| /* |
| * Copyright 2000-2016 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #include "internal/cryptlib.h" |
| #include "bn_local.h" |
| |
| /* least significant word */ |
| #define BN_lsw(n) (((n)->top == 0) ? (BN_ULONG) 0 : (n)->d[0]) |
| |
| /* Returns -2 for errors because both -1 and 0 are valid results. */ |
| int BN_kronecker(const BIGNUM *a, const BIGNUM *b, BN_CTX *ctx) |
| { |
| int i; |
| int ret = -2; /* avoid 'uninitialized' warning */ |
| int err = 0; |
| BIGNUM *A, *B, *tmp; |
| /*- |
| * In 'tab', only odd-indexed entries are relevant: |
| * For any odd BIGNUM n, |
| * tab[BN_lsw(n) & 7] |
| * is $(-1)^{(n^2-1)/8}$ (using TeX notation). |
| * Note that the sign of n does not matter. |
| */ |
| static const int tab[8] = { 0, 1, 0, -1, 0, -1, 0, 1 }; |
| |
| bn_check_top(a); |
| bn_check_top(b); |
| |
| BN_CTX_start(ctx); |
| A = BN_CTX_get(ctx); |
| B = BN_CTX_get(ctx); |
| if (B == NULL) |
| goto end; |
| |
| err = !BN_copy(A, a); |
| if (err) |
| goto end; |
| err = !BN_copy(B, b); |
| if (err) |
| goto end; |
| |
| /* |
| * Kronecker symbol, implemented according to Henri Cohen, |
| * "A Course in Computational Algebraic Number Theory" |
| * (algorithm 1.4.10). |
| */ |
| |
| /* Cohen's step 1: */ |
| |
| if (BN_is_zero(B)) { |
| ret = BN_abs_is_word(A, 1); |
| goto end; |
| } |
| |
| /* Cohen's step 2: */ |
| |
| if (!BN_is_odd(A) && !BN_is_odd(B)) { |
| ret = 0; |
| goto end; |
| } |
| |
| /* now B is non-zero */ |
| i = 0; |
| while (!BN_is_bit_set(B, i)) |
| i++; |
| err = !BN_rshift(B, B, i); |
| if (err) |
| goto end; |
| if (i & 1) { |
| /* i is odd */ |
| /* (thus B was even, thus A must be odd!) */ |
| |
| /* set 'ret' to $(-1)^{(A^2-1)/8}$ */ |
| ret = tab[BN_lsw(A) & 7]; |
| } else { |
| /* i is even */ |
| ret = 1; |
| } |
| |
| if (B->neg) { |
| B->neg = 0; |
| if (A->neg) |
| ret = -ret; |
| } |
| |
| /* |
| * now B is positive and odd, so what remains to be done is to compute |
| * the Jacobi symbol (A/B) and multiply it by 'ret' |
| */ |
| |
| while (1) { |
| /* Cohen's step 3: */ |
| |
| /* B is positive and odd */ |
| |
| if (BN_is_zero(A)) { |
| ret = BN_is_one(B) ? ret : 0; |
| goto end; |
| } |
| |
| /* now A is non-zero */ |
| i = 0; |
| while (!BN_is_bit_set(A, i)) |
| i++; |
| err = !BN_rshift(A, A, i); |
| if (err) |
| goto end; |
| if (i & 1) { |
| /* i is odd */ |
| /* multiply 'ret' by $(-1)^{(B^2-1)/8}$ */ |
| ret = ret * tab[BN_lsw(B) & 7]; |
| } |
| |
| /* Cohen's step 4: */ |
| /* multiply 'ret' by $(-1)^{(A-1)(B-1)/4}$ */ |
| if ((A->neg ? ~BN_lsw(A) : BN_lsw(A)) & BN_lsw(B) & 2) |
| ret = -ret; |
| |
| /* (A, B) := (B mod |A|, |A|) */ |
| err = !BN_nnmod(B, B, A, ctx); |
| if (err) |
| goto end; |
| tmp = A; |
| A = B; |
| B = tmp; |
| tmp->neg = 0; |
| } |
| end: |
| BN_CTX_end(ctx); |
| if (err) |
| return -2; |
| else |
| return ret; |
| } |