| /* |
| * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. |
| * |
| * Licensed under the Apache License 2.0 (the "License"). You may not use |
| * this file except in compliance with the License. You can obtain a copy |
| * in the file LICENSE in the source distribution or at |
| * https://www.openssl.org/source/license.html |
| */ |
| |
| #ifndef OSSL_CRYPTO_BN_LOCAL_H |
| # define OSSL_CRYPTO_BN_LOCAL_H |
| |
| /* |
| * The EDK2 build doesn't use bn_conf.h; it sets THIRTY_TWO_BIT or |
| * SIXTY_FOUR_BIT in its own environment since it doesn't re-run our |
| * Configure script and needs to support both 32-bit and 64-bit. |
| */ |
| # include <openssl/opensslconf.h> |
| |
| # if !defined(OPENSSL_SYS_UEFI) |
| # include "crypto/bn_conf.h" |
| # endif |
| |
| # include "crypto/bn.h" |
| |
| /* |
| * These preprocessor symbols control various aspects of the bignum headers |
| * and library code. They're not defined by any "normal" configuration, as |
| * they are intended for development and testing purposes. NB: defining all |
| * three can be useful for debugging application code as well as openssl |
| * itself. BN_DEBUG - turn on various debugging alterations to the bignum |
| * code BN_DEBUG_RAND - uses random poisoning of unused words to trip up |
| * mismanagement of bignum internals. You must also define BN_DEBUG. |
| */ |
| /* #define BN_DEBUG */ |
| /* #define BN_DEBUG_RAND */ |
| |
| # ifndef OPENSSL_SMALL_FOOTPRINT |
| # define BN_MUL_COMBA |
| # define BN_SQR_COMBA |
| # define BN_RECURSION |
| # endif |
| |
| /* |
| * This next option uses the C libraries (2 word)/(1 word) function. If it is |
| * not defined, I use my C version (which is slower). The reason for this |
| * flag is that when the particular C compiler library routine is used, and |
| * the library is linked with a different compiler, the library is missing. |
| * This mostly happens when the library is built with gcc and then linked |
| * using normal cc. This would be a common occurrence because gcc normally |
| * produces code that is 2 times faster than system compilers for the big |
| * number stuff. For machines with only one compiler (or shared libraries), |
| * this should be on. Again this in only really a problem on machines using |
| * "long long's", are 32bit, and are not using my assembler code. |
| */ |
| # if defined(OPENSSL_SYS_MSDOS) || defined(OPENSSL_SYS_WINDOWS) || \ |
| defined(OPENSSL_SYS_WIN32) || defined(linux) |
| # define BN_DIV2W |
| # endif |
| |
| /* |
| * 64-bit processor with LP64 ABI |
| */ |
| # ifdef SIXTY_FOUR_BIT_LONG |
| # define BN_ULLONG unsigned long long |
| # define BN_BITS4 32 |
| # define BN_MASK2 (0xffffffffffffffffL) |
| # define BN_MASK2l (0xffffffffL) |
| # define BN_MASK2h (0xffffffff00000000L) |
| # define BN_MASK2h1 (0xffffffff80000000L) |
| # define BN_DEC_CONV (10000000000000000000UL) |
| # define BN_DEC_NUM 19 |
| # define BN_DEC_FMT1 "%lu" |
| # define BN_DEC_FMT2 "%019lu" |
| # endif |
| |
| /* |
| * 64-bit processor other than LP64 ABI |
| */ |
| # ifdef SIXTY_FOUR_BIT |
| # undef BN_LLONG |
| # undef BN_ULLONG |
| # define BN_BITS4 32 |
| # define BN_MASK2 (0xffffffffffffffffLL) |
| # define BN_MASK2l (0xffffffffL) |
| # define BN_MASK2h (0xffffffff00000000LL) |
| # define BN_MASK2h1 (0xffffffff80000000LL) |
| # define BN_DEC_CONV (10000000000000000000ULL) |
| # define BN_DEC_NUM 19 |
| # define BN_DEC_FMT1 "%llu" |
| # define BN_DEC_FMT2 "%019llu" |
| # endif |
| |
| # ifdef THIRTY_TWO_BIT |
| # ifdef BN_LLONG |
| # if defined(_WIN32) && !defined(__GNUC__) |
| # define BN_ULLONG unsigned __int64 |
| # else |
| # define BN_ULLONG unsigned long long |
| # endif |
| # endif |
| # define BN_BITS4 16 |
| # define BN_MASK2 (0xffffffffL) |
| # define BN_MASK2l (0xffff) |
| # define BN_MASK2h1 (0xffff8000L) |
| # define BN_MASK2h (0xffff0000L) |
| # define BN_DEC_CONV (1000000000L) |
| # define BN_DEC_NUM 9 |
| # define BN_DEC_FMT1 "%u" |
| # define BN_DEC_FMT2 "%09u" |
| # endif |
| |
| |
| /*- |
| * Bignum consistency macros |
| * There is one "API" macro, bn_fix_top(), for stripping leading zeroes from |
| * bignum data after direct manipulations on the data. There is also an |
| * "internal" macro, bn_check_top(), for verifying that there are no leading |
| * zeroes. Unfortunately, some auditing is required due to the fact that |
| * bn_fix_top() has become an overabused duct-tape because bignum data is |
| * occasionally passed around in an inconsistent state. So the following |
| * changes have been made to sort this out; |
| * - bn_fix_top()s implementation has been moved to bn_correct_top() |
| * - if BN_DEBUG isn't defined, bn_fix_top() maps to bn_correct_top(), and |
| * bn_check_top() is as before. |
| * - if BN_DEBUG *is* defined; |
| * - bn_check_top() tries to pollute unused words even if the bignum 'top' is |
| * consistent. (ed: only if BN_DEBUG_RAND is defined) |
| * - bn_fix_top() maps to bn_check_top() rather than "fixing" anything. |
| * The idea is to have debug builds flag up inconsistent bignums when they |
| * occur. If that occurs in a bn_fix_top(), we examine the code in question; if |
| * the use of bn_fix_top() was appropriate (ie. it follows directly after code |
| * that manipulates the bignum) it is converted to bn_correct_top(), and if it |
| * was not appropriate, we convert it permanently to bn_check_top() and track |
| * down the cause of the bug. Eventually, no internal code should be using the |
| * bn_fix_top() macro. External applications and libraries should try this with |
| * their own code too, both in terms of building against the openssl headers |
| * with BN_DEBUG defined *and* linking with a version of OpenSSL built with it |
| * defined. This not only improves external code, it provides more test |
| * coverage for openssl's own code. |
| */ |
| |
| # ifdef BN_DEBUG |
| /* |
| * The new BN_FLG_FIXED_TOP flag marks vectors that were not treated with |
| * bn_correct_top, in other words such vectors are permitted to have zeros |
| * in most significant limbs. Such vectors are used internally to achieve |
| * execution time invariance for critical operations with private keys. |
| * It's BN_DEBUG-only flag, because user application is not supposed to |
| * observe it anyway. Moreover, optimizing compiler would actually remove |
| * all operations manipulating the bit in question in non-BN_DEBUG build. |
| */ |
| # define BN_FLG_FIXED_TOP 0x10000 |
| # ifdef BN_DEBUG_RAND |
| # define bn_pollute(a) \ |
| do { \ |
| const BIGNUM *_bnum1 = (a); \ |
| if (_bnum1->top < _bnum1->dmax) { \ |
| unsigned char _tmp_char; \ |
| /* We cast away const without the compiler knowing, any \ |
| * *genuinely* constant variables that aren't mutable \ |
| * wouldn't be constructed with top!=dmax. */ \ |
| BN_ULONG *_not_const; \ |
| memcpy(&_not_const, &_bnum1->d, sizeof(_not_const)); \ |
| RAND_bytes(&_tmp_char, 1); /* Debug only - safe to ignore error return */\ |
| memset(_not_const + _bnum1->top, _tmp_char, \ |
| sizeof(*_not_const) * (_bnum1->dmax - _bnum1->top)); \ |
| } \ |
| } while(0) |
| # else |
| # define bn_pollute(a) |
| # endif |
| # define bn_check_top(a) \ |
| do { \ |
| const BIGNUM *_bnum2 = (a); \ |
| if (_bnum2 != NULL) { \ |
| int _top = _bnum2->top; \ |
| (void)ossl_assert((_top == 0 && !_bnum2->neg) || \ |
| (_top && ((_bnum2->flags & BN_FLG_FIXED_TOP) \ |
| || _bnum2->d[_top - 1] != 0))); \ |
| bn_pollute(_bnum2); \ |
| } \ |
| } while(0) |
| |
| # define bn_fix_top(a) bn_check_top(a) |
| |
| # define bn_check_size(bn, bits) bn_wcheck_size(bn, ((bits+BN_BITS2-1))/BN_BITS2) |
| # define bn_wcheck_size(bn, words) \ |
| do { \ |
| const BIGNUM *_bnum2 = (bn); \ |
| assert((words) <= (_bnum2)->dmax && \ |
| (words) >= (_bnum2)->top); \ |
| /* avoid unused variable warning with NDEBUG */ \ |
| (void)(_bnum2); \ |
| } while(0) |
| |
| # else /* !BN_DEBUG */ |
| |
| # define BN_FLG_FIXED_TOP 0 |
| # define bn_pollute(a) |
| # define bn_check_top(a) |
| # define bn_fix_top(a) bn_correct_top(a) |
| # define bn_check_size(bn, bits) |
| # define bn_wcheck_size(bn, words) |
| |
| # endif |
| |
| BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, |
| BN_ULONG w); |
| BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w); |
| void bn_sqr_words(BN_ULONG *rp, const BN_ULONG *ap, int num); |
| BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d); |
| BN_ULONG bn_add_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| int num); |
| BN_ULONG bn_sub_words(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| int num); |
| |
| struct bignum_st { |
| BN_ULONG *d; /* Pointer to an array of 'BN_BITS2' bit |
| * chunks. */ |
| int top; /* Index of last used d +1. */ |
| /* The next are internal book keeping for bn_expand. */ |
| int dmax; /* Size of the d array. */ |
| int neg; /* one if the number is negative */ |
| int flags; |
| }; |
| |
| /* Used for montgomery multiplication */ |
| struct bn_mont_ctx_st { |
| int ri; /* number of bits in R */ |
| BIGNUM RR; /* used to convert to montgomery form, |
| possibly zero-padded */ |
| BIGNUM N; /* The modulus */ |
| BIGNUM Ni; /* R*(1/R mod N) - N*Ni = 1 (Ni is only |
| * stored for bignum algorithm) */ |
| BN_ULONG n0[2]; /* least significant word(s) of Ni; (type |
| * changed with 0.9.9, was "BN_ULONG n0;" |
| * before) */ |
| int flags; |
| }; |
| |
| /* |
| * Used for reciprocal division/mod functions It cannot be shared between |
| * threads |
| */ |
| struct bn_recp_ctx_st { |
| BIGNUM N; /* the divisor */ |
| BIGNUM Nr; /* the reciprocal */ |
| int num_bits; |
| int shift; |
| int flags; |
| }; |
| |
| /* Used for slow "generation" functions. */ |
| struct bn_gencb_st { |
| unsigned int ver; /* To handle binary (in)compatibility */ |
| void *arg; /* callback-specific data */ |
| union { |
| /* if (ver==1) - handles old style callbacks */ |
| void (*cb_1) (int, int, void *); |
| /* if (ver==2) - new callback style */ |
| int (*cb_2) (int, int, BN_GENCB *); |
| } cb; |
| }; |
| |
| /*- |
| * BN_window_bits_for_exponent_size -- macro for sliding window mod_exp functions |
| * |
| * |
| * For window size 'w' (w >= 2) and a random 'b' bits exponent, |
| * the number of multiplications is a constant plus on average |
| * |
| * 2^(w-1) + (b-w)/(w+1); |
| * |
| * here 2^(w-1) is for precomputing the table (we actually need |
| * entries only for windows that have the lowest bit set), and |
| * (b-w)/(w+1) is an approximation for the expected number of |
| * w-bit windows, not counting the first one. |
| * |
| * Thus we should use |
| * |
| * w >= 6 if b > 671 |
| * w = 5 if 671 > b > 239 |
| * w = 4 if 239 > b > 79 |
| * w = 3 if 79 > b > 23 |
| * w <= 2 if 23 > b |
| * |
| * (with draws in between). Very small exponents are often selected |
| * with low Hamming weight, so we use w = 1 for b <= 23. |
| */ |
| # define BN_window_bits_for_exponent_size(b) \ |
| ((b) > 671 ? 6 : \ |
| (b) > 239 ? 5 : \ |
| (b) > 79 ? 4 : \ |
| (b) > 23 ? 3 : 1) |
| |
| /* |
| * BN_mod_exp_mont_consttime is based on the assumption that the L1 data cache |
| * line width of the target processor is at least the following value. |
| */ |
| # define MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH ( 64 ) |
| # define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK (MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1) |
| |
| /* |
| * Window sizes optimized for fixed window size modular exponentiation |
| * algorithm (BN_mod_exp_mont_consttime). To achieve the security goals of |
| * BN_mode_exp_mont_consttime, the maximum size of the window must not exceed |
| * log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH). Window size thresholds are |
| * defined for cache line sizes of 32 and 64, cache line sizes where |
| * log_2(32)=5 and log_2(64)=6 respectively. A window size of 7 should only be |
| * used on processors that have a 128 byte or greater cache line size. |
| */ |
| # if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64 |
| |
| # define BN_window_bits_for_ctime_exponent_size(b) \ |
| ((b) > 937 ? 6 : \ |
| (b) > 306 ? 5 : \ |
| (b) > 89 ? 4 : \ |
| (b) > 22 ? 3 : 1) |
| # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6) |
| |
| # elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32 |
| |
| # define BN_window_bits_for_ctime_exponent_size(b) \ |
| ((b) > 306 ? 5 : \ |
| (b) > 89 ? 4 : \ |
| (b) > 22 ? 3 : 1) |
| # define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5) |
| |
| # endif |
| |
| /* Pentium pro 16,16,16,32,64 */ |
| /* Alpha 16,16,16,16.64 */ |
| # define BN_MULL_SIZE_NORMAL (16)/* 32 */ |
| # define BN_MUL_RECURSIVE_SIZE_NORMAL (16)/* 32 less than */ |
| # define BN_SQR_RECURSIVE_SIZE_NORMAL (16)/* 32 */ |
| # define BN_MUL_LOW_RECURSIVE_SIZE_NORMAL (32)/* 32 */ |
| # define BN_MONT_CTX_SET_SIZE_WORD (64)/* 32 */ |
| |
| /* |
| * 2011-02-22 SMS. In various places, a size_t variable or a type cast to |
| * size_t was used to perform integer-only operations on pointers. This |
| * failed on VMS with 64-bit pointers (CC /POINTER_SIZE = 64) because size_t |
| * is still only 32 bits. What's needed in these cases is an integer type |
| * with the same size as a pointer, which size_t is not certain to be. The |
| * only fix here is VMS-specific. |
| */ |
| # if defined(OPENSSL_SYS_VMS) |
| # if __INITIAL_POINTER_SIZE == 64 |
| # define PTR_SIZE_INT long long |
| # else /* __INITIAL_POINTER_SIZE == 64 */ |
| # define PTR_SIZE_INT int |
| # endif /* __INITIAL_POINTER_SIZE == 64 [else] */ |
| # elif !defined(PTR_SIZE_INT) /* defined(OPENSSL_SYS_VMS) */ |
| # define PTR_SIZE_INT size_t |
| # endif /* defined(OPENSSL_SYS_VMS) [else] */ |
| |
| # if !defined(OPENSSL_NO_ASM) && !defined(OPENSSL_NO_INLINE_ASM) && !defined(PEDANTIC) |
| /* |
| * BN_UMULT_HIGH section. |
| * If the compiler doesn't support 2*N integer type, then you have to |
| * replace every N*N multiplication with 4 (N/2)*(N/2) accompanied by some |
| * shifts and additions which unavoidably results in severe performance |
| * penalties. Of course provided that the hardware is capable of producing |
| * 2*N result... That's when you normally start considering assembler |
| * implementation. However! It should be pointed out that some CPUs (e.g., |
| * PowerPC, Alpha, and IA-64) provide *separate* instruction calculating |
| * the upper half of the product placing the result into a general |
| * purpose register. Now *if* the compiler supports inline assembler, |
| * then it's not impossible to implement the "bignum" routines (and have |
| * the compiler optimize 'em) exhibiting "native" performance in C. That's |
| * what BN_UMULT_HIGH macro is about:-) Note that more recent compilers do |
| * support 2*64 integer type, which is also used here. |
| */ |
| # if defined(__SIZEOF_INT128__) && __SIZEOF_INT128__==16 && \ |
| (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
| # define BN_UMULT_HIGH(a,b) (((__uint128_t)(a)*(b))>>64) |
| # define BN_UMULT_LOHI(low,high,a,b) ({ \ |
| __uint128_t ret=(__uint128_t)(a)*(b); \ |
| (high)=ret>>64; (low)=ret; }) |
| # elif defined(__alpha) && (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
| # if defined(__DECC) |
| # include <c_asm.h> |
| # define BN_UMULT_HIGH(a,b) (BN_ULONG)asm("umulh %a0,%a1,%v0",(a),(b)) |
| # elif defined(__GNUC__) && __GNUC__>=2 |
| # define BN_UMULT_HIGH(a,b) ({ \ |
| register BN_ULONG ret; \ |
| asm ("umulh %1,%2,%0" \ |
| : "=r"(ret) \ |
| : "r"(a), "r"(b)); \ |
| ret; }) |
| # endif /* compiler */ |
| # elif defined(_ARCH_PPC64) && defined(SIXTY_FOUR_BIT_LONG) |
| # if defined(__GNUC__) && __GNUC__>=2 |
| # define BN_UMULT_HIGH(a,b) ({ \ |
| register BN_ULONG ret; \ |
| asm ("mulhdu %0,%1,%2" \ |
| : "=r"(ret) \ |
| : "r"(a), "r"(b)); \ |
| ret; }) |
| # endif /* compiler */ |
| # elif (defined(__x86_64) || defined(__x86_64__)) && \ |
| (defined(SIXTY_FOUR_BIT_LONG) || defined(SIXTY_FOUR_BIT)) |
| # if defined(__GNUC__) && __GNUC__>=2 |
| # define BN_UMULT_HIGH(a,b) ({ \ |
| register BN_ULONG ret,discard; \ |
| asm ("mulq %3" \ |
| : "=a"(discard),"=d"(ret) \ |
| : "a"(a), "g"(b) \ |
| : "cc"); \ |
| ret; }) |
| # define BN_UMULT_LOHI(low,high,a,b) \ |
| asm ("mulq %3" \ |
| : "=a"(low),"=d"(high) \ |
| : "a"(a),"g"(b) \ |
| : "cc"); |
| # endif |
| # elif (defined(_M_AMD64) || defined(_M_X64)) && defined(SIXTY_FOUR_BIT) |
| # if defined(_MSC_VER) && _MSC_VER>=1400 |
| unsigned __int64 __umulh(unsigned __int64 a, unsigned __int64 b); |
| unsigned __int64 _umul128(unsigned __int64 a, unsigned __int64 b, |
| unsigned __int64 *h); |
| # pragma intrinsic(__umulh,_umul128) |
| # define BN_UMULT_HIGH(a,b) __umulh((a),(b)) |
| # define BN_UMULT_LOHI(low,high,a,b) ((low)=_umul128((a),(b),&(high))) |
| # endif |
| # elif defined(__mips) && (defined(SIXTY_FOUR_BIT) || defined(SIXTY_FOUR_BIT_LONG)) |
| # if defined(__GNUC__) && __GNUC__>=2 |
| # define BN_UMULT_HIGH(a,b) ({ \ |
| register BN_ULONG ret; \ |
| asm ("dmultu %1,%2" \ |
| : "=h"(ret) \ |
| : "r"(a), "r"(b) : "l"); \ |
| ret; }) |
| # define BN_UMULT_LOHI(low,high,a,b) \ |
| asm ("dmultu %2,%3" \ |
| : "=l"(low),"=h"(high) \ |
| : "r"(a), "r"(b)); |
| # endif |
| # elif defined(__aarch64__) && defined(SIXTY_FOUR_BIT_LONG) |
| # if defined(__GNUC__) && __GNUC__>=2 |
| # define BN_UMULT_HIGH(a,b) ({ \ |
| register BN_ULONG ret; \ |
| asm ("umulh %0,%1,%2" \ |
| : "=r"(ret) \ |
| : "r"(a), "r"(b)); \ |
| ret; }) |
| # endif |
| # endif /* cpu */ |
| # endif /* OPENSSL_NO_ASM */ |
| |
| # ifdef BN_DEBUG_RAND |
| # define bn_clear_top2max(a) \ |
| { \ |
| int ind = (a)->dmax - (a)->top; \ |
| BN_ULONG *ftl = &(a)->d[(a)->top-1]; \ |
| for (; ind != 0; ind--) \ |
| *(++ftl) = 0x0; \ |
| } |
| # else |
| # define bn_clear_top2max(a) |
| # endif |
| |
| # ifdef BN_LLONG |
| /******************************************************************* |
| * Using the long long type, has to be twice as wide as BN_ULONG... |
| */ |
| # define Lw(t) (((BN_ULONG)(t))&BN_MASK2) |
| # define Hw(t) (((BN_ULONG)((t)>>BN_BITS2))&BN_MASK2) |
| |
| # define mul_add(r,a,w,c) { \ |
| BN_ULLONG t; \ |
| t=(BN_ULLONG)w * (a) + (r) + (c); \ |
| (r)= Lw(t); \ |
| (c)= Hw(t); \ |
| } |
| |
| # define mul(r,a,w,c) { \ |
| BN_ULLONG t; \ |
| t=(BN_ULLONG)w * (a) + (c); \ |
| (r)= Lw(t); \ |
| (c)= Hw(t); \ |
| } |
| |
| # define sqr(r0,r1,a) { \ |
| BN_ULLONG t; \ |
| t=(BN_ULLONG)(a)*(a); \ |
| (r0)=Lw(t); \ |
| (r1)=Hw(t); \ |
| } |
| |
| # elif defined(BN_UMULT_LOHI) |
| # define mul_add(r,a,w,c) { \ |
| BN_ULONG high,low,ret,tmp=(a); \ |
| ret = (r); \ |
| BN_UMULT_LOHI(low,high,w,tmp); \ |
| ret += (c); \ |
| (c) = (ret<(c))?1:0; \ |
| (c) += high; \ |
| ret += low; \ |
| (c) += (ret<low)?1:0; \ |
| (r) = ret; \ |
| } |
| |
| # define mul(r,a,w,c) { \ |
| BN_ULONG high,low,ret,ta=(a); \ |
| BN_UMULT_LOHI(low,high,w,ta); \ |
| ret = low + (c); \ |
| (c) = high; \ |
| (c) += (ret<low)?1:0; \ |
| (r) = ret; \ |
| } |
| |
| # define sqr(r0,r1,a) { \ |
| BN_ULONG tmp=(a); \ |
| BN_UMULT_LOHI(r0,r1,tmp,tmp); \ |
| } |
| |
| # elif defined(BN_UMULT_HIGH) |
| # define mul_add(r,a,w,c) { \ |
| BN_ULONG high,low,ret,tmp=(a); \ |
| ret = (r); \ |
| high= BN_UMULT_HIGH(w,tmp); \ |
| ret += (c); \ |
| low = (w) * tmp; \ |
| (c) = (ret<(c))?1:0; \ |
| (c) += high; \ |
| ret += low; \ |
| (c) += (ret<low)?1:0; \ |
| (r) = ret; \ |
| } |
| |
| # define mul(r,a,w,c) { \ |
| BN_ULONG high,low,ret,ta=(a); \ |
| low = (w) * ta; \ |
| high= BN_UMULT_HIGH(w,ta); \ |
| ret = low + (c); \ |
| (c) = high; \ |
| (c) += (ret<low)?1:0; \ |
| (r) = ret; \ |
| } |
| |
| # define sqr(r0,r1,a) { \ |
| BN_ULONG tmp=(a); \ |
| (r0) = tmp * tmp; \ |
| (r1) = BN_UMULT_HIGH(tmp,tmp); \ |
| } |
| |
| # else |
| /************************************************************* |
| * No long long type |
| */ |
| |
| # define LBITS(a) ((a)&BN_MASK2l) |
| # define HBITS(a) (((a)>>BN_BITS4)&BN_MASK2l) |
| # define L2HBITS(a) (((a)<<BN_BITS4)&BN_MASK2) |
| |
| # define LLBITS(a) ((a)&BN_MASKl) |
| # define LHBITS(a) (((a)>>BN_BITS2)&BN_MASKl) |
| # define LL2HBITS(a) ((BN_ULLONG)((a)&BN_MASKl)<<BN_BITS2) |
| |
| # define mul64(l,h,bl,bh) \ |
| { \ |
| BN_ULONG m,m1,lt,ht; \ |
| \ |
| lt=l; \ |
| ht=h; \ |
| m =(bh)*(lt); \ |
| lt=(bl)*(lt); \ |
| m1=(bl)*(ht); \ |
| ht =(bh)*(ht); \ |
| m=(m+m1)&BN_MASK2; if (m < m1) ht+=L2HBITS((BN_ULONG)1); \ |
| ht+=HBITS(m); \ |
| m1=L2HBITS(m); \ |
| lt=(lt+m1)&BN_MASK2; if (lt < m1) ht++; \ |
| (l)=lt; \ |
| (h)=ht; \ |
| } |
| |
| # define sqr64(lo,ho,in) \ |
| { \ |
| BN_ULONG l,h,m; \ |
| \ |
| h=(in); \ |
| l=LBITS(h); \ |
| h=HBITS(h); \ |
| m =(l)*(h); \ |
| l*=l; \ |
| h*=h; \ |
| h+=(m&BN_MASK2h1)>>(BN_BITS4-1); \ |
| m =(m&BN_MASK2l)<<(BN_BITS4+1); \ |
| l=(l+m)&BN_MASK2; if (l < m) h++; \ |
| (lo)=l; \ |
| (ho)=h; \ |
| } |
| |
| # define mul_add(r,a,bl,bh,c) { \ |
| BN_ULONG l,h; \ |
| \ |
| h= (a); \ |
| l=LBITS(h); \ |
| h=HBITS(h); \ |
| mul64(l,h,(bl),(bh)); \ |
| \ |
| /* non-multiply part */ \ |
| l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
| (c)=(r); \ |
| l=(l+(c))&BN_MASK2; if (l < (c)) h++; \ |
| (c)=h&BN_MASK2; \ |
| (r)=l; \ |
| } |
| |
| # define mul(r,a,bl,bh,c) { \ |
| BN_ULONG l,h; \ |
| \ |
| h= (a); \ |
| l=LBITS(h); \ |
| h=HBITS(h); \ |
| mul64(l,h,(bl),(bh)); \ |
| \ |
| /* non-multiply part */ \ |
| l+=(c); if ((l&BN_MASK2) < (c)) h++; \ |
| (c)=h&BN_MASK2; \ |
| (r)=l&BN_MASK2; \ |
| } |
| # endif /* !BN_LLONG */ |
| |
| void BN_RECP_CTX_init(BN_RECP_CTX *recp); |
| void BN_MONT_CTX_init(BN_MONT_CTX *ctx); |
| |
| void bn_init(BIGNUM *a); |
| void bn_mul_normal(BN_ULONG *r, BN_ULONG *a, int na, BN_ULONG *b, int nb); |
| void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
| void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b); |
| void bn_sqr_normal(BN_ULONG *r, const BN_ULONG *a, int n, BN_ULONG *tmp); |
| void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a); |
| void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a); |
| int bn_cmp_words(const BN_ULONG *a, const BN_ULONG *b, int n); |
| int bn_cmp_part_words(const BN_ULONG *a, const BN_ULONG *b, int cl, int dl); |
| void bn_mul_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| int dna, int dnb, BN_ULONG *t); |
| void bn_mul_part_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, |
| int n, int tna, int tnb, BN_ULONG *t); |
| void bn_sqr_recursive(BN_ULONG *r, const BN_ULONG *a, int n2, BN_ULONG *t); |
| void bn_mul_low_normal(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n); |
| void bn_mul_low_recursive(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b, int n2, |
| BN_ULONG *t); |
| BN_ULONG bn_sub_part_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, |
| int cl, int dl); |
| int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, |
| const BN_ULONG *np, const BN_ULONG *n0, int num); |
| |
| BIGNUM *int_bn_mod_inverse(BIGNUM *in, |
| const BIGNUM *a, const BIGNUM *n, BN_CTX *ctx, |
| int *noinv); |
| |
| static ossl_inline BIGNUM *bn_expand(BIGNUM *a, int bits) |
| { |
| if (bits > (INT_MAX - BN_BITS2 + 1)) |
| return NULL; |
| |
| if (((bits+BN_BITS2-1)/BN_BITS2) <= (a)->dmax) |
| return a; |
| |
| return bn_expand2((a),(bits+BN_BITS2-1)/BN_BITS2); |
| } |
| |
| int bn_check_prime_int(const BIGNUM *w, int checks, BN_CTX *ctx, |
| int do_trial_division, BN_GENCB *cb); |
| |
| #endif |