18573 parser(detail::input_adapter(first, last), cb, allow_exceptions).parse(true, result);
18574 return result;
18575 }
18576
18577 template<class IteratorType, typename std::enable_if<
18578 std::is_base_of<
18579 std::random_access_iterator_tag,
18580 typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
18581 static bool accept(IteratorType first, IteratorType last)
18582 {
18583 return parser(detail::input_adapter(first, last)).accept(true);
18584 }
18585
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018586 template<class IteratorType, class SAX, typename std::enable_if<
18587 std::is_base_of<
18588 std::random_access_iterator_tag,
18589 typename std::iterator_traits<IteratorType>::iterator_category>::value, int>::type = 0>
18590 static bool sax_parse(IteratorType first, IteratorType last, SAX* sax)
18591 {
18592 return parser(detail::input_adapter(first, last)).sax_parse(sax);
18593 }
18594
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018595 /*!
18596 @brief deserialize from stream
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018597 @deprecated This stream operator is deprecated and will be removed in
18598 version 4.0.0 of the library. Please use
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018599 @ref operator>>(std::istream&, basic_json&)
18600 instead; that is, replace calls like `j << i;` with `i >> j;`.
18601 @since version 1.0.0; deprecated since version 3.0.0
18602 */
18603 JSON_DEPRECATED
18604 friend std::istream& operator<<(basic_json& j, std::istream& i)
18605 {
18606 return operator>>(i, j);
18607 }
18608
18609 /*!
18610 @brief deserialize from stream
18611
18612 Deserializes an input stream to a JSON value.
18613
18614 @param[in,out] i input stream to read a serialized JSON value from
18615 @param[in,out] j JSON value to write the deserialized input to
18616
18617 @throw parse_error.101 in case of an unexpected token
18618 @throw parse_error.102 if to_unicode fails or surrogate error
18619 @throw parse_error.103 if to_unicode fails
18620
18621 @complexity Linear in the length of the input. The parser is a predictive
18622 LL(1) parser.
18623
18624 @note A UTF-8 byte order mark is silently ignored.
18625
18626 @liveexample{The example below shows how a JSON value is constructed by
18627 reading a serialization from a stream.,operator_deserialize}
18628
18629 @sa parse(std::istream&, const parser_callback_t) for a variant with a
18630 parser callback function to filter values while parsing
18631
18632 @since version 1.0.0
18633 */
18634 friend std::istream& operator>>(std::istream& i, basic_json& j)
18635 {
18636 parser(detail::input_adapter(i)).parse(false, j);
18637 return i;
18638 }
18639
18640 /// @}
18641
18642 ///////////////////////////
18643 // convenience functions //
18644 ///////////////////////////
18645
18646 /*!
18647 @brief return the type as string
18648
18649 Returns the type name as string to be used in error messages - usually to
18650 indicate that a function was called on a wrong JSON type.
18651
18652 @return a string representation of a the @a m_type member:
18653 Value type | return value
18654 ----------- | -------------
18655 null | `"null"`
18656 boolean | `"boolean"`
18657 string | `"string"`
18658 number | `"number"` (for all number types)
18659 object | `"object"`
18660 array | `"array"`
18661 discarded | `"discarded"`
18662
18663 @exceptionsafety No-throw guarantee: this function never throws exceptions.
18664
18665 @complexity Constant.
18666
18667 @liveexample{The following code exemplifies `type_name()` for all JSON
18668 types.,type_name}
18669
18670 @sa @ref type() -- return the type of the JSON value
18671 @sa @ref operator value_t() -- return the type of the JSON value (implicit)
18672
18673 @since version 1.0.0, public since 2.1.0, `const char*` and `noexcept`
18674 since 3.0.0
18675 */
18676 const char* type_name() const noexcept
18677 {
18678 {
18679 switch (m_type)
18680 {
18681 case value_t::null:
18682 return "null";
18683 case value_t::object:
18684 return "object";
18685 case value_t::array:
18686 return "array";
18687 case value_t::string:
18688 return "string";
18689 case value_t::boolean:
18690 return "boolean";
18691 case value_t::discarded:
18692 return "discarded";
18693 default:
18694 return "number";
18695 }
18696 }
18697 }
18698
18699
18700 private:
18701 //////////////////////
18702 // member variables //
18703 //////////////////////
18704
18705 /// the type of the current element
18706 value_t m_type = value_t::null;
18707
18708 /// the value of the current element
18709 json_value m_value = {};
18710
18711 //////////////////////////////////////////
18712 // binary serialization/deserialization //
18713 //////////////////////////////////////////
18714
18715 /// @name binary serialization/deserialization support
18716 /// @{
18717
18718 public:
18719 /*!
18720 @brief create a CBOR serialization of a given JSON value
18721
18722 Serializes a given JSON value @a j to a byte vector using the CBOR (Concise
18723 Binary Object Representation) serialization format. CBOR is a binary
18724 serialization format which aims to be more compact than JSON itself, yet
18725 more efficient to parse.
18726
18727 The library uses the following mapping from JSON values types to
18728 CBOR types according to the CBOR specification (RFC 7049):
18729
18730 JSON value type | value/range | CBOR type | first byte
18731 --------------- | ------------------------------------------ | ---------------------------------- | ---------------
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018732 null | `null` | Null | 0xF6
18733 boolean | `true` | True | 0xF5
18734 boolean | `false` | False | 0xF4
18735 number_integer | -9223372036854775808..-2147483649 | Negative integer (8 bytes follow) | 0x3B
18736 number_integer | -2147483648..-32769 | Negative integer (4 bytes follow) | 0x3A
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018737 number_integer | -32768..-129 | Negative integer (2 bytes follow) | 0x39
18738 number_integer | -128..-25 | Negative integer (1 byte follow) | 0x38
18739 number_integer | -24..-1 | Negative integer | 0x20..0x37
18740 number_integer | 0..23 | Integer | 0x00..0x17
18741 number_integer | 24..255 | Unsigned integer (1 byte follow) | 0x18
18742 number_integer | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018743 number_integer | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
18744 number_integer | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018745 number_unsigned | 0..23 | Integer | 0x00..0x17
18746 number_unsigned | 24..255 | Unsigned integer (1 byte follow) | 0x18
18747 number_unsigned | 256..65535 | Unsigned integer (2 bytes follow) | 0x19
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018748 number_unsigned | 65536..4294967295 | Unsigned integer (4 bytes follow) | 0x1A
18749 number_unsigned | 4294967296..18446744073709551615 | Unsigned integer (8 bytes follow) | 0x1B
18750 number_float | *any value* | Double-Precision Float | 0xFB
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018751 string | *length*: 0..23 | UTF-8 string | 0x60..0x77
18752 string | *length*: 23..255 | UTF-8 string (1 byte follow) | 0x78
18753 string | *length*: 256..65535 | UTF-8 string (2 bytes follow) | 0x79
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018754 string | *length*: 65536..4294967295 | UTF-8 string (4 bytes follow) | 0x7A
18755 string | *length*: 4294967296..18446744073709551615 | UTF-8 string (8 bytes follow) | 0x7B
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018756 array | *size*: 0..23 | array | 0x80..0x97
18757 array | *size*: 23..255 | array (1 byte follow) | 0x98
18758 array | *size*: 256..65535 | array (2 bytes follow) | 0x99
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018759 array | *size*: 65536..4294967295 | array (4 bytes follow) | 0x9A
18760 array | *size*: 4294967296..18446744073709551615 | array (8 bytes follow) | 0x9B
18761 object | *size*: 0..23 | map | 0xA0..0xB7
18762 object | *size*: 23..255 | map (1 byte follow) | 0xB8
18763 object | *size*: 256..65535 | map (2 bytes follow) | 0xB9
18764 object | *size*: 65536..4294967295 | map (4 bytes follow) | 0xBA
18765 object | *size*: 4294967296..18446744073709551615 | map (8 bytes follow) | 0xBB
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018766
18767 @note The mapping is **complete** in the sense that any JSON value type
18768 can be converted to a CBOR value.
18769
18770 @note If NaN or Infinity are stored inside a JSON number, they are
18771 serialized properly. This behavior differs from the @ref dump()
18772 function which serializes NaN or Infinity to `null`.
18773
18774 @note The following CBOR types are not used in the conversion:
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018775 - byte strings (0x40..0x5F)
18776 - UTF-8 strings terminated by "break" (0x7F)
18777 - arrays terminated by "break" (0x9F)
18778 - maps terminated by "break" (0xBF)
18779 - date/time (0xC0..0xC1)
18780 - bignum (0xC2..0xC3)
18781 - decimal fraction (0xC4)
18782 - bigfloat (0xC5)
18783 - tagged items (0xC6..0xD4, 0xD8..0xDB)
18784 - expected conversions (0xD5..0xD7)
18785 - simple values (0xE0..0xF3, 0xF8)
18786 - undefined (0xF7)
18787 - half and single-precision floats (0xF9-0xFA)
18788 - break (0xFF)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018789
18790 @param[in] j JSON value to serialize
18791 @return MessagePack serialization as byte vector
18792
18793 @complexity Linear in the size of the JSON value @a j.
18794
18795 @liveexample{The example shows the serialization of a JSON value to a byte
18796 vector in CBOR format.,to_cbor}
18797
18798 @sa http://cbor.io
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018799 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018800 analogous deserialization
18801 @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018802 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
18803 related UBJSON format
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018804
18805 @since version 2.0.9
18806 */
18807 static std::vector<uint8_t> to_cbor(const basic_json& j)
18808 {
18809 std::vector<uint8_t> result;
18810 to_cbor(j, result);
18811 return result;
18812 }
18813
18814 static void to_cbor(const basic_json& j, detail::output_adapter<uint8_t> o)
18815 {
18816 binary_writer<uint8_t>(o).write_cbor(j);
18817 }
18818
18819 static void to_cbor(const basic_json& j, detail::output_adapter<char> o)
18820 {
18821 binary_writer<char>(o).write_cbor(j);
18822 }
18823
18824 /*!
18825 @brief create a MessagePack serialization of a given JSON value
18826
18827 Serializes a given JSON value @a j to a byte vector using the MessagePack
18828 serialization format. MessagePack is a binary serialization format which
18829 aims to be more compact than JSON itself, yet more efficient to parse.
18830
18831 The library uses the following mapping from JSON values types to
18832 MessagePack types according to the MessagePack specification:
18833
18834 JSON value type | value/range | MessagePack type | first byte
18835 --------------- | --------------------------------- | ---------------- | ----------
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018836 null | `null` | nil | 0xC0
18837 boolean | `true` | true | 0xC3
18838 boolean | `false` | false | 0xC2
18839 number_integer | -9223372036854775808..-2147483649 | int64 | 0xD3
18840 number_integer | -2147483648..-32769 | int32 | 0xD2
18841 number_integer | -32768..-129 | int16 | 0xD1
18842 number_integer | -128..-33 | int8 | 0xD0
18843 number_integer | -32..-1 | negative fixint | 0xE0..0xFF
18844 number_integer | 0..127 | positive fixint | 0x00..0x7F
18845 number_integer | 128..255 | uint 8 | 0xCC
18846 number_integer | 256..65535 | uint 16 | 0xCD
18847 number_integer | 65536..4294967295 | uint 32 | 0xCE
18848 number_integer | 4294967296..18446744073709551615 | uint 64 | 0xCF
18849 number_unsigned | 0..127 | positive fixint | 0x00..0x7F
18850 number_unsigned | 128..255 | uint 8 | 0xCC
18851 number_unsigned | 256..65535 | uint 16 | 0xCD
18852 number_unsigned | 65536..4294967295 | uint 32 | 0xCE
18853 number_unsigned | 4294967296..18446744073709551615 | uint 64 | 0xCF
18854 number_float | *any value* | float 64 | 0xCB
18855 string | *length*: 0..31 | fixstr | 0xA0..0xBF
18856 string | *length*: 32..255 | str 8 | 0xD9
18857 string | *length*: 256..65535 | str 16 | 0xDA
18858 string | *length*: 65536..4294967295 | str 32 | 0xDB
18859 array | *size*: 0..15 | fixarray | 0x90..0x9F
18860 array | *size*: 16..65535 | array 16 | 0xDC
18861 array | *size*: 65536..4294967295 | array 32 | 0xDD
18862 object | *size*: 0..15 | fix map | 0x80..0x8F
18863 object | *size*: 16..65535 | map 16 | 0xDE
18864 object | *size*: 65536..4294967295 | map 32 | 0xDF
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018865
18866 @note The mapping is **complete** in the sense that any JSON value type
18867 can be converted to a MessagePack value.
18868
18869 @note The following values can **not** be converted to a MessagePack value:
18870 - strings with more than 4294967295 bytes
18871 - arrays with more than 4294967295 elements
18872 - objects with more than 4294967295 elements
18873
18874 @note The following MessagePack types are not used in the conversion:
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018875 - bin 8 - bin 32 (0xC4..0xC6)
18876 - ext 8 - ext 32 (0xC7..0xC9)
18877 - float 32 (0xCA)
18878 - fixext 1 - fixext 16 (0xD4..0xD8)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018879
18880 @note Any MessagePack output created @ref to_msgpack can be successfully
18881 parsed by @ref from_msgpack.
18882
18883 @note If NaN or Infinity are stored inside a JSON number, they are
18884 serialized properly. This behavior differs from the @ref dump()
18885 function which serializes NaN or Infinity to `null`.
18886
18887 @param[in] j JSON value to serialize
18888 @return MessagePack serialization as byte vector
18889
18890 @complexity Linear in the size of the JSON value @a j.
18891
18892 @liveexample{The example shows the serialization of a JSON value to a byte
18893 vector in MessagePack format.,to_msgpack}
18894
18895 @sa http://msgpack.org
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018896 @sa @ref from_msgpack for the analogous deserialization
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018897 @sa @ref to_cbor(const basic_json& for the related CBOR format
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018898 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
18899 related UBJSON format
Syoyo Fujita2e21be72017-11-05 17:13:01 +090018900
18901 @since version 2.0.9
18902 */
18903 static std::vector<uint8_t> to_msgpack(const basic_json& j)
18904 {
18905 std::vector<uint8_t> result;
18906 to_msgpack(j, result);
18907 return result;
18908 }
18909
18910 static void to_msgpack(const basic_json& j, detail::output_adapter<uint8_t> o)
18911 {
18912 binary_writer<uint8_t>(o).write_msgpack(j);
18913 }
18914
18915 static void to_msgpack(const basic_json& j, detail::output_adapter<char> o)
18916 {
18917 binary_writer<char>(o).write_msgpack(j);
18918 }
18919
18920 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090018921 @brief create a UBJSON serialization of a given JSON value
18922
18923 Serializes a given JSON value @a j to a byte vector using the UBJSON
18924 (Universal Binary JSON) serialization format. UBJSON aims to be more compact
18925 than JSON itself, yet more efficient to parse.
18926
18927 The library uses the following mapping from JSON values types to
18928 UBJSON types according to the UBJSON specification:
18929
18930 JSON value type | value/range | UBJSON type | marker
18931 --------------- | --------------------------------- | ----------- | ------
18932 null | `null` | null | `Z`
18933 boolean | `true` | true | `T`
18934 boolean | `false` | false | `F`
18935 number_integer | -9223372036854775808..-2147483649 | int64 | `L`
18936 number_integer | -2147483648..-32769 | int32 | `l`
18937 number_integer | -32768..-129 | int16 | `I`
18938 number_integer | -128..127 | int8 | `i`
18939 number_integer | 128..255 | uint8 | `U`
18940 number_integer | 256..32767 | int16 | `I`
18941 number_integer | 32768..2147483647 | int32 | `l`
18942 number_integer | 2147483648..9223372036854775807 | int64 | `L`
18943 number_unsigned | 0..127 | int8 | `i`
18944 number_unsigned | 128..255 | uint8 | `U`
18945 number_unsigned | 256..32767 | int16 | `I`
18946 number_unsigned | 32768..2147483647 | int32 | `l`
18947 number_unsigned | 2147483648..9223372036854775807 | int64 | `L`
18948 number_float | *any value* | float64 | `D`
18949 string | *with shortest length indicator* | string | `S`
18950 array | *see notes on optimized format* | array | `[`
18951 object | *see notes on optimized format* | map | `{`
18952
18953 @note The mapping is **complete** in the sense that any JSON value type
18954 can be converted to a UBJSON value.
18955
18956 @note The following values can **not** be converted to a UBJSON value:
18957 - strings with more than 9223372036854775807 bytes (theoretical)
18958 - unsigned integer numbers above 9223372036854775807
18959
18960 @note The following markers are not used in the conversion:
18961 - `Z`: no-op values are not created.
18962 - `C`: single-byte strings are serialized with `S` markers.
18963
18964 @note Any UBJSON output created @ref to_ubjson can be successfully parsed
18965 by @ref from_ubjson.
18966
18967 @note If NaN or Infinity are stored inside a JSON number, they are
18968 serialized properly. This behavior differs from the @ref dump()
18969 function which serializes NaN or Infinity to `null`.
18970
18971 @note The optimized formats for containers are supported: Parameter
18972 @a use_size adds size information to the beginning of a container and
18973 removes the closing marker. Parameter @a use_type further checks
18974 whether all elements of a container have the same type and adds the
18975 type marker to the beginning of the container. The @a use_type
18976 parameter must only be used together with @a use_size = true. Note
18977 that @a use_size = true alone may result in larger representations -
18978 the benefit of this parameter is that the receiving side is
18979 immediately informed on the number of elements of the container.
18980
18981 @param[in] j JSON value to serialize
18982 @param[in] use_size whether to add size annotations to container types
18983 @param[in] use_type whether to add type annotations to container types
18984 (must be combined with @a use_size = true)
18985 @return UBJSON serialization as byte vector
18986
18987 @complexity Linear in the size of the JSON value @a j.
18988
18989 @liveexample{The example shows the serialization of a JSON value to a byte
18990 vector in UBJSON format.,to_ubjson}
18991
18992 @sa http://ubjson.org
18993 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
18994 analogous deserialization
18995 @sa @ref to_cbor(const basic_json& for the related CBOR format
18996 @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
18997
18998 @since version 3.1.0
18999 */
19000 static std::vector<uint8_t> to_ubjson(const basic_json& j,
19001 const bool use_size = false,
19002 const bool use_type = false)
19003 {
19004 std::vector<uint8_t> result;
19005 to_ubjson(j, result, use_size, use_type);
19006 return result;
19007 }
19008
19009 static void to_ubjson(const basic_json& j, detail::output_adapter<uint8_t> o,
19010 const bool use_size = false, const bool use_type = false)
19011 {
19012 binary_writer<uint8_t>(o).write_ubjson(j, use_size, use_type);
19013 }
19014
19015 static void to_ubjson(const basic_json& j, detail::output_adapter<char> o,
19016 const bool use_size = false, const bool use_type = false)
19017 {
19018 binary_writer<char>(o).write_ubjson(j, use_size, use_type);
19019 }
19020
19021
19022 /*!
19023 @brief Serializes the given JSON object `j` to BSON and returns a vector
19024 containing the corresponding BSON-representation.
19025
19026 BSON (Binary JSON) is a binary format in which zero or more ordered key/value pairs are
19027 stored as a single entity (a so-called document).
19028
19029 The library uses the following mapping from JSON values types to BSON types:
19030
19031 JSON value type | value/range | BSON type | marker
19032 --------------- | --------------------------------- | ----------- | ------
19033 null | `null` | null | 0x0A
19034 boolean | `true`, `false` | boolean | 0x08
19035 number_integer | -9223372036854775808..-2147483649 | int64 | 0x12
19036 number_integer | -2147483648..2147483647 | int32 | 0x10
19037 number_integer | 2147483648..9223372036854775807 | int64 | 0x12
19038 number_unsigned | 0..2147483647 | int32 | 0x10
19039 number_unsigned | 2147483648..9223372036854775807 | int64 | 0x12
19040 number_unsigned | 9223372036854775808..18446744073709551615| -- | --
19041 number_float | *any value* | double | 0x01
19042 string | *any value* | string | 0x02
19043 array | *any value* | document | 0x04
19044 object | *any value* | document | 0x03
19045
19046 @warning The mapping is **incomplete**, since only JSON-objects (and things
19047 contained therein) can be serialized to BSON.
19048 Also, integers larger than 9223372036854775807 cannot be serialized to BSON,
19049 and the keys may not contain U+0000, since they are serialized a
19050 zero-terminated c-strings.
19051
19052 @throw out_of_range.407 if `j.is_number_unsigned() && j.get<std::uint64_t>() > 9223372036854775807`
19053 @throw out_of_range.409 if a key in `j` contains a NULL (U+0000)
19054 @throw type_error.317 if `!j.is_object()`
19055
19056 @pre The input `j` is required to be an object: `j.is_object() == true`.
19057
19058 @note Any BSON output created via @ref to_bson can be successfully parsed
19059 by @ref from_bson.
19060
19061 @param[in] j JSON value to serialize
19062 @return BSON serialization as byte vector
19063
19064 @complexity Linear in the size of the JSON value @a j.
19065
19066 @liveexample{The example shows the serialization of a JSON value to a byte
19067 vector in BSON format.,to_bson}
19068
19069 @sa http://bsonspec.org/spec.html
19070 @sa @ref from_bson(detail::input_adapter&&, const bool strict) for the
19071 analogous deserialization
19072 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
19073 related UBJSON format
19074 @sa @ref to_cbor(const basic_json&) for the related CBOR format
19075 @sa @ref to_msgpack(const basic_json&) for the related MessagePack format
19076 */
19077 static std::vector<uint8_t> to_bson(const basic_json& j)
19078 {
19079 std::vector<uint8_t> result;
19080 to_bson(j, result);
19081 return result;
19082 }
19083
19084 /*!
19085 @brief Serializes the given JSON object `j` to BSON and forwards the
19086 corresponding BSON-representation to the given output_adapter `o`.
19087 @param j The JSON object to convert to BSON.
19088 @param o The output adapter that receives the binary BSON representation.
19089 @pre The input `j` shall be an object: `j.is_object() == true`
19090 @sa @ref to_bson(const basic_json&)
19091 */
19092 static void to_bson(const basic_json& j, detail::output_adapter<uint8_t> o)
19093 {
19094 binary_writer<uint8_t>(o).write_bson(j);
19095 }
19096
19097 /*!
19098 @copydoc to_bson(const basic_json&, detail::output_adapter<uint8_t>)
19099 */
19100 static void to_bson(const basic_json& j, detail::output_adapter<char> o)
19101 {
19102 binary_writer<char>(o).write_bson(j);
19103 }
19104
19105
19106 /*!
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019107 @brief create a JSON value from an input in CBOR format
19108
19109 Deserializes a given input @a i to a JSON value using the CBOR (Concise
19110 Binary Object Representation) serialization format.
19111
19112 The library maps CBOR types to JSON value types as follows:
19113
19114 CBOR type | JSON value type | first byte
19115 ---------------------- | --------------- | ----------
19116 Integer | number_unsigned | 0x00..0x17
19117 Unsigned integer | number_unsigned | 0x18
19118 Unsigned integer | number_unsigned | 0x19
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019119 Unsigned integer | number_unsigned | 0x1A
19120 Unsigned integer | number_unsigned | 0x1B
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019121 Negative integer | number_integer | 0x20..0x37
19122 Negative integer | number_integer | 0x38
19123 Negative integer | number_integer | 0x39
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019124 Negative integer | number_integer | 0x3A
19125 Negative integer | number_integer | 0x3B
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019126 Negative integer | number_integer | 0x40..0x57
19127 UTF-8 string | string | 0x60..0x77
19128 UTF-8 string | string | 0x78
19129 UTF-8 string | string | 0x79
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019130 UTF-8 string | string | 0x7A
19131 UTF-8 string | string | 0x7B
19132 UTF-8 string | string | 0x7F
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019133 array | array | 0x80..0x97
19134 array | array | 0x98
19135 array | array | 0x99
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019136 array | array | 0x9A
19137 array | array | 0x9B
19138 array | array | 0x9F
19139 map | object | 0xA0..0xB7
19140 map | object | 0xB8
19141 map | object | 0xB9
19142 map | object | 0xBA
19143 map | object | 0xBB
19144 map | object | 0xBF
19145 False | `false` | 0xF4
19146 True | `true` | 0xF5
19147 Null | `null` | 0xF6
19148 Half-Precision Float | number_float | 0xF9
19149 Single-Precision Float | number_float | 0xFA
19150 Double-Precision Float | number_float | 0xFB
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019151
19152 @warning The mapping is **incomplete** in the sense that not all CBOR
19153 types can be converted to a JSON value. The following CBOR types
19154 are not supported and will yield parse errors (parse_error.112):
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019155 - byte strings (0x40..0x5F)
19156 - date/time (0xC0..0xC1)
19157 - bignum (0xC2..0xC3)
19158 - decimal fraction (0xC4)
19159 - bigfloat (0xC5)
19160 - tagged items (0xC6..0xD4, 0xD8..0xDB)
19161 - expected conversions (0xD5..0xD7)
19162 - simple values (0xE0..0xF3, 0xF8)
19163 - undefined (0xF7)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019164
19165 @warning CBOR allows map keys of any type, whereas JSON only allows
19166 strings as keys in object values. Therefore, CBOR maps with keys
19167 other than UTF-8 strings are rejected (parse_error.113).
19168
19169 @note Any CBOR output created @ref to_cbor can be successfully parsed by
19170 @ref from_cbor.
19171
19172 @param[in] i an input in CBOR format convertible to an input adapter
19173 @param[in] strict whether to expect the input to be consumed until EOF
19174 (true by default)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019175 @param[in] allow_exceptions whether to throw exceptions in case of a
19176 parse error (optional, true by default)
19177
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019178 @return deserialized JSON value
19179
19180 @throw parse_error.110 if the given input ends prematurely or the end of
19181 file was not reached when @a strict was set to true
19182 @throw parse_error.112 if unsupported features from CBOR were
19183 used in the given input @a v or if the input is not valid CBOR
19184 @throw parse_error.113 if a string was expected as map key, but not found
19185
19186 @complexity Linear in the size of the input @a i.
19187
19188 @liveexample{The example shows the deserialization of a byte vector in CBOR
19189 format to a JSON value.,from_cbor}
19190
19191 @sa http://cbor.io
19192 @sa @ref to_cbor(const basic_json&) for the analogous serialization
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019193 @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for the
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019194 related MessagePack format
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019195 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
19196 related UBJSON format
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019197
19198 @since version 2.0.9; parameter @a start_index since 2.1.1; changed to
19199 consume input adapters, removed start_index parameter, and added
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019200 @a strict parameter since 3.0.0; added @a allow_exceptions parameter
19201 since 3.2.0
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019202 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019203 static basic_json from_cbor(detail::input_adapter&& i,
19204 const bool strict = true,
19205 const bool allow_exceptions = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019206 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019207 basic_json result;
19208 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19209 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::cbor, &sdp, strict);
19210 return res ? result : basic_json(value_t::discarded);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019211 }
19212
19213 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019214 @copydoc from_cbor(detail::input_adapter&&, const bool, const bool)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019215 */
19216 template<typename A1, typename A2,
19217 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019218 static basic_json from_cbor(A1 && a1, A2 && a2,
19219 const bool strict = true,
19220 const bool allow_exceptions = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019221 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019222 basic_json result;
19223 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19224 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::cbor, &sdp, strict);
19225 return res ? result : basic_json(value_t::discarded);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019226 }
19227
19228 /*!
19229 @brief create a JSON value from an input in MessagePack format
19230
19231 Deserializes a given input @a i to a JSON value using the MessagePack
19232 serialization format.
19233
19234 The library maps MessagePack types to JSON value types as follows:
19235
19236 MessagePack type | JSON value type | first byte
19237 ---------------- | --------------- | ----------
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019238 positive fixint | number_unsigned | 0x00..0x7F
19239 fixmap | object | 0x80..0x8F
19240 fixarray | array | 0x90..0x9F
19241 fixstr | string | 0xA0..0xBF
19242 nil | `null` | 0xC0
19243 false | `false` | 0xC2
19244 true | `true` | 0xC3
19245 float 32 | number_float | 0xCA
19246 float 64 | number_float | 0xCB
19247 uint 8 | number_unsigned | 0xCC
19248 uint 16 | number_unsigned | 0xCD
19249 uint 32 | number_unsigned | 0xCE
19250 uint 64 | number_unsigned | 0xCF
19251 int 8 | number_integer | 0xD0
19252 int 16 | number_integer | 0xD1
19253 int 32 | number_integer | 0xD2
19254 int 64 | number_integer | 0xD3
19255 str 8 | string | 0xD9
19256 str 16 | string | 0xDA
19257 str 32 | string | 0xDB
19258 array 16 | array | 0xDC
19259 array 32 | array | 0xDD
19260 map 16 | object | 0xDE
19261 map 32 | object | 0xDF
19262 negative fixint | number_integer | 0xE0-0xFF
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019263
19264 @warning The mapping is **incomplete** in the sense that not all
19265 MessagePack types can be converted to a JSON value. The following
19266 MessagePack types are not supported and will yield parse errors:
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019267 - bin 8 - bin 32 (0xC4..0xC6)
19268 - ext 8 - ext 32 (0xC7..0xC9)
19269 - fixext 1 - fixext 16 (0xD4..0xD8)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019270
19271 @note Any MessagePack output created @ref to_msgpack can be successfully
19272 parsed by @ref from_msgpack.
19273
19274 @param[in] i an input in MessagePack format convertible to an input
19275 adapter
19276 @param[in] strict whether to expect the input to be consumed until EOF
19277 (true by default)
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019278 @param[in] allow_exceptions whether to throw exceptions in case of a
19279 parse error (optional, true by default)
19280
19281 @return deserialized JSON value
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019282
19283 @throw parse_error.110 if the given input ends prematurely or the end of
19284 file was not reached when @a strict was set to true
19285 @throw parse_error.112 if unsupported features from MessagePack were
19286 used in the given input @a i or if the input is not valid MessagePack
19287 @throw parse_error.113 if a string was expected as map key, but not found
19288
19289 @complexity Linear in the size of the input @a i.
19290
19291 @liveexample{The example shows the deserialization of a byte vector in
19292 MessagePack format to a JSON value.,from_msgpack}
19293
19294 @sa http://msgpack.org
19295 @sa @ref to_msgpack(const basic_json&) for the analogous serialization
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019296 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
19297 related CBOR format
19298 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for
19299 the related UBJSON format
19300 @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
19301 the related BSON format
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019302
19303 @since version 2.0.9; parameter @a start_index since 2.1.1; changed to
19304 consume input adapters, removed start_index parameter, and added
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019305 @a strict parameter since 3.0.0; added @a allow_exceptions parameter
19306 since 3.2.0
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019307 */
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019308 static basic_json from_msgpack(detail::input_adapter&& i,
19309 const bool strict = true,
19310 const bool allow_exceptions = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019311 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019312 basic_json result;
19313 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19314 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::msgpack, &sdp, strict);
19315 return res ? result : basic_json(value_t::discarded);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019316 }
19317
19318 /*!
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019319 @copydoc from_msgpack(detail::input_adapter&&, const bool, const bool)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019320 */
19321 template<typename A1, typename A2,
19322 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019323 static basic_json from_msgpack(A1 && a1, A2 && a2,
19324 const bool strict = true,
19325 const bool allow_exceptions = true)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019326 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019327 basic_json result;
19328 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19329 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::msgpack, &sdp, strict);
19330 return res ? result : basic_json(value_t::discarded);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019331 }
19332
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019333 /*!
19334 @brief create a JSON value from an input in UBJSON format
19335
19336 Deserializes a given input @a i to a JSON value using the UBJSON (Universal
19337 Binary JSON) serialization format.
19338
19339 The library maps UBJSON types to JSON value types as follows:
19340
19341 UBJSON type | JSON value type | marker
19342 ----------- | --------------------------------------- | ------
19343 no-op | *no value, next value is read* | `N`
19344 null | `null` | `Z`
19345 false | `false` | `F`
19346 true | `true` | `T`
19347 float32 | number_float | `d`
19348 float64 | number_float | `D`
19349 uint8 | number_unsigned | `U`
19350 int8 | number_integer | `i`
19351 int16 | number_integer | `I`
19352 int32 | number_integer | `l`
19353 int64 | number_integer | `L`
19354 string | string | `S`
19355 char | string | `C`
19356 array | array (optimized values are supported) | `[`
19357 object | object (optimized values are supported) | `{`
19358
19359 @note The mapping is **complete** in the sense that any UBJSON value can
19360 be converted to a JSON value.
19361
19362 @param[in] i an input in UBJSON format convertible to an input adapter
19363 @param[in] strict whether to expect the input to be consumed until EOF
19364 (true by default)
19365 @param[in] allow_exceptions whether to throw exceptions in case of a
19366 parse error (optional, true by default)
19367
19368 @return deserialized JSON value
19369
19370 @throw parse_error.110 if the given input ends prematurely or the end of
19371 file was not reached when @a strict was set to true
19372 @throw parse_error.112 if a parse error occurs
19373 @throw parse_error.113 if a string could not be parsed successfully
19374
19375 @complexity Linear in the size of the input @a i.
19376
19377 @liveexample{The example shows the deserialization of a byte vector in
19378 UBJSON format to a JSON value.,from_ubjson}
19379
19380 @sa http://ubjson.org
19381 @sa @ref to_ubjson(const basic_json&, const bool, const bool) for the
19382 analogous serialization
19383 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
19384 related CBOR format
19385 @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
19386 the related MessagePack format
19387 @sa @ref from_bson(detail::input_adapter&&, const bool, const bool) for
19388 the related BSON format
19389
19390 @since version 3.1.0; added @a allow_exceptions parameter since 3.2.0
19391 */
19392 static basic_json from_ubjson(detail::input_adapter&& i,
19393 const bool strict = true,
19394 const bool allow_exceptions = true)
19395 {
19396 basic_json result;
19397 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19398 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::ubjson, &sdp, strict);
19399 return res ? result : basic_json(value_t::discarded);
19400 }
19401
19402 /*!
19403 @copydoc from_ubjson(detail::input_adapter&&, const bool, const bool)
19404 */
19405 template<typename A1, typename A2,
19406 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
19407 static basic_json from_ubjson(A1 && a1, A2 && a2,
19408 const bool strict = true,
19409 const bool allow_exceptions = true)
19410 {
19411 basic_json result;
19412 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19413 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::ubjson, &sdp, strict);
19414 return res ? result : basic_json(value_t::discarded);
19415 }
19416
19417 /*!
19418 @brief Create a JSON value from an input in BSON format
19419
19420 Deserializes a given input @a i to a JSON value using the BSON (Binary JSON)
19421 serialization format.
19422
19423 The library maps BSON record types to JSON value types as follows:
19424
19425 BSON type | BSON marker byte | JSON value type
19426 --------------- | ---------------- | ---------------------------
19427 double | 0x01 | number_float
19428 string | 0x02 | string
19429 document | 0x03 | object
19430 array | 0x04 | array
19431 binary | 0x05 | still unsupported
19432 undefined | 0x06 | still unsupported
19433 ObjectId | 0x07 | still unsupported
19434 boolean | 0x08 | boolean
19435 UTC Date-Time | 0x09 | still unsupported
19436 null | 0x0A | null
19437 Regular Expr. | 0x0B | still unsupported
19438 DB Pointer | 0x0C | still unsupported
19439 JavaScript Code | 0x0D | still unsupported
19440 Symbol | 0x0E | still unsupported
19441 JavaScript Code | 0x0F | still unsupported
19442 int32 | 0x10 | number_integer
19443 Timestamp | 0x11 | still unsupported
19444 128-bit decimal float | 0x13 | still unsupported
19445 Max Key | 0x7F | still unsupported
19446 Min Key | 0xFF | still unsupported
19447
19448 @warning The mapping is **incomplete**. The unsupported mappings
19449 are indicated in the table above.
19450
19451 @param[in] i an input in BSON format convertible to an input adapter
19452 @param[in] strict whether to expect the input to be consumed until EOF
19453 (true by default)
19454 @param[in] allow_exceptions whether to throw exceptions in case of a
19455 parse error (optional, true by default)
19456
19457 @return deserialized JSON value
19458
19459 @throw parse_error.114 if an unsupported BSON record type is encountered
19460
19461 @complexity Linear in the size of the input @a i.
19462
19463 @liveexample{The example shows the deserialization of a byte vector in
19464 BSON format to a JSON value.,from_bson}
19465
19466 @sa http://bsonspec.org/spec.html
19467 @sa @ref to_bson(const basic_json&) for the analogous serialization
19468 @sa @ref from_cbor(detail::input_adapter&&, const bool, const bool) for the
19469 related CBOR format
19470 @sa @ref from_msgpack(detail::input_adapter&&, const bool, const bool) for
19471 the related MessagePack format
19472 @sa @ref from_ubjson(detail::input_adapter&&, const bool, const bool) for the
19473 related UBJSON format
19474 */
19475 static basic_json from_bson(detail::input_adapter&& i,
19476 const bool strict = true,
19477 const bool allow_exceptions = true)
19478 {
19479 basic_json result;
19480 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19481 const bool res = binary_reader(detail::input_adapter(i)).sax_parse(input_format_t::bson, &sdp, strict);
19482 return res ? result : basic_json(value_t::discarded);
19483 }
19484
19485 /*!
19486 @copydoc from_bson(detail::input_adapter&&, const bool, const bool)
19487 */
19488 template<typename A1, typename A2,
19489 detail::enable_if_t<std::is_constructible<detail::input_adapter, A1, A2>::value, int> = 0>
19490 static basic_json from_bson(A1 && a1, A2 && a2,
19491 const bool strict = true,
19492 const bool allow_exceptions = true)
19493 {
19494 basic_json result;
19495 detail::json_sax_dom_parser<basic_json> sdp(result, allow_exceptions);
19496 const bool res = binary_reader(detail::input_adapter(std::forward<A1>(a1), std::forward<A2>(a2))).sax_parse(input_format_t::bson, &sdp, strict);
19497 return res ? result : basic_json(value_t::discarded);
19498 }
19499
19500
19501
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019502 /// @}
19503
19504 //////////////////////////
19505 // JSON Pointer support //
19506 //////////////////////////
19507
19508 /// @name JSON Pointer functions
19509 /// @{
19510
19511 /*!
19512 @brief access specified element via JSON Pointer
19513
19514 Uses a JSON pointer to retrieve a reference to the respective JSON value.
19515 No bound checking is performed. Similar to @ref operator[](const typename
19516 object_t::key_type&), `null` values are created in arrays and objects if
19517 necessary.
19518
19519 In particular:
19520 - If the JSON pointer points to an object key that does not exist, it
19521 is created an filled with a `null` value before a reference to it
19522 is returned.
19523 - If the JSON pointer points to an array index that does not exist, it
19524 is created an filled with a `null` value before a reference to it
19525 is returned. All indices between the current maximum and the given
19526 index are also filled with `null`.
19527 - The special value `-` is treated as a synonym for the index past the
19528 end.
19529
19530 @param[in] ptr a JSON pointer
19531
19532 @return reference to the element pointed to by @a ptr
19533
19534 @complexity Constant.
19535
19536 @throw parse_error.106 if an array index begins with '0'
19537 @throw parse_error.109 if an array index was not a number
19538 @throw out_of_range.404 if the JSON pointer can not be resolved
19539
19540 @liveexample{The behavior is shown in the example.,operatorjson_pointer}
19541
19542 @since version 2.0.0
19543 */
19544 reference operator[](const json_pointer& ptr)
19545 {
19546 return ptr.get_unchecked(this);
19547 }
19548
19549 /*!
19550 @brief access specified element via JSON Pointer
19551
19552 Uses a JSON pointer to retrieve a reference to the respective JSON value.
19553 No bound checking is performed. The function does not change the JSON
19554 value; no `null` values are created. In particular, the the special value
19555 `-` yields an exception.
19556
19557 @param[in] ptr JSON pointer to the desired element
19558
19559 @return const reference to the element pointed to by @a ptr
19560
19561 @complexity Constant.
19562
19563 @throw parse_error.106 if an array index begins with '0'
19564 @throw parse_error.109 if an array index was not a number
19565 @throw out_of_range.402 if the array index '-' is used
19566 @throw out_of_range.404 if the JSON pointer can not be resolved
19567
19568 @liveexample{The behavior is shown in the example.,operatorjson_pointer_const}
19569
19570 @since version 2.0.0
19571 */
19572 const_reference operator[](const json_pointer& ptr) const
19573 {
19574 return ptr.get_unchecked(this);
19575 }
19576
19577 /*!
19578 @brief access specified element via JSON Pointer
19579
19580 Returns a reference to the element at with specified JSON pointer @a ptr,
19581 with bounds checking.
19582
19583 @param[in] ptr JSON pointer to the desired element
19584
19585 @return reference to the element pointed to by @a ptr
19586
19587 @throw parse_error.106 if an array index in the passed JSON pointer @a ptr
19588 begins with '0'. See example below.
19589
19590 @throw parse_error.109 if an array index in the passed JSON pointer @a ptr
19591 is not a number. See example below.
19592
19593 @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
19594 is out of range. See example below.
19595
19596 @throw out_of_range.402 if the array index '-' is used in the passed JSON
19597 pointer @a ptr. As `at` provides checked access (and no elements are
19598 implicitly inserted), the index '-' is always invalid. See example below.
19599
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019600 @throw out_of_range.403 if the JSON pointer describes a key of an object
19601 which cannot be found. See example below.
19602
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019603 @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
19604 See example below.
19605
19606 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
19607 changes in the JSON value.
19608
19609 @complexity Constant.
19610
19611 @since version 2.0.0
19612
19613 @liveexample{The behavior is shown in the example.,at_json_pointer}
19614 */
19615 reference at(const json_pointer& ptr)
19616 {
19617 return ptr.get_checked(this);
19618 }
19619
19620 /*!
19621 @brief access specified element via JSON Pointer
19622
19623 Returns a const reference to the element at with specified JSON pointer @a
19624 ptr, with bounds checking.
19625
19626 @param[in] ptr JSON pointer to the desired element
19627
19628 @return reference to the element pointed to by @a ptr
19629
19630 @throw parse_error.106 if an array index in the passed JSON pointer @a ptr
19631 begins with '0'. See example below.
19632
19633 @throw parse_error.109 if an array index in the passed JSON pointer @a ptr
19634 is not a number. See example below.
19635
19636 @throw out_of_range.401 if an array index in the passed JSON pointer @a ptr
19637 is out of range. See example below.
19638
19639 @throw out_of_range.402 if the array index '-' is used in the passed JSON
19640 pointer @a ptr. As `at` provides checked access (and no elements are
19641 implicitly inserted), the index '-' is always invalid. See example below.
19642
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019643 @throw out_of_range.403 if the JSON pointer describes a key of an object
19644 which cannot be found. See example below.
19645
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019646 @throw out_of_range.404 if the JSON pointer @a ptr can not be resolved.
19647 See example below.
19648
19649 @exceptionsafety Strong guarantee: if an exception is thrown, there are no
19650 changes in the JSON value.
19651
19652 @complexity Constant.
19653
19654 @since version 2.0.0
19655
19656 @liveexample{The behavior is shown in the example.,at_json_pointer_const}
19657 */
19658 const_reference at(const json_pointer& ptr) const
19659 {
19660 return ptr.get_checked(this);
19661 }
19662
19663 /*!
19664 @brief return flattened JSON value
19665
19666 The function creates a JSON object whose keys are JSON pointers (see [RFC
19667 6901](https://tools.ietf.org/html/rfc6901)) and whose values are all
19668 primitive. The original JSON value can be restored using the @ref
19669 unflatten() function.
19670
19671 @return an object that maps JSON pointers to primitive values
19672
19673 @note Empty objects and arrays are flattened to `null` and will not be
19674 reconstructed correctly by the @ref unflatten() function.
19675
19676 @complexity Linear in the size the JSON value.
19677
19678 @liveexample{The following code shows how a JSON object is flattened to an
19679 object whose keys consist of JSON pointers.,flatten}
19680
19681 @sa @ref unflatten() for the reverse function
19682
19683 @since version 2.0.0
19684 */
19685 basic_json flatten() const
19686 {
19687 basic_json result(value_t::object);
19688 json_pointer::flatten("", *this, result);
19689 return result;
19690 }
19691
19692 /*!
19693 @brief unflatten a previously flattened JSON value
19694
19695 The function restores the arbitrary nesting of a JSON value that has been
19696 flattened before using the @ref flatten() function. The JSON value must
19697 meet certain constraints:
19698 1. The value must be an object.
19699 2. The keys must be JSON pointers (see
19700 [RFC 6901](https://tools.ietf.org/html/rfc6901))
19701 3. The mapped values must be primitive JSON types.
19702
19703 @return the original JSON from a flattened version
19704
19705 @note Empty objects and arrays are flattened by @ref flatten() to `null`
19706 values and can not unflattened to their original type. Apart from
19707 this example, for a JSON value `j`, the following is always true:
19708 `j == j.flatten().unflatten()`.
19709
19710 @complexity Linear in the size the JSON value.
19711
19712 @throw type_error.314 if value is not an object
19713 @throw type_error.315 if object values are not primitive
19714
19715 @liveexample{The following code shows how a flattened JSON object is
19716 unflattened into the original nested JSON object.,unflatten}
19717
19718 @sa @ref flatten() for the reverse function
19719
19720 @since version 2.0.0
19721 */
19722 basic_json unflatten() const
19723 {
19724 return json_pointer::unflatten(*this);
19725 }
19726
19727 /// @}
19728
19729 //////////////////////////
19730 // JSON Patch functions //
19731 //////////////////////////
19732
19733 /// @name JSON Patch functions
19734 /// @{
19735
19736 /*!
19737 @brief applies a JSON patch
19738
19739 [JSON Patch](http://jsonpatch.com) defines a JSON document structure for
19740 expressing a sequence of operations to apply to a JSON) document. With
19741 this function, a JSON Patch is applied to the current JSON value by
19742 executing all operations from the patch.
19743
19744 @param[in] json_patch JSON patch document
19745 @return patched document
19746
19747 @note The application of a patch is atomic: Either all operations succeed
19748 and the patched document is returned or an exception is thrown. In
19749 any case, the original value is not changed: the patch is applied
19750 to a copy of the value.
19751
19752 @throw parse_error.104 if the JSON patch does not consist of an array of
19753 objects
19754
19755 @throw parse_error.105 if the JSON patch is malformed (e.g., mandatory
19756 attributes are missing); example: `"operation add must have member path"`
19757
19758 @throw out_of_range.401 if an array index is out of range.
19759
19760 @throw out_of_range.403 if a JSON pointer inside the patch could not be
19761 resolved successfully in the current JSON value; example: `"key baz not
19762 found"`
19763
19764 @throw out_of_range.405 if JSON pointer has no parent ("add", "remove",
19765 "move")
19766
19767 @throw other_error.501 if "test" operation was unsuccessful
19768
19769 @complexity Linear in the size of the JSON value and the length of the
19770 JSON patch. As usually only a fraction of the JSON value is affected by
19771 the patch, the complexity can usually be neglected.
19772
19773 @liveexample{The following code shows how a JSON patch is applied to a
19774 value.,patch}
19775
19776 @sa @ref diff -- create a JSON patch by comparing two JSON values
19777
19778 @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
19779 @sa [RFC 6901 (JSON Pointer)](https://tools.ietf.org/html/rfc6901)
19780
19781 @since version 2.0.0
19782 */
19783 basic_json patch(const basic_json& json_patch) const
19784 {
19785 // make a working copy to apply the patch to
19786 basic_json result = *this;
19787
19788 // the valid JSON Patch operations
19789 enum class patch_operations {add, remove, replace, move, copy, test, invalid};
19790
19791 const auto get_op = [](const std::string & op)
19792 {
19793 if (op == "add")
19794 {
19795 return patch_operations::add;
19796 }
19797 if (op == "remove")
19798 {
19799 return patch_operations::remove;
19800 }
19801 if (op == "replace")
19802 {
19803 return patch_operations::replace;
19804 }
19805 if (op == "move")
19806 {
19807 return patch_operations::move;
19808 }
19809 if (op == "copy")
19810 {
19811 return patch_operations::copy;
19812 }
19813 if (op == "test")
19814 {
19815 return patch_operations::test;
19816 }
19817
19818 return patch_operations::invalid;
19819 };
19820
19821 // wrapper for "add" operation; add value at ptr
19822 const auto operation_add = [&result](json_pointer & ptr, basic_json val)
19823 {
19824 // adding to the root of the target document means replacing it
19825 if (ptr.is_root())
19826 {
19827 result = val;
19828 }
19829 else
19830 {
19831 // make sure the top element of the pointer exists
19832 json_pointer top_pointer = ptr.top();
19833 if (top_pointer != ptr)
19834 {
19835 result.at(top_pointer);
19836 }
19837
19838 // get reference to parent of JSON pointer ptr
19839 const auto last_path = ptr.pop_back();
19840 basic_json& parent = result[ptr];
19841
19842 switch (parent.m_type)
19843 {
19844 case value_t::null:
19845 case value_t::object:
19846 {
19847 // use operator[] to add value
19848 parent[last_path] = val;
19849 break;
19850 }
19851
19852 case value_t::array:
19853 {
19854 if (last_path == "-")
19855 {
19856 // special case: append to back
19857 parent.push_back(val);
19858 }
19859 else
19860 {
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019861 const auto idx = json_pointer::array_index(last_path);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019862 if (JSON_UNLIKELY(static_cast<size_type>(idx) > parent.size()))
19863 {
19864 // avoid undefined behavior
19865 JSON_THROW(out_of_range::create(401, "array index " + std::to_string(idx) + " is out of range"));
19866 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019867
19868 // default case: insert add offset
19869 parent.insert(parent.begin() + static_cast<difference_type>(idx), val);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019870 }
19871 break;
19872 }
19873
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019874 // LCOV_EXCL_START
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019875 default:
19876 {
19877 // if there exists a parent it cannot be primitive
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019878 assert(false);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019879 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019880 // LCOV_EXCL_STOP
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019881 }
19882 }
19883 };
19884
19885 // wrapper for "remove" operation; remove value at ptr
19886 const auto operation_remove = [&result](json_pointer & ptr)
19887 {
19888 // get reference to parent of JSON pointer ptr
19889 const auto last_path = ptr.pop_back();
19890 basic_json& parent = result.at(ptr);
19891
19892 // remove child
19893 if (parent.is_object())
19894 {
19895 // perform range check
19896 auto it = parent.find(last_path);
19897 if (JSON_LIKELY(it != parent.end()))
19898 {
19899 parent.erase(it);
19900 }
19901 else
19902 {
19903 JSON_THROW(out_of_range::create(403, "key '" + last_path + "' not found"));
19904 }
19905 }
19906 else if (parent.is_array())
19907 {
19908 // note erase performs range check
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019909 parent.erase(static_cast<size_type>(json_pointer::array_index(last_path)));
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019910 }
19911 };
19912
19913 // type check: top level value must be an array
19914 if (JSON_UNLIKELY(not json_patch.is_array()))
19915 {
19916 JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
19917 }
19918
19919 // iterate and apply the operations
19920 for (const auto& val : json_patch)
19921 {
19922 // wrapper to get a value for an operation
19923 const auto get_value = [&val](const std::string & op,
19924 const std::string & member,
Syoyo Fujitac0d02512019-02-04 16:19:13 +090019925 bool string_type) -> basic_json &
Syoyo Fujita2e21be72017-11-05 17:13:01 +090019926 {
19927 // find value
19928 auto it = val.m_value.object->find(member);
19929
19930 // context-sensitive error message
19931 const auto error_msg = (op == "op") ? "operation" : "operation '" + op + "'";
19932
19933 // check if desired value is present
19934 if (JSON_UNLIKELY(it == val.m_value.object->end()))
19935 {
19936 JSON_THROW(parse_error::create(105, 0, error_msg + " must have member '" + member + "'"));
19937 }
19938
19939 // check if result is of type string
19940 if (JSON_UNLIKELY(string_type and not it->second.is_string()))
19941 {
19942 JSON_THROW(parse_error::create(105, 0, error_msg + " must have string member '" + member + "'"));
19943 }
19944
19945 // no error: return value
19946 return it->second;
19947 };
19948
19949 // type check: every element of the array must be an object
19950 if (JSON_UNLIKELY(not val.is_object()))
19951 {
19952 JSON_THROW(parse_error::create(104, 0, "JSON patch must be an array of objects"));
19953 }
19954
19955 // collect mandatory members
19956 const std::string op = get_value("op", "op", true);
19957 const std::string path = get_value(op, "path", true);
19958 json_pointer ptr(path);
19959
19960 switch (get_op(op))
19961 {
19962 case patch_operations::add:
19963 {
19964 operation_add(ptr, get_value("add", "value", false));
19965 break;
19966 }
19967
19968 case patch_operations::remove:
19969 {
19970 operation_remove(ptr);
19971 break;
19972 }
19973
19974 case patch_operations::replace:
19975 {
19976 // the "path" location must exist - use at()
19977 result.at(ptr) = get_value("replace", "value", false);
19978 break;
19979 }
19980
19981 case patch_operations::move:
19982 {
19983 const std::string from_path = get_value("move", "from", true);
19984 json_pointer from_ptr(from_path);
19985
19986 // the "from" location must exist - use at()
19987 basic_json v = result.at(from_ptr);
19988
19989 // The move operation is functionally identical to a
19990 // "remove" operation on the "from" location, followed
19991 // immediately by an "add" operation at the target
19992 // location with the value that was just removed.
19993 operation_remove(from_ptr);
19994 operation_add(ptr, v);
19995 break;
19996 }
19997
19998 case patch_operations::copy:
19999 {
20000 const std::string from_path = get_value("copy", "from", true);
20001 const json_pointer from_ptr(from_path);
20002
20003 // the "from" location must exist - use at()
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020004 basic_json v = result.at(from_ptr);
20005
20006 // The copy is functionally identical to an "add"
20007 // operation at the target location using the value
20008 // specified in the "from" member.
20009 operation_add(ptr, v);
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020010 break;
20011 }
20012
20013 case patch_operations::test:
20014 {
20015 bool success = false;
20016 JSON_TRY
20017 {
20018 // check if "value" matches the one at "path"
20019 // the "path" location must exist - use at()
20020 success = (result.at(ptr) == get_value("test", "value", false));
20021 }
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020022 JSON_INTERNAL_CATCH (out_of_range&)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020023 {
20024 // ignore out of range errors: success remains false
20025 }
20026
20027 // throw an exception if test fails
20028 if (JSON_UNLIKELY(not success))
20029 {
20030 JSON_THROW(other_error::create(501, "unsuccessful: " + val.dump()));
20031 }
20032
20033 break;
20034 }
20035
20036 case patch_operations::invalid:
20037 {
20038 // op must be "add", "remove", "replace", "move", "copy", or
20039 // "test"
20040 JSON_THROW(parse_error::create(105, 0, "operation value '" + op + "' is invalid"));
20041 }
20042 }
20043 }
20044
20045 return result;
20046 }
20047
20048 /*!
20049 @brief creates a diff as a JSON patch
20050
20051 Creates a [JSON Patch](http://jsonpatch.com) so that value @a source can
20052 be changed into the value @a target by calling @ref patch function.
20053
20054 @invariant For two JSON values @a source and @a target, the following code
20055 yields always `true`:
20056 @code {.cpp}
20057 source.patch(diff(source, target)) == target;
20058 @endcode
20059
20060 @note Currently, only `remove`, `add`, and `replace` operations are
20061 generated.
20062
20063 @param[in] source JSON value to compare from
20064 @param[in] target JSON value to compare against
20065 @param[in] path helper value to create JSON pointers
20066
20067 @return a JSON patch to convert the @a source to @a target
20068
20069 @complexity Linear in the lengths of @a source and @a target.
20070
20071 @liveexample{The following code shows how a JSON patch is created as a
20072 diff for two JSON values.,diff}
20073
20074 @sa @ref patch -- apply a JSON patch
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020075 @sa @ref merge_patch -- apply a JSON Merge Patch
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020076
20077 @sa [RFC 6902 (JSON Patch)](https://tools.ietf.org/html/rfc6902)
20078
20079 @since version 2.0.0
20080 */
20081 static basic_json diff(const basic_json& source, const basic_json& target,
20082 const std::string& path = "")
20083 {
20084 // the patch
20085 basic_json result(value_t::array);
20086
20087 // if the values are the same, return empty patch
20088 if (source == target)
20089 {
20090 return result;
20091 }
20092
20093 if (source.type() != target.type())
20094 {
20095 // different types: replace value
20096 result.push_back(
20097 {
20098 {"op", "replace"}, {"path", path}, {"value", target}
20099 });
20100 }
20101 else
20102 {
20103 switch (source.type())
20104 {
20105 case value_t::array:
20106 {
20107 // first pass: traverse common elements
20108 std::size_t i = 0;
20109 while (i < source.size() and i < target.size())
20110 {
20111 // recursive call to compare array values at index i
20112 auto temp_diff = diff(source[i], target[i], path + "/" + std::to_string(i));
20113 result.insert(result.end(), temp_diff.begin(), temp_diff.end());
20114 ++i;
20115 }
20116
20117 // i now reached the end of at least one array
20118 // in a second pass, traverse the remaining elements
20119
20120 // remove my remaining elements
20121 const auto end_index = static_cast<difference_type>(result.size());
20122 while (i < source.size())
20123 {
20124 // add operations in reverse order to avoid invalid
20125 // indices
20126 result.insert(result.begin() + end_index, object(
20127 {
20128 {"op", "remove"},
20129 {"path", path + "/" + std::to_string(i)}
20130 }));
20131 ++i;
20132 }
20133
20134 // add other remaining elements
20135 while (i < target.size())
20136 {
20137 result.push_back(
20138 {
20139 {"op", "add"},
20140 {"path", path + "/" + std::to_string(i)},
20141 {"value", target[i]}
20142 });
20143 ++i;
20144 }
20145
20146 break;
20147 }
20148
20149 case value_t::object:
20150 {
20151 // first pass: traverse this object's elements
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020152 for (auto it = source.cbegin(); it != source.cend(); ++it)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020153 {
20154 // escape the key name to be used in a JSON patch
20155 const auto key = json_pointer::escape(it.key());
20156
20157 if (target.find(it.key()) != target.end())
20158 {
20159 // recursive call to compare object values at key it
20160 auto temp_diff = diff(it.value(), target[it.key()], path + "/" + key);
20161 result.insert(result.end(), temp_diff.begin(), temp_diff.end());
20162 }
20163 else
20164 {
20165 // found a key that is not in o -> remove it
20166 result.push_back(object(
20167 {
20168 {"op", "remove"}, {"path", path + "/" + key}
20169 }));
20170 }
20171 }
20172
20173 // second pass: traverse other object's elements
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020174 for (auto it = target.cbegin(); it != target.cend(); ++it)
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020175 {
20176 if (source.find(it.key()) == source.end())
20177 {
20178 // found a key that is not in this -> add it
20179 const auto key = json_pointer::escape(it.key());
20180 result.push_back(
20181 {
20182 {"op", "add"}, {"path", path + "/" + key},
20183 {"value", it.value()}
20184 });
20185 }
20186 }
20187
20188 break;
20189 }
20190
20191 default:
20192 {
20193 // both primitive type: replace value
20194 result.push_back(
20195 {
20196 {"op", "replace"}, {"path", path}, {"value", target}
20197 });
20198 break;
20199 }
20200 }
20201 }
20202
20203 return result;
20204 }
20205
20206 /// @}
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020207
20208 ////////////////////////////////
20209 // JSON Merge Patch functions //
20210 ////////////////////////////////
20211
20212 /// @name JSON Merge Patch functions
20213 /// @{
20214
20215 /*!
20216 @brief applies a JSON Merge Patch
20217
20218 The merge patch format is primarily intended for use with the HTTP PATCH
20219 method as a means of describing a set of modifications to a target
20220 resource's content. This function applies a merge patch to the current
20221 JSON value.
20222
20223 The function implements the following algorithm from Section 2 of
20224 [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396):
20225
20226 ```
20227 define MergePatch(Target, Patch):
20228 if Patch is an Object:
20229 if Target is not an Object:
20230 Target = {} // Ignore the contents and set it to an empty Object
20231 for each Name/Value pair in Patch:
20232 if Value is null:
20233 if Name exists in Target:
20234 remove the Name/Value pair from Target
20235 else:
20236 Target[Name] = MergePatch(Target[Name], Value)
20237 return Target
20238 else:
20239 return Patch
20240 ```
20241
20242 Thereby, `Target` is the current object; that is, the patch is applied to
20243 the current value.
20244
20245 @param[in] apply_patch the patch to apply
20246
20247 @complexity Linear in the lengths of @a patch.
20248
20249 @liveexample{The following code shows how a JSON Merge Patch is applied to
20250 a JSON document.,merge_patch}
20251
20252 @sa @ref patch -- apply a JSON patch
20253 @sa [RFC 7396 (JSON Merge Patch)](https://tools.ietf.org/html/rfc7396)
20254
20255 @since version 3.0.0
20256 */
20257 void merge_patch(const basic_json& apply_patch)
20258 {
20259 if (apply_patch.is_object())
20260 {
20261 if (not is_object())
20262 {
20263 *this = object();
20264 }
20265 for (auto it = apply_patch.begin(); it != apply_patch.end(); ++it)
20266 {
20267 if (it.value().is_null())
20268 {
20269 erase(it.key());
20270 }
20271 else
20272 {
20273 operator[](it.key()).merge_patch(it.value());
20274 }
20275 }
20276 }
20277 else
20278 {
20279 *this = apply_patch;
20280 }
20281 }
20282
20283 /// @}
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020284};
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020285} // namespace nlohmann
20286
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020287///////////////////////
20288// nonmember support //
20289///////////////////////
20290
20291// specialization of std::swap, and std::hash
20292namespace std
20293{
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020294
20295/// hash value for JSON objects
20296template<>
20297struct hash<nlohmann::json>
20298{
20299 /*!
20300 @brief return a hash value for a JSON object
20301
20302 @since version 1.0.0
20303 */
20304 std::size_t operator()(const nlohmann::json& j) const
20305 {
20306 // a naive hashing via the string representation
20307 const auto& h = hash<nlohmann::json::string_t>();
20308 return h(j.dump());
20309 }
20310};
20311
20312/// specialization for std::less<value_t>
20313/// @note: do not remove the space after '<',
20314/// see https://github.com/nlohmann/json/pull/679
20315template<>
20316struct less< ::nlohmann::detail::value_t>
20317{
20318 /*!
20319 @brief compare two value_t enum values
20320 @since version 3.0.0
20321 */
20322 bool operator()(nlohmann::detail::value_t lhs,
20323 nlohmann::detail::value_t rhs) const noexcept
20324 {
20325 return nlohmann::detail::operator<(lhs, rhs);
20326 }
20327};
20328
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020329/*!
20330@brief exchanges the values of two JSON objects
20331
20332@since version 1.0.0
20333*/
20334template<>
20335inline void swap<nlohmann::json>(nlohmann::json& j1, nlohmann::json& j2) noexcept(
20336 is_nothrow_move_constructible<nlohmann::json>::value and
20337 is_nothrow_move_assignable<nlohmann::json>::value
20338)
20339{
20340 j1.swap(j2);
20341}
20342
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020343} // namespace std
20344
20345/*!
20346@brief user-defined string literal for JSON values
20347
20348This operator implements a user-defined string literal for JSON objects. It
20349can be used by adding `"_json"` to a string literal and returns a JSON object
20350if no parse error occurred.
20351
20352@param[in] s a string representation of a JSON object
20353@param[in] n the length of string @a s
20354@return a JSON object
20355
20356@since version 1.0.0
20357*/
20358inline nlohmann::json operator "" _json(const char* s, std::size_t n)
20359{
20360 return nlohmann::json::parse(s, s + n);
20361}
20362
20363/*!
20364@brief user-defined string literal for JSON pointer
20365
20366This operator implements a user-defined string literal for JSON Pointers. It
20367can be used by adding `"_json_pointer"` to a string literal and returns a JSON pointer
20368object if no parse error occurred.
20369
20370@param[in] s a string representation of a JSON Pointer
20371@param[in] n the length of string @a s
20372@return a JSON pointer object
20373
20374@since version 2.0.0
20375*/
20376inline nlohmann::json::json_pointer operator "" _json_pointer(const char* s, std::size_t n)
20377{
20378 return nlohmann::json::json_pointer(std::string(s, n));
20379}
20380
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020381// #include <nlohmann/detail/macro_unscope.hpp>
20382
20383
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020384// restore GCC/clang diagnostic settings
20385#if defined(__clang__) || defined(__GNUC__) || defined(__GNUG__)
20386 #pragma GCC diagnostic pop
20387#endif
20388#if defined(__clang__)
20389 #pragma GCC diagnostic pop
20390#endif
20391
20392// clean up
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020393#undef JSON_INTERNAL_CATCH
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020394#undef JSON_CATCH
20395#undef JSON_THROW
20396#undef JSON_TRY
20397#undef JSON_LIKELY
20398#undef JSON_UNLIKELY
20399#undef JSON_DEPRECATED
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020400#undef JSON_HAS_CPP_14
20401#undef JSON_HAS_CPP_17
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020402#undef NLOHMANN_BASIC_JSON_TPL_DECLARATION
20403#undef NLOHMANN_BASIC_JSON_TPL
20404
Syoyo Fujitac0d02512019-02-04 16:19:13 +090020405
Syoyo Fujita2e21be72017-11-05 17:13:01 +090020406#endif